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A B S T R A C T   

Landscape fire is a widespread, somewhat unpredictable phenomena that plays an important part in Earth’s 
biogeochemical cycling. In many biomes worldwide fire also provides multiple ecological benefits, but in certain 
circumstances can also pose a risk to life and infrastructure, lead to net increases in atmospheric greenhouse gas 
concentrations, and to degradation in air quality and consequently human health. Accurate, timely and 
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Infrared 
Satellites 
FRP 
Review 

frequently updated information on landscape fire activity is essential to improve our understanding of the drivers 
and impacts of this form of biomass burning, as well as to aid fire management. This information can only be 
provided using satellite Earth Observation (EO) approaches, and remote sensing of active fire is one of the key 
techniques used. This form of EO is based on detecting the signature of the (mostly infrared) electromagnetic 
radiation emitted as biomass burns. Since the early 1980’s, active fire (AF) remote sensing conducted using low 
Earth orbit (LEO) satellites has been deployed in certain regions of the world to map the location and timing of 
landscape fire occurrence, and from the early 2000’s global-scale information updated multiple times per day has 
been easily available to all. Geostationary (GEO) satellites provide even higher frequency AF information, more 
than 100 times per day in some cases, and both LEO- and GEO-derived AF products now often include estimates 
of a fires characteristics, such as its fire radiative power (FRP) output, in addition to the fires detection. AF data 
provide information relevant to fire activity ongoing when the EO data were collected, and this can be delivered 
with very low latency times to support applications such as air quality forecasting. Here we summarize the 
history of achievements in the field of active fire remote sensing, review the physical basis of the approaches 
used, the nature of the AF detection and characterization techniques deployed, and highlight some of the key 
current capabilities and applications. Finally, we list some important developments we believe deserve focus in 
future years.   

1. Introduction 

Landscape fire is a widespread natural disturbance agent involved in 
Earth’s biogeochemical cycling, but one that can be greatly influenced 
by human actions, including in relation to climate and environmental 
change. Fire provides multiple ecological benefits (McLauchlan et al., 
2020) – but in certain circumstances also poses a risk to life and infra
structure (Duff and Penman, 2021). In areas of substantial landscape fire 
activity and in regions downwind, air quality can also be seriously 
degraded - leading to major human health impacts and hundreds of 
thousands of early deaths per year worldwide (Roberts and Wooster, 
2021). Deforestation fires, other fire involving ‘permanent’ land cover 
conversion, and fires consuming peat soils can also result in a net release 
of carbon to the atmosphere, since unlike savannah or grassland fires the 
carbon released is not balanced by a roughly equivalent uptake over 
subsequent growing seasons (Sommers et al., 2014; Friedlingstein et al., 
2020). Active fire (AF) remote sensing from space is a key technique 
used to deliver information on local to global scale fire activity for all 
these applications and more in a timely and accurate manner. Following 
a recent review of Earth Observation (EO) based burned area mapping 
(Chuvieco et al., 2019), here we focus on EO for active fires – a technique 
that has developed to now provide information on fire activity occurring 
anywhere on Earth with very low data latency and updates multiple 
times per day. Conducted as part of the Global Observation of Forest 
Cover/Global Observation of Landcover Dynamics (GOFC/GOLD) Fire 

Programme (https://gofcgold.org/), this review summarizes the history 
of the AF remote sensing approach, details current capabilities and key 
applications, and identifies important developments deserving focus in 
the coming years. Appendix 1 provides a glossary and acronym list 
covering many of the terms used, along with a definition of some of the 
most relevant physical and chemical quantities. 

Fig. 1 shows the annual distribution of actively burning landscape 
fires detected via processing of data collected by the Moderate Resolu
tion Imaging Spectroradiometer (MODIS) instrument onboard NASA’s 
Terra satellite. The fires detected include for example wildfires, those 
planned for some land management objective such as support to agri
culture or forestry, and those used to clear land – including forests - for 
future agriculture. The data of Fig. 1 clearly illustrate that widespread 
landscape fire activity occurs on all continents except Antarctica, 
generally in regions with enough dry fuel and ignition sources from 
people or lightning. Globally an average of around 3.4% of Earth’s 
terrestrial surface area burns annually (Giglio et al., 2018), an estimate 
that may increase as more finely detailed EO-derived burned area (BA) 
data become available (Roy et al., 2019; Roteta et al., 2019). Landscape 
fires such as these play important roles in many ecological (Bond and 
Keeley, 2005; McLauchlan et al., 2020) and wider Earth system pro
cesses (Bowman et al., 2009), including in relation to the carbon cycle 
(Sommers et al., 2014). But their annual consumption of billions of 
tonnes of vegetation and organic soil also results in globally significant 
emissions of smoke to the atmosphere (van der Werf et al., 2017), even 

Fig. 1. One year of actively burning landscape fire radiative power (FRP), derived from MODIS observations made from the Terra satellite. Data are the mean FRP of 
all active fire pixels detected in each 0.5◦ grid cell, as defined by the MODIS MCD14ML Active Fire and Thermal Anomaly product generated for 2010 (Giglio 
et al., 2016). 
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from individual fire events (Hirsch and Koren, 2021), and this affects air 
quality (Jaffe et al., 2020) and human health (Roberts and Wooster, 
2021). Those fires resulting in permanent landcover change, such as 
deforestation, and/or which consume carbon-rich organic soil such as 
peat built up over long-timescales also represent a net release of carbon 
to the atmosphere (e.g. Sommers et al., 2014; Huijnen et al., 2016) and 
so contribute to rises in atmospheric greenhouse gas concentrations. One 
of the earliest stimuli for use of satellite EO in studying landscape fires 
came from uncertainties on their net carbon budget impact (Seiler and 
Crutzen, 1980), though a century earlier von Danckelman had drawn 
attention to their role in large-scale aerosol radiative forcing (Brönni
mann et al., 2009). 

Satellite EO can be used to probe many fire characteristics, including 
burned area (Giglio et al., 2018; Chuvieco et al., 2019) and the con
centration and composition of smoke plumes (e.g. Kaufman et al., 2002; 
Coheur et al., 2009; Ross et al., 2013). Active fire (AF) remote sensing 
such as that used to produce the data of Fig. 1 primarily focuses on 
identifying the location, timing and radiative strength (Fire Radiative 
Power; FRP) of fires that are actually consuming vegetation and/or 
organic soil at the time the observations were made. The FRP is some
what akin to a spatial integration of the intensity of the overall com
bustion zone, and is measured in Watts. AF remote sensing is based 
primarily on infrared (IR) spectral measurements, and we begin by 
summarizing the historical development of the approaches used to 
exploit these measures (Section 2). We then review the fundamental 
physics (Section 3) and strategies for AF detection (Section 4), detailing 
approaches for FRP retrieval and the extraction of related variables such 
as fire effective temperature and area (Section 5). We examine how such 
data relate to fuel consumption and atmospheric impacts (Section 6), 
fire characteristics and ecosystem variables (Section 7), and how they 
are increasingly provided via online portals and in ‘analysis ready’ for
mats (Section 8). Finally, to aid future planning, we examine types of 
sensors, datasets and research activities we consider important for 
further development of AF applications, so as to point the way to areas of 
further fruitful research (Section 9). 

2. The historical development of satellite active fire (AF) 
methods 

The origins of active fire remote sensing extend back to 1960’s and 
1970’s, with airborne thermal imaging of forest and coal seam fires (e.g. 
Hirsch, 1965; Ellyett and Fleming, 1974). Satellite-based studies 
commenced in the early 1980’s, primarily using data from the Advanced 
Very High Resolution Radiometer (AVHRR) operating onboard NOAA’s 
Polar-orbiting Operational Environmental Satellites (POES). AVHRR 
data played a key role in the development of AF detection methods (e.g., 
Flasse and Ceccato, 1996; Giglio et al., 1999; Ichoku et al., 2003). 
Research was largely based on the strong ‘active fire sensitivity’ of 
spectral bands located in the middle infrared (MIR) atmospheric win
dow (3–5 μm) (Section 3), with the AVHRR 3.7 μm channel shown to 
discriminate areas of combustion covering <1% of the pixel area 
(Dozier, 1981; Matson and Dozier, 1981; Muirhead and Cracknell, 1985; 
Flannigan and Vonder Haar, 1986; Lee and Tag, 1990; Setzer and Per
eira, 1991; Justice et al., 1993). The sensitivity of MIR measurements to 
sub-pixel thermal anomalies still underpins most AF remote sensing 
today, and AVHRR itself is still used (e.g., in the Brazilian ‘Queimadas’ 
fire monitoring system described in Appendix 2). During the 1980’s the 
first AVHRR-based active fire initiatives were unable to use the full 
spatial resolution (1 km) data globally due to the limited ‘local area 
coverage’ (LAC) onboard storage capacity of POES. However, a global 
network of AVHRR ground stations collected the directly downlinked 
High Resolution Picture Transmission (HRPT) 1 km data broadcast from 
the POES within their coverage areas, and in 1992 the International 
Geosphere Biosphere Programme Data and Information System (IGBP- 
DIS) provided specifications for the first global 1 km data set (Eiden
shink and Faundeen, 1994). This led to the first ever day and night 

global AF data set, produced by Europe’s Joint Research Center (JRC; 
Ispra) covering April 1992 to December 1993 (Stroppiana et al., 2000). 
The nighttime only ESA World Fire Atlas (WFA) was developed at a 
similar time using initially ATSR-2 observations (Arino et al., 1999). The 
call for such global fire products originated in the requirements set by 
the IGBP Global Change and Terrestrial Ecology (GCTE) Core Project 
and the response by IGBP Data and Information Systems (IGBP-DIS), and 
was taken up more comprehensively by the international community 
through the GOFC/GOLD program (Ahern et al., 2001; Csiszar et al., 
2013). Most recently the nearly 40-year archive of global, lower (~ 3 ×
5 km) spatial resolution subsampled AVHRR global area coverage (GAC) 
data has been mined to generate some of the longest AF records 
currently available, initially regionally (e.g. Wooster et al., 2012a) and 
now being extended globally. Fig. 2 shows an example of a three-decade 
AVHRR-GAC AF analysis of southern Canadian provinces (Fig. 2a), 
where extreme fires burned in Manitoba in May, July and August 1989 
(Fig. 2b). 

Work with AVHRR fundamentally changed our understanding of the 
global presence of fire, but the low sensor saturation temperature (c. 
325 K) of AVHRRs 3.7 μm MIR band (Csiszar and Sullivan, 2002), sig
nificant POES orbital drift (Csiszar et al., 2003) as well as other issues 
(Giglio and Roy, 2020) provided limits to its utility. However, such work 
greatly influenced the presence of an AF detection and characterization 
capability within NASA’s Earth Observing System (EOS; Justice et al., 
1998), specifically that of the EOS flagship sensor - MODIS (Justice et al., 
2002a). MODIS was designed with two 3.96 μm MIR channels having 
different saturation temperatures and dynamic ranges to support FRP 
retrieval as well as AF detection (Kaufman et al., 1998; Justice et al., 
2002b). FRP retrieval (Section 5) enables the AF application to go 
beyond fire presence/absence mapping to quantify the amount of 
radiant energy a fire is emitting per unit time, which is now considered 
linearly related to rates of fuel (vegetation and/or organic soil) con
sumption and smoke emission (e.g. Kaufman et al., 1996; Ichoku and 
Kaufman, 2005; Wooster et al., 2005; Kaiser et al., 2012; Nguyen and 
Wooster, 2020). The MODIS AF detection algorithms were built on the 
AVHRR experience and prototyped using MODIS airborne simulator 
data (Kaufman et al., 1998). They exploited the increased brightness 
temperature (BT) difference found between the MIR and long-wave 
infrared (LWIR) channel measurements at pixels containing actively 
burning fires (Section 3). The MODIS AF detection algorithm (Section 4) 
has been used by NASA to generate a suite of AF products having better 
than daily temporal resolution since the year 2000, and these remain to 
the present time one of the most widely used MODIS products. Other 
satellites in the 1990’s and 2000’s also supported AF detection, 
including the Defense Meteorological Satellite Program nighttime low- 
light imaging Operational Linescan System (DMSP-OLS) (e.g. Cahoon 
Jr et al., 1992; Elvidge et al., 2013) and the Tropical Rainfall Mapping 
Mission (TRMM) which relied on evolutions of AF detection methods 
first used with AVHRR (e.g. Giglio et al., 2000). 

AF detection accuracy assessment is challenging due to the ephem
eral and highly dynamic nature of landscape fire, difficulties in obtain
ing independent reference data coincident with the satellite 
observations, and because surface fires are complex to characterize in 
situ. However, for MODIS, the inclusion of the higher spatial resolution 
(15, 30 and 90 m) Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) instrument operating concurrently on 
the Terra satellite and itself able to be used for AF detection enabled 
simultaneous reference data to be collected. A systematic evaluation of 
the minimum fire sizes detectable by MODIS was produced (Morisette 
et al., 2005; Schroeder et al., 2008), and further refinements to the 
MODIS AF detection algorithm were informed by this validation. This 
culminated in the latest Collection 6 dataset reprocessing (Giglio et al., 
2016). These developments also influenced algorithms used with sub
sequent low earth orbit (LEO) satellite sensors, such as the Visible 
Infrared Imaging Radiometer Suite (VIIRS) (Csiszar et al., 2014) and 
Sentinel-3 Sea and Land Surface Temperature Radiometer (SLSTR) 
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(Wooster et al., 2012b; Xu et al., 2020). Inter-comparisons of AF data 
derived from observations made by different LEO sensors are commonly 
used to understand their varying performance characteristics (Fig. 3), 
with one aim being to derive transfer functions enabling data from 
multiple sensors to be combined into single time-series. 

A similar AF detection algorithm development cycle has occurred for 
geostationary (GEO) satellite AF products as with LEO products. 
Compared to LEO systems, GEO products offer higher temporal resolu
tions but coarser spatial resolutions, and each sensor only provides data 
over a specific region of the Earth (Fig. 4). Geostationary AF products 
were first generated over the America’s using the Geostationary Oper
ational Environmental Satellite Visible Infrared Spin Scan Radiometer 

Atmospheric Sounder (GOES-VAS) (e.g. Prins and Menzel, 1992, 1994; 
Weaver et al., 1995), and this led to the development of the long- 
standing GOES WildFire Automated Biomass Burning Algorithm 
(GOES WFABBA) product (Prins et al., 1998). The GOES WFABBA 
products represent the longest geostationary AF dataset currently 
available, and in addition to AF location and time included an estimate 
of effective AF temperature and area - derived using the Dozier (1981) 
‘bi-spectral’ approach (Section 4). Wooster et al. (2005) and Roberts 
et al. (2005) first demonstrated the retrieval of FRP from geostationary 
EO data, doing so via an approach avoiding use of bi-spectral data (see 
Section 5), and went on to develop a full ‘fire thermal anomaly’ (FTA) AF 
detection and FRP retrieval algorithm for GEO systems. This was first 

Fig. 2. Example of (a) long term and (b) 
extreme landscape fire activity recorded in 
southerly Canadian provinces, as depicted 
via analysis of AVHRR GAC data. (a) AF 
detection time series derived using night
time GAC data from 1985 to 2016. (b) 
Example AVHRR GAC image of 24th July 
1989 (09:00 UTC) taken during the extreme 
1989 Manitoba fire season (see the peak in 
(a) and Hirsch, 1991). Cloudy pixels are 
masked as grey and active fire pixels shown 
by the high MIR (3.7 μm) channel brightness 
temperature elevation over the ambient 
background (red areas). (For interpretation 
of the references to colour in this figure 
legend, the reader is referred to the web 
version of this article.)   

Fig. 3. Nighttime active fire pixel counts detected in 0.1◦ grid cells in January 2019 from (a) Sentinel3B SLSTR and (b) Terra MODIS. These sensors have similar local 
overpass times and show similar spatial patterns of AF detection, but the SLSTR data record shows far higher AF pixel counts. Analysis shows this is in part due to the 
detection of many lower FRP fires by SLSTR than MODIS. This is a result of the former sensors smaller pixel area growth around the swath compared to MODIS 
(Wooster et al., 2012a; Xu et al., 2020), and the fact that lower FRP fires are typically the most numerous (e.g. Wooster and Zhang, 2004). 
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applied to data from Meteosat Second Generation (Roberts and Wooster, 
2008), and an operational version is now used to generate a series of 
geostationary AF detection and FRP retrieval products spanning much of 
the globe, including from Meteosat over Africa and Europe (Wooster 
et al., 2015), GOES-East and -West over the America’s (Xu et al., 2010; 
2021) and Himawari over Asia (Xu et al., 2017). Similar product in
tercomparisons and evaluations have been conducted as for LEO AF 
products (e.g. Roberts et al., 2015). 

3. Basic physics of active fire remote sensing 

AF detection and characterization is based on remote sensing of some 
of the approximately 20 MJ.kg− 1 of energy released when vegetation 
and organic soil burns (Cheney and Sullivan, 2008). ‘High heat of 
combustion’ describes the maximum total energy release per unit of dry 
matter consumed, and so live, i.e., moist, fuels release somewhat less 
(Smith et al., 2013). Of the total energy released, only about 10–20% is 
released as (primarily IR) electromagnetic radiation (Freeborn et al., 
2008; Kremens et al., 2012). This radiative energy release rate is far 
higher than from the same area of ambient land however, and its 
spectral distribution follows Planck’s Radiation Law and its derivative 
Wien’s Displacement Law which serve as the physical basis for most AF 
remote sensing. 

Fig. 5 shows the modelled blackbody emitted spectral radiance for 

surfaces at 300 K, 600 K and 1000 K (typical temperatures of the Earth’s 
land surface, smoldering, and flaming combustion respectively; Kauf
man et al., 1998; Sullivan et al., 2003; Dennison et al., 2006). The 
emitted spectral radiance from a 1000 K flaming fire in the longwave IR 
(LWIR) atmospheric window (8–14 μm) is more than an order of 
magnitude higher than from the ambient land surface, but in the MIR 
(3–5 μm) atmospheric window it is almost three orders of magnitude 
higher – demonstrating why MIR observations are so sensitive to the 
presence of actively burning fires. Cooler smoldering fires show lower 
but still very significant levels of MIR and LWIR emittance. The very 
strong radiative signal of areas of combustion in the MIR spectral region, 
and the contrast between this and that seen in the LWIR from the same 
location, and in the MIR from nearby ambient non-fire areas, mean that 
active fires can be detected in appropriately remotely sensed imagery 
even if they cover an extremely small fraction of a pixel. 

To demonstrate that even small sub-pixel fires generate very 
detectable changes in the signal of the pixels they are contained within, 
Fig. 6 shows an example of modelled top-of-atmosphere (TOA) spectral 
radiance for different pixel situations, fully taking into account both 
emitted and reflected radiation and atmospheric effects. The figure 
contrasts a 300 K savannah land surface pixel (green line) with the same 
pixel but also containing 0.5% areal coverage of flaming 1000 K com
bustion (red line). In the MIR spectral region (3–5 μm), there is around 
an order of magnitude difference between the spectral radiance of these 

Fig. 4. Active fire data and coverage maps derived from observations made by the geostationary Meteosat Second Generation SEVIRI instrument (SEV), and the 
polar-orbiting Aqua MODIS (MYD) and VIIRS (VNP) at approximately the same time of day. An approximately 80 × 100 km region of southern Africa is shown at top, 
where the coarser spatial detail of SEVIRI is apparent but also the higher per pixel FRP values due to the capturing of more fires within a pixel. The spatial coverage of 
each of these systems obtained in a single hour is shown in the global map, with the location of the focus region highlighted. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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two pixels, equivalent to an easily detectable brightness temperature 
(BT) difference of around 80 K - even though the fire covers less than 1% 
of the pixel area. Whilst there is a dependency on issues such as day/ 
night operation, and certain instrument-specifics, most AF detection 
algorithms can identify pixels in remotely sensed imagery that contain 
active fires if they have induced a minimum 5 to 10 K increase in the 
pixels MIR brightness temperature compared to the non-fire back
ground. As such, fires covering down to perhaps ~0.01% of the pixel 
area are potentially identifiable. A far lower (but still likely detectable) 
signal difference between the fire and non-fire savannah pixels is 
apparent in the 10–12 μm LWIR spectral region of Fig. 6, indicating that 

fires essentially have to cover a far larger portion of the pixel area to be 
identified using LWIR observations than MIR observations. These types 
of spatial and spectral contrast differences are the basis of most AF 
detection algorithms, with various additional tests employed to 
discriminate AF pixels from ‘false alarms’. Pixels containing homoge
neously warm (e.g. solar heated) land would be expected to have more 
similar MIR and LWIR BTs than would AF pixels, enabling the latter to 
be discriminated using this characteristic (see Section 4), whilst 
geographic masks can be used to screen out land-based gas flaring and 
active volcanoes for example. 

Fig. 6 also shows the signal of a pixel containing sunglint over water, 
which is a key cause of potential false alarms since sunglint affected 
pixels can have similar MIR and LWIR signals to AF pixels. However, 
sunglints can be masked out based on their typically strong visible 
wavelength and/or near infrared (NIR) signals (e.g. Zhukov et al., 2006). 
Sunglint does not occur at night, and so nighttime AF detection algo
rithms can often be deployed with increased sensitivity, including 
because nighttime ambient surface temperatures are typically lower and 
more homogeneous than by day - leading to potential increases in the 
contrast provided by AF pixels. Some nighttime AF detection algorithms 
employ analysis of short-wave infrared (SWIR) signals (typically be
tween 1.6 and 2.2 μm), which Figs. 5 and 6 shows are also raised by the 
presence of sub-pixel active fires. By day however such emitted SWIR 
signals can be masked by variations in solar reflected radiation unless 
the fire covers a substantial fraction of the pixel area. Such methods are 
thus best suited to use with higher spatial resolution imagery (e.g. Giglio 
et al., 2008). 

Few active fires completely fill a satellite image pixel, and extremely 
rarely at the scale of MODIS, SLSTR and VIIRS pixels. Thus subpixel AF 
situations such as is modelled in Fig. 6 are by far the most common type. 
However, reliable detection of extremely small subpixel (e.g. < 0.01% 
pixel area), sub-canopy smoldering, or particularly cool (e.g. subsurface 
peat) fires remains a challenge. A fire of a given size and temperature 
will also occupy a smaller areal fraction of a larger pixel than a smaller 
pixel, reducing its detection reliability. However, moderate spatial res
olution EO data such as provided by AVHRR, MODIS, VIIRS, and SLSTR 
are available with a daily or better update frequencies, enabling detec
tion of active fires covering around 100 m2 and in some cases even 
smaller (Schroeder et al., 2014; Zhang et al., 2017). Fig. 7 shows an 
AVHRR 1 km image captured over Indonesia during a period when 
flaming vegetation fires and cooler (often sub-surface) smoldering peat 
fires were widespread. These fires are generally strongly sub-pixel in 
size, and in agreement with Figs. 5 and 6 their influence on the MIR BT 
image (a) is far greater than in the LWIR BT image (b). The BT difference 
image (Fig. 7c) best highlights the AF pixels, and this difference metric is 
the basis of most AF detection algorithms (Section 4). 

Fig. 7 shows a largely cloud free situation. Unlike smoke, meteoro
logical clouds obscure active fires from view, and can also contribute to 
sunglint-induced false alarms. Cloud masking is thus an important 
component of EO-based AF detection. Information on cloud masked 
areas is also essential for AF product users to understand whether a 
location is considered free of detectable fires, or whether there is un
certainty due to cloud cover. Atwood et al. (2016) demonstrate that AF 
detection can occur through even very thick smoke, but that some sat
ellite AF product cloud masking procedures inadvertently mask out 
heavily smoke affected areas as being affected by cloud. Conservative 
cloud masks can also result in higher rates of AF omission, and so un
derestimation of regional-scale FRP totals (Freeborn et al., 2014b; Hall 
et al., 2019; Liu et al., 2020). However, Wooster et al., (2018) demon
strate that considerable spatio-temporal detail on fire activity in strongly 
smoke and cloud affected regions can still be gained with suitable 
tailoring of AF product cloud masking procedures. 

To aid understanding of the exact source of the types of elevated 
spectral signals shown in Fig. 6 over fire affected pixels, Parent et al. 
(2010) made high spectral resolution laboratory measurements of fire 
emitted radiation. Planckian thermal emission was seen coming from 

Fig. 5. Emitted spectral radiance for blackbodies at typical flaming (1000K) 
and smoldering (600 K) temperatures along with that from an ambient 300 K 
surface. Note the logarithmic scale of the y-axis. The MIR and LWIR atmo
spheric window regions are shaded grey. 

Fig. 6. Modelled top-of-atmosphere emitted spectral radiance for four pixels – 
containing ambient (300K) savannah; the same but with a 1000 K actively 
burning fire covering 0.5% of the pixel area, specularly-reflected sunglint from 
a 300 K surface, and solar-heated bare soil at 320 K. Examples of typical 
spectral bands of a satellite based imaging radiometer used to detect AF pixels 
are shown at top (here those from the Sentinel-3 SLSTR sensor; Wooster et al., 
2012a). Savannah pixels which contain a sub-pixel active fire are best separated 
from non-fire pixels in MIR spectral region, which is targeted by the SLSTR S7 
spectral band. SLSTR also has a second (low-gain) MIR band (F1) to avoid 
saturation effects that impact S7 over warmer areas and active fires (see Sec
tion 10). 
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both the hot fuel and from luminous hot soot particles in the flames, but 
whilst the fuel typically had a high emissivity across the IR region, that 
of the flames depended strongly on soot concentration and flame depth 
(Àgueda et al., 2010; Johnston et al., 2014). However, even in low 
emissivity (e.g. thin, low soot concentration) flames showing low 
amounts of Planckian thermal emission, strong thermal emission in 
narrow spectral ‘emission line’ regions were seen from hot gases such as 
CO2 and H2O (Parent et al., 2010). EO sensors prioritized for AF remote 
sensing generally avoid use of such spectral regions however, since 
ambient atmospheric CO2 and H2O absorb strongly at these same 
wavelengths and would tend to obscure the surface emitted signals when 
observing from space. Atmospheric transmittance is taken into account 
of during the generation of certain AF products, but typically only in 
terms ambient atmospheric gaseous constituents (e.g. Wooster et al., 
2015; Section 5). In terms of aerosols, wildfire smoke is dominated by 
very small particles (i.e. PM2.5 and smaller) that are inefficient scat
terers of MIR and LWIR radiation, and this is the reason that fires can be 
identified though even strongly smoke-affected regions as long as the 
data are not masked as cloudy (Atwood et al., 2016). However, thick 
smoke is likely to have some impact on the retrieved FRP, including via 
any black carbon component absorbing some of the fire-emitted thermal 
radiance. This is yet to be accounted for in FRP retrieval algorithms. 

4. Active fire detection algorithms and products 

4.1. Active fire detection algorithms 

4.1.1. Early work 
Dozier (1981) and Matson and Dozier (1981) undertook some of the 

earliest satellite-based studies of sub-pixel ‘thermal anomalies’. They 
explained the causes of the spectrally varying BTs seen in AVHRR data 
containing sub-pixel hot sources (e.g. Fig. 7), and these characteristics 
still underly almost all AF detection methods used today. They proposed 
a so-called bi-spectral fire characterization algorithm that used non- 
linear simultaneous equations to estimate the fires sub-pixel effective 
temperature and area (see Section 5.1). Prior to application of this bi- 
spectral, other approaches are often used to identify the pixels to 
which it should be applied. 

4.1.2. Fixed threshold algorithms 
Fixed threshold AF detection algorithms apply relational operators 

and fixed thresholds to the BT data captured in individual spectral bands 
(e.g., TMIR > 320 K) and/or to band differences (e.g., TMIR –TLWIR > 10 
K). Their simplicity provides computational efficiency, but even 
carefully-tuned thresholds can in general only satisfy AF detection 

accuracy requirements under the specific regional/seasonal conditions 
for which they were derived (Kaufman et al., 1990; Pereira and Setzer, 
1993), or they must be applied under relatively stable ambient back
ground temperature conditions (e.g. at night; Wooster et al., 2012b). Use 
of higher thresholds can help alleviate false alarms related to by ambient 
background temperature variations, as was the case with the ESA World 
Fire Atlas, but increase the chance of omitting smaller and/or cooler 
fires (Arino et al., 1999). 

4.1.3. Contextual algorithms 
Contextual algorithms incorporate dynamic thresholds, which adapt 

to local conditions to aid detection of smaller and/or cooler fires whilst 
minimizing false alarms. In this approach, candidate AF pixels are first 
detected using liberal fixed thresholds - generally applied to the TMIR 
and/or TMIR – TLWIR data. False detections are then removed from this 
‘potential AF pixel’ set by comparing the signal of each candidate AF 
pixel to that of neighboring non-fire pixels within a surrounding 
geographic window. Some of the first contextual AF detection algo
rithms were developed for use with AVHRR (e.g. Flasse and Ceccato 
(1996); Giglio et al., 1999) as part of the IGBP-DIS global fire initiative 
(Section 2). Evolutions followed, including use of differently sized 
windows (e.g. Giglio et al., 2003, 2016; Zhukov et al., 2006), and spatial 
filters to improve rejection of non-fire pixels in the early stages and 
allow use of more liberal fixed thresholds able to better capture smaller/ 
cooler fires (Roberts and Wooster, 2008). 

Contextual algorithms still remain the most commonly used AF 
detection method. Since their initial development (Flasse and Ceccato, 
1996; Giglio et al., 1999; Kaufman et al., 1998), they have been applied 
to data from numerous LEO sensors, including VIIRS (Schroeder et al., 
2014; Csiszar et al., 2014; Zhang et al., 2017), MODIS (Kaufman 
et al.,1998; Giglio et al., 2016), the BIRD Hot Spot Recognition System 
(HSRS, Zhukov et al., 2006), the TRMM Visible and Infrared Scanner 
(VIRS, Giglio et al., 2000), SLSTR (Wooster et al., 2012b; Xu et al., 
2020), and Landsat (Schroeder et al., 2016; Kumar and Roy, 2018), and 
also GEO sensors such as those carried by Meteosat (e.g. Wooster et al., 
2015; Amraoui et al., 2010; Di Biase and Laneve, 2018), GOES (Prins 
et al., 1998; Xu et al., 2010; Schmit et al., 2017; Xu et al., 2021a), 
Himawari (Xu et al., 2017; Wickramasinghe et al., 2016), and FengYun 
(Xu et al., 2010). 

4.1.4. Multi-temporal algorithms 
The majority of AF detection algorithms are applied to single date 

imagery, with some adding basic temporal constraints to remove 
possible false alarms (e.g., Prins et al., 1998; Xu et al., 2010; Kumar and 
Roy, 2018). Some multi-temporal AF detection algorithms have been 

Fig. 7. Night-time AVHRR local area coverage (LAC) ~ 1 km spatial resolution imagery of large-scale fires burning in primarily in peatlands across southern 
Kalimantan (Indonesia) on 24th August 1991. (a) MIR and (b) LWIR brightness temperature (BT) data. The presence of a sub-pixel fire affects the BT more in the MIR 
than in the LWIR, and the MIR and LWIR BT difference shown in (c) most clearly highlights them. 
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developed however. These either identify fire-related pixel-level ther
mal variations via multi-temporal change detection (e.g. Filizzola et al., 
2017), or model the ambient pixel BT diurnal cycle and identify fire- 
related departures from this (e.g. Roberts and Wooster, 2014). Both 
approaches aim to identify an AF pixel via thermal differences compared 
to expectations, whilst accounting for temporal variability. In the multi- 
temporal change detection approach, statistical characterizations of a 
fire-relevant parameter (e.g., the MIR BT or MIR-LWIR BT difference) at 
each pixel location are calculated over a suitably long period; and such 
approaches have been applied to LEO (Marchese et al., 2017) and GEO 
(Laneve et al., 2006; Filizzola et al., 2017) data. Model-based ap
proaches exploit the latter’s higher temporal frequency to characterize 
the ambient BT diurnal cycle and then forecast this forward in time 
(Udahemuka et al., 2007; Hally et al., 2017). Optimal estimation tech
niques, such as Kalman filters, can build on this baseline to assimilate 
observed BTs and deploy statistical thresholds to confirm whether active 
fires are present based on departures from the modelled diurnal trend. 
Although computationally intensive, this approach has been applied to 
GEO data (van den Bergh and Frost, 2005; van den Bergh et al., 2009; 
Roberts and Wooster, 2014; Hally et al., 2017), and in some cases has 
been shown to detect fires unidentifiable using the more standard 
contextual approach (van den Bergh et al., 2009; Roberts and Wooster, 
2014). 

4.1.5. Non-thermal infrared methods 
AF detection methods using visible (VIS), NIR and SWIR band data 

have been developed for nighttime use. The VIS-NIR band (0.5–0.9 μm) 
on the 2.7-km U.S. Air Force DMSP-OLS sensor (Elvidge et al., 1996) 
enabled nighttime detection of city lights, lightning flashes and active 
fires using a simple contextual algorithm that identified pixels far 
brighter than its neighbors. Elvidge et al. (2013) extended the approach 
to 750 m VIIRS day-night band (0.5–0.9 μm) data, combining it with that 
from the SWIR-to-LWIR bands and using a Planck function fitting 
approach to more confidently discriminate fires from other visible light 
sources. Some nighttime AF detection algorithms also employ SWIR 
radiances measures where available. For example, Elvidge et al. (2015) 
combined Landsat-8 SWIR and LWIR data to discriminate flaming and 
smoldering peatland fires, whilst Fisher and Wooster (2019) used 
nighttime SLSTR SWIR and MIR data to discriminate gas flares from 
vegetation fires. 

Daytime SWIR algorithms have also been developed for use with 
medium spatial resolution sensors having no MIR capability. The most 
common approaches, developed for ASTER (Giglio et al., 2008) and then 
Landsat-8 (e.g., Schroeder et al., 2016; Kumar and Roy, 2018) rely on a 
fire-sensitive SWIR band and a comparatively insensitive NIR band to 
identify the increased SWIR radiance associated with fires (Fig. 6). 
Commission errors can result from some highly reflective non-burning 
surfaces (e.g., certain buildings), but the joint availability of Landsat-8 
and Sentinel-2 imagery provides ~3-day median global coverage (Li 
and Roy, 2017) and the potential for relatively infrequent but spatially 
detailed global AF detection. 

Finally, more experimental techniques requiring still novel sensors 
have been developed. For example, the identification of specific narrow- 
band NIR emission lines related to the thermal excitation of potassium 
(K) that occurs only in flaming fires has seen an early demonstration 
from space (Amici et al., 2011). 

5. Fire radiative power (FRP) and fire characterization 

5.1. FRP retrieval 

Since the late 1990’s, AF detections have been increasingly accom
panied by efforts at fire characterization, mostly in terms of retrievals of 
fire radiative power (FRP; usually expressed in MW). FRP is the rate at 
which the fires within a pixel are emitting thermal energy, integrated 
over all angles and wavelengths. An empirically-derived algorithm for 

direct estimation of FRP was first proposed and demonstrated with 
MODIS airborne simulator data by Kaufman et al. (1998) - Eq. (1). An 
underlying assumption is that, since heat yields are relatively constant 
among vegetation types (Stott, 2000), remotely sensed FRP retrievals 
provide data useful for estimating rates of fuel consumption and smoke 
emission, as first demonstrated by Wooster et al. (2005) and Kaufman 
et al. (1998), Freeborn et al., (2008) and Ichoku et al. (2008) respec
tively. Eq. (1) was used to retrieve FRP in the early (Collections 1–4) 
MODIS AF Products (Giglio et al., 2003), in units of emitted power per 
unit area of the pixel: 

FRP = 4.34× 10− 19
∑

T8
MIR,fire − T8

MIR,bg

)
(1)  

where TMIR, fire and TMIR, bg are the MIR BT (K) of the AF pixel and the 
mean of the surrounding “background” pixels respectively. 

Whilst Eq. (1) performs well for MODIS, its empirical nature means it 
is specific to data from that sensor. It starts to underperform when 
applied to finer spatial resolution data that record higher BTs due fires 
covering a greater proportion of their pixel area (Section 3) (Wooster 
et al., 2003). Wooster et al. (2003, 2005) derived a more physically 
based approach to FRP retrieval, based on a power-law approximation to 
the Planck function and which linearly related FRP (MW) to the AF 
pixels excess MIR spectral radiance above the background: 

FRP =
Asampl.σ.ε
.εMIR

(
LMIR,fire − LMIR,bg

)
(2)  

where σ is the Stefan-Boltzmann constant (5.67× 10− 8 J s− 1 m− 2 K− 4) 
and ε and εMIR are the broadband and MIR spectral emissivities 
respectively (that cancel as the fire is generally considered a greybody or 
blackbody), LMIR is the MIR spectral radiance of the AF pixel (W m− 2 

sr− 1 μm− 1), and LMIR, bg is the estimate of what the AF pixel spectral 
radiance would be if it did not have a fire within it (typically taken as the 
mean or median MIR spectral radiance of the surrounding background 
pixels), α (W m− 2 sr− 1 μm− 1 K− 4) is a coefficient dependent upon the 
sensor’s MIR channel spectral response (Wooster et al., 2005), and Asampl 
is pixel area (km2). 

Similar to its use in Eq. (2), for MODIS Collection 5 an Asampl 
multiplier was added to Eq. (1) to provide MODIS FRP outputs directly 
in MW, and from Collection 6 onwards the FRP retrieval method was 
shifted to Eq. (2) (Giglio et al., 2016). Giglio et al. (2016) found an 
average 16% difference when comparing MODIS’ FRP retrievals based 
on Eqs. (1) and (2), with greater differences at lower FRPs reflecting the 
fact that the MIR radiance method tends to underestimate FRP for 
emitters <600 K (a lower temperature than that of most active com
bustion zones; Wooster et al., 2003; Dennison et al., 2006). This un
derestimation is not necessarily disadvantageous, since it means that 
radiant heat from warm, recently burned areas not actively consuming 
fuel often do not contribute significantly to the total per-pixel FRP 
measure from which combustion rates are often derived (Wooster et al., 
2005). However, it may prove more problematic in peatland fires, where 
underground combustion can lead to rather low surface temperatures in 
the burning areas (e.g. Elvidge et al., 2015; Fisher et al., 2020). 

Moving beyond the single-band FRP retrieval methods discussed 
above, another approach to FRP estimation is to exploit outputs of the 
‘bi-spectral’ method introduced in Section 4.1.1, namely the effective 
fire temperature (Tf, K) and sub-pixel proportion (pf) of the Matson and 
Dozier (1981) and Matson and Holben (1986) approach: 

LMIR = τMIRpf BMIR
(
Tf
)
+
(
1 − pf

)
LMIR,bg (3)  

LLWIR = τLWIRBLWIR
(
Tf
)
+
(
1 − pf

)
LLWIR,bg (4)  

FRP = σ
(

T4
f − T4

bg

)
pf Af (5)  

where Lx is the AF pixel spectral radiance (W m− 2 sr− 1 μm− 1) observed 
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in the denoted spectral band x, Bx(T) is the Planck function (W m− 2 sr− 1 

μm− 1), τ is the atmospheric transmittance, LX, bg is the ambient back
ground spectral radiance (i.e. non-fire, W m− 2 sr− 1 μm− 1), σ is the 
Stefan-Boltzmann constant (5.67× 10− 8 J s− 1 m− 2 K− 4) and Tx, bg is the 
brightness temperature (K) of the ambient background in band x. 

Per-pixel errors of Tfand pf can be large, especially for lower values of 
pf, and errors of ~100 K and ± 50% respectively at one standard devi
ation (ση) were demonstrated for even easily detectable active fires (pf 
>0.005; or 0.5% of the pixel area) by Giglio and Kendall (2001). This is 
mainly due to challenges in sufficiently precisely isolating the difference 
between the AF and ambient background pixel signals in the LWIR - 
where fire thermal emission is far less strong (Figs. 5, 6 and 7), though 
errors in Tfand pfmay counteract each other somewhat when delivering 
FRP through Eq. (5) (Wooster and Rothery, 1997). Inter-band spatial 
misregistration effects can also impact bi-spectral estimation of Tfand pf 
(Shephard and Kennelly, 2003), though Briess et al. (2003) and Zhukov 
et al. (2006) tackled this by applying the approach at the fire cluster 
(rather than AF pixel) level. Overall, whilst the geostationary GOES 
WFABBA product (Prins et al., 1998) applied this approach for FRP 
estimation, it is not particularly recommended for use with moderate to 
low spatial resolution data (Giglio and Schroeder, 2014; Giglio and 
Kendall, 2001). Most LEO and GEO AF products now base their per-pixel 
FRP retrievals on the MIR radiance method of Eq. (2) (Wooster et al., 
2003, 2005). This includes those from VIIRS (Csiszar et al., 2014), 
Meteosat (Wooster et al., 2015), Himawari (Xu et al., 2017), GOES (Xu 
et al., 2010; 2021), SLSTR (Xu et al., 2021a, 2021b) and MODIS (Giglio 
et al., 2016). 

In 2020, the Committee on Earth Observation Satellites (CEOS) Land 
Product Validation (LPV) Subgroup indicated that the current validation 
level of satellite FRP products is less advanced than for burned area, 
partly due to the ephemeral nature of active fires and the logistical and 
technical difficulties posed when trying to get independent, simulta
neous FRP observations to match satellite estimates. However, by 
exploiting repeated observations occurring near the MODIS swath edge, 
Freeborn et al. (2014a) showed that variations in the exact sub-pixel 
placement of the fire contribute per-pixel MODIS FRP uncertainties 
that are normally distributed with ση = 26.6%, with simulations 
demonstrating that at the scale of fire clusters this reduces to less than 
~5% for fires containing in excess of ~50 MODIS AF pixels. Such size- 
dependent FRP uncertainties should be considered during any inter
comparion and/or validation of satellite-based FRP data. 

5.2. Fire radiative energy (FRE) estimation 

Fire radiative energy (FRE, MJ) is the temporal integral of FRP be
tween two points in time (t0 and tn) (Wooster et al., 2005), defined for 
discrete, evenly spaced, temporal sampling as: 

FRE =
∑tn

t0
FRPt∆t (6)  

where FRP is the fire radiative power (MW) at time t and ∆t is the time 
(secs) between FRP retrievals. In fire ecology, the term fire radiative 
energy [or flux] density (J m− 2) is sometimes used (e.g. Kremens et al., 
2012; Sparks et al., 2017), but should be limited to situations where 
estimates of radiant energy release at a point are required. 

FRE estimates are best achieved from GEO data, because high im
aging frequencies provide the best temporal sampling (Freeborn et al., 
2009; Roberts and Wooster, 2008; Li et al., 2018; Ellicott et al., 2009; 
Roberts et al., 2018a). However, the typically coarser pixel areas of GEO 
sensors mean they often fail to detect the lower FRP component of a 
region’s fire regime, and a single GEO imager provides neither global 
coverage nor high-quality observations at very high latitudes (Fig. 4). 
Numerous methods have attempted to estimate FRE from more infre
quent LEO-derived FRP data, for example from the ~ four daily obser
vations provided by MODIS that broadly sample the diurnal fire cycle (e. 
g. Boschetti and Roy, 2009; Freeborn et al., 2011). The most widely 

applied method represents the FRP diurnal cycle using a modified 
Gaussian (perhaps informed by past GEO-FRP data), tailoring its char
acteristics via MODIS observations when available (Ellicott et al., 2009; 
Vermote et al., 2009; Andela et al., 2015; Yin et al., 2019). To counteract 
effects coming from the relatively small number of daily MODIS obser
vations, and the fact fires are differently detected depending on their 
position in the MODIS swath which has a 16-day repeat cycle (Freeborn 
et al., 2009), most LEO-derived FRE estimates are delivered at lower 
spatio-temporal resolutions (e.g., 0.25◦; 8 days). 

6. Satellite active fire and FRP products 

The number of routinely available GEO and LEO AF products has 
grown substantially over the last two decades (Table 1), with several 
LEO products having global and/or multi-decade coverage (Arino et al., 
2012; Csiszar et al., 2014; Giglio et al., 2016; Xu et al., 2020). Most use 
contextual AF detection methods (Section 4.1.3), with the NASA MODIS 
AF products demonstrating an excellent approach where re-processed 
Collections are periodically released based on algorithm refinements 
and updated calibration/geolocation information (Giglio et al., 2003, 
2016). Such updates are mostly driven by routine product quality and 
validation assessments, along with science developments (Justice et al., 
2002a, 2002b). 

Assessing the absolute accuracy and precision of AF products is 
difficult for reasons discussed in Section 5. In addition to daytime sun
glints, non-burning hot areas and regions of high local thermal contrast 
can result in AF detection errors of commission in places such as deserts, 
urban areas, and forest clear cuts (e.g. Schroeder et al., 2008; Kumar and 
Roy, 2018). Such effects are potentially magnified in higher spatial 
resolution products (e.g. Schroeder et al., 2014; Zhang et al., 2017). AF 

Table 1 
LEO and geostationary orbit systems used to generate Active Fire (and for some 
also FRP) products.  

Instrument Spatial 
resolution 
of active 
fire data 

Geographic 
coverage 

Satellite Orbit Satellite/ 
Agency 

MODIS 1 km Global LEO Terra, Aqua/ 
NASA 

GOES ABI 2 km 75.2◦ W: North 
and South 
America 
135◦ W:Pacific 
Ocean, Hawaii, 
North and South 
America 

Geostationary GOES-E and 
–W/NOAA 

Himawari 
AHI 

2 km 140.7 ◦ E: East 
Asia, Australia, 
Pacific Ocean 

Geostationary Advanced 
Himawari 
Imager (AHI), 
JAXA and 
JMA 

Meteosat 
SEVIRI 

3 km 0◦: Europe, 
Africa, 41.5 E 

Geostationary Eumetsat 

VIIRS 375 m, 
750 m 

Global LEO S-NPP, JPSS1/ 
NOAA 20 
NASA/NOAA 

NOAA 
AVHRR 

1 km Global LEO POES/NOAA 
METOP/ 
Eumetsat 

(A)ATSR 1 km Global (but only 
nighttime AF 
product) 

LEO ERS-2a and 
ENVISAT 

SLSTR 1 km Global LEO Sentinel-3/ 
Eumetsat and 
ESA 

HSRS 350 m Global (but on- 
demandproducts) 

LEO Firebird 
Constellation/ 
DLR  

a ERS-1 also carried an ATSR sensor, but its MIR channel failed soon after 
launch. 
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detection errors of omission are generally related to surface obscuration 
by cloud (or thick smoke removed incorrectly during cloud masking), 
fires not burning at the observation time, or small and/or too cool fires 
having an FRP below the products minimum detection limit (Giglio, 
2007; Roy et al., 2008; Roberts et al., 2015; Hall et al., 2019). Com
mission errors for the best performing products range from a few percent 
to about 10%, depending on sensor and algorithm specifics. Some of the 
most mature (e.g., the NASA MODIS products) claim mean global 
commission errors of around 3% (Giglio et al., 2016). Mature geosta
tionary AF products typically have similar commission errors to LEO 
products, but higher omission errors due to their larger area pixels and 
thus higher minimum FRP detection limit (as is apparent in Figs. 5 and 
8). Conversely, the higher temporal frequency GEO AF products can 
sometimes identify fires that are not detected by LEO products, such as 
those ignited and burned out between LEO overpasses or in cloudy re
gions where the land surface is viewed briefly by the GEO data as the 
clouds move (Roberts and Wooster, 2008; Roberts et al., 2015; Hally 
et al., 2017). 

7. AF relationships to fuel consumption and atmospheric 
variables 

7.1. Fuel consumption estimation 

One of the earliest applications of satellite data related to landscape 
fires was toestimate amounts of dry biomass consumed (Mconsumed) 
(Seiler and Crutzen, 1980). The standard methodology is to combine 
satellite-derived BA data with biome- and date-dependent fuel con
sumption per unit area (Fc) estimates, and this is the basis of the widely- 
used Global Fire Emission Database (GFED, van der Werf et al., 2017). 
However, the method is unable to operate close to real time since BA 
data are typically only available after the fire event, and the Fc estimates 
rely on environmental models driven by meteorological and other data 
only available with a time delay. As detailed in Section 5 however, FRP 
measures can provide almost real-time information directly propor
tional to rates of fuel consumption and smoke emission. FRE (MJ) esti
mates derived from laboratory-scale 1 Hz FRP measures of mainly cured 
dry grass fires were shown to be linked to dry biomass consumed via an 
‘FRE combustion coefficient’ (Fc) of 0.37±0.02 kg MJ− 1 (Wooster et al., 
2005): 

Mconsumed (kg) = 0.37×FRE (MJ) (7) 

Confirmation of similar ‘combustion coefficient’ values for other 
fuels was subsequently demonstrated in further small-scale fire experi
ments (e.g. Freeborn et al., 2008; Kremens et al., 2012), and the FRE 
approach to fuel consumption estimation been applied to landscape- 

scale fires using EO data from e.g. Meteosat SEVIRI (Roberts et al., 
2005; 2011; 2018a), GOES (Li et al., 2018) and MODIS (Ellicott et al., 
2009; Vermote et al., 2009; Kaiser et al., 2012; Andela et al., 2015; Yin 
et al., 2019; McCarley et al., 2020). However, spaceborne FRP retrievals 
are subject to perturbations beyond those affecting small-scale field or 
laboratory studies, potentially altering the effective value of the FRE 
combustion coefficient. Mota and Wooster (2018) summarize such ef
fects as coming from AF omission errors (Section 4.2), interception of 
surface-emitted radiation by overlying tree canopies (Roberts et al., 
2018b; Mathews et al., 2016; Johnston et al., 2018a, 2018b), atmo
spheric effects (Wooster et al., 2015), fuel moisture variations (Smith 
et al., 2013), and potentially fire size-dependent variations in the radi
ative fraction of the fuel heat yield (Freeborn et al., 2008). Such effects 
may be responsible for the generally larger and biome-dependent FRE 
combustion coefficients derived by Kaiser et al. (2012) derived from 
Global Fire Assimilation System (GFAS)-based FRE estimates and GFED 
(burned area)-based fuel consumption totals. Despite remaining un
certainties, the FRP and FRE approach provides the only direct route to, 
respectively, rapidly estimating fuel consumption and smoke emission 
rates whilst a fire is burning, and the totals of these immediately after a 
fire has ceased. Further benefits may stem from removing the use of 
models that are sometimes difficult to parameterize, for example 
Nguyen and Wooster (2020) demonstrated one of the first EO-based 
mappings of fuel consumption per unit (Fc) area across Africa, based 
solely on Meteosat FRE data and 20 m spatial resolution BA mapping. 

7.2. Smoke emissions estimation from active fire data 

Fire emissions estimation is one of the main applications for EO- 
derived data on active fires. Johnston et al. (2012) used GFED data 
and a global atmospheric model to estimate that hundreds of thousands 
of excess deaths annually are related to exposure to smoke from land
scape fires, and Roberts and Wooster (2021) recently revised this esti
mate upwards based on the FRP-based smoke emissions estimates 
provided by GFAS. Emissions of a particular smoke species are typically 
estimated using: 

Mx = EFx ×Mconsumed (8)  

where Mx is the mass of the emitted species x (g) and EFx its emission 
factor (g.kg− 1). 

However, in part due uncertainties in the ‘combustion coefficient’ 
values of Eq. (7) associated with different satellite datasets and/or bi
omes (see Section 6.1) there is an interest in relating spaceborne FRP 
estimates directly to rates of smoke emission (Rx), first demonstrated by 
Ichoku and Kaufman (2005): 

Fig. 8. Active fire detections made on 31st August 2017 (red) in a region of southern Africa using (a) Terra MODIS and Aqua MODIS, (b) Meteosat SEVIRI ob
servations made near-simultaneously with MODIS, and (c) all SEVIRI data collected over that day (24-h). Background is a MODIS surface reflectance image (RGB: 2.1 
μm, 0.8 μm and 0.6 μm). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Rx = Cx
e ×FRP (9)  

where, Rx is the rate of emission of species x (expressed in kg.s− 1) and 
Ce

x is the emission coefficient for species x (kg.MJ− 1). 
Values of Ce

x are typically derived from comparisons between 
satellite-derived FRP datasets and the emitted species in question, pri
marily at present particulate matter (PM) amounts estimated via aerosol 
optical depth (AOD) measures (Ichoku and Kaufman, 2005; Mota and 
Wooster, 2018; Nguyen and Wooster, 2020). The approach has been 
successfully demonstrated for near real-time PM emissions estimation in 
the U.S. (e.g. Jordan et al., 2008), Canada (e.g. Henderson et al., 2008), 
and Europe (e.g. Sofiev et al., 2009), and for global-to-continental scale 
emissions estimation to support science studies (e.g. Vermote et al., 
2009; Ichoku and Ellison, 2014; Mota and Wooster, 2018; Nguyen and 
Wooster, 2020). Table 3 lists the major global fire emissions datasets 
derived from satellite AF datasets, including GFED since whilst it pri
marily uses burned area data it uses AF detections to aid BA estimation 
in certain circumstances (see Section 8). 

Fig. 9 shows an emissions inventory intercomparison for seven of the 
datasets detailed in Table 2 (1–7 July 2016) available globally, both 
worldwide and for the peak fire month in northern and southern 
hemisphere Africa. Although it would have been best to show the same 
smoke aerosol species (in this case, total particulate matter; TPM) for all 
products, FLAMBE and QFED only provide PM2.5 so this is shown 
instead. Continued uncertainty in fire emissions estimates is evidenced 
by the more than two times difference among the TPM emissions esti
mates, and the larger differences when considering PM2.5. Other esti
mates, conducted as yet only for Africa, show similar ranges of 
estimation (Nguyen and Wooster, 2020). Nevertheless, there appears to 
be some improvement compared to the factor of 12 difference found 
even relatively recently (Zhang et al., 2014a, 2014b). Uncertainties stem 
from a combination of and/or propagation of errors that, depending on 
the exact method and calculations employed, come from the satellite- 
derived variables (e.g. AF pixel counts, FRP, and AOD), the aforemen
tioned ‘combustion coefficient’ conversion factor, the representative
ness of the emission factors (EFx), any required smoke injection height 
and velocity estimates, and the host of applicable model parameteriza
tions/assumptions. Further research is needed to quantify the absolute 
magnitudes and sources of these uncertainties, and thus improve our 
current quantification of continental-to-global fire emissions. 

8. Relationships to fire regimes and ecosystem variables 

AF detections and FRP data are most commonly used to identify fire 
timing, location, intensity, and smoke emissions source strength. How
ever, they have also been used to infer burned area, fire behavior and 
fire impacts on the terrestrial environment, both during and after fire 
events, and to help define areas characterized by different fire regimes. 

8.1. Burned area 

Satellite data have been used for nearly 40 years to directly map 
burned area via a fires impact on surface reflectance (Chuvieco et al., 
2019). However, in the 1980’s and 1990’s BA estimates were often 
calculated using AVHRR-derived AF pixel counts (e.g. Matson et al., 
1987) – mainly because AVHRR data are sub-optimal for direct BA 
mapping (Giglio and Roy, 2020). However, AF errors of omission related 
to e.g. cloud cover or to fires that were not burning at the satellite 
observation time mean that AF pixel counts often provide an imperfect 
proxy for area burned. Fig. 10 shows an area of burned savanna imaged 
by 30 m Landsat data and overlain with contemporaneous MODIS AF 
detections. The latter document the spread of the fire but contain 
extensive spatial gaps, and even interpolation of the AF detections 
would not fully reconstruct the full BA extent. 

Whilst Fig. 10 shows a clear pattern between BA extent and matching 
AF pixel count, several studies (e.g. Giglio et al., 2013; Hantson et al., 

2013) demonstrate the ratio to be biome-dependent. These include Roy 
et al. (2008) who found that for low percent tree cover and leaf area 
index (LAI) landscapes, the MODIS 500 m BA product defined a greater 
proportion of the landscape as burned than did the MODIS AF product; 
yet with increasing tree cover (>60%) and LAI (>5) the reverse was 
often true. Biome-specific calibrations have been undertaken to estimate 
BA from AF pixel counts (Scholes et al., 1996; Giglio et al., 2013), with 
for example GFED using nighttime ATSR AF detections (Arino et al., 
1999) to estimate BA for the pre-MODIS 1997–2000 period via: 

BAi,t = ∝iAFβi
i,t (10)  

where BAi, t is the burned area in grid cell i and month t (0.25◦ grid cells), 
AFi, t is the AF detection for the same cell and time, and ∝i and βi are 
dimensionless and spatially-varying parameters estimated indepen
dently using regression of post-2000 ATSR AF pixel counts (Arino et al., 
1999) with the 500 m MODIS BA product (Giglio et al., 2013). 

Some of the most recent iterations of GFED (e.g. v4.1s; van der Werf 
et al., 2017) also use satellite AF detections to estimate the additional BA 
associated with fires too small to be mapped with the MODIS 500 m BA 
product. Whilst this ‘small fire boost’ successfully increases BA in many 
regions, it can also lead to significant errors in locations subject to many 
AF detection errors of commission (Zhang et al., 2018). This points to 
the importance of understanding the regional and seasonal de
pendencies of AF detection errors. 

8.2. Rate of spread and intensity and relationships to fire effects 

Some of the most ecologically important characteristics of an 
actively spreading landscape fire are the fire front rate of spread (ROS) 
and fireline intensity (FLI; Byram, 1959) (Bond and Keeley, 2005). AF 
data have been related to both – though primarily those based on 
airborne rather than satellite observations (e.g. Pastor et al., 2006; 
Paugam et al., 2012). Most satellite AF data use has been limited to 
mapping wildfire progression across the landscape (e.g. Veraverbeke 
and Hook, 2013), and whilst ROS estimation has been attempted from 
LEO (Andela et al., 2019) and occasionally GEO (Liu et al., 2020) AF 
data, the low spatial and/or temporal resolution of the source data 
provides limitations. FLI represents the rate of heat release per unit time 
per unit length of the fire front (kW m− 1; Alexander, 1982), and unlike 
FRP it includes the all heat transfer mechanisms. Thus any FRP-based 
FLI calculations need to assume a radiant fraction, or simply provide 
the FLI radiative component only (e.g. Wooster et al., 2004; Riggan 
et al., 2004; Smith and Wooster, 2005). FRP-derived values of fire heat 
release may provide links to the effects on plant physiology (Smith et al., 
2016), such as pre-and post-fire change in net photosynthesis, tree radial 
growth, or landscape-scale forest net primary production (NPP) change 
(e.g. Sparks et al., 2017, 2018; Fig. 11). 

8.3. Fire regime characterization 

A fire regime describes the prevailing, long-term fire patterns and 
characteristics of an area, emerging from feedback interactions between 
climate, vegetation, and the regions natural and anthropogenically 
driven fires (Whitlock et al., 2010). A fire regimes principle character
istics are fire frequency, seasonality, spread patterns, intensity and fuel 
consumption (Bond and Keeley, 2005; Gill, 1975). Satellite AF data have 
been used to provide contemporary views of landscape fire regimes and 
to distinguish parameters related to fire size, intensity, severity, and 
most commonly fire seasonality, frequency and diurnal cycle. Each LEO 
sensor such as AVHRR, MODIS, and VIIRS typically image areas a few 
times daily per satellite, enabling fire diurnal cycles to be roughly 
characterized using either day/night ratios (Giglio et al., 2006; Langaas, 
1992) or interpolation between observations (Andela et al., 2015; Elli
cott et al., 2009). The TRMM low-inclination, drifting orbit enabled fire 
diurnal cycles to be characterized from 8-yrs of VIRS data (Giglio, 2007), 
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Fig. 9. Landscape fire emissions estimates of total particulate matter (TPM) or particulate matter of 2.5 μm or less aerodynamic diameter (PM2.5), as contained 
within different fire emissions databases (Table 2). Left column: July 1–7, 2016 global distribution; Middle column: January 2016 northern sub-Saharan Africa 
distribution; Right column: July 2016 southern sub-Saharan Africa distribution. Total emission of the respective smoke species for the respective time periods is 
indicated on each panel. FREMv2 is based on geostationary data and so is not global. 

M.J. Wooster et al.                                                                                                                                                                                                                             



Remote Sensing of Environment 267 (2021) 112694

13

but the high temporal resolution (and constant ground footprint areas) 
provided by geostationary sensors are optimum for diurnal cycle char
acterization. GEO data have been applied for this purpose across the 
Americas (e.g. Prins et al., 1998; Xu et al., 2010; Zhang et al., 2012), east 
and south-east Asia (e.g. Hyer et al., 2013; Xu et al., 2017) and Africa (e. 
g. Roberts et al., 2009, 2018a) (Fig. 12). 

Satellite AF data indicate that fire diurnal cycles are mostly charac
terized by mid-afternoon (local solar time) peaks, with less activity (and 
with generally lower intensities) between late evening and early 
morning (Giglio, 2007; Hyer et al., 2013; Roberts et al., 2009). During 
droughts, increased combustion of deep organic soils sometimes results 
in a less pronounced and/or temporally extended diurnal cycle (e.g. 
Kaiser et al., 2012; Wooster et al., 2012a, 2018), whereas in agricultural 
regions a bi-modal diurnal cycle may be driven by local burning prac
tices (Xu et al., 2017). New fire seasons can also sometimes rapidly arise, 
driven by changes in fire policy and/or enforcement (e.g. Zhang et al., 
2020). Further fire regime characteristics derivable from satellite AF 
data include size distributions, sometimes derived from FRP (e.g. 
Wooster and Zhang, 2004) though more commonly from BA (e.g. 
Archibald et al., 2009, 2013). Fire type can sometimes be elucidated, 
with clusters of adjacent AF pixels deployed to identify spatially 
contiguous flaming and smoldering areas (Langaas, 1992), and on an 
instantaneous basis large AF pixel clusters can either be associated with 
long and narrow fire lines such as found in savannas (e.g. Dwyer et al., 
2000), or deep flaming fronts with residual combustion behind, typical 
of Canadian forest fires (Cahoon et al., 2000). Fire regimes in areas with 
higher fuel loads and which burn under hotter, drier, and windier con
ditions generally exhibit higher upper limits of FLI (W.m− 1), reaction 
intensity (W.m− 2), and heat release per unit area (J.m− 2). These are key 
fire behavior attributes influencing fires’ short- and long-term ecological 
impact, though thus far their estimation is only rarely attempted from 
AF data (see Section 7). More commonly, FRE-derived fuel consumption 
totals (Section 7) have been ratioed against BA data to derive fuel 

Table 2 
Global fire emissions inventories and real-time monitoring systems based in part on satellite AF data. Note that those not updated in near real time are less appropriate 
for use in e.g. atmospheric monitoring and forecasting systems. Note that FREMv2 is based on FRP measures derived from GEO systems and so is not global. We focus 
on here on that derived from Meteosat over Africa.  

Emission Dataset Name, version, 
and access* 

Spatial 
Resolution 

Highest Temporal 
Frequency 

Satellite Active Fire 
Obs Used# 

Emission Factor/ 
Coefficient 

Data Availability 
period 

Example Reference@ 

FINN_v1.5 1 km Daily Npix EFx 2002–Present Wiedinmyer et al., 
2011 

FLAMBE-ARCTAS 1–4 km Hourly Npix EFx 2000–Present Reid et al., 2009 
GBBEPx_v2 0.25 deg Daily FRP EFx 2017–Present Zhang et al., 2012 

Zhang et al., 2017 
GFAS_v1.2 0.1 deg Daily FRP EFx 2001–Present Kaiser et al., 2012 
GFED_v3.1 0.5 deg 3-hourly BA, Npix EFx 1997–2011 Van der Werf et al., 

2010 
GFED_v4.1s 0.25 deg 3-hourly BA, Npix EFx 1995–Present van der Werf et al., 

2017 
FEER_v1.0-G1.2 0.1 deg Daily FRP Ce

x 2003–Present Ichoku and Ellison, 
2014 

IS4Fires_v2.0 0.1 deg 3-hourly FRP Ce
x 2000–Present Sofiev et al., 2009 

QFED_v2.5 0.1 deg Daily FRP Ce
x 2000–Present Darmenov and Da 

Silva, 2015 
FREMv2 Per-Pixel 

& 0.1 deg 
15 mins FRP Ce

x 2004-Present Nguyen and Wooster, 
2020 

*Dataset websites as of March 2021: 
FINN (https://www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar); 
FLAMBE (not available); 
GFAS (https://www.ecmwf.int/en/forecasts/dataset/global-fire-assimilation-system); 
GFED (http://www.globalfiredata.org/); 
FEER (https://feer.gsfc.nasa.gov/data/emissions/); 
IS4Fires (http://is4fires.fmi.fi); 
QFED (http://wiki.seas.harvard.edu/geos-chem/index.php/QFED_biomass_burning_emissions); 
GBBEP (http://www.ospo.noaa.gov/Products/land/gbbepx/). 
#This includes the parameter type used in generating the emission dataset (and the sensor/satellite that acquired such observations enclosed in parenthesis): Npix=fire- 
pixel count; FRP = fire radiative power. 
@The indicated references are respective representative examples but may not be the most relevant reference for each dataset. 

Fig. 10. MODIS 1 km active fire pixel detections (shown with a rainbow colour 
scale indicating the day of detection over a three month period) superimposed 
on a Landsat 8 OLI image (R: 2.2 μm, G: 0.86 μm, B: 1.6 μm, burned areas are 
apparent in magenta tones) acquired on the last day of the MODIS active fire 
detections (6th September 2014) for 100 km × 100 km over the Caprivi Strip on 
the border between Angola and Namibia. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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consumption per unit area measures (e.g. Roberts et al., 2011; Mota and 
Wooster, 2018; Nguyen and Wooster, 2020), and have been used to help 
discriminate identical fire regimes happening at different times of the 
year under variable meteorological conditions (e.g., Andela et al., 2015; 
Boschetti and Roy, 2009; Freeborn et al., 2016). FRP distributions 
themselves have revealed regional as well as intra-biome fire regime 
variations (Wooster and Zhang, 2004; Ichoku et al., 2008; Giglio et al., 
2006; Laurent et al., 2019), though such differences may be due to 
variations in an unknown combination of fire behavior attributes (e.g. 
radiant fraction, sub-pixel active fire area, fire intensity) coupled with 

influences such as canopy overstory effects (Roberts et al., 2018b). 
AF products are particularly well suited for characterizing fire sea

sons, or the times of the year when large and intense fires are most 
prevalent. A variety of temporal metrics (e.g., start and end dates, peak 
month, and fire season duration etc.) have been derived from both AF 
pixel counts and FRP data, and used to map regional to global variations 
in fire seasonality (e.g. Dwyer et al., 2000; Giglio et al., 2006). Locations 
where the fire season leads or lags seasonal weather may indicate the 
degree of control that humans exert on a regions fire regime (Le Page 
et al., 2010). For example, across much of northern Africa, rural com
munities purposely ignite early season fires under mild weather condi
tions to create a patchwork of fuel breaks in an attempt to limit the 
uncontrolled spread of more intense and more ecologically damaging 
late season fires (Laris, 2002). Agricultural residue burning periods 
similarly closely coincide with the timing of crop-specific planting and 
harvesting (Korontzi et al., 2006; McCarty et al., 2009; Zhang et al., 
2018, 2020). 

Accumulating many years of AF observations allows retrieval of 
long-term attributes, such as fire return interval (average number of 
years between successive fires), fire frequency (the inverse of fire return 
interval), and measures of interannual fire variability and trend. How
ever, derived chronologies of annual fire occurrence have been more 
commonly extracted from BA time-series (Devineau et al., 2010; Free
born et al., 2014c). Instead, the simplest and most common AF analog 
has probably been the count of AF pixels detected per unit time and per 
unit area, referred to as both fire frequency and fire density (Chuvieco 
et al., 2008; Csiszar et al., 2005; Di Bella et al., 2006; Soja et al., 2004). 
Temporal trends in AF pixel counts are most often used to infer changes 
in fire occurrence and when associated with time-series of climate, land 
cover, and anthropogenic variables have been used to identify locations 
of shifting fire regimes potentially associated with anthropogenic or 
climatic trends (Aragao and Shimabukuro, 2010; Arino et al., 2012; 
Gregoire and Simonetti, 2010; Pricope and Binford, 2012). 

9. Online AF data delivery and mapping systems 

Whilst certain of the AF products outlined in Section 6 have been 
available for several decades, widespread product delivery in easily 
accessible formats has been available for only around half this time. The 
MODIS Rapid Response System was the first attempt to provide near 
real-time global AF data (Justice et al., 2002a), subsequently evolving 
into the NASA Fire Information for Resource Management System 
(FIRMS) (Davies et al., 2014). These developments are part of a growing 
trend of “analysis ready data” (ARD), which aims to reduce the EO data 
pre-processing burden on users and enable easier and more immediate 
analyses. AF data are made available typically with very low data 

Fig. 11. Radial tree growth and NPP patterns seen across different temporal and spatial scales in areas subject to varying levels of fire activity (as expressed by FRP 
and FRE per unit area values at (a) 2 yr old P. contorta saplings in laboratory experiments and (b) mature (>35 years old) P. ponderosa trees burned in stand-scale 
prescribed fires respectively. Similar patterns were observed in (c) at the regional scale using net FRE per unit area and NPP measures derived from MODIS. See Smith 
et al. (2017); Sparks et al. (2017; 2018). 

Fig. 12. Fire radiative power (FRP) diurnal cycle variability across Africa, as 
derived from a year of the 96 daily FRP datasets provided by the geostationary 
Meteosat FRP-PIXEL product available from the EUMETSAT LSA-SAF (Wooster 
et al., 2015; Roberts et al., 2015). Generally, the fire diurnal cycle is semi- 
Gaussian, with a day-time peak and nighttime minima (see inset that shows 
normalized FRP values from SEVIRI and MODIS), but the timing of the peak 
spatially varies. The metric shown is the ratio between the summed FRP 
measured by SEVIRI at only the times of MODIS overpasses, and that measured 
over the full 24-h cycle. Changes in the timing of the diurnal cycle peak are 
reflected in changes to this ratio. 
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latency rates via these and other systems, generally within a few hours 
or less of the observation time. 

AF detections have been available in analysis ready form for more 
than two decades, and this has helped spread their use in multiple ap
plications. Many of these need not expose the user to detailed knowledge 
of the methods and algorithms (outlined in earlier Sections) that have 
been used to produce the AF data. Applications include strategic land 
and fire management, no-burning compliance monitoring, wildlife 
conservation, detection of illegal logging and/or poaching within pro
tected areas, monitoring air pollution and improved understanding of 
fire regimes. As applications for AF data have evolved and matured, 
users have further articulated their information requirements (e.g., 
Trigg and Roy, 2007; Mouillot et al., 2014; Davies et al., 2014), which in 
turn has led to more customized data products, more functional and 
accessible online data mapping and delivery systems including a wider 
variety of variables, and most recently also mobile accessible applica
tions. Whilst some users simply wish to visualize AF data on a map, and 
others want to download it for their own analyses, increasingly there is a 
move to also provide broader contextual information in a single online 
application (e.g. land cover; atmospheric composition; fire risk, BA). 

AF fire data delivery systems can be classified into three groups: 1) 
direct providers, who process and distribute their own AF data; 2) 
brokers, who take AF data from a direct provider and add value by 
customizing the information to serve specific user communities; and 3) 
those that are both direct providers and brokers. The latter often process 
data collected ‘locally’ in real-time via a so-called satellite direct 
reception (DR) or direct broadcast (DB) station, but also acquire addi
tional AF data from others to provide broader geographic coverage. AF 
data users are now faced with a huge choice of data portals, and Ap
pendix 2 provides detail on four key examples currently operating. We 
also include therein an example of how such data are used, in this case in 
support of national park fire management. Users select their most 
appropriate information delivery system based on data type and 
coverage, latency (time from satellite overpass to user availability), ease 
of use, and how the AF data can be viewed and queried alongside other 
types of information. GEO or DR-based LEO data feeds generally have 
some of the lowest data latency times, but more recently even non-DR 
equipped data portals for MODIS and VIIRS AF data, such as NASA 
FIRMS (part of NASA’s Land, Atmosphere Near real-time Capability for 
EOS (LANCE)) offer AF data updates usually within 2.5 h of the obser
vation time, though some specifics of the near real-time (NRT) AF 
products served may differ from those of the “standard” data products. 
New data feeds are following this trend, with AF detections and FRP data 
Sentinel-3 (Wooster et al., 2012b; Xu et al., 2020) produced in two 
versions, NRT within a few hours of data capture (https://metis.eumet 
sat.int/frp/), and non-time critical (NTC) a few days later . 

10. Future priorities in active fire remote sensing 

10.1. Dataset priorities 

NRT and higher spatial and temporal resolution satellite AF and FRP 
products are a priority for the applications and science communities. 
Errors of AF commission and in particular omission should continue to 
be reduced, through sensor and algorithm development, robust valida
tion, and provision of improved ancillary datasets such as masks opti
mized for the AF-application, e.g. cloud masks which do not mask out 
smoke contaminated areas, appropriate land/water maps, and maps of 
static IR emitters (e.g. gas flares/volcanoes and potentially persistent 
false alarms due to e.g. specific industry or building types). Such de
velopments are required to meet the temporal (1–6 h) and spatial 
(0.25–3 km) resolution and FRP retrieval uncertainty (10% integrated 
over a pixel) target specifications outlined by the Global Climate 
Observing System (GCOS) Essential Climate Variable (ECV) programme 
(GCOS, 2016) and proposed by GOFC/GOLD and the Committee on EO 
Satellites (CEOS) Land Product Validation (LPV) working groups 

(Boschetti et al., 2009). The need for long-term, climate quality, AF 
products offering global coverage remains paramount, and this entails 
systematic product generation, quality control, algorithm maintenance 
and when necessary reprocessing. Without reprocessing using updated 
calibration and geolocation information, and improved algorithms 
refined in response to routine product quality assessment periodic val
idations (Section 6), AF products become less suitable for addressing 
climate science questions. 

In addition to improving AF detection algorithms, efforts should 
focus on developing AF products maximizing use of currently available 
data, such as through blending GEO and LEO observations (e.g. Zhang 
et al., 2020). A long-standing GOFC/GOLD goal is the development of a 
global geostationary AF system, which is increasingly relevant given the 
improved AF fire detection apability of the new generation of GEO 
satellites. AF detection and FRP data have recently become available in 
NRT from Meteosat, Meteosat Indian Ocean, Himawari and GOES-E and 
–W using the same FTA algorithm originally developed for Meteosat 
SEVIRI (Roberts and Wooster, 2008; Wooster et al., 2015; Xu et al., 
2017, 2021a). Similarly, the availability of Landsat and Sentinel-2 im
agery having pixel sizes in the tens of meters provides detailed SWIR- 
based AF detection that may complement coarser spatial resolution 
but more frequently available AF products, if only initially for validation 
of the latter. The increasing number of very high spatial resolution (1–3 
m) sensors should also be evaluated for their potential use in AF 
detection. Development of additional ancillary datasets, such as those 
related to fuel load per unit area, and biome, season and fuel-moisture 
dependent trace gas and aerosol emissions factors (EFs), is required to 
further improve fire emissions estimation. 

10.2. EO sensor and mission priorities 

This review has reiterated that to provide optimum data for AF 
remote sensing, a typical sensor requires co-registered channels in the 
MIR (3–5 μm) and LWIR (8–14 μm), a co-located VIS or NIR channel to 
aid daytime masking of false alarms and cloud. The exact spectral 
placement of each channel is less prescriptive, but for example the 3.959 
μm “fire channel” of MODIS was selected due to its relative insensitivity 
to atmospheric water vapor absorption and avoidance of the CO2 ab
sorption window beyond ~4 μm (Kaufman et al., 1998). Of key 
importance for FRP retrieval are MIR measurements across a sufficient 
dynamic range to provide good quality, unsaturated data over the 
highest intensity and/or largest fires, as well as over the ambient tem
perature background. Without the former, the FRP of the most strongly 
emitting fires cannot be gauged, and without the latter the AF pixels 
themselves may not even be reliably detected. The required upper end of 
the MIR channel dynamic range needs to be set according to the sensors 
ground pixel footprint area, since the same fire will form a greater 
proportion of a smaller rather than larger pixel (MODIS 1 km2 pixels 
have ~500 K saturation temperature vs. ABI 4 km2 pixels have ~400 K). 
For the 60 m spatial resolution MIR band of the proposed Hyperspectral 
Infrared Imager (HyspIRI) payload, Realmuto et al. (2015) specified a 
1200 K saturation temperature. As with MODIS and SLSTR, such wide 
dynamic ranges sometimes require two MIR detectors, or one detector 
operating with dual integration times or gain settings (e.g. BIRD HSRS 
and VIIRS). Other beneficial sensor attributes include limiting pixel area 
growth across the swath (as done with VIIRS and SLSTR; Schroeder 
et al., 2014; Xu et al., 2021b), a SWIR channel operating at night to aid 
hotspot detection, discrimination of fires from higher temperature tar
gets such as gas-flares, and FRP estimation from the latter (Fisher and 
Wooster, 2018, 2019). SWIR wavebands centered around 2.2 μm appear 
most effective, and night-time use of a broad day-night (low light level) 
band (0.5–0.9 μm) similar to that of VIIRS can also be considered. SWIR- 
based AF detection is also possible by day if ground pixel footprints are 
small enough. 

High temporal resolution AF data is required for operational fire 
monitoring, warning and fire-fighting applications, and to provide the 
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most reliable estimation of FRE via FRP temporal integration. GEO 
systems meet this goal, with the newest such as Himawari (Bessho et al., 
2016; Xu et al., 2017), Meteosat Second Generation (soon to be super
seded by Meteosat Third Generation [MTG]; Roberts and Wooster, 
2008), GEO-KOMPSAT-2A and Feng-Yun 4A (Yang et al., 2017), and 
GOES-R (Schmit et al., 2017; Xu et al., 2017; 2021) including MIR bands 
having suitably extended dynamic ranges, and offering full-disk tem
poral resolutions as high as 10 min. However, their larger pixel areas 
result in minimum FRP detection limits typically at least 4× higher than 
from the nadir views of LEO sensors – so they generally cannot detect a 
substantial number of fires that MODIS type sensors would identify if 
they viewed the same location at the same time. MTG will offer 1 km 
data every 2.5 min over some areas, a first for the AF application, and 
even in densely populated Europe this may provide sufficient capability 
to usefully detect a significant number of newly ignited fires in advance 
of public call ins. Use of highly elliptical orbits could be explored to 
provide a high latitude, high temporal resolution AF capability. An 
achievable future GEO goal that would cover many of the applications 
supported by current LEO systems would be 500 m spatial resolution 
geostationary-based AF detection, and the Chinese Meteorological 
Agency (CMA) GF4 GEO satellite already includes a 400 m MIR channel 
that demonstrates this is possible (Lu et al., 2020). 

An option to provide high spatial detail, low commission error AF 
data at increased temporal resolutions is via constellations of LEO sys
tems placed to cover different overpass times. LEO capabilities continue 
to improve, and compared to MODIS Sentinel-3 SLSTR offers a some
what improved AF detection sensitivity due to its on average smaller 
pixel footprint area (Xu et al., 2020; 2021; Fig. 3), whilst VIIRS’ 375 m 
data offers a sensitivity around 10× better (Schroeder et al., 2014; 
Zhang et al., 2017). Going beyond the spatial resolution of VIIRS may 
provide diminishing returns, since the latter can already identify active 
areas of combustion of <20 m2, and over some landscapes high AF errors 
of commission can result from the IR clutter present in very finely 
detailed thermal imagery (Schroeder et al., 2014; Zhang et al., 2017). 
Performance trade-offs between the existing style of often larger satel
lites using cooled sensor technology and lower cost smaller missions that 
might enable lower-cost constellation development, possibly using un
cooled detectors if their performance can be demonstrated (e.g. Wild
FireSat; Johnston et al., 2020), should be examined. 

10.3. Other research priorities 

Beyond datasets and sensors, there remain several primacies for 
ongoing research in AF remote sensing. These include a better under
standing of errors and uncertainties in AF detection, FRP retrieval and 
fire emissions estimation, both spatially (e.g. by biome), temporally (e.g. 
diurnally, seasonally) and with respect to different sensors, products and 
observational (e.g. atmospheric and view angle) effects. Validation of AF 
products remains challenging, due to the ephemeral and dynamic nature 
of fire and to difficulties in obtaining co-located simultaneous and in
dependent reference observations. On a global scale this has been 
limited to joint use of ASTER and Terra MODIS (see Section 1), and with 
Terra nearing its end of life there is a need to develop a validation 
strategy covering a wider array of instruments and times of day. Simi
larly, a uniform protocol to validate spaceborne FRP retrievals is 
required, particularly as it is a designated GCOS ECV and one which is 
still at the lowest validation stage according to the CEOS LPV validation 
hierarchy. Understanding the lower FRP components of a regions fire 
regime and how this is included or excluded by different AF data 
products remains important, as are ways to adjust for this when neces
sary. The ability to map fireline rates of spread remains a goal for many 
fire management applications, as is the need to further promote assim
ilation of NRT AF data into time-coupled weather-fire behavior model
ling frameworks (Coen and Schroeder, 2013). Research on the 
conversion between FRP, FRE and fuel consumption, trace gas and 
aerosol emissions continues to be a priority, as does the reconciling of 

such estimates with those from alternative (e.g. burned area) based 
approaches. Finally, the accuracy and usefulness of EO methods for 
flaming/smoldering fire discrimination - including via use of phenom
ena such as detection of landscape fire potassium emission lines - needs 
to be further examined, as does the need and ability to optimize any 
applied emissions factors used in subsequent smoke emissions 
calculations. 

11. Summary and conclusion 

Observing landscape fires from space has a strong heritage, stretch
ing back to the 1980’s with NOAA AVHRR. Since then, satellite active 
fire (AF) data have become very widely used by scientists and govern
ment agencies, and the number of spaceborne sensors equipped with 
measurement capabilities relevant to the AF application, including with 
‘fire-optimized’ thermal channel dynamic ranges, has greatly increased. 
The NASA MODIS AF product suite is the most widely utilized, and the 
ease of access to these and other AF data through numerous data portals 
has proliferated beyond science to allow routine monitoring and 
reporting - as evidenced by their deployment by the media during the 
recent [2019] Amazonian fire activity increase (Kelley et al., 2021) and 
during the 2019/2020 Australian black Summer bushfires (Abram et al., 
2021). Although these recent events have highlighted the relevance and 
importance of satellite AF products (e.g. Escobar, 2019), they have also 
reinforced the need for the community of data producers to more clearly 
communicate the limitations as well as benefits of each AF product, so as 
to reduce interpretation inaccuracies. 

AF products have evolved from reporting the timing and location of 
actively burning fires to now include measures such as fire effective 
temperature, area and fire radiative power (FRP). Near real-time (NRT) 
EO data streams have allowed the FRP method to be used to deliver 
smoke emissions source strength information to a variety of atmospheric 
modelling systems, for example in support air quality forecasting. Future 
satellite missions, including higher spatial resolution GEO systems and 
increased numbers of AF-capable LEO systems, including the future 
possibly of small-satellite constellations, provide further opportunities 
for advancing both science and operational applications as their per
formance evolves. A key constraint remains the scarcity of reference 
data suitable for validating contemporaneous AF detections and FRP 
retrievals. Communities such as GOFC/GOLD and CEOS LPV are 
encouraged to continue to lobby space agencies to develop and launch 
missions that include sensors whose characteristics are optimized for the 
AF application, and often only relatively small adjustments to the 
initially planned characteristics are required – as was the case for 
example with Sentinel-3 SLSTR and Meteosat Third Generation. Looking 
forward, continuing climate and environmental change may potentially 
shift certain drivers of landscape fire (Rogers et al., 2020). Apparent 
policy or policy enforcement shifts appear able to rapidly alter fire 
characteristics over large regions (Sembhi et al., 2020), and the health 
impacts of the poor air quality that can come with landscape burning is a 
growing concern. We can therefore expect the relevance and importance 
of satellite AF remote sensing to continue to grow. 
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Parent, G., Acem, Z., Lechêne, S., Boulet, P., 2010. Measurement of infrared radiation 
emitted by the flame of a vegetation fire. Int. J. Therm. Sci. 49 (3), 555–562. 
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