LEAST SPARSITY OF p-NORM BASED OPTIMIZATION PROBLEMS WITH $p > 1$

JINGLAI SHEN† AND SEYEDAHMAD MOUSAVI†

Abstract. Motivated by ℓ_p-optimization arising from sparse optimization, high-dimensional data analytics and statistics, this paper studies sparse properties of a wide range of p-norm based optimization problems with $p > 1$, including generalized basis pursuit, basis pursuit denoising, ridge regression, and elastic net. It is well known that when $p > 1$, these optimization problems lead to less sparse solutions. However, the quantitative characterization of the adverse sparse properties is not available. This paper shows how to exploit optimization and matrix analysis techniques to develop a systematic treatment of a broad class of p-norm based optimization problems for a general $p > 1$ and show that their optimal solutions attain full support, and thus have the least sparsity, for almost all measurement matrices and measurement vectors. Comparison to ℓ_p-optimization with $0 < p \leq 1$ and implications for robustness as well as extensions to the complex setting are also given. These results shed light on analysis and computation of general p-norm based optimization problems in various applications.

Key words. sparse optimization, ℓ_p-optimization, convex optimization, nonlinear program

AMS subject classifications. 65K05, 90C25, 90C30

DOI. 10.1137/17M1140066

1. Introduction. Sparse optimization arises from various important applications of contemporary interest, e.g., compressed sensing, high-dimensional data analytics and statistics, machine learning, and signal and image processing [7, 14, 16, 26]. The goal of sparse optimization is to recover the sparest vector from observed data which are possibly subject to noise or errors, and it can be formulated as the ℓ_0-optimization problem [2, 5]. Since the ℓ_0-optimization problem is NP-hard, it is folklore in sparse optimization to use the p-norm or p-quasi norm $\| \cdot \|_p$ with $p \in (0, 1]$ to approximate the ℓ_0-norm to recover sparse signals [11, 14]. Representative optimization problems involving the p-norm include basis pursuit, basis pursuit denoising, LASSO, and elastic net; see section 2 for the details of these problems. In particular, when $p = 1$, it gives rise to a convex ℓ_1-optimization problem which leads to efficient numerical algorithms [14, 29]; when $0 < p < 1$, it yields a nonconvex and non-Lipschitz optimization problem whose local optimal solutions can be effectively computed [9, 13, 15, 18]. Despite possible convergence to nonoptimal stationary points, ℓ_p-minimization with $0 < p < 1$ often leads to improved and more stable recovery results, even under measurement noise and errors [23, 24, 28].

When $p > 1$, it is well known that the p-norm formulation will not lead to sparse solutions [4, 14]; see Figure 1.1 for illustration and comparison with ℓ_p minimization with $0 < p \leq 1$. However, to the best of our knowledge, a formal justification of this fact for a general setting with an arbitrary $p > 1$ is not available, except as an intuitive and straightforward geometric interpretation for special cases, e.g., basis pursuit; see [30] for a certain adverse sparse property for p-norm based ridge regression with $p > 1$ from an algorithmic perspective. Besides, when different norms are used in objective functions of optimization problems, e.g., the ridge regression and elastic net,
it is difficult to obtain a simple geometric interpretation. Moreover, for an arbitrary $p > 1$, there lacks a quantitative characterization of how less sparse such solutions are and how these less sparse solutions depend on a measurement matrix and a measurement vector, in comparison with the related problems for $0 < p \leq 1$. In addition to theoretical interest, these questions are also of practical value, since the p-norm based optimization with $p > 1$ and its matrix norm extensions find applications in graph optimization [12], machine learning, and signal/image processing [9, 19]. It is also related to the ℓ_p-programming coined by Terlaky [25]. Motivated by the aforementioned questions and their implications in applications, we give a formal argument for a broad class of p-norm based optimization problems with $p > 1$ and its matrix norm extensions find applications in graph optimization [12], machine learning, and signal/image processing [9, 19]. It is also related to the ℓ_p-programming coined by Terlaky [25]. Motivated by the aforementioned questions and their implications in applications, we give a formal argument for a broad class of p-norm based optimization problems with $p > 1$ generalized from sparse optimization and other fields. When $p > 1$, we show that these problems not only fail to achieve sparse solutions but also yield the least sparse solutions generically. Specifically, when $p > 1$, for almost all measurement matrices $A \in \mathbb{R}^{m \times N}$ and measurement vectors $y \in \mathbb{R}^m$, solutions to these p-norm based optimization problems have full support, i.e., the support size is N; see Theorems 4.3, 4.5, 4.6, 4.9, and 4.10 for formal statements. The proofs for these results turn out to be nontrivial, since except $p = 2$ the optimality conditions of these optimization problems yield highly nonlinear equations and there are no closed-form expressions of optimal solutions in terms of A and y. To overcome these technical difficulties, we exploit techniques from optimization and matrix analysis and give a systematic treatment to a broad class of p-norm based optimization problems originally from sparse optimization and other related fields, including generalized basis pursuit, basis pursuit denoising, ridge regression, and elastic net. The results developed in this paper will also deepen the understanding of general p-norm based optimization problems emerging from many applications and shed light on their computation and numerical analysis.

The rest of the paper is organized as follows. In section 2, we introduce generalized p-norm based optimization problems and show the solution existence and uniqueness. When $p > 1$, a lower sparsity bound and other preliminary results are established in section 3. Section 4 develops the main results of the paper, namely, the least sparsity of p-norm optimization based generalized basis pursuit, generalized ridge regression and elastic net, and generalized basis pursuit denoising for $p > 1$. In section 5, we extend the least sparsity results to measurement vectors restricted to a subspace of the range of A, possibly subject to noise, and compare this result with ℓ_p-optimization for $0 < p \leq 1$ arising from compressed sensing; extensions to the complex setting are also given. Conclusions are made in section 6.

Notation. Let $A = [a_1, \ldots, a_N]$ be an $m \times N$ real matrix with $N > m$, where $a_i \in \mathbb{R}^m$ denotes the ith column of A. For a given vector $x \in \mathbb{R}^n$, $\text{supp}(x)$ denotes the
support of x. For any index set $I \subseteq \{1, \ldots, N\}$, let $|I|$ denote the cardinality of I, and $A_{I} = [a_{i}]_{i \in I}$ be the submatrix of A formed by the columns of A indexed by elements of I. For a given matrix M, $R(M)$ and $N(M)$ denote the range and null space of M, respectively. Let $\text{sgn}(\cdot)$ denote the signum function with $\text{sgn}(0) := 0$. Let \preceq denote the positive semidefinite order, i.e., for two real symmetric matrices P and Q, $P \preceq Q$ means that $(P - Q)$ is positive semidefinite. The gradient of a real-valued differentiable function $f : \mathbb{R}^{n} \to \mathbb{R}$ is given by $\nabla f(x) = (\frac{\partial f(x)}{\partial x}, \ldots, \frac{\partial f(x)}{\partial x})^{T} \in \mathbb{R}^{n}$. Let $F : \mathbb{R}^{n} \times \mathbb{R}^{r} \to \mathbb{R}^{s}$ be a differentiable function given by $F(x, z) = (F_{1}(x, z), \ldots, F_{s}(x, z))^{T}$ with $F_{i} : \mathbb{R}^{n} \times \mathbb{R}^{r} \to \mathbb{R}$ for $i = 1, \ldots, s$. The Jacobian of F with respect to $x = (x_{1}, \ldots, x_{n})^{T} \in \mathbb{R}^{n}$ is

$$
\mathbf{J}_{x}F(x, z) = \begin{bmatrix}
\frac{\partial F_{1}(x, z)}{\partial x_{1}} & \cdots & \frac{\partial F_{1}(x, z)}{\partial x_{n}} \\
\frac{\partial F_{2}(x, z)}{\partial x_{1}} & \cdots & \frac{\partial F_{2}(x, z)}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{s}(x, z)}{\partial x_{1}} & \cdots & \frac{\partial F_{s}(x, z)}{\partial x_{n}}
\end{bmatrix} \in \mathbb{R}^{s \times n}.
$$

By convention, we also use $\nabla_{x}F(x, z)$ to denote $\mathbf{J}_{x}F(x, z)$. Besides, by saying that a statement (P) holds for almost all x in a finite-dimensional real vector space E, we mean that (P) holds on a set $W \subseteq E$ whose complement W^{c} has zero Lebesgue measure. For two vectors $u, v \in \mathbb{R}^{q}$, $u \perp v$ denotes the orthogonality of u and v, i.e., $u^{T}v = 0$.

2. Generalized p-norm based optimization problems. In this section, we introduce a broad class of widely studied p-norm based optimization problems emerging from sparse optimization, statistics, and other fields, and we discuss their generalizations. Throughout this section, we let the constant $p > 0$, the matrix $A \in \mathbb{R}^{m \times N}$, and the vector $y \in \mathbb{R}^{m}$. For any $p > 0$ and $x = (x_{1}, \ldots, x_{N})^{T} \in \mathbb{R}^{N}$, define $||x||_{p} := (\sum_{i=1}^{N} |x_{i}|^{p})^{1/p}$.

Generalized basis pursuit. Consider the following linear equality constrained optimization problem whose objective function is given by the p-norm (or quasi norm):

$$
\text{BP}_{p} : \min_{x \in \mathbb{R}^{N}} ||x||_{p} \quad \text{subject to} \quad Ax = y,
$$

where $y \in R(A)$. Geometrically, this problem seeks to minimize the p-norm distance from the origin to the affine set defined by $Ax = y$. When $p = 1$, it becomes the standard basis pursuit [6, 8, 14].

Generalized basis pursuit denoising. Consider the following constrained optimization problem which incorporates noisy signals:

$$
\text{BPDN}_{p} : \min_{x \in \mathbb{R}^{N}} ||x||_{p} \quad \text{subject to} \quad ||Ax - y||_{2} \leq \varepsilon,
$$

where $\varepsilon > 0$ characterizes the bound of noise or errors. When $p = 1$, it becomes the standard basis pursuit denoising (or quadratically constrained basis pursuit) [4, 14, 27]. Another version of the generalized basis pursuit denoising is given by the following optimization problem:

$$
\min_{x \in \mathbb{R}^{N}} ||Ax - y||_{2} \quad \text{subject to} \quad ||x||_{p} \leq \eta,
$$

where the bound $\eta > 0$. Similarly, when $p = 1$, the optimization problem (2.3) pertains to a relevant formulation of basis pursuit denoising [14, 27].
Generalized ridge regression and elastic net. Consider the following unconstrained optimization problem:

\[
\text{RR}_p : \min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - y\|_2^2 + \lambda \|x\|_p^p,
\]

where \(\lambda > 0 \) is the penalty parameter. When \(p = 2 \), it becomes the standard ridge regression extensively studied in statistics \([16, 17]\); when \(p = 1 \), it yields the least absolute shrinkage and selection operator (LASSO) with the \(\ell_1 \)-norm penalty \([26]\). The \(\text{RR}_p \) (2.4) is closely related to the maximum a posteriori (MAP) estimator when the prior takes the generalized normal distribution. A related optimization problem is the generalized elastic net arising from statistics:

\[
\text{EN}_p : \min_{x \in \mathbb{R}^N} \frac{1}{2} \|Ax - y\|_2^2 + \lambda_1 \|x\|_r^r + \lambda_2 \|x\|_2^2,
\]

where \(r > 0 \) and \(\lambda_1, \lambda_2 \) are positive penalty parameters. When \(p = r = 1 \), the \(\text{EN}_p \) (2.5) becomes the standard elastic net formulation which combines the \(\ell_1 \) and \(\ell_2 \) penalties in regression \([31]\). Moreover, if we allow \(\lambda_2 \) to be nonnegative, then the \(\text{RR}_p \) (2.4) can be treated as a special case of the \(\text{EN}_p \) (2.5) with \(r = p \), \(\lambda = \lambda_1 > 0 \), and \(\lambda_2 = 0 \).

In what follows, we show the existence and uniqueness of optimal solutions for the generalized optimization problems introduced above.

Proposition 2.1. Fix an arbitrary \(p > 0 \). Each of the optimization problems (2.1), (2.2), (2.3), (2.4), and (2.5) attains an optimal solution for any given \(A, y, \varepsilon > 0, \eta > 0, \lambda > 0, r > 0, \lambda_1 > 0 \), and \(\lambda_2 \geq 0 \) as long as the associated constraint sets are nonempty. Further, when \(p > 1 \), each of (2.1), (2.2), and (2.4) has a unique optimal solution. Besides, when \(p \geq 1, r \geq 1, \lambda_1 > 0 \), and \(\lambda_2 > 0 \), (2.5) has a unique optimal solution.

Proof. For any \(p > 0 \), the optimization problems (2.1), (2.2), (2.4), and (2.5) attain optimal solutions since their objective functions are continuous and coercive and the constraint sets (if nonempty) are closed. The problem (2.3) also attains a solution because it has a continuous objective function and a compact constraint set.

When \(p \geq 1, (2.1) \) and (2.2) are convex optimization problems, and they are equivalent to \(\min \|Ax - y\|_p^p \) and \(\min \|Ax - y\|_2^2 \), respectively. Further, the function \(\| \cdot \|_p^p \) is strictly convex on \(\mathbb{R}^N \); see the proof in the appendix (cf. section 7).

Hence, each of (2.1), (2.2), and (2.4) has a unique optimal solution. When \(p \geq 1, r \geq 1, \lambda_1 > 0 \), and \(\lambda_2 > 0 \), the generalized elastic net (2.5) is a convex optimization problem with a strictly convex objective function and thus has a unique optimal solution.

3. Preliminary results on sparsity of \(p \)-norm based optimization with \(p > 1 \). This section develops key preliminary results for the global sparsity analysis of \(p \)-norm based optimization problems when \(p > 1 \).

3.1. Lower bound on sparsity of \(p \)-norm based optimization with \(p > 1 \). We first establish a lower bound on the sparsity of optimal solutions arising from the \(p \)-norm based optimization with \(p > 1 \). Specifically, we show that when \(p > 1 \), for almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \), any (nonzero) optimal solution has at least \((N - m + 1) \) nonzero elements and thus is far from sparse when \(N \gg m \). This result is critical to show in the subsequent section that for almost all \((A, y) \), an optimal solution achieves
As this end, we define the following set in $\mathbb{R}^{m \times N} \times \mathbb{R}^m$ with $N \geq m$:

$$
S := \left\{ (A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \mid \text{every } m \times m \text{ submatrix of } A \text{ is invertible, and } y \neq 0 \right\}.
$$

Clearly, S is open and its complement S^c has zero measure in $\mathbb{R}^{m \times N} \times \mathbb{R}^m$. Note that a matrix A satisfying the condition in (3.1) is said to be of completely full rank [18]. To emphasize the dependence of optimal solutions on the measurement matrix A and the measurement vector y, we write an optimal solution as $x^*_{(A,y)}$ or $x^*(A,y)$ below; the latter notation is used when x^* is unique for any given (A,y) so that x^* is a function of (A,y).

PROPOSITION 3.1. Let $p > 1$. For any $(A,y) \in S$, the following statements hold:

(i) The optimal solution $x^*_{(A,y)}$ to the BP$_p$ (2.1) satisfies $|\text{supp}(x^*_{(A,y)})| \geq N - m + 1$.

(ii) If $0 < \varepsilon < \|y\|_2$, then we have that the optimal solution $x^*_{(A,y)}$ to the BPDN$_p$ (2.2) satisfies $|\text{supp}(x^*_{(A,y)})| \geq N - m + 1$.

(iii) For any $\lambda > 0$, we have that the optimal solution $x^*_{(A,y)}$ to the RR$_p$ (2.4) satisfies $|\text{supp}(x^*_{(A,y)})| \geq N - m + 1$.

(iv) For any $r > 0$ and $\lambda_1 > 0$ and $\lambda_2 \geq 0$, each nonzero optimal solution $x^*_{(A,y)}$ to the EN$_p$ (2.5) satisfies $|\text{supp}(x^*_{(A,y)})| \geq N - m + 1$.

We give two remarks on the conditions stated above before presenting a proof.

(a) Note that if $\varepsilon \geq \|y\|_2$ in statement (ii), then $x = 0$ is feasible such that the BPDN$_p$ (2.2) attains the trivial (unique) optimal solution $x^* = 0$. For this reason, we impose the assumption $0 < \varepsilon < \|y\|_2$.

(b) When $0 < r < 1$ in statement (iv) with $\lambda_1 > 0$ and $\lambda_2 \geq 0$, the EN$_p$ (2.5) has a nonconvex objective function and it may have multiple optimal solutions. Statement (iv) says that any such nonzero optimal solution has the sparsity of at least $N - m + 1$.

Proof. Fix $(A,y) \in S$. We write an optimal solution $x^*_{(A,y)}$ as x^* for notational simplicity in the proof. Furthermore, let $f(x) := ||x||_p^p$. Clearly, when $p > 1$, f is continuously differentiable on \mathbb{R}^N.

(i) Consider the BP$_p$ (2.1). Note that $0 \neq y \in R(A)$ for any $(A,y) \in S$. By Proposition 2.1, the BP$_p$ (2.1) has a unique optimal solution x^* for each $(A,y) \in S$. In view of $x^* = \text{argmin}_{A\nu=y} f(x)$, the necessary and sufficient optimality condition for x^* is given by the following KKT condition:

$$
\nabla f(x^*) - A^T \nu = 0, \quad A x^* = y,
$$

where $\nu \in \mathbb{R}^m$ is the Lagrange multiplier, and $(\nabla f(x))_i = p \cdot \text{sgn}(x_i) \cdot |x_i|^{p-1}$ for each $i = 1, \ldots, N$. Note that $\nabla f(x)$ is positively homogeneous in x and each $(\nabla f(x))_i$ depends on x_i only. Suppose that x^* has at least m zero elements. Hence, $\nabla f(x^*)$ has at least m zero elements. By the first equation in the KKT condition, we deduce that there is an $m \times m$ submatrix A_1 of A such that $A_1^T \nu = 0$. Since A_1 is invertible, we have $\nu = 0$ such that $\nabla f(x^*) = 0$. This further implies that $x^* = 0$. This contradicts $A x^* = y \neq 0$. Therefore, $|\text{supp}(x^*)| \geq N - m + 1$ for all $(A,y) \in S$.

(ii) Consider the BPDN$_p$ (2.2). Note that for any given $(A,y) \in S$ and $0 < \varepsilon < \|y\|_2$, the BPDN$_p$ (2.2) has a unique nonzero optimal solution x^*. Let $g(x) := \|A x - y\|_2^2 - \varepsilon^2$. Since A has full row rank, there exists $\pi \in \mathbb{R}^N$ such that $g(\pi) < 0$. As $g(\cdot)$ is a convex function, Slater’s constraint qualification holds for the equivalent
convex optimization problem \(\min_{\theta(x) \leq 0} f(x) \). Hence \(x^* \) satisfies the KKT condition with the Lagrange multiplier \(\mu \in \mathbb{R} \), where \(\perp \) denotes the orthogonality,

\[
\nabla f(x^*) + \mu \nabla g(x^*) = 0, \quad 0 \leq \mu \perp g(x^*) \leq 0.
\]

We claim that \(\mu > 0 \). Suppose not. Then it follows from the first equation in the KKT condition that \(\nabla f(x^*) = 0 \), which implies \(x^* = 0 \). This yields \(g(x^*) = \|y\|_2^2 - \varepsilon^2 > 0 \), which is a contradiction. Therefore \(\mu > 0 \) such that \(g(x^*) = 0 \). Using \(\nabla g(x^*) = 2A^T(Ax^* - y) \), we have \(\nabla f(x^*) + 2\mu A^T(Ax^* - y) = 0 \). Suppose, by contradiction, that \(x^* \) has at least \(m \) zero elements. Without loss of generality, we assume that the first \(m \) elements of \(x^* \) are zeros. Partition the matrix \(A \) into \(A = [A_1, A_2] \), where \(A_1 \in \mathbb{R}^{m \times x} \) and \(A_2 \in \mathbb{R}^{m \times (N-m)} \). Similarly, \(x^* = [0; \tilde{x}^*] \), where \(\tilde{x}^* \in \mathbb{R}^{N-m} \). Hence, the first \(m \) elements of \(\nabla f(x^*) \) are zero. By the first equation in the KKT condition, we derive \(2\mu A_1^T(Ax^* - y) = 0 \). Since \(\mu > 0 \) and \(A_1 \) is invertible, we obtain \(Ax^* - y = 0 \). This shows that \(g(x) = -\varepsilon^2 < 0 \), which is a contradiction to \(g(x^*) = 0 \).

(iii) Consider the RR\({}_p \) (2.4). The unique optimal solution \(x^* \) is characterized by the optimality condition \(A^T(Ax^* - y) + \lambda \nabla f(x^*) = 0 \), where \(\lambda > 0 \). Suppose, by contradiction, that \(x^* \) has at least \(m \) zero elements. Using a similar argument to that for case (ii), we derive that \(Ax^* - y = 0 \). In view of the optimality condition, we thus have \(\nabla f(x^*) = 0 \). This implies that \(x^* = 0 \). Substituting \(x^* = 0 \) into the optimality condition yields \(A^Ty = 0 \). Since \(A \) has full row rank, we obtain \(y = 0 \). This leads to a contradiction. Hence \(|\text{supp}(x^*)| \geq N - m + 1 \) for all \((A, y) \in S \).

(iv) Consider the EN\(_p \) (2.5) with the exponent \(r > 0 \) and the penalty parameters \(\lambda_1 > 0 \) and \(\lambda_2 > 0 \). When \(\lambda_2 = 0 \), it is closely related to the RR\(_p \) with the exponent on \(\|x\|_p \) replaced by an arbitrary \(r > 0 \). For any \((A, y) \in S \), let \(x^* \) be a (possibly nonunique) nonzero optimal solution which satisfies the optimality condition \(p \cdot A^T(Ax^* - y) + r\lambda_1 \cdot \|x^*\|_{p-1}^{r-p} \cdot \nabla\|x^*\|_p^r + 2\lambda_2 x^* = 0 \), where for any nonzero \(x \in \mathbb{R}^N \),

\[
\nabla\|x\|_p^r = \frac{1}{\|x\|_p^{-r} + 1} \left(\text{sgn}(x_1)|x_1|^{p-1}, \ldots, \text{sgn}(x_N)|x_N|^{p-1} \right)^T = \frac{\nabla\|x\|_p^r}{p \cdot \|x\|_p^{-r}}.
\]

The optimality condition can be equivalently written as

\[
\text{iv.1) } \lambda_2 = 0. \quad \text{iv.2) } \lambda_2 > 0.
\]

Consider two cases. (iv.1) \(\lambda_2 = 0 \). By a similar argument to that of case (iii), it is easy to show that \(|\text{supp}(x^*)| \geq N - m + 1 \) for all \((A, y) \in S \). (iv.2) \(\lambda_2 > 0 \). In this case, suppose, by contradiction, that \(x^* \) has at least \(m \) zero elements. As before, let \(A = [A_1, A_2] \) and \(x^* = [0; \tilde{x}^*] \) with \(A_1 \in \mathbb{R}^{m \times m} \) and \(\tilde{x}^* \in \mathbb{R}^{N-m} \). Hence, the optimality condition leads to \(p \cdot A_1^T(Ax^* - y) = 0 \). This implies that \(Ax^* - y = 0 \) such that \(r\lambda_1 \cdot \|x^*\|_{p-1} \cdot \nabla\|x^*\|_p^r + 2\lambda_2 x^* = 0 \). Since \(\nabla f(x_i) \), \(p \cdot \text{sgn}(x_i) \cdot |x_i|^{p-1} \) for each \(i = 1, \ldots, N \), we obtain \(r\lambda_1 \cdot \|x^*\|_{p-1} \cdot |x_i^*|^{p-1} + 2\lambda_2 |x_i^*| = 0 \) for each \(i \). Hence \(x_i^* = 0 \), a contradiction. We thus conclude that \(|\text{supp}(x^*)| \geq N - m + 1 \) for all \((A, y) \in S \).

We discuss an extension of the sparsity lower bound developed in Proposition 3.1 to another formulation of the basis pursuit denoising given in (2.3). It is noted that if \(\eta \geq \min_{Ax=y} \|x\|_p \) (which implies \(y \in R(A) \)), then the optimal value of (2.3) is zero and can be achieved at some feasible \(x^* \) satisfying \(Ax^* = y \). Hence any optimal solution \(x^* \) must satisfy \(Ax^* = y \) so that the optimal solution set is given by \(\{x \in \mathbb{R}^N \mid Ax = y, \|x\|_p \leq \eta\} \), which is closely related to the BP\(_p \) (2.1). This means that if \(\eta \geq \min_{Ax=y} \|x\|_p \), the optimization problem (2.3) can be converted to a reduced and simpler problem. For this reason, we assume that \(0 < \eta < \min_{Ax=y} \|x\|_p \).
for (2.3). The following proposition presents important results under this assumption; these results will be used for the proof of Theorem 4.10.

Proposition 3.2. The following hold for the problem (2.3) with $p > 1$:

(i) If A has full row rank and $0 < \eta < \min_{Ax=y} \|x\|_p$, then (2.3) attains a unique optimal solution with a unique positive Lagrange multiplier.

(ii) For any (A,y) in the set S defined in (3.1) and $0 < \eta < \min_{Ax=y} \|x\|_p$, the unique optimal solution $x^*_y(A,y)$ satisfies $|\text{supp}(x^*_y(A,y))| \geq N - m + 1$.

Proof. (i) Let A be of full row rank. Hence, $y \in R(A)$ so that η is well defined. Let x^* be an arbitrary optimal solution to (2.3) with the specified $\eta > 0$. Hence $x^* = \arg \min_{f(x) \leq \eta} \frac{1}{2} \|Ax - y\|_2^2$, where we recall that $f(x) = \|x\|_p^p$. Clearly, the Slater constraint qualification holds for the convex optimization problem (2.3). Therefore, x^* satisfies the following KKT condition:

$$A^T (Ax^* - y) + \mu \nabla f(x^*) = 0, \quad 0 \leq \mu \perp f(x^*) - \eta^p \leq 0,$$

where $\mu \in \mathbb{R}$ is the Lagrange multiplier. We claim that μ must be positive. Suppose not, i.e., $\mu = 0$. By the first equation in (3.3), we obtain $A^T (Ax^* - y) = 0$. Since A has full row rank, we have $Ax^*_y = y$. Based on the assumption on η, we further have $\|x^*_y\|_p > \eta$, which is a contradiction to $f(x^*) \leq \eta^p$. This proves the claim. Since $\mu > 0$, it follows from the second equation in (3.3) that any optimal solution x^* satisfies $f(x^*) = \eta^p$ or equivalently $\|x^*_y\|_p = \eta$. To prove the uniqueness of optimal solution, suppose, by contradiction, that x^* and x' are two distinct optimal solutions for the given (A,y). Thus $\|x^*_y\|_p = \|x'_y\|_p = \eta$. Since (2.3) is a convex optimization problem, the optimal solution set is convex so that $\lambda x^* + (1 - \lambda)x'$ is an optimal solution for any $\lambda \in [0,1]$. Hence, $\|\lambda x^* + (1 - \lambda)x'\|_p = \eta \forall \lambda \in [0,1]$. Since $\|\cdot\|_p^p$ is strictly convex when $p > 1$, we have $\eta^p = \|\lambda x^* + (1 - \lambda)x'\|_p^p < \lambda \|x^*\|_p^p + (1 - \lambda)\|x'\|_p^p = \eta^p$ for each $\lambda \in (0,1)$. This yields a contradiction. We thus conclude that (2.3) attains an optimal solution with $\mu > 0$.

(ii) Let $(A,y) \in S$. Clearly, A has full row rank so that (2.3) has a unique optimal solution x^*_y with a positive Lagrange multiplier μ. Suppose x^*_y has at least m zero elements. It follows from the first equation in (3.3) and a similar argument to that for case (iii) of Proposition 3.1 that $Ax^*_y = y$. In light of the assumption on η, we have $\|x^*_y\|_p > \eta$, which is a contradiction. Therefore $|\text{supp}(x^*_y)| \geq N - m + 1$ for any $(A,y) \in S$.

3.2. Technical result on measure of the zero set of C^1-functions.

As shown in Proposition 2.1, when $p > 1$, each of BP$_p$ (2.1), BPDN$_p$ (2.2), and RR$_p$ (2.4) has a unique optimal solution x^* for any given (A,y). Under additional conditions, each of the EN$_p$ (2.5) and the optimization problem (2.3) also attains a unique optimal solution. Hence, for each of these problems, the optimal solution x^* is a function of (A,y), and each component of x^* becomes a real-valued function $x^*_i(A,y)$. Therefore, the global sparsity of x^* can be characterized by the zero set of each $x^*_i(A,y)$. The following technical lemma gives a key result on the measure of the zero set of a real-valued C^1-function under a suitable assumption.

Lemma 3.3. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable (i.e., C^1) on an open set $W \subseteq \mathbb{R}^n$ whose complement W^c has zero measure in \mathbb{R}^n. Suppose $\nabla f(x) \neq 0$ for any $x \in W$ with $f(x) = 0$. Then the zero set $f^{-1}(0) := \{x \in \mathbb{R}^n \mid f(x) = 0\}$ has zero measure.

Proof. Consider an arbitrary $x^* \in W$. If $f(x^*) = 0$, then $\nabla f(x^*) \neq 0$. Without loss of generality, we assume that $\frac{\partial f}{\partial x_n}(x^*) \neq 0$. Let $z := (x_1, \ldots, x_{n-1})^T \in \mathbb{R}^{n-1}$.
By the implicit function theorem, there exist a neighborhood \(U \subset \mathbb{R}^{n-1} \) of \(z^* := (x_1^*, \ldots, x_{n-1}^*)^T \), a neighborhood \(V \subset \mathbb{R} \) of \(x_n^* \), and a unique \(C^1 \) function \(g: U \to V \) such that \(f(z, g(z)) = 0 \) for all \(z \in U \). The set \(f^{-1}(\{0\}) \cap (U \times V) = \{(z, g(z)) \mid z \in U\} \) has zero measure in \(\mathbb{R}^n \) since it is an \((n-1)\)-dimensional manifold in the open set \(U \times V \subset \mathbb{R}^n \). Moreover, in view of the continuity of \(f \), we deduce that for any \(x^* \in W \) with \(f(x^*) \neq 0 \), there exists an open set \(B(x^*) \) of \(x^* \) such that \(f(x) \neq 0 \) \(\forall x \in B(x^*) \). Combining these results, it is seen that for any \(x \in W \) there exists an open set \(B(x) \) of \(x \) such that \(f^{-1}(\{0\}) \cap B(x) \) has zero measure. Clearly, the family of these open sets given by \(\{B(x)\}_{x \in W} \) forms an open cover of \(W \). Since \(\mathbb{R}^n \) is a topologically separable metric space, so is \(W \subset \mathbb{R}^n \) and thus it is a Lindelöf space [21, 22]. Hence, this open cover attains a countable subcover \(\{B(x^i)\}_{i \in \mathbb{N}} \) of \(W \), where each \(x^i \in W \). Since \(f^{-1}(\{0\}) \cap B(x^i) \) has zero measure for each \(i \in \mathbb{N} \), the set \(W \cap f^{-1}(\{0\}) \) has zero measure. Besides, since \(f^{-1}(\{0\}) \subseteq W^c \cup (W \cap f^{-1}(\{0\})) \) and both \(W^c \) and \(W \cap f^{-1}(\{0\}) \) have zero measure, we conclude that \(f^{-1}(\{0\}) \) has zero measure. \(\square \)

4. Least sparsity of \(p \)-norm based optimization problems with \(p > 1 \). In this section, we establish the main results of the paper, namely, when \(p > 1 \), the \(p \)-norm based optimization problems yield least sparse solutions for almost all \((A, y)\). We introduce more notation to be used through this section. Let \(f(x) := \|x\|_p^p \) for \(x \in \mathbb{R}^N \), and when \(p > 1 \), we define for each \(z \in \mathbb{R} \),

\[
\begin{align*}
g(z) &:= p \cdot \text{sgn}(z) \cdot |z|^{p-1}, \\
h(z) &:= \text{sgn}(z) \cdot |z|^{\frac{p-1}{p}},
\end{align*}
\]

where \(\text{sgn}(\cdot) \) denotes the signum function with \(\text{sgn}(0) := 0 \). Direct calculation shows that (i) when \(p > 1 \), \(g(z) = (|z|^p)' \forall z \in \mathbb{R} \) and \(h(z) \) is the inverse function of \(g(z) \); (ii) when \(p \geq 2 \), \(g \) is continuously differentiable and \(g'(z) = p(p-1) \cdot |z|^{p-2} \forall z \in \mathbb{R} \); and (iii) when \(1 < p < 2 \), \(h \) is continuously differentiable and

\[
h'(z) = |z|^\frac{2-p}{p-2}/[(p-1) \cdot p^{1-(p-1)}] \quad \forall z \in \mathbb{R}.
\]

Furthermore, when \(p > 1 \), \(\nabla f(x) = (g(x_1), \ldots, g(x_N))^T \).

The proofs for the least sparsity developed in the rest of the section share similar methodologies. For the benefit of the reader, we give an overview of the main ideas of these proofs and comment on certain key steps in the proofs. As indicated at the beginning of section 3.2, the goal is to show that the zero set of each component of an optimal solution \(x^* \), which is a real-valued function of \((A, y)\), has zero measure. To achieve this goal, we first show using the KKT conditions and the implicit function theorem that \(x^* \), possibly along with a Lagrange multiplier if applicable, is a \(C^1 \) function of \((A, y)\) on a suitable open set \(S' \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \) whose complement has zero measure. We then show that for each \(i = 1, \ldots, N \), if \(x_{i}^* \) is vanishing at \((A, y) \in S'\), then its gradient evaluated at \((A, y)\) is nonzero. In view of Lemma 3.3, this leads to the desired result. Moreover, for each of the generalized optimization problems with \(p > 1 \), i.e., the \(\text{BP}_p \), \(\text{BPDN}_p \), \(\text{RR}_p \), and \(\text{EN}_p \), we divide their proofs into two separate cases: (i) \(p \geq 2 \) and (ii) \(1 < p \leq 2 \). This is because each case invokes the derivative of \(g(\cdot) \) or its inverse function \(h(\cdot) \) defined in (4.1). When \(p \geq 2 \), the derivative \(g'(\cdot) \) is globally well defined. On the contrary, when \(1 < p \leq 2 \), \(g'(\cdot) \) is not defined at zero. Hence, we use \(h(\cdot) \) instead, since \(h'(\cdot) \) is globally well defined in this case. The choice of \(g \) or \(h \) gives rise to different arguments in the following proofs, and the proofs for \(1 < p \leq 2 \) are typically more involved.
4.1. Least sparsity of the generalized basis pursuit with \(p > 1 \). We consider the case in which \(p \geq 2 \) first.

Proposition 4.1. Let \(p \geq 2 \) and \(N \geq m \). For almost all \((A, y) \in R^{m \times N} \times R^m\), the unique optimal solution \(x^*_\gamma (A, y) \) to the BP \((2.1)\) satisfies \(|\text{supp}(x^*_\gamma (A, y))| = N\).

Proof. For any \((A, y) \in R^{m \times N} \times R^m\), the necessary and sufficient optimality condition for \(x^* \) is given by the following KKT condition shown in Proposition 3.1:

\[
\nabla f(x^*) - A^T \nu = 0, \quad Ax^* = y,
\]

where \(\nu \in R^m \) is the Lagrange multiplier and \((\nabla f(x))_i = g(x)_i \) for each \(i = 1, \ldots, N \). Here \(g \) is defined in \((4.1)\). When \(p = 2 \), \(x^* = A^T(AA^T)^{-1}y \) for any \((A, y) \in S\).

As \(x^T(A, y) = 0 \) yields a polynomial equation whose solution set has zero measure in \(R^m \), the desired result follows. We consider \(p > 2 \) as follows, and show that for any \((A^\circ, y^\circ) \) in the open set \(S \) defined in \((3.1)\), \(x^*(A, y) \) is continuously differentiable at \((A^\circ, y^\circ) \) and that each \(x^*_i \) with \(x^*_i(A^\circ, y^\circ) = 0 \) has nonzero gradient at \((A^\circ, y^\circ) \).

Recall that \(x^* \) is unique for any \((A, y) \). Besides, for each \((A, y) \in S\), \(A^T \) has full column rank such that \(\nu \) is also unique in view of the first equation of the KKT condition. Therefore, \((x^*, \nu) \) is a function of \((A, y) \in S\). For notational simplicity, let \(x^\circ := x^*(A^\circ, y^\circ) \) and \(\nu^\circ := \nu(A^\circ, y^\circ) \). Define the index set \(J := \{ i | x^*_i \neq 0 \} \). By Proposition 3.1, we see that \(J \) is nonempty and \(|J^c| \leq m - 1 \). Further, in light of the KKT condition, \((x^*, \nu) \in R^N \times R^m \) satisfies the following equation:

\[
F(x, \nu, A, y) := \begin{bmatrix} \nabla f(x) - A^T \nu \\ Ax - y \end{bmatrix} = 0.
\]

Clearly, \(F : R^N \times R^m \times R^{m \times N} \times R^m \rightarrow R^{N+m} \) is \(C^1 \), and its Jacobian with respect to \((x, \nu) \) is

\[
J_{(x, \nu)} F(x, \nu, A, y) = \begin{bmatrix} \Lambda(x) & -A^T \\ A & 0 \end{bmatrix},
\]

where the diagonal matrix \(\Lambda(x) := \text{diag}(g'(x_1), \ldots, g'(x_N)) \). We respectively partition \(\Lambda^\circ := \Lambda(x^\circ) \) and \(A^\circ := \text{diag}(A_1, A_2) \), where \(A_1 := \text{diag}(g'((x^s_i)_i))_{i \in J^c} \) with \(A_1 = 0 \) as \(p > 2 \), \(A_2 := \text{diag}(g'((x^s_i)_i))_{i \in J} \) is positive definite, \(A_1 := A^\circ_{J^c} \), and \(A_2 := A^\circ_{J} \). We claim that the following matrix is invertible:

\[
W := J_{(x, \nu)} F(x^\circ, \nu^\circ, A^\circ, y^\circ) = \begin{bmatrix} \Lambda_1 & 0 & -A^T_1 \\ 0 & \Lambda_2 & -A^T_2 \\ A_1 & A_2 & 0 \end{bmatrix} \in R^{(N+m) \times (N+m)}.
\]

In fact, let \(z := [u_1; u_2; v] \in R^{N+m} \) be such that \(Wz = 0 \). Since \(\Lambda_1 = 0 \) and \(A_2 \) is positive definite, we have \(A^T_1 v = 0 \), \(u_2 = \Lambda_2^{-1}A^T_2 v \), and \(A_1 u_1 + A_2 u_2 = 0 \). Therefore, \(0 = v^T(A_1 u_1 + A_2 u_2) = v^T A^T_2 \Lambda_2^{-1} A^T_1 v \), which implies that \(A^T_1 v = 0 \) such that \(u_2 = 0 \) and \(A_1 u_1 = 0 \). Since \(|J^c| \leq m - 1 \) and any \(m \times m \) submatrix of \(A \) is invertible, the columns of \(A_1 \) are linearly independent such that \(u_1 = 0 \). This implies that \(A^T v = 0 \). Since \(A \) has full row rank, we have \(v = 0 \) and thus \(z = 0 \). This proves that \(W \) is invertible. By the implicit function theorem, there are local \(C^1 \) functions \(G_1, G_2, H \) such that \(x^* = (x^*_J, x^*_J) = (G_1(A, y), G_2(A, y)) := (G(A, y), \nu = H(A, y), F(G(A, y), H(A, y), A, y) = 0 \) for all \((A, y) \) in a neighborhood of \((A^\circ, y^\circ) \).

By the chain rule, we have

\[
J_{(x, \nu)} F(x^\circ, \nu^\circ, A^\circ, y^\circ) = \begin{bmatrix} \nabla_y G_1(A^\circ, y^\circ) \\ \nabla_y G_2(A^\circ, y^\circ) \\ \nabla_y H(A^\circ, y^\circ) \end{bmatrix} + J_y F(x^\circ, \nu^\circ, A^\circ, y^\circ) = 0,
\]

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
where

\[\mathbf{J}_y F(x^\circ, \nu^\circ, A^\circ, y^\circ) = \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix}, \quad W^{-1} := P = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix}. \]

It is easy to verify that \(\nabla_y G_1(A^\circ, y^\circ) = P_{13} \) and \(P_{13}A_1 = I \) by virtue of \(PW = I \). The latter equation shows that each row of \(P_{13} \) is nonzero, so is each row of \(\nabla_y G_1(A^\circ, y^\circ) \). Thus each row of \(\nabla(A,y) G_1(A^\circ, y^\circ) \) is nonzero. Hence, for each \(i = 1, \ldots, N \), \(x_i^*(A, y) \) is \(C^1 \) on the open set \(S \), and when \(x_i^*(A, y^\circ) = 0 \) at \((A^\circ, y^\circ) \in S \), its gradient is nonzero. By Lemma 3.3, the zero set of \(x_i^*(A, y) \) has zero measure for each \(i = 1, \ldots, N \). This shows that \(|\text{supp}(x^*(A, y))| = N \) for almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \).

The next result addresses the case in which \(1 < p \leq 2 \). In this case, it can be shown that if \(x_i^* \) is vanishing at some \((A^\circ, y^\circ) \) in a certain open set, then the gradient of \(x_i^* \) evaluated at \((A^\circ, y^\circ) \) also vanishes. This prevents us from applying Lemma 3.3 directly. To overcome this difficulty, we introduce a suitable function which has exactly the same sign of \(x_i^* \) and to which Lemma 3.3 is applicable. This technique is also used in other proofs for \(1 < p \leq 2 \); see Theorems 4.5, 4.6, 4.10, and Proposition 4.8.

Proposition 4.2. Let \(1 < p \leq 2 \) and \(N \geq 2m - 1 \). For almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \), the unique optimal solution \(x_i^*(A, y) \) to the BP \((2.1) \) satisfies

\[|\text{supp}(x^*(A, y))| = N. \]

Proof. Let \(\bar{S} \) be the set of all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \) satisfying the following conditions: (i) \(y \neq 0 \), (ii) each column of \(A \) is nonzero, and (iii) for any index set \(I \subseteq \{1, \ldots, N\} \) with \(|I^c| \geq m \) and \(\text{rank}(A_{I^c}) < m \), \(\text{rank}(A_{I^c}) = m \). Hence, such an \(A \) has full row rank, i.e., \(\text{rank}(A) = m \). Clearly, \(\bar{S} \) is open and its complement \(\bar{S}^c \) has zero measure. Note that the set \(S \) given in (3.1) is a proper subset of \(\bar{S} \).

Let \(A = [a_1, \ldots, a_N] \), where \(a_i \in \mathbb{R}^m \) is the \(i \)-th column of \(A \). It follows from the KKT condition \(\nabla f(x^*) - A^T \nu = 0 \) that \(x_i^* = h(a_i^T \nu) \) for each \(i = 1, \ldots, N \), where the function \(h \) is defined in (4.1). Along with the equation \(Ax^* = y \), we obtain the following equation for \((\nu, A, y) \):

\[F(\nu, A, y) := \sum_{i=1}^{N} a_i h(a_i^T \nu) - y = 0, \]

where \(F : \mathbb{R}^m \times \mathbb{R}^{m \times N} \times \mathbb{R}^m \rightarrow \mathbb{R}^m \) is \(C^1 \) and its Jacobian with respect to \(\nu \) is

\[\mathbf{J}_\nu F(\nu, A, y) = [a_1 \cdots a_N] \begin{bmatrix} h'(a_1^T \nu) \\ h'(a_2^T \nu) \\ \vdots \\ h'(a_N^T \nu) \end{bmatrix} \in \mathbb{R}^{m \times m}. \]

We show next that for any \((A^\circ, y^\circ) \in \bar{S} \) with (unique) \(\nu \) satisfying \(F(\nu, A^\circ, y^\circ) = 0 \), the Jacobian \(Q := \mathbf{J}_\nu F(\nu, A^\circ, y^\circ) \) is positive definite. This result is trivial for \(p = 2 \) since \(h'(a_i^T \nu) = 1/2 \) for each \(i \). To show this result for \(1 < p < 2 \), we first note that \(\nu \neq 0 \) since otherwise \(x^* = 0 \) so that \(Ax^* = 0 = y \), which contradicts \(y \neq 0 \). Using
the formula for \(h'() \) given below (4.1), we have
\[
(4.2)
\]
\[
u^T Q \nu = \sum_{i=1}^{N} (a_i^T \nu)^2 \cdot h'(a_i^T \nu) = \frac{1}{(p-1) \cdot p^{1/(p-1)}} \sum_{i=1}^{N} (a_i^T \nu)^2 \cdot |a_i^T \nu|^{\frac{2}{p-1}} \quad \forall \nu \in \mathbb{R}^m.
\]

Clearly, \(Q \) is positive semidefinite. Suppose, by contradiction, that there exists \(\nu \neq 0 \) such that \(\nu^T Q \nu = 0 \). Define the index set \(I := \{i \mid a_i^T \nu = 0\} \). Note that \(I \) must be nonempty because, otherwise, it follows from (4.2) that \(A \nu = 0 \), which contradicts \(\text{rank}(A) = m \) and \(\nu \neq 0 \). Similarly, \(I^c \) is nonempty in view of \(\nu \neq 0 \). Hence we have \((A_{I^c})^T \nu = 0 \) and \((A_{I^c})^T \nu = 0 \). Since \(I \cup I^c = \{1, \ldots, N\} \), \(I \cap I^c = \emptyset \), and \(N \geq 2m - 1 \), we must have either \(|I| \geq m \) or \(|I^c| \geq m \). Consider the case in which \(|I| \geq m \) first. As \((A_{I^c})^T \nu = 0 \), we see that \(\nu \) is orthogonal to \(R(A_{I^c}) \). Since \(\nu \in \mathbb{R}^m \) is nonzero, we obtain \(\text{rank}(A_{I^c}) < m \). Thus it follows from the properties of \(A \) that \(\text{rank}(A_{I^c}) = m \), but this contradicts \((A_{I^c})^T \nu = 0 \) for the nonzero \(\nu \). Using a similar argument, it can be shown that the case in which \(|I^c| \geq m \) also yields a contradiction. Consequently, \(Q \) is positive definite. By the implicit function theorem, there exists a local \(C^1 \) function \(H \) such that \(\nu = H(A \nu, y) \) and \(F(H(A \nu, y), A \nu, y) = 0 \) for all \((A \nu, y) \) in a neighborhood of \((A^o, y^o) \). Let \(\nu^o := H(A^o, y^o) \). Using the chain rule, we have
\[
J_y F(\nu^o, A^o, y^o) \cdot \nabla_y H(A^o, y^o) + J_{\nu} F(\nu^o, A^o, y^o) = 0.
\]

Since \(J_y F(\nu^o, A^o, y^o) = -I \), we have \(\nabla_y H(A^o, y^o) = Q^{-1} \).

Observing that \(x_i^o = h(a_i^o \nu) \) for each \(i = 1, \ldots, N \), we deduce via the property of the function \(h \) in (4.1) that \(\text{sgn}(x_i^o) = \text{sgn}(a_i^o \nu) \) for each \(i \). Therefore, in order to show that the zero set of \(x_i^o(A, y) \) has zero measure for each \(i = 1, \ldots, N \), it suffices to show that the zero set of \(a_i^o \nu(A, y) \) has zero measure for each \(i \). It follows from the previous development that for any \((A^o, y^o) \in \tilde{S}, \nu = H(A \nu, y) \) for a local \(C^1 \) function \(H \) in a neighborhood of \((A^o, y^o) \). Hence, \(\nabla_y (a_i^o \nu)(A^o, y^o) = (a_i^o)^T \cdot \nabla_y H(A^o, y^o) = (a_i^o)^T \cdot Q^{-1} \), where \(Q := J_y F(\nu^o, A^o, y^o) \) is invertible. Since each \(a_i^o \neq 0 \), we have \(\nabla_y (a_i^o \nu)(A^o, y^o) \neq 0 \) for each \(i = 1, \ldots, N \). In light of Lemma 3.3, the zero set of \(a_i^o \nu(A, y) \) has zero measure for each \(i \). Hence \(|\text{supp}(x^o(A, y))| = N \) for almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \).

Combining Propositions 4.1 and 4.2, we obtain the following result for the generalized basis pursuit.

Theorem 4.3. Let \(p > 1 \) and \(N \geq 2m - 1 \). For almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \), the unique optimal solution \(x^*(A, y) \) to the \(BP_p \) (2.1) satisfies \(|\text{supp}(x^*(A, y))| = N \).

Motivated by Theorem 4.3, we present the following corollary for a certain fixed measurement matrix \(A \), whereas the measurement vector \(y \) varies. This result will be used for Theorem 5.1 in section 5.

Corollary 4.4. Let \(p > 1 \) and \(N \geq 2m - 1 \). Let \(A \) be a fixed \(m \times N \) matrix such that any \(m \times m \) submatrix of \(A \) is invertible. For almost all \(y \in \mathbb{R}^m \), the unique optimal solution \(x_i^o \) to the \(BP_p \) (2.1) satisfies \(|\text{supp}(x_i^o)| = N \).

Proof. Consider \(p \geq 2 \) first. For any \(y \in \mathbb{R}^m \), let \(x^*(y) \) be the unique optimal solution to the \(BP_p \) (2.1). It follows from a similar argument to that for Proposition 4.1 that for each \(i = 1, \ldots, N \), \(x_i^o \) is a \(C^1 \) function of \(y \) on \(\mathbb{R}^m \setminus \{0\} \), and that if \(x_i^o(y) = 0 \) for any \(y \neq 0 \), then the gradient \(\nabla_y x_i^o(y) \neq 0 \). By Lemma 3.3, \(|\text{supp}(x^*(y))| = N \) for almost all \(y \in \mathbb{R}^m \). When \(1 < p \leq 2 \), we note that the given matrix \(A \) satisfies
the required conditions on A in the set \tilde{S} introduced in the proof of Proposition 4.2, since \tilde{S} defined in (3.1) is a proper subset of \tilde{S} as indicated at the end of the first paragraph of the proof of Proposition 4.2. Therefore, by a similar argument to that for Proposition 4.2, we have that for any $y \neq 0$, the gradient $\nabla_y x_1^* (y) \neq 0$. Consequently, the desired result follows. \hfill \Box

4.2. Least sparsity of the generalized ridge regression and generalized elastic net with $p > 1$. We first establish the least sparsity of the generalized ridge regression in (2.4) as follows.

\textbf{Theorem 4.5.} Let $p > 1$, $N \geq m$, and $\lambda > 0$. For almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$, the unique optimal solution $x_1^* (A, y)$ to the RR p (2.4) satisfies $|\text{supp}(x_1^* (A, y))| = N$.

\textbf{Proof.} Recall that for any given $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$, the unique optimal solution x^* to the RR p (2.4) is described by the optimality condition $A^T (Ax - y) + \lambda \nabla f (x^*) = 0$, where $\lambda > 0$ is a penalty parameter.

(i) $p \geq 2$. The $p = 2$ case is trivial by using $x^* = (2 \lambda I + A^T A)^{-1} A^T y$, and we thus consider $p > 2$ as follows. Define the function $F(x, A, y) := \lambda \nabla f (x) + A^T (Ax - y)$, where $\nabla f (x) = (g(x_1), \ldots, g(x_N))^T$ with g given in (4.1). Hence, the optimal solution x^*, as a function of (A, y), satisfies the equation $F(x^*, A, y) = 0$. Obviously, F is C^1 and its Jacobian with respect to x is given by

$$J_x F(x, A, y) = \lambda D(x) + A^T A,$$

where the diagonal matrix $D(x) := \text{diag}(g'(x_1), \ldots, g'(x_N))$. Since each $g'(x_i) \geq 0$, we see that $\lambda D(x) + A^T A$ is positive semidefinite for all A‘s and x‘s.

We show below that for any (A^o, y^o) in the set S defined in (3.1), the matrix $J_x F(x^o, A^o, y^o)$ is positive definite, where $x^o := x^*(A^o, y^o)$. For this purpose, define the index set $J := \{ i \mid x_i^o \neq 0 \}$. Partition $D^o := D(x^o)$ and A^o in D^o and $A^o := [A_1, A_2]$, respectively, where $D_1 := \text{diag}(g'(x_i^o))_{i \in J}$ is positive definite, $A_1 := A_{J^c}^o$, and $A_2 := A_{J}^o$. It follows from Proposition 3.1 that $|J^c| \leq m - 1$ such that the columns of A_1 are linearly independent. Suppose there exists a vector $z \in \mathbb{R}^N$ such that $z^T (\lambda D^o + (A^o)^T A^o) z = 0$. Let $u := z_{J^c}$ and $v := z_J$. Since $z^T (\lambda D^o + (A^o)^T A^o) z \geq z^T \lambda D^o z = \lambda u^T D_1 u \geq 0$ and D_2 is positive definite, we have $u = 0$. Hence, $z^T (\lambda D^o + (A^o)^T A^o) z = z^T (A^o)^T A^o z = \| A^o z \|_2^2 = \| A_1 u \|_2^2 \geq 0$. Since the columns of A_1 are linearly independent, we have $u = 0$ and thus $z = 0$. Thus $J_x F(x^o, A^o, y^o) = \lambda D^o + (A^o)^T A^o$ is positive definite.

By the implicit function theorem, there are local C^1 functions G_1 and G_2 such that $x^* = (x_{J^c}^*, x_J^*) = (G_1(A, y), G_2(A, y)) := G(A, y)$ and $F(G(A, y), A, y) = 0$ for all (A, y) in a neighborhood of $(A^o, y^o) \in S$. By the chain rule, we have

$$J_x F(x^o, A^o, y^o) \cdot \nabla_y G_1(A^o, y^o) + J_y F(x^o, A^o, y^o) = 0,$$

where

$$J_y F(x^o, A^o, y^o) = -(A^o)^T = -[A_1, A_2]^T.$$

Let P be the inverse of $J_x F(x^o, A^o, y^o)$, i.e.,

$$P = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} = \begin{bmatrix} \lambda D_1 + A_{I}^T A_1 & A_{I}^T A_2 \\ A_{I}^T A_1 & \lambda D_2 + A_{I}^T A_2 \end{bmatrix}^{-1}.$$

Since $D_1 = 0$, we obtain $P_{11} A_{I}^T A_1 + P_{12} A_{I}^T A_2 = I$. Further, since $\nabla_y G_1(A^o, y^o) = P_{11} A_{I}^T + P_{12} A_{I}^T$, we have $\nabla_y G_1(A^o, y^o) \cdot A_1 = I$. Therefore, each row of $\nabla_y G_1(A^o, y^o)$
is nonzero or equivalently the gradient of $x_i^* (A, y)$ is nonzero at (A^o, y^o) for each $i \in J^c$. By virtue of Lemma 3.3, $|\text{supp}(x^*(A, y))| = N$ for almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$.

(ii) $1 < p < 2$. Let S be the set of all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$ such that each column of A is nonzero and $A^T y \neq 0$. Obviously, S is open and its complement has zero measure. Further, for any $(A, y) \in S$, it follows from the optimality condition and $A^T y \neq 0$ that the unique optimal solution $x^* \neq 0$.

Define the function

$$ F(x, A, y) := \begin{bmatrix} x_1 + h(\lambda^{-1} a_1^T (Ax - y)) \\ \vdots \\ x_N + h(\lambda^{-1} a_N^T (Ax - y)) \end{bmatrix}, $$

where h is defined in (4.1). For any $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$, the unique optimal solution x^*, as a function of (A, y), satisfies $F(x^*, A, y) = 0$. Further, F is C^1 and its Jacobian with respect to x is

$$ J_x F(x, A, y) = I + \lambda^{-1} \cdot \Gamma(x, A, y) A^T A, $$

where the matrix $\Gamma(x, A, y) = \text{diag}(h(\lambda^{-1} a_1^T (Ax - y)), \ldots, h(\lambda^{-1} a_N^T (Ax - y)))$.

We show next that for any $(A^o, y^o) \in S$, the matrix $J_x F(x^o, A^o, y^o)$ is invertible, where $x^o := x^*(A^o, y^o)$. Define the index set $J := \{i \mid x_i^o \neq 0\}$, as before. Since $(A^o, y^o) \in S$ implies that $x^o \neq 0$, the set J is nonempty. Partition $\Gamma^o := \Gamma(x^o, A^o, y^o)$ and A^o as $\Gamma^o = [\Gamma_1, \Gamma_2]$ and $A^o = [A_1, A_2]$ respectively, where $\Gamma_1 := \text{diag}(\lambda^{-1} (a_i^o)^T (A^o x^o - y^o)), \ldots, \lambda^{-1} (a_N^o)^T (A^o x^o - y^o))$ is positive definite, a_i^o is the ith column of A^o, $A_1 := A_{\cdot \cdot}^o$, and $A_2 := A_{\cdot \cdot}^o$. Therefore, we obtain

$$ J_x F(x^o, A^o, y^o) = \begin{bmatrix} I & 0 \\ \lambda^{-1} \Gamma_2 A_2^T A_1 & I + \lambda^{-1} \Gamma_2 A_2^T A_2 \end{bmatrix}. $$

Since Γ_2 is positive definite, we deduce that $I + \lambda^{-1} \Gamma_2 A_2^T A_2 = \Gamma_2 (I + \lambda^{-1} A_2^T A_2)$ is invertible. Hence $J_x F(x^o, A^o, y^o)$ is invertible. By the implicit function theorem, there are local C^1 functions G_1 and G_2 such that $x^* = (x_1^*, x_2^*) = (G_1(A, y), G_2(A, y)) := G(A, y)$ and $F(G(A, y), A, y) = 0$ for all (A, y) in a neighborhood of $(A^o, y^o) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$. By the chain rule, we have

$$ J_x F(x^o, A^o, y^o) \cdot \begin{bmatrix} \nabla_y G_1(A^o, y^o) \\ \nabla_y G_2(A^o, y^o) \end{bmatrix} = -J_y F(x^o, A^o, y^o) = \begin{bmatrix} \Gamma_1 \lambda^{-1} A_1^T \\ \Gamma_2 \lambda^{-1} A_2^T \end{bmatrix} \in \mathbb{R}^{m \times m}. $$

In view of equation (4.3), $\Gamma_1 = 0$, and the invertibility of $J_x F(x^o, A^o, y^o)$, we obtain

$$ \nabla_y G_1(A^o, y^o) = 0 \quad \text{and} \quad \nabla_y G_2(A^o, y^o) = (I + \lambda^{-1} \Gamma_2 A_2^T A_2)^{-1} \Gamma_2 \lambda^{-1} A_2^T. $$

Noting that $x_i^* = -h(\lambda^{-1} a_i^T (Ax - y))$ for each $i = 1, \ldots, N$, we deduce via the property of the function h in (4.1) that $\text{sgn}(x_i^*) = \text{sgn}(a_i^T (y - Ax^*))$ for each i. Therefore, it suffices to show that the zero set of $a_i^T (y - Ax^*)$ has zero measure for each $i = 1, \ldots, N$. It follows from the previous development that for any $(A^o, y^o) \in S$, $(x_1^*, \ldots, x_N^*) = (G_1(A, y), G_2(A, y))$ in a neighborhood of (A^o, y^o) for local C^1 functions G_1 and G_2. For each $i \in J^c$, define

$$ q_i(A, y) := a_i^T (y - A \cdot x^*(A, y)). $$

Then $\nabla_y q_i(A^o, y^o) = (a_i^o)^T (I - A_2 \cdot \nabla_y G_2(A^o, y^o))$. Note that by the Sherman–Morrison–Woodbury formula [20, section 3.8], we have

$$ A_2 \cdot \nabla_y G_2(A^o, y^o) = A_2 (I + \lambda^{-1} \Gamma_2 A_2^T A_2)^{-1} \Gamma_2 \lambda^{-1} A_2^T = I - (I + \lambda^{-1} A_2 \Gamma_2 A_2^T)^{-1}. $$
where we use the fact that $I + \lambda^{-1}A_2 \Gamma_2 A_2^T$ is invertible. Hence, for any $(A^o, y^o) \in \hat{S}$, we deduce via $a_i^o \neq 0$ that $\nabla_y q_i(A^o, y^o) = (a_i^o)^T (I + \lambda^{-1}A_2 \Gamma_2 A_2^T)^{-1} \neq 0$ for each $i \in J^c$. By Lemma 3.3, $|\text{supp}(x^*(A, y))| = N$ for almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$. □

The next result pertains to the generalized elastic net (2.5).

Theorem 4.6. Let $p > 1$, $N \geq m$, $r \geq 1$, and $\lambda_1, \lambda_2 > 0$. For almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$, the unique optimal solution $x^*(A, y)$ to the EN$_p$ (2.5) satisfies $|\text{supp}(x^T_{A, y})| = N$.

Proof. Recall that for any given $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$, the unique optimal solution x^* to the EN$_p$ (2.5) is characterized by equation (3.2):

$$A^T (Ax^* - y) + p^{-1} r \lambda_1 \cdot \|x^*\|_p^{-p} \cdot \nabla f(x^*) + 2 \lambda_2 x^* = 0,$$

where $r \geq 1$ and $\lambda_1, \lambda_2 > 0$ are the penalty parameters.

(i) $p \geq 2$. Consider the open set S defined in (3.1). For any $(A, y) \in S$, since A has full row rank and $y \neq 0$, we have $A^T y \neq 0$. Hence, it follows from (4.4) and $A^T y \neq 0$ that the unique optimal solution $x^* \neq 0$ for any $(A, y) \in S$.

Define the function $F(x, A, y) := A^T (Ax - y) + p^{-1} r \lambda_1 \cdot \|x\|_p^{-p} \cdot \nabla f(x) + 2 \lambda_2 x$, where $\nabla f(x) = (g(x_1), \ldots, g(x_N))^T$. Hence, the optimal solution x^*, as a function of (A, y), satisfies the equation $F(x^*, A, y) = 0$. Since $\| \cdot \|_p$ is C^2 on $\mathbb{R}^N \setminus \{0\}$, we see that F is C^1 on the open set $(\mathbb{R}^N \setminus \{0\}) \times \mathbb{R}^{m \times N} \times \mathbb{R}^m$, and its Jacobian with respect to x is given by $J_x F(x, A, y) = A^T A + \lambda_1 \mathbf{H}(\|x\|_p^p) + 2 \lambda_2 I$, where $\mathbf{H}(\|x\|_p^p)$ denotes the Hessian of $\| \cdot \|_p$ at any nonzero x. Since $r \geq 1$, $\| \cdot \|_p$ is a convex function and its Hessian at any nonzero x must be positive semidefinite. This shows that for any $(A^o, y^o) \in S$, $J_x F(x^o, A^o, y^o)$ is positive definite, where $x^o := x^*(A^o, y^o) \neq 0$. Hence, there exists a local C^1 function G such that $x^* = G(A, y)$ with $F(G(A, y), A, y) = 0$ for all (A, y) in a neighborhood of (A^o, y^o).

For any given $(A^o, y^o) \in S$, define the (nonempty) index set $J := \{i \mid x_i^o \neq 0\}$. Let $\Lambda(x) := \text{diag}(g'(x_1), \ldots, g'(x_N))$. Partition $A^o := A(x^o)$ and A^o as $A^o = \text{diag}(A_1, A_2)$ and $A^o = [A_1 \ A_2]$, respectively, where $A_1 := \text{diag}(g'(x_1))_{i \in J^c}$, $A_2 := \text{diag}(g'(x_i))_{i \in J}$ is positive definite, $A_1 = A_2^T$, and $A_2 := A_2^T$. Hence, $A_1 = 0$ for $p > 2$, and $A_1 = 2I$ for $p = 2$. Using $\nabla(\|x\|_p) = (p|x|_p^{p-2})^{-1} \cdot \nabla(\|x\|_p^p)$ for any $x \neq 0$, we have

$$\mathbf{H}(\|x\|_p^p) = \frac{r}{p} \cdot \|x\|_p^{-p} \cdot \left[A(x) + \frac{r - p}{p} \|x\|_p^{-p} \cdot \nabla f(x)(\nabla f(x))^T \right] \quad \forall \ x \neq 0.$$

Based on the partition given above, we have $\mathbf{H}(\|x\|_p^p) = \text{diag}(H_1, H_2)$, where the matrix H_2 is positive semidefinite, and $H_1 = 0$ for $p > 2$, and $H_1 = r\|x\|_p^{-p} - 2 \cdot I$ for $p = 2$. Therefore, we obtain $J_y F(x^o, A^o, y^o) = -(A^o)^T = -[A_1 \ A_2]^T$, and

$$J_x F(x^o, A^o, y^o) = \begin{bmatrix} A_1^T A_1 + 2 \lambda_2 I + \lambda_1 H_1 & A_1^T A_2 \\ A_2^T A_1 & A_2^T A_2 + 2 \lambda_2 I + \lambda_1 H_2 \end{bmatrix}.$$

Let Q be the inverse of $J_x F(x^o, A^o, y^o)$, i.e.,

$$Q = \begin{bmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{bmatrix}.$$

Hence, we have

$$(Q_{11} A_1^T + Q_{12} A_2^T) A_2 + Q_{12} (2 \lambda_2 I + \lambda_1 H_2) = 0.$$
We claim that each row of $Q_{11}A^T_1 + Q_{12}A^T_2$ is nonzero. Suppose not, that is, suppose instead that $(Q_{11}A^T_1 + Q_{12}A^T_2)\cdot \mathbf{0} = 0$ for some i. Then it follows from (4.5) that $(Q_{12})_{ij}(2\lambda I + \lambda_1 H_2) = 0$. Since $2\lambda I + \lambda_1 H_2$ is positive definite, we have $(Q_{12})_{ij} = 0$. By $(Q_{11}A^T_1 + Q_{12}A^T_2)\cdot \mathbf{0} = 0$, we obtain $(Q_{11})_{ij}A^T_1 = 0$. It follows from Proposition 3.1 that $|\mathcal{J}^r| \leq m - 1$ such that the columns of A_1 are linearly independent. Hence, we have $(Q_{11})_{ij} = 0$ or equivalently $Q_{ij} = 0$ for some j. This contradicts the invertibility of Q, and thus completes the proof of the claim. Furthermore, let G_1, G_2 be local C^1 functions such that $x^* = (x^*_1, x^*_2) = (G_1(A, y), G_2(A, y))$ for all (A, y) in a neighborhood of $(A^o, y^o) \in S$. By a similar argument as before, we see that \(\nabla G_1(A^o, y^o) = Q_{11}A^T_1 + Q_{12}A^T_2 \). Therefore, we deduce that the gradient of $x^*_i(A, y)$ at (A^o, y^o) is nonzero for each $i \in \mathcal{J}^c$. In light of Lemma 3.3, $|\supp(x^*(A, y))| = N$ for almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$.

(ii) $1 < p < 2$. Let \hat{S} be the set defined in case (ii) of Theorem 4.5, i.e., \hat{S} is the set of all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$ such that each column of A is nonzero and $A^T y \neq 0$. The set \hat{S} is open and its complement has zero measure. For any $(A, y) \in \hat{S}$, the unique optimal solution x^*, treated as a function of (A, y), is nonzero. By the optimality condition (4.4) and the definition of the function h in (4.1), we see that x^* satisfies the following equation for any $(A, y) \in \hat{S}$:

\[
F(x, A, y) := \begin{bmatrix}
x_1 + h(w_1) \\
\vdots \\
x_N + h(w_N)
\end{bmatrix} = 0,
\]

where $w_i := p\|x^o\|_p^{p-r} \cdot [a_i^T(Ax - y) + 2\lambda_2 x_i]/(r\lambda_1)$ for each $i = 1, \ldots, N$. It is easy to show that F is C^1 on $(\mathbb{R}^N \setminus \{0\}) \times \mathbb{R}^{m \times N} \times \mathbb{R}^m$ and its Jacobian with respect to x is

\[
J_x F(x, A, y) = I + \frac{p}{r\lambda_1} \cdot \Gamma(x, A, y) \cdot \left\{ [A^T(Ax - y) + 2\lambda_2 x] \cdot [\nabla(\|x\|_p^{p-r})]^T + \|x\|_p^{p-r}(A^T A + 2\lambda_2 I) \right\},
\]

where the diagonal matrix $\Gamma(x, A, y) := \text{diag}(h'(w_1), \ldots, h'(w_N))$ and $\nabla(\|x\|_p^{p-r}) = (p - r)\nabla f(x)/[p \cdot \|x\|_p^p]$.

We show next that $J_x F(x^o, A^o, y^o)$ is invertible for any $(A^o, y^o) \in \hat{S}$, where $x^o := x^*(A^o, y^o)$. As before, define the (nonempty) index set $\mathcal{J} := \{i | x^o_i \neq 0\}$. Partition $\Gamma^o := \Gamma(x^o, A^o, y^o)$ and A^o as $\Gamma^o = \text{diag}(\Gamma_1, \Gamma_2)$ and $A^o = [A_1 A_2]$, respectively, where $\Gamma_1 := \text{diag}(h'(w_i))_{i \in \mathcal{J}} = 0$, $\Gamma_2 := \text{diag}(h'(w_i))_{i \in \mathcal{J}}$ is positive definite, a_i^o is the ith column of A^o, $A_1 := A^o_{i \in \mathcal{J}}$, and $A_2 := A^o_{i \notin \mathcal{J}}$. Therefore, we obtain

\[
W := J_x F(x^o, A^o, y^o) = \begin{bmatrix}
I & 0 \\
0 & W_{22}
\end{bmatrix},
\]

where, by letting the vector $\tilde{b} := (\nabla f(x^o))_{\mathcal{J}}$,

\[
W_{22} := I + \frac{p}{r\lambda_1} \cdot \Gamma_2 \cdot \left\{ [A_2^T(A_2 x^o_{\mathcal{J}} - y) + 2\lambda_2 x^o_{\mathcal{J}}] \cdot \left\{ \frac{(p - r)\tilde{b}^T}{p\|x^o_{\mathcal{J}}\|_p^p} + \|x^o_{\mathcal{J}}\|_p^{p-r}(A_2^T A_2 + 2\lambda_2 I) \right\} \right\}.
\]

It follows from (4.4) that $\frac{p}{r\lambda_1} \cdot [A_2^T(A_2 x^o_{\mathcal{J}} - y) + 2\lambda_2 x^o_{\mathcal{J}}] = -\|x^o_{\mathcal{J}}\|_p^{r-p} \cdot \tilde{b}$. Hence, (4.7)

\[
W_{22}^{-1} = \Gamma_2^{-1} + \frac{r - p}{p\|x^o_{\mathcal{J}}\|_p^p} \cdot \tilde{b} \tilde{b}^T + \frac{p\|x^o_{\mathcal{J}}\|_p^{p-r}}{r\lambda_1} \cdot (A_2^T A_2 + 2\lambda_2 I).
\]
Clearly, when \(r \geq p > 1 \), the matrix \(\Gamma_2^{-1}W_{22} \) is positive definite. In what follows, we consider the case in which \(2 > p > r \geq 1 \). Let the vector \(b := (\text{sgn}(x_i^o) \cdot |x_i^o|^{p-1})_{i \in \mathcal{J}} \) so that \(\tilde{b} = p \cdot b \). In view of (4.6), we have \(w_i = h^{-1}(-x_i^o) = p \cdot \text{sgn}(-x_i)|x_i^o|^{p-1} \) for each \(i \). Using the formula for \(h'(\cdot) \) given below (4.1), we obtain that for each \(i \in \mathcal{J} \),

\[
h'(w_i) = \frac{|w_i|^{2-p}}{(p-1) \cdot p^{\frac{2-p}{r}}} = \frac{p \cdot |x_i^o|^{p-1}}{(p-1) \cdot p^{\frac{2-p}{r}}} = \frac{|x_i^o|^{2-p}}{(p-1) \cdot p}.
\]

This implies that \(\Gamma_2^{-1} = p(p-1)D \), where the diagonal matrix \(D := \text{diag}(|x_i^o|^{p-2})_{i \in \mathcal{J}} \). Clearly, \(D \) is positive definite. We thus have, via \(p - 1 \geq p - r > 0 \),

\[
U = \Gamma_2^{-1} + \frac{r - p}{p|\tilde{x}|^2}_p \tilde{b} \tilde{b}^T = p(p-1) \left(D - \frac{p - r}{p - 1} \cdot \frac{b \cdot b^T}{\|x\|^2_p} \right) \geq p(p-1) \left(D - \frac{b \cdot b^T}{\|x\|^2_p} \right),
\]

where \(\geq \) denotes the positive semidefinite order. Since the diagonal matrix \(D \) is positive definite, we further have

\[
D - \frac{b \cdot b^T}{\|x\|^2_p} = D^{1/2} \left(I - \frac{D^{-1/2}b \cdot b^T D^{-1/2}}{\|x\|^2_p} \right) D^{1/2} = D^{1/2} \left(I - \frac{u \cdot u^T}{\|u\|^2_2} \right) D^{1/2},
\]

where \(u := D^{-1/2} \cdot b = (\text{sgn}(x_i^o) |x_i^o|^{p/2})_{i \in \mathcal{J}} \) such that \(\|u\|^2_2 = \|x\|^2_p \). This shows that \(U \) in (4.7) is positive semidefinite. Since the last term on the right-hand side of (4.7) is positive definite, \(\Gamma_2^{-1}W_{22} \) is positive definite. Therefore, \(W_{22} \) is invertible, and so is \(W \) for all \(1 < p < 2 \) and \(r \geq 1 \). By the implicit function theorem, there are local \(C^1 \) functions \(G_1 \) and \(G_2 \) such that \(x^* = (x_1^*, x_2^*) = (G_1(A, y), G_2(A, y)) := G(A, y) \) and \(F(G(A, y), A, y) = 0 \) for all \((A, y) \) in a neighborhood of \((A^o, y^o) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \). Moreover, we have

\[
\mathbf{J}_xF(x^o, A^o, y^o) \cdot \begin{bmatrix} \nabla_y G_1(A^o, y^o) \\ \nabla_y G_2(A^o, y^o) \end{bmatrix} = -\mathbf{J}_yF(x^o, A^o, y^o)
\]

\[
= p\|\tilde{x}\|_p^{p-r} r \lambda_1 \begin{bmatrix} \Gamma_1 A_1^T \\ \Gamma_2 A_2^T \end{bmatrix} \in \mathbb{R}^{N \times m}.
\]

In view of the invertibility of \(\mathbf{J}_xF(x^o, A^o, y^o) \) and \(\Gamma_1 = 0 \), we obtain

\[
\nabla_y G_1(A^o, y^o) = 0, \quad \nabla_y G_2(A^o, y^o) = \left(\frac{p\|\tilde{x}\|_p^{p-r}}{r \lambda_1} \right) W_{22}^{-1} \Gamma_2 A_2^T.
\]

Since \(x_i^* = -h(w_i) \) for each \(i = 1, \ldots, N \), where \(w_i \) is defined below (4.6), we deduce via the positivity of \(\|x\|_p \) and the property of the function \(h \) in (4.1) that \(\text{sgn}(x_i^*) = \text{sgn}(a_i^T(y - Ax^*) - 2\lambda_2 x_i^*) \) for each \(i \). For each \(i \in \mathcal{J}^c \), define

\[
q_i(A, y) := a_i^T(y - A \cdot x^*(A, y)) - 2\lambda_2 x_i^*(A, y).
\]

In what follows, we show that for each \(i \in \mathcal{J}^c \), the gradient of \(q_i(A, y) \) at \((A^o, y^o) \in \hat{S} \) is nonzero. It follows from the previous development that for any \((A^o, y^o) \in \hat{S}, (x_1^*, x_2^*) = (G_1(A, y), G_2(A, y)) \) in a neighborhood of \((A^o, y^o) \) for local \(C^1 \) functions \(G_1 \) and \(G_2 \). Using \(\nabla_y G_1(A^o, y^o) = 0 \), we have

\[
\nabla_y q_i(A^o, y^o) = (a_i^T(I - A_2 \cdot \nabla_y G_2(A^o, y^o))).
\]
Letting $\alpha := p \|x^o\|_p^{p-r}/r \lambda_1 > 0$ and by (4.7), we have
\[
A_2 \cdot \nabla_y G_2(A^\circ, y^\circ) = \alpha A_2 W_{22}^{-1} T_2 A_2^T = \alpha A_2 (\Gamma_2^{-1} W_{22})^{-1} A_2^T
= \alpha A_2 [U + \alpha (A_2^T A_2 + 2\lambda_2 I)]^{-1} A_2^T.
\]
Since U is positive semidefinite and $A_2^T A_2 + 2\lambda_2 I$ is positive definite, we have
\[
A_2 (A_2^T A_2 + 2\lambda_2 I)^{-1} A_2^T \succ 0.
\]
Since each eigenvalue of $A_2 (A_2^T A_2 + 2\lambda_2 I)^{-1} A_2^T$ is strictly less than one, we conclude that $A_2 \cdot \nabla_y G_2(A^\circ, y^\circ)$ is positive semidefinite and each of its eigenvalues is strictly less than one. Therefore, $I - A_2 \cdot \nabla_y G_2(A^\circ, y^\circ)$ is invertible. Since each $\alpha_i^g \neq 0$, we have $\nabla_y q_i(A^\circ, y^\circ) \neq 0$ for each $i \in J^c$. In view of Lemma 3.3, $|\text{supp}(x^*(A, y))| = N$ for almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$.

\section{4.3 Least sparsity of the generalized basis pursuit denoising with $p > 1$.}

We consider the case in which $p \geq 2$ first.

\textbf{Proposition 4.7.} Let $p \geq 2$ and $N \geq m$. For almost all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$ with $y \neq 0$, if $0 < \varepsilon < \|y\|_2$, then the unique optimal solution x^*_A to the BPDN $\langle 2.2 \rangle$ satisfies $|\text{supp}(x^*_A)| = N$.

\textbf{Proof.} Consider the set S defined in (3.1). It follows from the proof for case (ii) in Proposition 3.1 that for any given $(A, y) \in S$ and any $\varepsilon > 0$ with $\varepsilon < \|y\|_2$, the unique optimal solution x^* satisfies the optimality conditions $\nabla f(x^*) + 2\mu A^T (A x^* - y) = 0$ for a unique positive μ, and $\|A x^* - y\|_2^2 = \varepsilon^2$. Hence, $(x^*, \mu) \in \mathbb{R}^{N+1}$ is a function of (A, y) on S and satisfies the following equation:
\[
F(x, \mu, A, y) := \begin{bmatrix}
 g(x_1) + 2\mu a_1^T (A x - y) \\
 \vdots \\
 g(x_N) + 2\mu a_N^T (A x - y) \\
 \|A x - y\|_2^2 - \varepsilon^2
\end{bmatrix} = 0.
\]

Clearly, $F : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^{m \times N} \times \mathbb{R}^m \to \mathbb{R}^{N+1}$ is C^1 and its Jacobian with respect to (x, μ) is given by
\[
J_{(x, \mu)} F(x, \mu, A, y) = \begin{bmatrix}
 M(x, \mu, A) & 2A^T (A x - y) \\
 2(\lambda x - y)^T A & 0
\end{bmatrix},
\]
where $M(x, \mu, A) := \Lambda(x) + 2\mu A^T A$, and $\Lambda(x) := \text{diag}(g'(x_1), \ldots, g'(x_N))$ is diagonal and positive semidefinite. Given $(A^\circ, y^\circ) \in S$, define $x^\circ := x^*(A^\circ, y^\circ)$ and $\mu^\circ := \mu(A^\circ, y^\circ) > 0$. We claim that $J_{(x, \mu)} F(x^\circ, \mu^\circ, A^\circ, y^\circ)$ is invertible for any $(A^\circ, y^\circ) \in S$. To show it, define the index set $J := \{i \mid x_i^\circ \neq 0\}$. Note that J is nonempty by virtue of Proposition 3.1. Partition $\Lambda^\circ := \Lambda(x^\circ) \equiv A$ as $A^\circ = \text{diag}(A_1, A_2)$ and $A^\circ = [A_1 \ A_2]$, respectively, where $A_1 := \text{diag}(g'(x_i^\circ))_{i \in J^c}$, $A_2 := \text{diag}(g'(x_i^\circ))_{i \in J}$ is positive definite, $A_1 := A_{i, J^c}$, and $A_2 := A_{i, J}$. Hence, $A_1^T (A^\circ x^\circ - y^\circ) = 0$, $A_1 = 0$ for $p > 2$, and $A^\circ = \text{diag}(A_1, A_2) = 2I$ for $p = 2$. It follows from a similar argument to that for case (i) in Theorem 4.5 that $M^{\circ} := M(x^\circ, \mu^\circ, A^\circ)$ is positive definite. Moreover, it has been shown in the proof of Proposition 3.1 that $b := 2(A^\circ)^T (A^\circ x^\circ - y^\circ) \in \mathbb{R}^N$ is nonzero. Hence, for any $z = [z_1; z_2] \in \mathbb{R}^{N+1}$ with
Let \(z_2 \in \mathbb{R}^N \) and \(z_2 \in \mathbb{R} \), we have
\[
J_{(x, \mu)}F(x^*, \mu^*, A^*, y^*)z = \begin{bmatrix} M^o \ b^T \\ 0 \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = 0 \Rightarrow M^o z_1 + b z_2 = 0, \ b^T z_1 = 0
\]
\[
\Rightarrow b^T (M^o)^{-1} b z_2 = 0.
\]
This implies that \(z_2 = 0 \) and further \(z_1 = 0 \). Therefore, \(J_{(x, \mu)}F(x^*, \mu^*, A^*, y^*) \) is invertible. By the implicit function theorem, there are local \(C^1 \) functions \(G_1, G_2, H \) such that \(x^* = (x^*_J, x^*_j) = (G_1(A, y), G_2(A, y)) := G(A, y), \mu = H(A, y), \) and \(F(G(A, y), H(A, y), A, y) = 0 \) for all \((A, y)\) in a neighborhood of \((A^*, y^*)\). By the chain rule, we have
\[
J_{(x, \mu)}F(x^*, \mu^*, A^*, y^*) \cdot \begin{bmatrix} \nabla_y G_1(A^*, y^*) \\ \nabla_y G_2(A^*, y^*) \\ \nabla_y H(A^*, y^*) \end{bmatrix} = -J_y F(x^*, \mu^*, A^*, y^*) = \begin{bmatrix} 2\mu^o A_1^T \\ 2\mu^o A_2^T \\ 2(A^o x^* - y^o)^T \end{bmatrix},
\]
where
\[
V = \begin{bmatrix} \Lambda_1 + 2\mu^o A_1^T A_1 & 2\mu^o A_1^T A_2 & 2A_1^T (A^o x^* - y^o) \\ 2\mu^o A_2^T A_1 & \Lambda_2 + 2\mu^o A_2^T A_2 & 2A_2^T (A^o x^* - y^o) \\ 2(A^o x^* - y^o)^T A_1 & 2(A^o x^* - y^o)^T A_2 & 0 \end{bmatrix}.
\]
Let \(P \) be the inverse of \(V \) given by the symmetric matrix
\[
P = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{12}^T & P_{22} & P_{23} \\ P_{13}^T & P_{23}^T & P_{33} \end{bmatrix}.
\]
Consider \(p > 2 \) first. In this case, \(\Lambda_1 = 0 \) such that \(P_{11} 2\mu^o A_1^T A_1 + P_{12} 2\mu^o A_2^T A_1 + P_{13} 2(A^o x^* - y^o)^T A_1 = I_m \). Since
\[
\nabla_y G_1(A^*, y^*) = -[P_{11} P_{12} P_{13}] \cdot J_y F(x^*, \mu^*, A^*, y^*) = P_{11} 2\mu^o A_1^T + P_{12} 2\mu^o A_2^T + P_{13} 2(A^o x^* - y^o)^T A_1,
\]
we have \(\nabla_y G_1(A^*, y^*) \cdot A_1 = I_m \). We then consider \(p = 2 \). In this case, letting \(B := \nabla_y G_1(A^*, y^*) = P_{11} 2\mu^o A_1^T + P_{12} 2\mu^o A_2^T + P_{13} 2(A^o x^* - y^o)^T \) and using \(\text{diag}(\Lambda_1, \Lambda_2) = 2I \), we have \(2P_{11} + BA_1 = I \) and \(2P_{12} + BA_2 = 0 \). Suppose, by contradiction, that the ith row of \(B \) is zero, i.e., \(B_i = 0 \). Then \((P_{11})_i = (P_{12})_i = 0 \), where \(e_i \) denotes the ith column of \(I \). Substituting these results into \(B \) and using \(A_1^T (A^o x^* - y^o) = 0 \), we have \(0 = B_i (A^o x^* - y^o) = 2\mu^o (P_{11})_i A_1^T (A^o x^* - y^o) + 2(P_{13})_i \| A^o x^* - y^o \|_2^2 \), which implies that the real number \((P_{13})_i \) is zero and \(A^o x^* - y^o \neq 0 \). In view of the symmetry of \(P, V = P^{-1} \), and \(\Lambda_1 = 2I \), we have \((P + 2\mu^o A_1^T A_1)_{ii} = 2 \), which yields \((A_1)_{ii} = 0 \), a contradiction. Therefore, each row of \(\nabla_y G_1(A^*, y^*) \) is nonzero. Consequently, by Lemma 3.3, \(|\text{supp}(x^*(A, y))| = N \) for almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \).

In what follows, we consider the case in which \(1 < p < 2 \).

Proposition 4.8. Let \(1 < p < 2 \) and \(N \geq m \). For almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \) with \(y \neq 0 \), if \(0 < \varepsilon < \|y\|_2 \), then the unique optimal solution \(x^*(A, y) \) to the BPDN
\[
\text{(2.2)} \quad \text{satisfies} \quad |\text{supp}(x^*(A, y))| = N.
\]
Proof. Let \tilde{S} be the set of all $(A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$ such that each column of A is nonzero and $y \neq 0$. Obviously, \tilde{S} is open in $\mathbb{R}^{m \times N} \times \mathbb{R}^m$ and its complement has zero measure. For any $(A, y) \in \tilde{S}$ and any positive ε with $\varepsilon < ||y||_2$, it follows from the proof for case (ii) in Proposition 3.1 that the unique optimal solution $x^* \neq 0$ with a unique positive μ. Further, $(x^*, \mu) \in \mathbb{R}^{N+1}$ satisfies the following equation:

$$F(x, \mu, A, y) := \begin{bmatrix} x_1 + h(2\mu a_1^T(Ax - y)) \\ \vdots \\ x_N + h(2\mu a_N^T(Ax - y)) \\ ||Ax - y||_2^2 - \varepsilon^2 \end{bmatrix} = 0,$$

where h is defined in (4.1). Hence, $F : \mathbb{R}^{N} \times \mathbb{R} \times \mathbb{R}^{m \times N} \times \mathbb{R}^m \to \mathbb{R}^{N+1}$ is C^1 and its Jacobian with respect to (x, μ) is given by

$$\mathbf{J}_{(x, \mu)}F(x, \mu, A, y) = \begin{bmatrix} V(x, \mu, A, y) & 2\Gamma(x, \mu, A, y)A^T(Ax - y) \\ 2(Ax - y)^TA & 0 \end{bmatrix} \in \mathbb{R}^{(N+1) \times (N+1)},$$

where $\Gamma(x, \mu, A, y) := \text{diag}(h'(2\mu a_1^T(Ax - y)), \ldots, h'(2\mu a_N^T(Ax - y))) \in \mathbb{R}^{N \times N}$, and $V(x, \mu, A, y) := I + \Gamma(x, \mu, A, y)2\mu A^TA$.

We use the same notation x^o and μ^o as before. For any $(A^o, y^o) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m$, define the index set $J := \{i | x^o_i \neq 0\}$. Note that J is nonempty as $||y||_2 > \varepsilon$. Partition $\Gamma^o := \Gamma(x^o, \mu^o, A^o, y^o)$ and A^o as $A^o = [A_1 \ A_2]$, respectively, where

$$\Gamma_1 := \text{diag}(h'(2\mu^o (a^o)^T(A^o x^o - y^o)))_{i \in J^o} = 0,$$

$$\Gamma_2 := \text{diag}(h'(2\mu^o (a^o)^T(A^o x^o - y^o)))_{i \notin J}$$

is positive definite, $A_1 := A^o_{\cdot J^o}$, and $A_2 := A^o_{\cdot J}$. Therefore, using the fact that $\Gamma_1 = 0$ and Γ_2 is positive definite, we obtain

$$\mathbf{J}_{(x, \mu)}F(x^o, \mu^o, A^o, y^o)$$

\begin{equation}
\begin{bmatrix}
I & 2\mu^o \Gamma_2 A_2^T A_1 \\
0 & 2(\mu^o A^o - y^o)^T A_1 & 2\Gamma_2 A_2^T (A^o x^o - y^o) \\
2(\mu^o A^o - y^o)^T A_2 & 0 & 0
\end{bmatrix}.
\end{equation}

As Γ_2 is positive definite, the lower diagonal block in $\mathbf{J}_{(x, \mu)}F(x^o, \mu^o, A^o, y^o)$ becomes

\begin{equation}
\begin{bmatrix}
I + 2\mu^o \Gamma_2 A_2^T A_2 \\
2(\mu^o A^o - y^o)^T A_2 & 0 & 0
\end{bmatrix}.
\end{equation}

Clearly, $\Gamma_2^{-1} + 2\mu^o A_2^T A_2$ is positive definite. Further, since $\mu^o > 0$ and $x^o_i \neq 0 \forall i \in J$, we have $A_2^T (A^o x^o - y^o) \neq 0$. Hence, by a similar argument to that for Proposition 4.7, we see that the matrix Q is invertible such that $\mathbf{J}_{(x, \mu)}F(x^o, \mu^o, A^o, y^o)$ is invertible. By the implicit function theorem, there are local C^1 functions G_1, G_2, H such that $x^* = (x^*_J, x^*_\bar{J}) = (G_1(A, y), G_2(A, y)) := G(A, y), \mu = H(A, y), and
$F(G(A, y), H(A, y), A, y) = 0$ for all (A, y) in a neighborhood of (A^0, y^0). By the chain rule, we obtain

$$
J_{(x, \mu)} F(x^0, \mu^0, A^0, y^0) \begin{bmatrix}
\nabla_y G_1(A^0, y^0) \\
\nabla_y G_2(A^0, y^0) \\
\nabla_y H(A^0, y^0)
\end{bmatrix} = -J_y F(x^0, \mu^0, A^0, y^0) = \begin{bmatrix}
0 \\
\Gamma_2 2\mu^0 A_2^T \\
2(A^0 x^0 - y^0)^T
\end{bmatrix},
$$

where we use the fact that $\Gamma_1 = 0$. In view of (4.8) and the above results, we have $\nabla_y G_1(A^0, y^0) = 0$, and we deduce via (4.9) that

$$\nabla_y G_2(A^0, y^0) = \begin{bmatrix}
\Gamma_2^{-1} + 2\mu^0 A_2^T A_2 \\
2(A^0 x^0 - y^0)^T A_2
\end{bmatrix}^{-1} \cdot \begin{bmatrix}
2\mu^0 A_2^T \\
2(A^0 x^0 - y^0)^T
\end{bmatrix},$$

where $A^0 x^0 - y^0 \neq 0$ because otherwise $\|A^0 x^0 - y^0\|_2^2 - \varepsilon^2 \neq 0$.

For each $i \in J^c$, let $q_i(A, y) := (\alpha_i^0)^T (y - A^0 x^0 (A, y))$. It follows from $\text{sgn}(x_i^0(A, y)) = \text{sgn}(q_i(A, y))$ and the previous argument that it suffices to show that $\nabla_y q_i(A^0, y^0) \neq 0$ for each $i \in J^c$, where $\nabla_y q_i(A^0, y^0) = (\alpha_i^0)^T (I - A_2 \cdot \nabla_y G_2(A^0, y^0))$. Toward this end, we see, by using $(a_i^0)^T (A^0 x^0 - y^0) = 0 \forall i \in J^c$ and (4.10), that for each $i \in J^c$,

$$(a_i^0)^T A_2 \nabla_y G_2(A^0, y^0) = \frac{(a_i^0)^T}{2\mu^0} \begin{bmatrix} 2\mu^0 A_2^T & 2(A^0 x^0 - y^0) \end{bmatrix} \cdot \begin{bmatrix} \nabla_y G_2(A^0, y^0) \\
\nabla_y H(A^0, y^0)
\end{bmatrix} = \frac{(a_i^0)^T}{2\mu^0} \begin{bmatrix} 2\mu^0 A_2^T & 2(A^0 x^0 - y^0) \end{bmatrix} \cdot \begin{bmatrix} \Gamma_2^{-1} + 2\mu^0 A_2^T A_2 \\
2(A^0 x^0 - y^0)^T A_2
\end{bmatrix}^{-1} \cdot \begin{bmatrix} 2\mu^0 A_2^T \\
2(A^0 x^0 - y^0)^T
\end{bmatrix}.$$

Define

$$d := A^0 x^0 - y^0 \neq 0, \quad C := \begin{bmatrix} \sqrt{2\mu^0} \cdot A_2, & \sqrt{\frac{\Gamma_2}{\mu^0}} \cdot d \end{bmatrix}, \quad D := \begin{bmatrix} \Gamma_2^{-1} & 0 \\
0 & -\frac{2}{\mu^0} \|d\|_2^2
\end{bmatrix}.$$

It is easy to verify that

$$\begin{bmatrix} \Gamma_2^{-1} + 2\mu^0 A_2^T A_2 \\
2(A^0 x^0 - y^0)^T A_2
\end{bmatrix}^{-1} \cdot \begin{bmatrix} 2\mu^0 A_2^T \\
2(A^0 x^0 - y^0)^T
\end{bmatrix} = D + C^T C.$$

Therefore, we obtain

$$(a_i^0)^T (I - A_2 \cdot \nabla_y G_2(A^0, y^0)) = (a_i^0)^T - (a_i^0)^T C (D + C^T C)^{-1} C^T.$$

Recall that J is nonempty such that A_2 exists and $A_2^T d \neq 0$. Since $A_2 \Gamma_2 A_2^T$ and $I - dd^T/\|d\|_2^2$ are both positive semidefinite and $N(I - dd^T/\|d\|_2^2) = \text{span} \{d\}$, it is easy to see that $N(A_2 \Gamma_2 A_2^T) \cap N(I - dd^T/\|d\|_2^2) = \{0\}$. Hence, the following matrix is positive definite:

$$I + CD^{-1} C^T = 2\mu^0 A_2 \Gamma_2 A_2^T + I - \frac{dd^T}{\|d\|_2^2}.$$

By the Sherman–Morrison–Woodbury formula [20, section 3.8], we have

$$C(D + C^T C)^{-1} C^T = I - (I + CD^{-1} C^T)^{-1}.$$
Consequently, for any \((A^o, y^o) \in \bar{S}\), in view of \(a_i^o \neq 0 \ \forall \ i\), we deduce that for each \(i \in \mathcal{J}^c\),

\[
\nabla_y q_i(A^o, y^o) = (a_i^o)^T (I - A_2 \cdot \nabla_y G_2(A^o, y^o)) = (a_i^o)^T - (a_i^o)^T C(D + C^T C)^{-1} C^T = (a_i^o)^T (I + CD^{-1}C^T)^{-1} \neq 0.
\]

By Lemma 3.3, the zero set of \(x_i^o(A, y)\) has zero measure for each \(i = 1, \ldots, N\). Therefore, \(|\text{supp}(x^*(A, y))| = N\) for almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m\).

Putting Propositions 4.7 and 4.8 together, we obtain the following result.

Theorem 4.9. Let \(p > 1\) and \(N \geq m\). For almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m\) with \(y \neq 0\), if \(0 < \varepsilon < \|y\|_2\), then the unique optimal solution \(x^*(A, y)\) to the BPDN \((2.2)\) satisfies \(|\text{supp}(x^*(A, y))| = N\).

Next, we extend the above result to the optimization problem \((2.3)\) pertaining to another version of the generalized basis pursuit denoising under a suitable assumption on \(\eta\). Since its proof follows an argument similar to that for Theorem 4.9, we will be concise with regard to the overlapping parts.

Theorem 4.10. Let \(p > 1\) and \(N \geq m\). For almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m\) with \(y \in R(A)\), if \(0 < \eta < \min_{Ax=y} \|x\|_p\), then the unique optimal solution \(x^*(A, y)\) to \((2.3)\) satisfies \(|\text{supp}(x^*(A, y))| = N\).

Proof. We consider the following two cases: (i) \(p \geq 2\) and (ii) \(1 < p < 2\).

(i) \(p \geq 2\). Consider the set \(S\) defined in \((3.1)\). Clearly, \(A\) has full row rank and \(y \in R(A)\) for any \((A, y) \in S\). It follows from Proposition 3.2 that the optimal solution \(x^*\) is unique and the associated unique Lagrange multiplier \(\mu\) is positive. Define \(\mu^* := 1/\mu > 0\). Hence, \((x^*, \mu)\) is a function of \((A, y)\) on \(S\) and satisfies the following equation obtained from \((3.3)\):

\[
F(x, \mu, A, y) := \begin{bmatrix} g(x_1) + \mu a_1^T (Ax - y) \\ \vdots \\ g(x_N) + \mu a_N^T (Ax - y) \\ f(x) - \eta^p \end{bmatrix} = 0.
\]

Clearly, \(F : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^{m \times N} \times \mathbb{R}^m \to \mathbb{R}^{N+1}\) is \(C^1\) and its Jacobian with respect to \((x, \mu)\) is

\[
J_{(x, \mu)} F(x, \mu, A, y) = \begin{bmatrix} M(x, \mu, A) & A^T (Ax - y) \\ (\nabla f(x))^T & 0 \end{bmatrix},
\]

where \(M(x, \mu, A) := \Lambda(x) + \mu A^T A\), and \(\Lambda(x) := \text{diag}(g'(x_1), \ldots, g'(x_N))\) is diagonal and positive semidefinite. For any \((A^o, y^o) \in S\), we use the same notation \(x^o\), \(\mu^o\), \(\mathcal{J}\), \(\Lambda^o = \text{diag}(\Lambda_1, \Lambda_2)\), and \(A^o = [A_1 \ A_2]\) as before, where \(\Lambda_1 = 0\) for \(p > 2\), and \(\text{diag}(\Lambda_1, \Lambda_2) = 2I\) for \(p = 2\). In light of \(N \geq m\) and the second statement of Proposition 3.2, we have \(|\text{supp}(x^o)| \geq N - m + 1 \geq 1\) such that the index set \(\mathcal{J}\) is nonempty. It follows from \((3.3)\) that \(\nabla f(x^o) + \mu^o \cdot (A^o)^T (A^o x^o - y^o) = 0\). Further, \(\nabla f(x^o) \neq 0\) and \((A^o)^T (A^o x^o - y^o) \neq 0\). Therefore, using a similar argument to that for Proposition 4.7, we deduce that \(J_{(x, \mu)} F(x^o, \mu^o, A^o, y^o)\) is invertible for any \((A^o, y^o) \in S\). By the implicit function theorem, there are local \(C^1\) functions \(G_1, G_2, H\) such that \(x^* = (x^o)^{\mathcal{J}} = (G_1(A, y), G_2(A, y)) := G(A, y), \mu = H(A, y)\), and \(F(G(A, y), H(A, y), A, y) = 0\) for all \((A, y)\) in a neighborhood of \((A^o, y^o)\). By the
chain rule, we have
\[\mathbf{J}_{(x,\mu)} F(x^0,\mu^0,\mathbf{A}^0,\mathbf{y}^0) \cdot \begin{bmatrix} \nabla_y G_1(A^0,\mathbf{y}^0) \\ \nabla_y G_2(A^0,\mathbf{y}^0) \\ \nabla_y H(A^0,\mathbf{y}^0) \end{bmatrix} = -\mathbf{J}_y F(x^0,\mu^0,\mathbf{A}^0,\mathbf{y}^0) = \begin{bmatrix} \mu^0 \mathbf{A}^T_1 \\ \mu^0 \mathbf{A}^T_2 \\ 0 \end{bmatrix}. \]

Since \(\nabla f(x^0) = -\mu^0 \cdot (\mathbf{A}^0)^T (A^0 x^0 - \mathbf{y}^0) \) and \(g(x^0_i) = 0 \) \(\forall i \in J^c \), it follows that we have \(A^T_i (A^0 x^0 - \mathbf{y}^0) = 0 \), and
\[
\mathbf{J}_{(x,\mu)} F(x^0,\mu^0,\mathbf{A}^0,\mathbf{y}^0) = \begin{bmatrix} \Lambda_1 + \mu^0 A^T_1 A_1 & \mu^0 A^T_2 A_2 \\ \mu^0 A^T_1 A_1 & \Lambda_2 + \mu^0 A^T_2 A_2 \\ 0 & -\mu^0 (A^0 x^0 - \mathbf{y}^0)^T A_2 \end{bmatrix}.
\]

Let
\[
P = \begin{bmatrix} P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33} \end{bmatrix}
\]
be the inverse of the above Jacobian. We consider \(p > 2 \) first. In this case, \(\Lambda_1 = 0 \) such that \(P_{11} \mu^0 A^T_1 A_1 + P_{12} \mu^0 A^T_2 A_2 = I_m \). Since \(B := \nabla_y G_1(A^0,\mathbf{y}^0) = -[P_{11} P_{12} P_{13}] \cdot \mathbf{J}_y F(x^0,\mu^0,\mathbf{A}^0,\mathbf{y}^0) = P_{11} \mu^0 A^T_1 + P_{12} \mu^0 A^T_2 \), we have \(\nabla_y G_1(A^0,\mathbf{y}^0) \cdot A_1 = I_m \). This shows that each row of \(\nabla_y G_1(A^0,\mathbf{y}^0) \) is nonzero. We next consider \(p = 2 \), where \(\text{diag}(A_1, A_2) = 2I \).

Hence,
\[
2P_{11} + BA_1 = I \quad \text{and} \quad 2P_{12} + BA_2 = 2P_{13}(A^0 x^0 - \mathbf{y}^0)^T A_2 = 0.
\]

Suppose, by contradiction, that the \(i \)th row of \(B \) is zero, i.e., \(B_{i\bullet} = 0 \). Then
\[
(P_{11})_{i\bullet} = e_i^T / 2 \quad \text{and} \quad (P_{12})_{i\bullet} = (\mu^0 (P_{13})_{i\bullet}) / 2 \cdot (A^0 x^0 - \mathbf{y}^0)^T A_2.
\]

Using \(B_{i\bullet} = \mu^0 [(P_{11})_{i\bullet} A^T_1 + (P_{12})_{i\bullet} A^T_2] \), we have
\[
0 = B_{i\bullet}(A^0 x^0 - \mathbf{y}^0) = \mu^0 [(P_{11})_{i\bullet} A^T_1 (A^0 x^0 - \mathbf{y}^0) + (\mu^0 (P_{13})_{i\bullet}) / 2 \cdot \| A^T_2 (A^0 x^0 - \mathbf{y}^0) \|^2].
\]

Since \(A^T_1 (A^0 x^0 - \mathbf{y}^0) = 0 \) and \(A^T_2 (A^0 x^0 - \mathbf{y}^0) \neq 0 \), we have \((P_{13})_{i\bullet} = 0 \), which leads to \((P_{12})_{i\bullet} = 0 \). Following a similar argument to that for Proposition 4.7, we obtain \(A_{1\bullet} = 0 \), and this yields a contradiction. Thus each row of \(\nabla_y G_1(A^0,\mathbf{y}^0) \) is nonzero. Consequently, we deduce that \(|\text{supp}(x^*(A,y))| = N \) for almost all \((A,y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m\).

(ii) \(1 < p < 2 \). Let \(\hat{S} \) be the set of \((A,y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \) with \(N \geq m \) such that \(y \neq 0 \), each column of \(A \) is nonzero, and \(A \) has full row rank. Hence, \(y \in R(A) \) for any \((A,y) \in \hat{S} \). By Proposition 3.2, we see that (2.3) attains a unique optimal solution \(x^* \) and a unique Lagrange multiplier \(\mu > 0 \) for any \((A,y) \in \hat{S} \). Define \(\hat{\mu} := 1/\mu > 0 \). Hence, \((x^*,\hat{\mu})\), as a function of \((A,y) \) on \(\hat{S} \), satisfies the following equation:
\[
F(x,\mu, A, y) := \begin{bmatrix} x_1 + h(\mu \alpha_1^T (Ax - y)) \\ x_N + h(\mu \alpha_N^T (Ax - y)) \\ f(x) - \eta^0 \end{bmatrix} = 0.
\]

Here \(F : \mathbb{R}^N \times \mathbb{R} \times \mathbb{R}^{m \times N} \times \mathbb{R}^m \to \mathbb{R}^{N+1} \) is \(C^1 \) and its Jacobian with respect to \((x,\mu)\) is given by
\[
\mathbf{J}_{(x,\mu)} F(x,\mu, A, y) = \begin{bmatrix} V(x,\mu, A, y) & \Gamma(x,\mu, A, y) A^T (Ax - y) \\ (\nabla f(x))^T & 0 \end{bmatrix} \in \mathbb{R}^{(N+1) \times (N+1)}.
\]
where \(\Gamma(x, \tilde{\mu}, A, y) := \text{diag}(h'(\tilde{\mu}a_i^T(Ax - y)), \ldots, h'(\tilde{\mu}a_n^T(Ax - y))) \in \mathbb{R}^{N \times N} \), and \(V(x, \tilde{\mu}, A, y) := I + \Gamma(x, \tilde{\mu}, A, y) \tilde{\mu}A^T A \). Using the same notation introduced in Proposition 4.8, we deduce that for any \((A^o, y^o) \in \tilde{S}\),

\[
J(x, \tilde{\mu})F(x^o, \tilde{\mu}^o, A^o, y^o) = \begin{bmatrix}
I & 0 \\
* & I + \tilde{\mu}^o \Gamma_2 A^T_2 A_2 \\
* & 0 \\
0 & 0
\end{bmatrix},
\]

where the column vector \(v := (g(x_i^o))_{i \in J} \). Note that the index set \(J \) is nonempty since \(y \neq 0 \) and \(A \) has full row rank such that \(A^T y \neq 0 \). In view of (3.3), we have \(v = -\tilde{\mu}^o A^T_2 (A^o x^o - y^o) \), where \(\tilde{\mu}^o > 0 \). This result, along with a similar argument to that for (4.9), shows that \(J(x, \tilde{\mu})F(x^o, \tilde{\mu}^o, A^o, y^o) \) is invertible. Therefore, there are local \(C^1 \) functions \(G_1, G_2, H \) such that \(x^* = (x_{y^1}, \ldots, x_{y^N}) = (G_1(A, y), G_2(A, y)) := G(A, y), \tilde{\mu} = H(A, y) \), and \(F(G(A, y), H(A, y), A, y) = 0 \) for all \((A, y)\) in a neighborhood of \((A^o, y^o)\). Moreover,

\[
J(x, \tilde{\mu})F(x^o, \tilde{\mu}^o, A^o, y^o) = \begin{bmatrix}
0 \\
0 \\
\Gamma_2 \tilde{\mu}^o A^T_2 \\
0
\end{bmatrix},
\]

where the fact that \(\Gamma_1 = 0 \) is used. Therefore, we have \(\nabla_y G_1(A^o, y^o) = 0 \), and

\[
\begin{bmatrix}
\nabla_y G_2(A^o, y^o) \\
\nabla_y H(A^o, y^o)
\end{bmatrix} = \begin{bmatrix}
\Gamma_2^{-1} + \tilde{\mu}^o A^T_2 A_2 \\
(A^o x^o - y^o)^T A_2
\end{bmatrix}^{-1} \begin{bmatrix}
\tilde{\mu}^o A^T_2 \\
0
\end{bmatrix}.
\]

In what follows, define \(b := A^T_2 (A^o x^o - y^o) \neq 0 \) and \(M := \Gamma_2^{-1} + \tilde{\mu}^o A^T_2 A_2 \), which is positive definite.

For each \(i \in J^c \), define \(q_i(A, y) := (a_i^o)^T (y - A \cdot x^*(A, y)) \). It suffices to show that \(\nabla_y q_i(A^o, y^o) \neq 0 \) for each \(i \in J^c \), where \(\nabla_y q_i(A^o, y^o) = (a_i^o)^T (I - A_2 \nabla_y G_2(A^o, y^o)). \)

Direct calculations show that

\[
I - A_2 \cdot \nabla_y G_2(A^o, y^o) = I - [A_2 \ n \ b] \cdot \begin{bmatrix}
M & b \\
b^T & 0
\end{bmatrix}^{-1} \begin{bmatrix}
\tilde{\mu}^o A^T_2 \\
0
\end{bmatrix}.
\]

By the definition of \(M \) and the Sherman–Morrison–Woodbury formula [20, section 3.8], we have \(I - A_2 M^{-1} \tilde{\mu}^o A^T_2 = (I + \tilde{\mu}^o A_2 \Gamma_2 A^T_2)^{-1} \), which is positive definite. Hence, \(I - A_2 \cdot \nabla_y G_2(A^o, y^o) \) is positive definite and thus invertible. Since \(a_i^o \neq 0 \), we have \(\nabla_y q_i(A^o, y^o) \neq 0 \) for each \(i \in J^c \). Consequently, \(|\text{supp}(x^*(A, y))| = N \) for almost all \((A, y) \in \mathbb{R}^{m \times N} \times \mathbb{R}^m \).

5. **Extensions and comparison.** This section extends the least sparsity results to constrained measurement vectors for \(p > 1 \), and compares these results with those from \(\ell_p \) minimization for \(0 < p \leq 1 \); the complex setting is also considered.

5.1. **Extensions to constrained measurement vectors and the noisy case.** In the previous sections, we consider general measurement vectors in \(\mathbb{R}^m \). However, in many applications, such as compressed sensing, a measurement vector \(y \) is restricted to a proper subspace of \(R(A) \), to which the results in section 4 are not applicable since this subspace may have dimension less than \(m \) so that it has zero measure in \(\mathbb{R}^m \). In what follows, we extend the least sparsity results in section 4.
to this scenario. For simplicity, we consider the generalized basis pursuit BP_p (2.1) with $p > 1$ only, although its result can be extended to the other problems, e.g., the BPDN$_p$, RR$_p$, and EN$_p$; see Remark 5.2 for discussions on the generalized ridge regression.

Theorem 5.1. Let $p > 1$, $N \geq 2m - 1$, and $\mathcal{I} \subseteq \{1, \ldots, N\}$ be a nonempty index set. Then there exists a set $S_A \subseteq \mathbb{R}^{m \times N}$ whose complement has zero measure such that for each fixed $A \in S_A$, the unique optimal solution x^* to the BP_p (2.1) satisfies $|\text{supp}(x^*)| = N$ for almost all $y \in R(A_{s\mathcal{I}})$.

Proof. For the given $p > 1$, $N, m \in \mathbb{N}$ with $N \geq 2m - 1$, and the index set \mathcal{I}, we consider two cases: (i) $|\mathcal{I}| \geq m$ and (ii) $|\mathcal{I}| < m$. For the first case, let S_A be the set of all $A \in \mathbb{R}^{m \times N}$ such that any $m \times m$ submatrix of A is invertible. Clearly, the complement of S_A has zero measure in the space $\mathbb{R}^{m \times N}$. Further, since $|\mathcal{I}| \geq m$, $R(A_{s\mathcal{I}}) = \mathbb{R}^m$ for any $A \in S_A$. Hence, by Corollary 4.4, the desired result follows.

We then consider the second case, where $|\mathcal{I}| < m$. Define $r := |\mathcal{I}|$ and let \overline{S}_A be the set of all $A \in \mathbb{R}^{m \times N}$ satisfying the following condition: for any index set \mathcal{J} with $|\mathcal{J}| = r$, the $r \times r$ matrix $(A_{s\mathcal{J}})^T \cdot A_{s\mathcal{J}}$ is invertible. Note that for any index set \mathcal{J} with $|\mathcal{J}| = r$, $\det((A_{s\mathcal{J}})^T \cdot A_{s\mathcal{J}}) = 0$ gives rise to a polynomial equation of the elements of A. Hence, we deduce that the complement of \overline{S}_A has zero measure in $\mathbb{R}^{m \times N}$. Further, for any $A \in \overline{S}_A$, the columns of $A_{s\mathcal{I}}$ must be linearly independent. Therefore, for any $y \in R(A_{s\mathcal{I}})$, there exists a unique $z_y \in \mathbb{R}^r$ such that $A_{s\mathcal{I}} \cdot z_y = y$. This shows that $Ax = y$ in the BP_p (2.1) can be equivalently written as

$$[(A_{s\mathcal{I}})^T \cdot A_{s\mathcal{I}}]^{-1} \cdot (A_{s\mathcal{I}})^T \cdot Ax = z_y.$$

Define the $r \times N$ matrix $\overline{A} := [(A_{s\mathcal{I}})^T \cdot A_{s\mathcal{I}}]^{-1} \cdot (A_{s\mathcal{I}})^T$ for each $A \in \overline{S}_A$. It follows from the property of $A \in \overline{S}_A$ that any $r \times r$ submatrix of \overline{A} is invertible. Hence, for any $A \in \overline{S}_A$ and any $y \in R(A_{s\mathcal{I}})$, the original BP_p (2.1) is converted to the following equivalent optimization problem: for a given $z \in \mathbb{R}^r$,

$$\min_{x \in \mathbb{R}^N} \|x\|_p \quad \text{subject to} \quad \overline{A}x = z.$$

For a fixed \overline{A} obtained from a given $A \in \overline{S}_A$, by applying Corollary 4.4 to (5.1), we deduce that $|\text{supp}(x^*(z))| = N$ for almost all $z \in \mathbb{R}^r$. Since $A_{s\mathcal{I}}$ has full column rank, the same conclusion holds for almost all $y \in R(A_{s\mathcal{I}})$.

The following corollary can be easily established with the aid of Theorem 5.1 and the extension of Proposition 3.1 to (5.1); its proof is thus omitted.

Corollary 5.2. Let $p > 1$, $N \geq 2m - 1$, and $1 \leq s \leq N$. The following hold:

(i) There exists a set $S_A \subseteq \mathbb{R}^{m \times N}$ whose complement has zero measure such that for each fixed $A \in S_A$ and any index set \mathcal{I} with $|\mathcal{I}| \leq s$, the unique optimal solution x^* to the BP_p (2.1) satisfies $|\text{supp}(x^*)| \geq N - m + 1$ for any nonzero $y \in R(A_{s\mathcal{I}})$.

(ii) There exists a set $\widehat{S}_A \subseteq \mathbb{R}^{m \times N}$ whose complement has zero measure such that for each fixed $A \in \widehat{S}_A$ and any index set \mathcal{I} with $|\mathcal{I}| \leq s$, the unique optimal solution x^* to the BP_p (2.1) satisfies $|\text{supp}(x^*)| = N$ for almost all $y \in R(A_{s\mathcal{I}})$.

Remark 5.1. The least sparsity results can be extended to the case in which measurement vectors are polluted by noise or errors. Specifically, consider the measurement vector $y = w + e$, where $w \in R(A)$ and $e \in \mathbb{R}^m$ denotes noise or an error. It
follows from Corollary 4.4 that for a given \(A \in \mathbb{R}^{m \times N} \) satisfying a suitable condition stated in Corollary 4.4 and any given \(w \in R(A) \), the optimal solution \(x^*_{(A,y)} \) to the BP\(_p\) (2.1) has full support for almost all \(e \in \mathbb{R}^m \). For comparison, see relevant results on robust sparse recovery using \(\ell_1 \)-norm based basis pursuit denoising [3] and \(\ell_p \)-minimization with \(0 < p < 1 \) [23, 28].

5.2. Comparison with \(p \)-norm based optimization with \(0 < p \leq 1 \).

For a given sparsity level \(s \) with \(1 \leq s \leq N \) (especially \(s \ll N \)), we call a vector \(x \in \mathbb{R}^N \) \(s \)-sparse if \(|\text{supp}(x)| \leq s \). Furthermore, we say that a measurement vector \(y \) is generated by an \(s \)-sparse vector if there is an \(s \)-sparse vector such that \(y = Ax \). Using these terminologies, we see that Corollary 5 follows from Corollary 4.

Remark 5.2. We consider the generalized ridge regression RR\(_p\) (2.4) and compare the sparsity property for \(p > 1 \) with that for \(0 < p < 1 \). It is shown in [9, Theorem 2.1(2)] that when \(0 < p < 1 \), for any \(A \in \mathbb{R}^{m \times N} \), \(y \in \mathbb{R}^m \), and \(\lambda > 0 \), any (local/global) optimal solution \(x^* \) to the RR\(_p\) (2.4) satisfies \(|\text{supp}(x^*)| \leq m \). In contrast, Theorem 4.5 shows that when \(p > 1 \), an optimal solution \(x^* \) to (2.4) has full support, i.e., \(|\text{supp}(x^*)| = N \), for almost all \(A \) and \(y \).

5.3. Extension to complex measurement matrices and vectors. This subsection extends the previous results for the real setting to the complex setting, i.e., \((A,y) \in \mathbb{C}^{m \times N} \times \mathbb{C}^m \). In the latter setting, each of the problems BP\(_p\) (2.1), BPDN\(_p\)
Let \(\iota \) denote the imaginary unit. For a complex matrix \(A = A_R + \iota A_I \in \mathbb{C}^{m \times N} \) with \(A_R, A_I \in \mathbb{R}^{m \times N} \), define the real matrix \(\overline{A} := [\overline{A}_{1;2}, \ldots, \overline{A}_{2N-1;2N}] \in \mathbb{R}^{2m \times 2N} \), where
\[
\overline{A}_{2k-1;2k} := \begin{bmatrix} (A_R)_{kk} & -(A_I)_{kk} \\ (A_I)_{kk} & (A_R)_{kk} \end{bmatrix} \in \mathbb{R}^{2 \times 2} \quad \forall \ k = 1, \ldots, N.
\]

Here \((A_R)_{kk}\) and \((A_I)_{kk}\) denote the \(k\)th columns of \(A_R\) and \(A_I\), respectively. For a complex \(N\)-vector \(x = u + \iota v\) with \(u, v \in \mathbb{R}^N\), define \(\overline{x} := [\overline{x}_{1;2}, \ldots, \overline{x}_{2N-1;2N}] \in \mathbb{R}^{2N}\), where \(\overline{x}_{2k-1;2k} := (u_k, v_k)^T \in \mathbb{R}^2\) for each \(k = 1, \ldots, N\). Similarly, we define \(\overline{y} \in \mathbb{R}^{2m}\) for \(y \in \mathbb{C}^m\). Note that \(\text{supp}(x) = \{k \mid \overline{x}_{2k-1;2k} \neq 0\}\) (but \(\text{supp}(x) \neq \text{supp}(\overline{x})\)). Based on the definitions of \(A, \overline{x}\) and \(\overline{y}\), the following facts can be easily established:

1. \(\|Ax - y\|_2^2 = \|\overline{A}x - \overline{y}\|_2^2\), and \(Ax = y\) if and only if \(\overline{A}x = \overline{y}\);
2. \(\|x\|_p^p = \sum_{k=1}^N |x_k|^p = \sum_{k=1}^N (u_k^2 + v_k^2)^{p/2} = \sum_{k=1}^N \|\overline{x}_{2k-1;2k}\|_2^p\); and
3. for an index subset \(I \subseteq \{1, \ldots, N\}\), the columns of \(A_{I, \overline{I}}\) are linearly independent (over the complex field \(\mathbb{C}\)) if and only if the columns of the matrix \(|\overline{A}_{2k-1;2k}|_{k \in I} \in \mathbb{R}^{2m \times 2|I|}\) are linearly independent (over the real field \(\mathbb{R}\)).

Let \(p \geq 1\). Define the functions \(\overline{g} : \mathbb{R}^2 \to \mathbb{R}^2\) and \(\overline{h} : \mathbb{R}^2 \to \mathbb{R}^2\) as follows: for any \(z = (z_1, z_2)^T \in \mathbb{R}^2\),
\[
\overline{g}(z) := \begin{cases} p \cdot \|z\|_2^{p-2} \cdot z & \text{if } z \neq 0, \\ 0 & \text{if } z = 0 \end{cases}, \quad \overline{h}(z) := \begin{cases} \frac{1}{p/(p-1)} \cdot \|z\|_2^{\frac{2-p}{p-1}} \cdot z & \text{if } z \neq 0, \\ 0 & \text{if } z = 0. \end{cases}
\]

These functions are analogous to those defined in (4.1) in the real setting. It is easy to verify that \(\overline{h}\) is the inverse function of \(\overline{g}\) and that \(\overline{g}\) and \(\overline{h}\) are positively homogeneous of degree \(p - 1\) and \(1/(p - 1)\), respectively. Letting \(f(\overline{x}) := \sum_{k=1}^N \|\overline{x}_{2k-1;2k}\|_2^p\), where \(\overline{x} := [\overline{x}_{1;2}, \ldots, \overline{x}_{2N-1;2N}] \in \mathbb{R}^{2N}\), we have \(\nabla f(\overline{x}) = [\overline{g}(\overline{x}_{1;2}); \ldots; \overline{g}(\overline{x}_{2N-1;2N})]\). Additional properties of \(\overline{g}\) and \(\overline{h}\) are given in the following lemma.

Lemma 5.4. When \(p \geq 2\), \(\overline{g}\) is continuously differentiable on \(\mathbb{R}^2\); when \(p > 2\), its Jacobian \(\overline{J}_g(z)\) is positive definite at any \(z \neq 0\), and \(\overline{J}_g(0) = 0\). When \(1 < p \leq 2\), \(\overline{h}\) is continuously differentiable on \(\mathbb{R}^2\); when \(1 < p < 2\), its Jacobian \(\overline{J}_h(z)\) is positive definite at any \(z \neq 0\), and \(\overline{J}_h(0) = 0\).

Proof. When \(p = 2\), \(\overline{J}_g(z) = 2I\) and \(\overline{J}_h(z) = I/2\) for all \(z \in \mathbb{R}^2\). A straightforward but lengthy computation shows that (i) when \(p > 2\), \(\overline{J}_g(0) = 0\), and for any \(z = (z_1, z_2)^T \neq 0\),
\[
\overline{J}_g(z) = p \cdot \|z\|_2^{p-4} \cdot \begin{bmatrix} (p-1)z_1^2 + z_2^2 & (p-2)z_1z_2 \\ (p-2)z_1z_2 & z_1^2 + (p-1)z_2^2 \end{bmatrix} = p \cdot \|z\|_2^{p-2} \cdot U^T \text{diag}(p-1, 1) U,
\]
where the orthogonal matrix
\[
U := \|z\|_2^{-1} \cdot \begin{bmatrix} z_1 & -z_2 \\ z_2 & z_1 \end{bmatrix};
\]
and (ii) when \(1 < p < 2\), \(\overline{J}_h(0) = 0\), and
\[
\overline{J}_h(z) = \frac{1}{p/(p-1)} \cdot \|z\|_2^{\frac{2-p}{p-1}} \cdot \begin{bmatrix} z_1^2 + z_2^2 & \frac{2-p}{p-1} z_1z_2 \\ \frac{2-p}{p-1} z_1z_2 & z_1^2 + \frac{2-p}{p-1} z_2^2 \end{bmatrix} = \frac{1}{p/(p-1)} \cdot \|z\|_2^{\frac{2-p}{p-1}} \cdot U^T \text{diag}\left(\frac{1}{p-1}, 1\right) U
\]
for any $z = (z_1, z_2)^T \neq 0$. It follows from the above results that $J\tilde{g}(z), \ J\tilde{h}(z)$ are positive definite at any $z \neq 0$, and \tilde{g}, \tilde{h} are continuously differentiable on \mathbb{R}^2.

Define the following set in $\mathbb{C}^{m \times N} \times \mathbb{C}^{m}$ with $N \geq m$, which is analogous to the set S defined in (3.1):

$$(5.3) \quad S_C := \left \{(A,y) \in \mathbb{C}^{m \times N} \times \mathbb{C}^{m} \mid \text{every } m \times m \text{ submatrix of } A \text{ is invertible, and } y \neq 0 \right \}.$$

In many important applications such as compressed sensing, a complex matrix A satisfying the condition specified in (5.3) can be obtained by uniformly at random choosing from a square Fourier matrix of prime order [10] using row-repetition free Bernoulli selectors or a random subset model [3]. The following result extends Proposition 3.1 to the complex setting.

PROPOSITION 5.5. Let $p > 1$. For any $(A, y) \in S_C$, the following hold:

(i) The minimizer $x^* \in \mathbb{C}^N$ of the BP$_p$ (2.1) satisfies $|\text{supp}(x^*)| \geq N - m + 1$.

(ii) If $0 < \varepsilon < \|y\|_2$, then the minimizer $x^* \in \mathbb{C}^N$ of the BPDN$_p$ (2.2) satisfies $|\text{supp}(x^*)| \geq N - m + 1$.

(iii) For any $r > 0, \lambda_1 > 0$, and $\lambda_2 > 0$, each nonzero minimizer $x^* \in \mathbb{C}^N$ of the EN$_p$ (2.5) satisfies $|\text{supp}(x^*)| \geq N - m + 1$.

(iv) For any $\lambda > 0$, the minimizer $x^* \in \mathbb{C}^N$ of the RR$_p$ (2.4) satisfies $|\text{supp}(x^*)| \geq N - m + 1$.

(v) If $0 < \eta < \min_A \|x\|_p$, then the unique minimizer x^* of (2.3) satisfies $|\text{supp}(x^*)| \geq N - m + 1$.

Proof. For each $(A, y) \in S_C$, let $(\tilde{A}, \tilde{y}) \in \mathbb{R}^{2m \times 2N} \times \mathbb{R}^{2m}$ be defined as before, where $\tilde{A} = [A_{1:2}, \ldots, A_{2N-1:2}]$. Hence, $\tilde{y} \neq 0$, and $[A_{2k-1:2k}]_{k \in \mathcal{I}}$ is invertible for any index set \mathcal{I} with $|\mathcal{I}| = m$. For any $x \in \mathbb{C}^N$ satisfying $Ax = y$, $\tilde{x} = [x_{1:2}; \ldots; x_{2N-1:2}] \in \mathbb{R}^{2m}$ satisfies $\tilde{A}\tilde{x} = \tilde{y}$ and $\text{supp}(x) = \{k \mid x_{2k-1:2k} \neq 0\}$. Recall that $f(\tilde{x}) = \sum_{k=1}^N \|x_{2k-1:2k}\|_2^2 = \|x\|_p^2$. We sketch the proofs for (i)–(v) as follows.

(i) The vector $\tilde{x}^* \in \mathbb{R}^{2m}$ associated with the unique nonzero minimizer $x^* \in \mathbb{C}^N$ of the BP$_p$ (2.1) satisfies the KKT condition: $\nabla f(\tilde{x}^*) - \tilde{A}^T \nu = 0$ and $\tilde{A}^* = \tilde{y}$, where $\nu \in \mathbb{R}^{2m}$ is the Lagrange multiplier, and $\nabla f(\tilde{x}^*) = [\tilde{g}(\tilde{x}_{1:2}); \ldots; \tilde{g}(\tilde{x}_{2N-1:2})]$ with \tilde{g} defined in (5.2). Suppose x^* has at least m nonzero elements. Then there exists an index set \mathcal{I} with $|\mathcal{I}| = m$ such that $x^*_{2k-1:2k} = 0$ for each $k \in \mathcal{I}$. By the properties of \tilde{g}, we have $\tilde{g}(\tilde{x}_{2k-1:2k}) = 0$ for all $k \in \mathcal{I}$. Since $[A_{2k-1:2k}]_{k \in \mathcal{I}}$ is invertible, it follows from the KKT condition that $\nu = 0$ so that $\nabla f(\tilde{x}^*) = 0$. Therefore, $\tilde{x}^* = 0$ or equivalently $x^* = 0$, which is a contradiction.

(ii) Define $\theta(\tilde{x}) := \|\tilde{A}\tilde{x} - \tilde{y}\|_2^2 - \varepsilon^2$ for any $\tilde{x} \in \mathbb{R}^{2m}$ associated with $x \in \mathbb{C}^N$. Hence, $\theta(\tilde{x}) = \|Ax - y\|_2^2 - \varepsilon^2$. By a similar argument to that for (ii) of Proposition 3.1, we deduce that the vector $\tilde{x}^* \in \mathbb{R}^{2m}$ associated with the unique nonzero minimizer $x^* \in \mathbb{C}^N$ of the BPDN$_p$ (2.2) satisfies the KKT condition: $\nabla f(\tilde{x}^*) + \mu \nabla \theta(\tilde{x}^*) = 0$ and $0 \leq \mu \leq \theta(\tilde{x}^*) \geq 0$, where the multiplier $\mu > 0$. It follows from $\nabla \theta(\tilde{x}^*) = 2\tilde{A}^T(\tilde{A}\tilde{x}^* - \tilde{y})$ and an arbitrary argument to that for (ii) of Proposition 3.1 that $|\text{supp}(x^*)| \geq N - m + 1$.

(iii) For an arbitrary $r > 0$, we have $\|x\|_p^r = [f(\tilde{x})]^{r/p}$. Hence, the EN$_p$ (2.5) is equivalent to $\min_{x \in \mathbb{R}^{2m}} \frac{1}{p} \|\tilde{A}\tilde{x} - \tilde{y}\|_2^2 + \lambda_1 [f(\tilde{x})]^{r/p} + \lambda_2 \|\tilde{x}\|_2^2$. For a nonzero minimizer x^*, its corresponding \tilde{x}^* is also nonzero and satisfies the optimality condition:

$$\tilde{A}^T(\tilde{A}\tilde{x}^* - \tilde{y}) + \lambda_1 (r/p) [f(\tilde{x}^*)]^{(r-p)/p} \nabla f(\tilde{x}^*) + 2\lambda_2 \tilde{x}^* = 0.$$
Applying a similar argument to that for (iv) of Proposition 3.1 leads to \(|\text{supp}(x^*)| \geq N - m + 1.\)

(iv), (v) These proofs are omitted as they resemble those for case (ii) and Proposition 3.2, respectively.

\textbf{Theorem 5.6.} Let \(p > 1.\) The following hold for almost all \((A, y) \in \mathbb{C}^{m \times N} \times \mathbb{C}^m.\)

(i) Let \(N \geq 2m - 1.\) The unique minimizer \(x^* \in \mathbb{C}^N\) of the \(\text{BP}_{p}(2.1)\) satisfies \(|\text{supp}(x^*)| = N.\)

(ii) Let \(N \geq m\) and \(\lambda > 0.\) The unique minimizer \(x^* \in \mathbb{C}^N\) of the \(\text{RR}_{p}(2.4)\) satisfies \(|\text{supp}(x^*)| = N.\)

(iii) Let \(N \geq m.\) If \(y \neq 0\) and \(0 < \varepsilon < \|y\|_2,\) then the unique minimizer \(x^* \in \mathbb{C}^N\) of the \(\text{BPD}_{p}(2.2)\) satisfies \(|\text{supp}(x^*)| = N.\)

(iv) Let \(N \geq m, r \geq 1,\) and \(\lambda_1, \lambda_2 > 0.\) The unique minimizer \(x^* \in \mathbb{C}^N\) of the \(\text{EN}_{p}(2.5)\) satisfies \(|\text{supp}(x^*)| = N.\)

(v) Let \(N \geq m.\) If \(y \in \mathcal{R}(A)\) and \(0 < \eta < \min_{A_k=y}\|x\|_p,\) then the unique minimizer \(x^* \in \mathbb{C}^N\) of \((2.3)\) satisfies \(|\text{supp}(x^*)| = N.\)

\textbf{Proof.} Letting \(\vec{y} \in \mathbb{R}^{2m}\) be the unique correspondence of \(y \in \mathbb{C}^m\) defined before, we define the set \(\mathcal{S} := \{ (A_R, A_l, \vec{y}) \mid (A_R + iA_l, \vec{y}) \in \mathcal{S}_C \}.\) Clearly, \(\mathcal{S}\) is open and its complement has zero measure in \(\mathbb{R}^{m \times N} \times \mathbb{R}^{m \times N} \times \mathbb{R}^{2m}.\) For any \(A = A_R + iA_l\) given from \(\mathcal{S}_C,\) we write \(\vec{A}(A_R, A_l)\) as \(\vec{A}\) to simplify notation when the context is clear. For any (unique) minimizer \(x^* \in \mathbb{C}^N\) associated with \((A, y) \in \mathcal{S}_C\) in each problem, let

\(\mathcal{J} := \{ k \mid \vec{x}_k^* \neq 0 \} \subseteq \{1, \ldots, N\},\)

and define \(\mathcal{I} := \{2k - 1, 2k \mid k \in \mathcal{J}^c\}.\) Partition \(\vec{A}\) as \(\vec{A} = [A_1, A_2],\) where \(A_1 := [A_{2k-1:2k}]_{k \in \mathcal{J}^c}\) and \(A_2 := [A_{2k-1:2k}]_{k \in \mathcal{J}}.\) Note that \(\vec{A}\) has full row rank and \(|\mathcal{J}^c| \leq m - 1\) by Proposition 5.5. Hence, the columns of \(A_{\star, \mathcal{J}^c}\) are linearly independent, and so are the columns of \(A_1.\)

(i) Consider \(p > 2\) first. For any \((A_R, A_l, \vec{y}) \in \mathcal{S},\) \((\vec{x}^*, \nu^*) \in \mathbb{R}^{2m} \times \mathbb{R}^{2m}\) is a unique solution to the equation \(F(\vec{x}, \nu, A_R, A_l, \vec{y}) := [\nabla f(\vec{x}) - \vec{A}^T \nu; \vec{A} - \vec{y}] = 0.\) Let \(A(\vec{x}^*) := \text{diag}(\vec{J}_y(\vec{x}^*_{1:2}), \ldots, \vec{J}_y(\vec{x}^*_{2N-1:2N})) = \text{diag}(A_1, A_2),\) where \(A_1 := \text{diag}(\vec{J}_y(\vec{x}^*_{2k-1:2k}))_{k \in \mathcal{J}} = 0,\) \(A_2 := \text{diag}(\vec{J}_y(\vec{x}^*_{2k-1:2k}))_{k \in \mathcal{J}}\), and \(\vec{J}_y(\vec{x}^*_{2k-1:2k})\) is positive definite for any \(k \in \mathcal{J}.\) Using this result, we can show \(\vec{J}_y(\vec{x}^*, \nu^*, A_R, A_l, \vec{y})\) is invertible and \(\vec{x}^*(A_R, A_l, \vec{y})\) is a local \(C^1\) function. Following a similar argument to that for Proposition 4.1, it can be further shown that for any \(i \in \mathcal{I}, \nabla_{\vec{y}^i} \vec{x}^*(A_R, A_l, \vec{y})\) is nonzero. This yields the desired result.

Consider \(1 < p \leq 2.\) In this case, \(\vec{x}^*_{2k-1:2k} = \vec{h}(\vec{A}^T_{2k-1:2k})\) for each \(k = 1, \ldots, N,\) where the multiplier \(\nu \in \mathbb{R}^{2m}\) satisfies the equation \(F(\nu, A_R, A_l, \vec{y}) := \sum_{k=1}^{N} \vec{A}_{2k-1:2k} \cdot \vec{h}(\vec{A}^T_{2k-1:2k}) - \vec{y} = 0.\) Then \(Q := \vec{J}_{\vec{y}} F(\nu, A_R, A_l, \vec{y}) = A \Theta \vec{A}^T,\) where \(\Theta := \text{diag}(\vec{J}_y(\vec{x}^*_1), \ldots, \vec{J}_y(\vec{x}^*_N)),\) and \(\vec{A}\) has full row rank. When \(p = 2, \Theta = I/2\) so that \(Q\) is positive definite. When \(1 < p < 2,\) we have \(w^T Q w = \sum_{k=1}^{N} (\vec{A}^T_{2k-1:2k})^T \vec{h}(\vec{A}^T_{2k-1:2k}) (\vec{A}^T_{2k-1:2k})\) for any \(w \in \mathbb{R}^{2m}.\) By Lemma 5.4, the property of \(\mathcal{S}\) in the complement for Proposition 4.2, we see that \(Q\) is positive definite for \(1 < p < 2.\) Since each column of \(A\) from the set \(\mathcal{S}_C\) is nonzero, each column of \(A\) is also nonzero. This, along with a similar argument for Proposition 4.2, shows that \(\nabla_{\vec{y}^i} \vec{A}^T_{\star} \nu(A_R, A_l, \vec{y}) = \vec{A}^T_{\star} Q^{-1} \neq 0\) for each \(i = 1, \ldots, 2N\) at any \((A_R, A_l, \vec{y}) \in \mathcal{S}.\)

In light of \(\text{sgn}(\vec{x}^*_i) = \text{sgn}(\vec{A}^T_{\star} \nu)\) for each \(i = 1, \ldots, 2N,\) the desired result follows.

(ii) Consider \(p > 2.\) The vector \(\vec{x}^* \in \mathbb{R}^{2N}\) associated with the unique minimizer \(x^* \in \mathbb{C}^N\) satisfies the equation \(F(\vec{x}, A_R, A_l, \vec{y}) := \lambda \nabla f(\vec{x}) + \vec{A}^T (\vec{A} - \vec{y}) = 0,\) where \(\vec{J}_y F(\vec{x}, A_R, A_l, \vec{y}) = \lambda D(\vec{x}) + \vec{A}^T \vec{A},\) and \(D(\vec{x})\) is a block diagonal matrix. Partition
D(\bar{\epsilon}) = \text{diag}(D_1, D_2)$ as before, where $D_1 = 0$, D_2 is positive definite, and \tilde{A}_1 has full column rank. Using these results and a similar argument to that for case (i) in Theorem 4.5, we have that $J_x F(\bar{x}^*, A_R, A_1, \bar{y})$ is positive definite and each row of $\nabla_y \bar{x}^*_R(A_R, A_1, \bar{y})$ is nonzero at any $(A_R, A_1, \bar{y}) \in \mathcal{S}$. The case in which $1 < p \leq 2$ can be shown via a similar but lengthy computation and is thus omitted.

(iii) Consider $p \geq 2$ first. For any $(A_R, A_1, \bar{y}) \in \mathcal{S}$, $(\bar{x}^*, \mu^*) \in \mathbb{R}^{2N} \times \mathbb{R}$ is a unique solution to the equation

$$F(\bar{x}, \mu, A_R, A_1, \bar{y}) := [\nabla f(\bar{x}) + 2\mu^T(\bar{A} \bar{x} - \bar{y})] \cdot \|\bar{A} \bar{x} - \bar{y}\|_2^2 - \varepsilon = 0,$$

where $\mu^* > 0$. It can be shown that $J_{(\bar{x}, \mu)} F(\bar{x}, \mu, A_R, A_1, \bar{y})$ is invertible and each row of $\nabla_y \bar{x}^*_R(A_R, A_1, \bar{y})$ is nonzero at each $(A_R, A_1, \bar{y}) \in \mathcal{S}$. When $1 < p < 2$, it can be shown via a similar argument to that for Proposition 4.8 that $\bar{x}^*_R(A_R, A_1, \bar{y})$ is a local C^1 function. Further, using $\tilde{A}^T_i(\bar{A} \bar{x}^* - \bar{y}) = 0$, $\tilde{A}_i(\bar{A} \bar{x}^* - \bar{y}) \neq 0$, and each $\tilde{A}_i \neq 0$, it can be shown that for any $i \in I$, we have $\nabla_y q_i(A_R, A_1, \bar{y}) \neq 0$, where $q_i(A_R, A_1, \bar{y}) := \tilde{A}^T_i(\bar{y} - \bar{A} \cdot \bar{x}^*(A, \bar{y}))$. In light of $\text{sgn}(\bar{x}^*_i(A_R, A_1, \bar{y})) = \text{sgn}(q_i(A_R, A_1, \bar{y}))$ for each $i = 1, \ldots, 2N$, the desired result follows.

(iv), (v) These proofs are omitted as they are similar to those for Theorems 4.6 and 4.10, respectively.

The extension of Theorem 5.1 and Corollary 5.2 to the complex setting can be made similarly.

6. Conclusions. This paper provides an in-depth study of sparse properties of a wide range of p-norm based optimization problems with $p > 1$ generalized from sparse optimization and other related areas. By applying optimization and matrix analysis techniques, we show that optimal solutions to these generalized problems are the least sparse for almost all measurement matrices and measurement vectors. We also compare these problems with those when $0 < p \leq 1$. This paper not only gives a formal justification of the usage of ℓ_p-optimization with $0 < p \leq 1$ for sparse optimization but it also offers a quantitative characterization of the adverse sparse properties of ℓ_p-optimization with $p > 1$. These results will shed light on analysis and computation of general p-norm based optimization problems. Future research includes the compressibility of ℓ_p minimization with $p > 1$ and extensions to matrix norm based optimization problems. Our preliminary results show the poor compressibility for $p > 1$; a further study of this property will be reported in a future work.

7. Appendix. We show that the function $\| \cdot \|_p$ with $p > 1$ is strictly convex.

Proof. Let $p > 1$. By the Minkowski inequality, we have $\|x + y\|\leq \|x\|_p + \|y\|_p$ for all $x, y \in \mathbb{R}^N$, and the equality holds if and only if $y = \mu x$ for $\mu \geq 0$. For any $x, y \in \mathbb{R}^N$ with $x \neq y$ and any $\lambda \in (0, 1)$, consider two cases: (i) $y = \mu x$ for some $\mu \geq 0$ with $\mu \neq 1$, (ii) otherwise. For case (i),

$$\|\lambda x + (1 - \lambda)y\|_p^p = \|\lambda x + (1 - \lambda)\mu x\|_p^p = \|\lambda \cdot x + (1 - \lambda)\mu \cdot x\|_p^p = \|\lambda \cdot x\|_p^p + (1 - \lambda)\|\mu \cdot x\|_p^p \leq \lambda\|x\|_p^p + (1 - \lambda)\|y\|_p^p,$$

where we use the fact that $|x|^p$ is strictly convex on \mathbb{R}_+. For case (ii), we have $\|\lambda x + (1 - \lambda)y\|_p^p \leq \|\lambda\|x\|_p^p + (1 - \lambda)\|y\|_p^p \leq \lambda\|x\|_p^p + (1 - \lambda)\|y\|_p^p$. This shows that $\| \cdot \|_p$ is strictly convex. This result can be easily extended to \mathbb{C}^N. □
Acknowledgments. The authors would like to thank the two anonymous referees for many constructive and valuable comments on this paper.

REFERENCES

