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Remotely sensed images have been used in a broad range of applications
ranging from chemical/biological defense, geology, agriculture to environmental
protection, law enforcement and intelligence applications. With the recent advanced
technology, remote sensing instruments have significantly improved spatial resolution
and also spectral resolution. The images from these instruments have hundreds of
different contiguous spectral bands with typical spectral resolution of approximately
10 nanometers which can be used to uncover subtle material substances that cannot
be resolved by multispectral sensors.

With significantly improved spectral and spatial resolutions provided by
hyperspectral imaging sensors, one challenging issue is to find how many spectrally
distinct signatures are present in the resulting image data. Recently, Virtual
Dimensionality (VD) was developed to address this issue which is defined as the

number of spectrally distinct signatures in hyperspectral imagery. Once VD is



determined, a follow-up issue is to find these signatures from the image data. As
defined, an endmember is an ideal, pure signature for a class, more specifically,
spectral class. However, in reality, the spectral signature for a material may vary due
to a number of reasons including environmental, atmospheric and temporal factors.
As a result, an endmember may appear in various forms in hyperspectral images. In
order to resolve endmember variability issue, this dissertation develops three new
algorithms.

The first one is called Endmember Variability Algorithm (EVA) which is an
unsupervised endmember class finding algorithm using a half-way A second one
develops a new criterion similar to Fisher’s ratio used in Fisher’s Linear Discriminant
Analysis (FLDA) and various versions of algorithms using the new criterion are
further designed. Unlike current methods that either require training data set or need a
predefined parameter, two proposed methods can find endmembers and their
corresponding classes in a complete unsupervised manner. A third algorithm is Fully
Constrained Least Square Endmember Finding Algorithm (FCLS EFA) which uses
average unmixing error to find endmembers that assumed to be most representative

pixels as endmembers for linear spectral representation via a linear mixing model.
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Chapter 1 Introduction

Hyperspectral imaging [1] is an emerging technique in remote sensing processing that
expands and improves capability of multispectral image analysis in many aspects. In
particular, it has found success in many applications ranging from agriculture crop
classification, mineral exploration, environmental monitoring to defense, law

enforcement and intelligence gathering.
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Figure 1.1 Illustration of hyperspectral imagery
Unlike multispectral sensors which utilize tens of discrete spectral bands,

hyperspectral remote sensors make use of hundreds of contiguous spectral bands for
1



data collection. As a result, the acquired data provide wealth of spectral information
as shown in Fig 1.1 and can uncover many materials that usually cannot be resolved
by multispectral sensors because of low spectral resolution.

With significantly improved spectral and spatial resolutions of hyperspectral
imaging sensors, one major and challenging issue is to find how many spectrally
distinct signatures are present in the data, each of which represent a particular spectral
class. Recently, Virtual Dimensionality (VD) [2] was developed to address this issue
which is defined as the number of spectrally distinct signatures in a hyperspectral
image. However, determination of VD in the hyperspectral data is very challenging
and extremely difficult. In this dissertation, we assume that VD has been determined,
by a reliable technique [2], denoted by p.

Once the value of p is determined, a follow-up issue is to find these p spectrally
distinct signatures [3]. In a given hyperspectral image, many of such spectrally
distinct signatures may appear as so-called endmembers. According to the definition
given by Schowengerdt [4], an endmember is an idealistic, pure signature for a class,
more specifically, spectral class. For multispectral imagery, an endmember may not
be found since most data sample vectors may be heavily mixed due to low spatial and
spectral resolution. By contrast, with recent advances of hyperspectral imaging
sensors, many subtle material spectral features that cannot be resolved by
multispectral imagery can be now uncovered by hyperspectral imagery. These
substances are generally not known a priori or identified by visual inspection.
Endmembers are considered to be one of such substances. In general, their existence

in image data is always not guaranteed. Most importantly, once endmembers are
2



present, their spatial extent is relatively limited. Besides, their sample pools are also
very small. Accordingly, they may appear as anomalies. In this case, spatial
characteristics offer little advantage in finding endmembers [1].

As noted, justification of existence of endmembers in reality is extremely difficult
due to several practical reasons. One is lack of careful data calibration such as
atmospheric correction. Another is lack of ground truth such as data base or spectral
library. A third one is lack of prior knowledge that can be used for validation. Even if
it can, it is extremely expensive to obtain ground truth [5]. Most importantly, due to
the fact that endmembers are generally corrupted by many unknown effects, finding
such “true” endmembers is very challenging because these contaminated
endmembers are no longer pure signatures. Under such circumstances, extracting
something which is not present in the data does not make sense. Instead, the term of
“finding” is a more appropriate than “extracting” for this dilemma. Unfortunately, in
real world application this is indeed the case we encounter all the time. Nevertheless,
these signatures still represent most significant information in data interpretation. In
order to resolve this dilemma the concept of endmember variability was recently
introduced to take into account variability [6-10] of an endmember present in the
data. More specifically, instead of working on a single endmember, a group of
signatures, referred to as an endmember class, is considered to represent one type of
endmember so as to take care of signature corruption caused by physical effects, such
as noise, interference encountered in real environments. This dissertation is developed
to take up this issue and mainly focuses on endmember class finding while

considering its variability. Unlike many algorithms developed in literatures, the
3



proposed algorithms in this dissertation are unsupervised. In other words, these
algorithms do not require training samples. Another advantage of these algorithms is
that they do not need to determine a pre-defined parameter such as the mean of
endmember class center.

The dissertation is organized as follows. In Chapter 2, different methods that deal
with endmember variability in the previous literatures are summarized and compared.
In Chapter 3, a new endmember variability algorithm is developed to find endmember
classes in an unsupervised fashion. In Chapter 4, a new criterion similar to Fisher’s
ratio used in Fisher’s linear discriminant analysis is developed and various algorithms
using the new criterion are further designed. In Chapter 5, a new algorithm is
developed to find endmembers while minimizing the average unmixing error. Chapter

6 summarizes the work presented in this dissertation and future studies.



Chapter 2 A Review of Endmember Variability

As described in Chapter 1, hyperspectral data provides us with both rich spectral and
spatial information. In a certain hyperspectral image, a measured spectral signature of
a material substance may vary due to variable illumination and environmental,
atmospheric and temporal conditions. Ignoring these variations will introduce errors
in hyperspectral data analysis. A number of approaches that deal with endmember
variability have been investigated in recent years to improve better endmember
finding and spectral unmixing. In this chapter, reasons for endmember variability are
explained and a review and literature survey of previous works is conducted. At the
end, we briefly discuss two new methods to be developed in this dissertation and their

advantages over existing endmember variability techniques.

2.1 Reasons for Endmember Variability

In recently years, hyperspectral image analysis has been used to solve a wide range of
applications in remote sensing including planetary exploration, environmental
monitoring and target detection [1]. Two major areas are of particular interest. One is
endmember finding and the other is spectral unmixing. Given a hyperspectral image,
endmember finding is the task of finding the spectral signatures of purity present in
the scene. Spectral unmixing is a task that estimates the abundances of each
endmember in a data sample vector. A general approach is to model pixels in a

hyperspectral image as linear combinations of endmembers

xn:iajeﬁs, n=1 ---, N (2.1)
j=1



where {e}?, are a set of p Lx1-dimensional endmembers, x is a Lx1vector

representing the spectral signature of the n" pixel in a hyperspectral image, N is the
total number of pixels in the image and eis a measurement error or noise. More

specifically two abundance constraints are generally imposed on the model (2.1), i.e.,

Abundance Sum-to-one constraint (ASC) iocj =1 and Abundance Non-negative
j=1

Constraint (ANC) o, >0.

In hyperspectral image analysis, the first task is to determine p or how many

endmembers are present in the scene. It is defined as virtual dimensionality (VD) and
determination of VD is very challenging and extremely difficult. Once VD is
determined, finding these spectral signatures in the hyperspectral image is the next
task. A number of algorithms including Automatic Target Generating Process
(ATGP) [11], Simplex Growing Algorithm (SGA) [12] and N-FINDR [13] can be
used to accomplish this task. After finding these signatures in the scene, Fully
Constrained Least Square (FCLS) algorithm [14] is used to unmix the pixel in the
hyperspectral image.

Although (2.1) is extensively used in the literature, the linear mixing model lacks the
ability of representing the spectral variability of endmembers in a scene. Endmember
spectral signatures are represented as single points in a high-dimensional space. The
above-mentioned endmember finding algorithms, ATGP, SGA and N-FINDR are all
single endmember-based techniques.

The spectral signature of a material varies within hyperspectral data due to a number

of reasons including environmental, atmospheric and temporal factors. One major
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source of spectral variability results from variation due to illumination conditions [15,
16]. Variation in topography and surface roughness, which leads to varying levels of
shadowed and brightly lit regions, causes changes in illumination. Differences in the
architecture of plant canopies, changes in the distribution of leaf orientation in
vegetated regions, varying building structure and layout in urban areas cause different
illumination levels and areas of shade. Although accurate digital terrain-elevation
models and photometric information for an area can help remove some of the effects
of illumination, this information, in general, is unavailable for a scene and if it were
known, would require significant computationally intensive preprocessing. Another
significant source that causes spectral variations come from changing atmospheric
conditions. Many atmospheric gases, including oxygen, ozone, carbon monoxide and
carbon dioxide, have strong absorption features or scattering characteristics in a
number of wavelengths throughout the electromagnetic spectrum [5]. Although a
number of approaches have been developed for this attempt to remove the
atmospheric effects from hyperspectral data, some of the spectral variability due to
atmospheric conditions may not be still eliminated. As discussed by Gao et al. [17],
many of these approaches may not accurately account for nitrogen dioxide levels in
the atmosphere, which can be extremely high in urban areas, or measured radiance
from a pixel may be modified by the radiance of neighboring pixels due to scattering
of solar radiation by atmospheric molecules.

Despite the fact that spectral variability is acknowledges from these sources,
unmixing and endmember finding generally do not account for spectral variability

anyway. As a result, errors resulting from inaccurate endmember representation will
7



be propagated thorough analysis. Proportion values can be estimated incorrectly with
inaccurate endmember representations. To avoid these errors and to represent spectral
variability during analysis, a number of spectral unmixing and endmember finding
algorithms that incorporate spectral variability have been developed in [10]. A
significant improvement in abundance estimation is shown in [5] with algorithms
accounting for endmember variability.

Methods that account for endmember spectral variability can be organized into two
general categories based on variability in endmember representation. One is to
consider endmembers as sets, and the other is to consider endmembers as statistical

distributions, each of which will be reviewed as follows.

2.2 Endmembers as Sets

2.2.1Multiple Endmember Mixture Analysis and Variants
In Multiple Endmember Mixture analysis, there are several spectral unmixing
methods that can be used to estimat abundance values by exhaustively searching a
given spectral library for endmembers whose corresponding estimated proportion
values satisfy some criteria. The very first representative of these algorithms is
multiple endmember spectral mixture analysis (MESMA) algorithm [18]. MESMA
estimates the abundance for an input pixel by searching the endmembers for which
abundance values are found that satisfy three conditions as follows.
1. The root mean square (rms) error between the input pixel and its
reconstruction using the endmembers and their abundances is below a

prescribed threshold.



2. The rms error for contiguous spectral bands is below a prescribed threshold.

3. The estimated abundance values are within a prescribed range.
As noted above, all of the three conditions require prescribed threshold, which could
raise the following questions.

1. Should a prescribed threshold be the same for the same known spectral

library?
2. Should different endmember classes have the same prescribed threshold?
3. Is there any common threshold that can be used in general with different
images?

Besides the drawbacks of a prescribed threshold, MESMA also suffers from
computational inefficiency. The algorithm allows each input pixel from a
hyperspectral scene to be represented using a unique collection of endmember spectra
from a spectral library. Therefore, even if the number of endmembers used for
unmixing is limited for one input pixel, the full image can be mapped using many
more endmembers. With a large spectral library, there will be a considerable number
of endmembers to choose from, which leads extreme computational inefficiency.
In order to mitigate these difficulties, a number of extensions to MESMA have been
developed in recent years.
There are a number of variants derived from MESMA. One is multiple-endmember
linear spectral unmixing (MELSUM) method which uses a criterion relaxed to only
identify nonnegative abundances while not requiring sum-to-one constrains [19].
Another is Bayesian spectral mixture analysis (BSMA) method which obtains the

final proportion value of a material in a pixel through a weighted sum of the
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abundance values found in all combinations, where the weights are proportional to
the probabilities of each endmember deduced from a spectral library [17]. Rather than
conducting an exhaustive search, randomly selecting endmembers from the spectral
library to unmix the hyperspectral scene over several times is also a strategy used in
automated Monte Carlo unmixing (AutoMCU) method [20] where the abundance
value of each pixel are obtained by using their mean and standard deviation
associated with each material from the several runs. In addition to improving
computational efficiency, AutoMCU is able to quantify explicitly the abundance
indeterminacy.

Although MESMA-based variants improve computational efficiency, none of these
methods address an inherent issue arising in spectral variability using an appropriate
spectral library. In practice, we cannot guarantee that such a spectral library is always

available and accurate.

2.2.2 Endmember Bundles

Researchers can obtain spectral libraries using laboratory measurements of materials
of interest or manual endmember identification from the imagery under study or data
previously acquired. However, spectral libraries or the expertise are generally
required for identifying spectral signatures of various materials. Therefore,
approaches to autonomously estimate endmember classes and perform spectral
unmixing of input data are needed.

In [6], a semiautomatic endmember set estimation technique is proposed. Endmember

seeds are manually selected and an endmember class grows by identifying the data
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pixels that have high correlation coefficients with the seeds. The physically
meaningful range for correlation coefficients is from zero to one. The semiautomatic
method is also based on prescribed thresholds. Therefore, it also suffers from the
same issue such as how to determine the threshold and how the prescribed threshold
is applied for all of endmember classes.

In order to avoid using the prescribed threshold, a subsequent work [10] by Somer et
al. developed a fully automatic approach for building endmembers classes by
repeatedly applying a standard endmember finding algorithm, such as automatic
target generation process (ATGP), to a randomly selected portion of the input data.
The endmember classes are obtained by grouping all of the found endmembers into

p clusters using the K-means clustering algorithm. However, this automatic

approach has its own drawbacks. Different numbers of portions, randomness of
portions of the input data and randomness of K-mean method would lead to very
different endmember classeses results. Additionally, pixel spectra that are found at
one spatial subset may be partially mixed at the global scale which will adversely

affect clustering.

2.2.3 Band Selection Weighting and Transformation

Band selection or weighting is another approach to address spectral variability. In this
method, wavelengths with minimum spectral variability are found to be primarily
used for spectral unmixing. Extending this concept, one could find spectral
transformations that transform the input hyperspectral data into a space that

minimizes the effect of spectral variability. In particular, the Fisher discriminant
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approach (FDA) for spectral unmixing learns a transformation for the spectral
signature elements to minimize the scatter within endmember sets and maximize the
scatter among them prior to the estimation of abundance values [21] to avoid

unmixing confusion [22]. The goal of FDA is to estimate the transformation

projection matrix, W

)
W:argmax—|w 5, W

2.2
WO W'S W 22)

where S, and S, are between- and within-class dispersion matrices [23]. Each pixel

is transformed by W before estimating abundance values. An effective
transformation matrix will make the transformed elements within the same set nearly
identical to each other and any one of the transformed elements from each of the
endmember sets can be used to estimate the corresponding abundance values for that
material. However, the noise correlation will affect the transformation and in the

transformed space, some subtle spectral variability will be removed.

2.2.4 Support Vector Machine Unmixing

In [24, 25], researchers have developed a number of approaches using support vector
machines (SVMs) for spectral unmixing while addressing spectral variability. In
SVMs, a two-class classifier is commonly trained in a supervised fashion. Given a

training set, {(x,,y,), (X,,¥,), --, (X,,Y,)} where x, is the i" data point and
y, €{0,1} is the desired class label, an SVM learns a hyper plane that separates two

classes. In hyperspectral unmixing, two SVM-classifier classes are considered as the
favorable class containing pixels from mixing endmembers at specific proportion

12



values versus the unfavorable class of those coming from other abundance choice. To
discretize the solution space of unmixed abundances to a finite number of candidates
is the first step for SVM-based unmixing. For example, if two materials are under

consideration, with an abundance resolution of 0.1 for each material, nine proportion

solution candidates [(0.9,0.1), (0.8,0.2), ---, (O.LO.Q)] are generated. For each

candidate, synthesized pixel data are created by drawing elements from endmember
sets and mixing them using the proportion candidate. In the following, a number of
SV Ms are trained, one for each solution candidate, by labeling the synthesized data of
the selected candidate as one and the other as zero. For an unknown pixel to be
unmixed, all the SVM classifiers are used and the SVM that gives the largest
classification margin will identify the corresponding candidate as the unmixed
abundance solutions.

One advantage of SVM unmixing is that spectral variability is automatically taken
care of when creating synthesized data for SVM training. However, only a finite and
possibly limited number of abundance proportion choices can be considered due to

the discretization of proportion values.

2.2.5 Sparse and Local Unmixing
In the sparse unmixing approach for endmember variability by Castrodad et al. [27],
endmember bundle estimation is conducted first and then unmixing on a training data

set. For example, suppose that N _pixels are composed purely of material m denoted

by the LxN_ matrix X . The dictionary elements representing the endmember set of
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material m , represented by the columns of the matrix E_, are obtained by

minimizing the objective function

R(E,.p,) =X, ~E.p.[. +A: [P, (2.3)

where p,_ represents the abundance values for E_, I is the identity matrix and A is
a fixed regularization parameter. The N_ pixels in X are given from some training

data such as hand selected from a ground truth data set. The second term in the
objective function introduces sparseness. The minimization process could be achieved
by Gauss-Seidel iteration [27].

Local unmixing (LU) extracts endmember sets with elements identified in spatial
neighborhoods across the hyperspectral image [28, 29]. Local endmembers are found
manually or using some endmember finding method. The found local endmembers
are clustered using spectral angle criteria to form endmember bundles.

In sparse and local unmixing, regional specific endmember bundles are allowed.
However, the assumption about sparsity and spatial constrain may be not valid in all

the situations.

2.2.6 Multiscaled-band Partitioning method

Unlike partitioning a given hyperspectral image spatially, researchers in [30]
partitions the image spectrally using multiscaled-band partitioning method.
Endmember finding algorithms are applied to spectral subsets of the original bands
and therefore it extracts the highest amount of information existing in the spectral
domain using multiscaled-band partitioning at various band scales from broad and

narrower intervals. The k-means method is then used to cluster found endmembers.
14



In this method, both inter- and intra-class variability are taken into consideration.
However, it may generate different results using different number of scales and

additionally computational complexity is inevitable.

2.3 Endmembers as distributions

An alternative to the set-based approach to addressing spectral variability in a
material is the use of a multivariate statistical distribution. When endmembers are
represented as statistical distributions, a sample from these distributions can be

viewed as a possible variation.

2.3.1 Bayesian approach

“A number of methods make use of a Bayesian approach for endmember finding and
spectral unmixing. When the endmember distributions are completely specified, joint
estimation of endmembers and proportions, such as Bayesian source separation and
nonnegative matrix factorization, can also provide endmember variations in spectral
unmixing [30, 31]. Such an approach requires the exact knowledge of the endmember

distribution.”

2.3.2 Normal compositional model

“As the most prominent statistical distribution for endmembers, an expectation-
maximization algorithm using normal compositional model (NCM) is proposed to
iteratively update abundance values for every input pixel as well as the mean and
variance parameter values for each endmember distribution until convergence is

reached [32]. Eches et al. [33] developed a Markov chain Monte Carlo (MCMC)
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sampling approach for estimating abundance values and the endmember distribution
covariance using NCM under the assumption that the mean values of the endmembers

are known. ”

2.3.3 Beta compositional model

“As an alternative compositional model, the beta compositional model (BCM) is
developed. Under the BCM, the input data points are random variables distributed
according to a convex combination of beta random variables. The motivation for the
use of the beta distribution is that the values are constrained to the range from zero to
one, which was a physically meaningful range for endmember reflectance values. The
spectral unmixing method based on BCM developed in [34], assumes known
endmember parameter values and estimates abundance values for input pixels using

an approximation to the BCM. ”

2.3.4 Methods of higher moments

“Rather than defining a fixed parametric form for each endmember distribution, [35]
proposed a method to estimate abundance value of an input data by minimizing the
squared difference between the first and second moments of the estimated convex
combination of the endmember values and those of the input data, provided that the
known values for the first and second moments of each endmember distribution are
given. An advantage of this approach is that the full parametric form of each
endmember distribution does not need to be specified and instead only the first and

second moments of each endmember distribution are needed.”
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2.4 Proposed Methods

This dissertation investigates two completely different approaches from existing
methods briefly reviewed above, to deal with endmember class problems. One is
clustering-based algorithms for finding endmember classes and endmembers. In this
method, endmember finding algorithms such as automatic target generation process
(ATGP), unsupervised non-negativity constrained least squares (UNCLS) and
unsupervised fully constrained least squares (UFCLS) [36] are used to find seed
endmembers and an endmember class finding algorithm using half way distance is
then used to find endmember class for each seed endmember. There is no prescribed
threshold need to be determined and each endmember class has its own variability.
The other method is Fisher’s ratio-based approach to finding endmember classes and
endmembers. This method defines two types of endmember variability, Between
endmember variability (BEV) and Within endmember variability (WEV). A new
criteria endmember variability ratio (EVR) is defined as the ratio of BEV and WEV
and different versions of algorithms including SuCcessive, SeQuential and Growing

are developed to maximize EVR.
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Table 2.1 A review of Endmember Variability
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Chapter 3 Clustering-Based Algorithms for Finding

Endmember Classes and Endmembers

3.1 Introduction

As mentioned in Chapter 1, endmember variability needs to be taken into account
when it comes to endmember finding. In this chapter, an endmember variability
algorithm (EVA) is developed to solve the endmember class problem in a totally
unsupervised fashion. In EVA, endmember finding algorithms such as automatic
target generation process (ATGP), unsupervised non-negativity constrained least
squares (UNCLS) and unsupervised fully constrained least squares (UFCLS) are used
to find seed endmembers and algorithm for finding endmember classes (AFEC) is

used to find an endmember class for each seed endmember.

3.2 A Preprocessing Step-Pixel Purity Index

The Pixel Purity Index (PPI) [37] is one of the most popular and widely used
algorithms for finding endmembers in hyperspectral imaging. Technically speaking,
PPl is a convex geometry-based technique which looks for data samples with
maximal or minimal orthogonal projections along certain directions of
interestingness. In this dissertation, PPI is used as a preprocessing step. Specifically,
data samples of interest are found by PPI so that we can work on fewer data samples

instead of the entire image.
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The PPI has been widely used for endmember finding. Let {r,}lNl be a given set of

data sample vectors. For a given value of K (usually K is less than N) we now use a

random generator to produce a set of K random unit vectors (in the sense they all have

:: which cover K different

the amplitude of 1), referred to as skewers, {skewer,}

random directions. All the data sample vectors {r,}lN , are then orthogonally projected
on this randomly generated skewer set, {skewerk}szl. According to geometry of
convexity, an endmember which is considered as a pure signature should occur at end

points of some of these skewers with either maximum projection or minimum

projection. For each sample vector r,we further calculate the number of skewers,

denoted by N, (r,) at which this particular sample vector occurs as an end point to

PPI

tally the PPI count for r,. Fig 3.1 illustrates how the concept of the PP1 works where

three skewers. skewer;, skewer,, skewers are indicated by three random unit vectors,

the sample vectors are shown by open circles and three endmembers e, e,, e, by

solid circles located at three vertices of the triangles and a cross “+” used to indicate a
maximum or minimum projection of an endmember on a skewer.

Due to convexity, all the sample vectors inside the triangle should have their PPI
counts = 0 in the sense that they are mixtures of the three endmembers at the vertices
of the triangle indicated by dashed lines. It should be noted that a maximum or
minimum that occurred at a skewer is one that yields the maximum or minimum

value among all the sample vectors. Also, a projection can be positive or negative
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depending upon whether the projection occur the same or opposite direction of a

skewer.
maximal WPPI{EI)=1 _ maximal
pmjecticn-‘h_* .-/ - pmiectinn
k
5 eweﬁ O dke“erv"H 3
X /
O .

e

minimal
projection ™ —

Figure 3.1 An illustration of PPI with three endmembers e, e,, e,

3.3 Half-Way Distance Clustering Algorithm for Finding Endmember

Classes

In this section, three existing unsupervised endmember finding algorithms have been
introduced and an endmember class finding algorithm is developed. The endmember
variability algorithm, taking advantage of the endmember class finding algorithm, is

used to solve endmember class problem in an iterative fashion.

3.3.1 Automatic Target Generation Process (ATGP)
The automatic target generation process (ATGP) has been found very useful and

effective for unsupervised target detection. It performs a sequence of orthogonal
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subspace projections to extract potential targets of interest. The detailed procedure for
ATGP is described as follows.
Automatic Target Generation Process (ATGP)

1. Initial condition:

Select an initial target pixel vector t, =arg {max r'r} and an error threshold ¢ .
Set k=1and U, =[t,].
2. Atthe k™ iteration, apply P via P;=1-U(U'U) U’ to all image pixels r

in the image and find the k" target t, satisfying

t, =arg {maxr |:( PJHI’)T (ijlr)]} (3.1)

where U, , =[tt,--t,,] is the target matrix generated at the (k —1)" stage.
3. Stopping rule:
If t,P; t <&, let U =[U, t]=[tt,-t] be the k" target matrix, go to

step 2 where t;P; t, is the orthogonal projection correlation index (OPCI).

Otherwise, continue.
4. At this stage, ATGP is terminated and the final set of produced target pixel

vectors comprises k target pixel vectors,
{t, t. 6, t}={tjuft. t, - t_} that were found by repeatedly

using (3.1).
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3.3.2 Unsupervised Non-negative Constrained Least Squares (UNCLYS)

Linear spectral mixture analysis is a widely used approach to determine and quantify
materials in remotely sensed imagery [Heinz, 2000]. Since every pixel is acquired by
spectral bands at different wavelength, they can be represented by column vectors,
and a hyperspectral image is actually an image cube. Suppose that | is the number of
bands. Let r be a I x1 column pixel vector in a hyperspectral image where the bold

face is used for vectors. Let M be a Ix p material signature matrix denoted by
[m, m,, ---, m_], where m_ isa I x1 column vector represented by the signature of
the j" signature resident in the image scene, and p is the number of signatures in the
image scene. Let a=(a, a,, -, &)’ be a px1 abundance column vector
associated with r, where ¢, denotes the abundance fraction of the j" signature

present in the pixel vector r . A classical approach to solving mixed pixel

classification problem is linear unmixing, which assumes that there are p materials in

an image scene and the spectral signature of an image pixel vector r is linearly mixed

by these p material signatures. In this case, the spectral signature of a pixel vector r

can be represented by a linear regression model as follows:

r=Ma+n (3.2)
where n is noise or can be interpreted as a measurement error. A linear unmixing
method attempts to unmix the unknown abundance fractions via an inverse of the
linear mixture model specified by (3.2) so as to achieve the tasks of material
discrimination, detection, classification, quantification, etc.

In general, an NCLS approach solves the following optimization problem
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Minimize LSE =(Ma—r)" (Ma—r) subjectto a>0 (3.3

The detailed procedure for NCLS is referred to [36].

The procedure for unsupervised NCLS (UNCLS) is summarized as follows.

Unsupervised NCLS (UNCLS) Algorithm

1.

2.

3.

Initial condition:

Select ¢ to be a prescribed error threshold and let t, = arg{max [r'r]} where

ris all image pixel vectors. Let k =0.
Let k<« k+1 and apply the NCLS algorithm with the signature matrix
M=[t,, t, ---, t,_,] to estimate the abundance fraction of t , t, ---, t _,,
g (r), (), -, &5(n).
Find the maximum least squares error defined by

max LSE“™ (r) = max {(r -[Z{5&" (Nt 1) (r - [Z26° (N, D} (3.4)

If LSE“™(r)<¢ forall r, the algorithm stops; otherwise continue.

4. Find t,=arg{max. LSE“”(r)}. Go to step 2.

It is worth noting that the superscript (k) in &{“(r)is a counter to indicate the

number of iterations. It starts with k =1. The subscript j in &{”(r) starts with j=1

and is the index of the j" target signature t, generated by UNCLS algorithm,

Another comment is worthwhile. The UNCLS algorithm is primarily designed for

unsupervised subpixel detection. It can be modified by replacing the NCLS algorithm

in step 2 with the fully constrained least square (FCLS) algorithm, which is

introduced in detail next.
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3.3.3 Unsupervised Fully Constrained Least Squares (UFCLYS)

In general, a FCLS approach solves the following optimization problem

Minimize LSE =(Ma—r)" (Ma—r) subjectto a >0, Ep)aj =1 (3.5)
j=1

Comparing to NCLS, FCLS has one more constraint abundance sum-to-one

constraint (ASC). The detailed procedure of UFCLS is as follows.

1.

5.

Initial condition:
Select ¢ to be a prescribed error threshold and let t, = arg{max [r'r]} where

r is all image pixel vectors. Let k=0.

Find t that yields the largest LSE®(r)=(r-t,)" (r-t,)

!
t, =arg{max LSE“(r)}.
Let k<« k+1 and apply the FCLS algorithm with the signature matrix
M=[t,,t,---,t_,] to estimate the abundance fraction of t,t,---,t _, ,
a'(r), & (r), -, al(r).
Find the maximum least squares error defined by

max LSE" ™ (r) = max {(r -[X2a{” (Nt )" (r - [Z5a° (Nt, D)} (3.6)
If LSE“?(r)<¢ forall r, the algorithm stops; otherwise continue.

Find t, =arg{max LSE“™"(r)}. Go to step 2.

3.3.4 Algorithm for Finding Endmember Classes

Finding endmember classes is very challenging as shown in [38]. Many approaches

have been reported in the literature, most of which are either empirical or use prior

knowledge. None of them can be implemented automatically in an unsupervised
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fashion. This section presents a completely automatic algorithm to find endmember
classes.
Algorithm for Finding Endmember Classes (AFEC)

1. Initial conditions:
Input a set of endmembers, denoted by {e, }

P
j=1
2. For each e, for 1<j<p , find D;=d(,S;)=min ; {d(e.e)} where

S

S, :{ei}ip:l,i;,- and d(,-) is a distance measure which can be either Euclidean

distance or Mahalanobis distance.

3. Forthe j" endmember class EC, for 1< j < p we can use find EC, as follows.
EC, ={r|d(r.e;) <D, /2} (3.7)
It should be noted that the threshold D,/2 in (3.7) chosen to be half way of

minimum distance D, is to avoid overlapping with other endmember classes. As a

result, all such generated endmember classes are disjoint with no intersection.
Proof of all generated endmember classes by algorithm for finding endmember
classes are disjoint without any intersection.

Suppose one pixel r belongs to both EC, and EC, . So we have

d(r,e,))<D,/2<d(e,e,)/2 (3.8)

d(r,e,)<D,/2<d(e,e,)/2 (3.9)
Add both sides,

d(r,e,)+d(r,e,) <d(e,e,) (3.10)
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which is contradicted with d(r,e)+d(r,e,)>d(e,e,) (by triangle inequality
property in metric space).

So r cannot be in both EC, and EC,.

3.3.5 Endmember Variability Algorithm (EVA)

Assume that {ej}jp:l is a set of desired endmembers and {EC]}_p are their

j=1
corresponding endmember classes where EC, is the spectral class specified by the

nj

j" endmember e, which is a set made up of {si"}i:l where s! is an element in EC,

and considered to be a spectral variant of e,, and n, is the total number of elements in

EC,.
Endmember Variability Algorithm (EVA)
1. Initial condition:
a. Determine the value of p, number of endmembers required to be

found. Use endmember initialization algorithms (EIA) such as Automatic

Target Generation Process (ATGP) and Unsupervised Fully Constrained Least

Squares (UFCLS) to produce a set of initial endmembers, E© = {e‘f’}p

j=1
b. Setk =1.

2. Finding k" endmember classes, {EC*'}"

=

At the k" iteration implement the algorithm for finding endmember classes,

{ECI°}" using the (k~1)" set of endmembers EC*
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3. Finding the k" set of endmembers, EC":

Calculate the mean of each endmember class, denoted by {u(jk)}_p where p®
j=1 !

is the mean of EC}“.

i ) — (0 OISO
a. Either let el =p® form E® ={ef }H or

b. Find the closest data samples, {t’} to the class means {u‘jk’}'_)

j=1
according to

t% = arg {minm(r,n®)} (3.11)
with m(-,-) is a spectral measure such as Euclidean distance, spectral angle

mapper (SAM) or spectral information divergence (SID) [1]. Let ef” =t%

4. Sopping rule:
If EC® =EC*™, algorithm is terminated. Otherwise, continue.

5. Let k «k-+1and go to step 2.
Stopping Rule
Due to endmember variability finding identical endmembers in both sets,
EC® = EC*™ may cause fluctuations in step 4 of EVA. In order to execute
this stopping rule with flexibility we take advantage of an algorithm
developed in [Li, 2014], called endmember identification algorithm and
modify it for our purpose.

Stopping Rule for EVA
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1. Assume that EC® ={e(jk’}?:l are the k" generated set of p endmembers and
ECH? :{ei‘k*l)}ip:l isthe (k—1)" generated set of p endmembers.

2. For each endmember e, find an endmember class in {EC*™}" assigned to
el” by

hcic j

e cECY” < j" =arg{min__ SAM (e% %)} (3.12)

where SAM is short for spectral angle mapper, which is defined as

SAM(s,,s,) = cos{ (50:5:) ] :

s. s |
3. For each endmember e“™* in E*™ ={e§“’}ip:l, find an endmember class in
E“ ={e*™}’ towhich it belongs by

eV cECY i —arg {min SAM (e(jk) ’ei(kfl))} (3.13)

1<j<d
4. If for each endmember ¢! in EC™ :{e(jk’};, e’ can find its corresponding
e‘j‘i’“ in EC*™® ={ei‘“)}ip:l via (3.12) for some j* and in the meantime, for
each endmember in EC*™ ={e*¥}" , e can find its corresponding e in

EC(k’:{e(jk’}jp:l via (3.13) for some i', then EC® =EC*™ . Otherwise

ECY = EC*™Y.
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3.4 Experiments

In the following experiments, the closest data sample to the class mean is used as the
new class center. Endmember Variability Algorithm (EVA) stops when two

consecutive runs are identical.

3.4.1 Synthetic Image Experiments

Since real images generally do not have complete ground truth about the
endmembers, we must rely on synthetic images which are simulated by complete
knowledge to conduct quantitative analysis for performance evaluation of various
endmember extraction algorithms. Recently, several synthetic images developed in
[39] can be used for this purpose. These synthetic images were custom-designed and
simulated based on the Cuprite image data, which is available on the USGS website

http://aviris.jpl.nasa.gov/. This scene is a 224-band image with size of 350%x350 pixels

and was collected over the Cuprite mining site, Nevada, in 1997. It is well understood
mineralogically. As a result, a total of 189 bands were used for experiments where
bands 1-3, 105-115 and 150-170 have been removed prior to the analysis due to water
absorption and low SNR in those bands. Although there are more than five minerals
in the data set, the ground truth available for this region only provides the locations of
the pure pixels: Alunite (A), Buddingtonite (B), Calcite (C), Kaolinite (K) and
Muscovite (M). The locations of these five pure minerals are labeled by A, B, C, K
and M respectively and shown in Fig 3.1. Available from the image scene is a set of

reflectance spectra shown in Fig 3.1 which will be used to simulate synthetic images.
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Reflectance

(a) (b)
Figure 3.2 (a) Cuprite AVIRIS image scene; (b) Five mineral reflectance spectra and background
signature which is the average of area BKG in the top right of (a)

_ / -O% any other four

5% signal + 75% background

/]

Figure 3.3 A set of 25 panels simulated by A,B,C,K,M

The synthetic image designed here simulates 25 panels shown in Fig 3.3 with 5
panels in each row simulated by the same mineral signature and 5 panels in each

column having the same size.

Table 3.1 Mixing percent and pixels in each row and column in Fig 3.2

1st 2nd 3rd 4th 5th
Mixing percent and Column Column Column Column Column

pixels in each row and 50% sig + | 50% sig + 25% sig +
column 100% sig 100% sig | 50% other 50% 75%

four background | background
1st Row A 4x4 2%2 2%2 1x1 1x1
2nd Row B 4x4 2%2 2x%2 1x1 1x1
3rd Row C 4x4 2x2 2x2 1x1 1x1
4th Row K 4x4 2x2 2x2 1x1 1x1
5th Row M 4x4 2%2 2x%2 1x1 1x1
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Among 25 panels are five 4x4 pure-pixel panels for each row in the 1% column and
five 2x2 pure-pixel panels for each row in the 2" column, the five 2x2 -mixed pixel
panels for each row in the 3™ column and both the five 1x1 subpixel panels for each
row in the 4™ column and the 5™ column where the mixed and subpanel pixels were
simulated according to legends in Fig 3.3. So, a total of 100 pure pixels (80 in the 1%
column and 20 in 2" column), referred to as endmember pixels were simulated in the
data by the five endmembers, A, B, C, K, M. An area marked by “BKG” at the upper
right corner of Fig 3.2(b) was selected to find its sample mean, i.e., the average of all
pixel vectors within the area “BKG”, denoted by b and plotted in Fig 3.2(b), to be
used to simulate the background for image scene in Fig 3.3. The reason for this
background selection is empirical since the selected area “BKG” seemed more
homogeneous than other regions. Nevertheless, other areas can be also selected for
the same purpose. This b-simulated image background was further corrupted by an
additive noise to achieve a certain signal-to-noise ratio (SNR) which was defined as
50% signature (i.e., reflectance/radiance) divided by the standard deviation of the
noise. Once target pixels and background are simulated, two types of target insertion
can be designed to simulate experiments for various applications.
1. Scenario 1: Tl Scenario

The first type of target insertion is Target Implantation (TI) which can be simulated
by inserting clean target panels into the clean image background plus additive
Gaussian noise by replacing their corresponding background pixels.

The value of VD is chosen to be 6 according to the ground truth where 5 mineral

signatures plus a BKG signature are used to simulate the synthetic image scene. Fig.
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3.4(a) shows 6 initial endmembers generated by ATGP for Tl and Fig. 3.4(b) shows
the 5 endmember classes by the proposed EVA using the 6 initial signatures in Fig.
3.4(a) for TI. It should be noted that since we are not interested in BKG class, only 5
endmember classes corresponding to five mineral signatures are shown in Fig. 3.5.
The algorithm is terminated at the 3 run because the endmember classes generated at
the 2" and 3" runs are the same where each endmember class indeed finds all its own

corresponding pure panel signatures.

1 EC; (20 members) 2" EC, (20 members) 3" EC; (20 members)

4™ EC, (20 members) 5" ECs (20 members)
(b) Finding 5 endmember classes
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Figure 3.4 TI: ATGP-generated endmembers and their endmember classes

Fig. 3.5 shows its final endmembers selected by EVA to represent each of
endmember classes where these representatives happen to be the first panel pixels in
each row that were identified by ATGP.

1% run 2" run 3 run

Figure 3.5 TI: final endmembers determined by EVA

Scenario 2: TE Scenario

A second type of target insertion is Target Embeddedness (TE) which can be also
simulated by embedding clean target panels into the clean image background plus
additive Gaussian noise by superimposing target pixels over the background pixels.
Same experiments conducted for T1 are also conducted for TE.

Fig. 3.6 and Fig. 3.7 shows two consecutive runs of endmembers (2" and 3) are
identical and EVA stops at the 3" run for TE data. If the stopping rule from
endmember identification algorithm is applied, EVA stops at the 2™ run. Although
the 6™ endmember location changes in the 2™ run, the endmember classes for 5 panel

endmembers are the same as those shown in Fig 3.6.
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(a) Initial condition: 6 endmembers found by ATGP

1% EC, (20 members) 2" EC, (20 members) 3" EC; (21 members)

4" EC, (20 members) 5" ECs (21 members)
(b) Five endmember classes

Figure 3.6 TE: ATGP generated endmembers and their endmember classes

1% run 2" run 3“run
Figure 3.7 TE: 6 endmembers determined by EVA
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3.4.2 Real Image Experiment

The Hyperspectral Digital Imagery Collection Experiment (HYDICE) image scene is
shown in Fig. 3.8 which was collected in August 1995 from a flight altitude of 10000
feet with the ground sampling distance approximately 1.56 m [40]. It has size of
64x64 pixel vectors shown in Fig 3.8 (a) along with its ground truth provided in Fig
3.8 (b) where the center and boundary pixels of objects are highlighted by red and
yellow respectively. It was acquired by 210 spectral bands with a spectral coverage
from 0.4 um to 2.5 um. Low signal/high noise bands: bands 1-3 and bands 202-210;
and water vapor absorption bands: bands 101-112 and bands 137-153 were removed.
So, a total of 169 bands were used in the experiments. The spectral resolution of this
image scene is 10 nm. Within the scene in Fig. 3.8 there is a large grass field and a
forest on the left edge. Each element in this matrix is a square panel and denoted by

pij with rows indexed by i and columns indexed by j=1, 2, 3. For each row
i=1 2, ---, 5, there are three panels painted by the same paint but with three
different sizes.

P11, P12, P13

P211, P22, P23
P11, P312, P32, Pa3

Pa11, Pa12, Paz, Pa3

Ps11, Ps2, Ps3

Ps21
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4000

Spectral Profile
" a

2000

)

©
Figure 3.8 (a) A HYDICE panel scene which contains 15 panels; (b) Ground truth map of spatial
locations of the 15 panels; (c) five panel signatures py, P2, P3, P4r Ps

The sizes of the panels in the first, second and third columns are 3m x 3m
2m x2m and 1 m x 1 m respectively. Since the size of the panels in the third
columnis 1 m x 1 m , they cannot be seen visually from Fig 3.8 (a) because of their

size less than the 1.56 m pixel resolution. For each column j=1, 2, 3, the 5 panels

have same sizes but in five different paint. However, it should be noted that the
panels in rows 2 and 3 were made by the same material with two different paints.
Similarly, it is also the case for panels in rows 4 and 5. Nevertheless, they were still
considered as different panels but our experiments will demonstrate that detecting
panels in row 5 (row 3) may also have effect on detection of panels in row 4 (row 2).
The 1.56 m-spatial resolution of the image scene suggests that most of the 15 panels
are one pixel in size except that the panels in the 1% column with the 2", 3 4™ 5"
rows which are two-pixel panels, denoted by p211, P221, P311, P312, Pa11, Pa12, Psi1, Ps2i.
As a result, there are a total 19 panel pixels. Fig 3.8 (b) shows the precise spatial
locations of these 19 panel pixels where red pixels (R pixels) are the panel center

pixels and the pixels in yellow (Y pixels) are panel pixels mixed with the BKG. Fig

37



3.8 (c) shows the spectra of five panel signatures pi, p2, Ps, P4, Ps obtained by

averaging the center R panel pixels for each of five rows.

(@) 9 endmembers found by ATGP

8

1% EC, (4 members) 2" EC, (10 members) 39 EC; (1 member)

4" EC, (41 members) 5% ECs (2 members) 6" EC, (1 member)

7" EC; (3 members) 8" ECg (1 member) 9™ ECq (6 members)
(b) Finding 9 endmember classes

38



Figure 3.9 HYDICE: ATGP-generated endmembers and their endmember classes

1% run 2" run

Figure 3.10 HYDICE: endmembers generated by EVA

8 ‘
1 EC; (6 members) 2" 3" EC; (2 members)

4™ EC, (49 members) 5" EC, (2 members) 6" ECs (1 member)

7" EC; (5 members) 8" ECg (2 members) 9™ ECq (8 members)
Figure 3.11 HYDICE: endmember classes of 3" run by EVA
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00
1% EC, (5 members) 2" EC, (10 members) 3" EC; (1 members)

4" EC, (45 members) 5" EC5 (2 members) 6" EC, (1 member)

7" EC; (8 members) 8" ECg (2 members) 9™ ECq (8 members)
Figure 3.12 HYDICE: endmember classes by EVA using class means

Nine endmembers generated by ATGP and their corresponding endmember classes
are shown in Fig 3.9. As shown in Fig 3.10, it takes EVA three runs to converge (two
consecutive runs are the same). If the stopping rule from endmember identification
algorithm is used, EVA stops at the 2" run as shown in Fig 3.10. The final
endmember classes are shown in Fig 3.11. Instead of using the closest data sample,
endmember class mean can be also used as virtual signature. The final endmember

classes are shown in Fig 3.12. Comparing results from Fig. 3.11 and Fig 3.12,
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endmember classes results are almost the same. The only difference is that the third
endmember class includes two members as shown in Fig. 3.11 while it only has only

member as shown in Fig. 3.12 for panel pixels in the fourth row.

8

1% EC, (6 members) 2" EC, (45 members) 3" EC; (11 members)

4" EC4 (2 members) 5% ECs (1 members) 6™ ECs (10 members)
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EC, (3 members) 8" ECg (2 members) 9™ ECq (4 members)
(b) Finding 9 endmember classes

Figure 3.13 HYDICE: UFCLS-generated endmembers and their endmember classes

4" run 5" run
Figure 3.14 HYDICE: endmembers generated by EVA with UFCLS initialization

8 [e)
1 EC, (6 members) 2" EC, (43 members) 3" EC; (11 members)
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4™ EC, (2 members) 5" ECs (1 member) 6" EC; (11 member)

| 7" EC; (3 members) 7 8" ECg (2 members) 9™ ECq (4 members)
Figure 3.15 HYDICE: endmember classes of 5 run by EVA

( (;5):,,
2" EC, (13 members)

1% EC; (5 members)

3" EC; (1 members)
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4" EC, (47 members) 6" EC; (2 member)

™ EC, (3 members) 8™ ECg (1 members) 9™ ECy (4 members)
(b) Finding 9 endmember classes

Figure 3.16 HYDICE: UNCLS-generated endmembers and their endmember classes

1% run 2" run | 3“run
Figure 3.17 HYDICE: endmembers generated by EVA with UNCLS initialization

1% EC; (5 members) 2" EC, (14 members) 3 EC; (1 member)
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4" EC, (47 members) 6" EC; (1 member)

7" EC; (4 members) 7 8" ECg (1 members) 9™ ECq (1 members)
Figure 3.18 HYDICE: endmember classes of 3 run by EVA

Endmember classes results initialized by UFCLS and UNCLS are shown in Fig 3.13-
Fig 3.15 and Fig 3.16-Fig 3.18, respectively. With two different sets of initial
conditions, endmember classes are different. However, they have some similar

endmember classes shown as follows.

ATGP

1% EC; (6 members) 1% EC; (6 members) 1% EC; (5 members)
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8 o
2" EC, (13 members)

3" EC; (2 members)

4™ EC, (49 members)

5" ECs (2 members)

F
8 )
3" EC;, (11 members)

4" EC,4 (2 members)

2" EC, (2 members)

5" ECs (1 members)
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8 (23]
2" EC, (14 members)

3" EC; (1 members)

4™ EC, (47 members)

5™ ECs (2 members)



8" ECg (2 members) | 7" EC; (3 members) 7 | 7" EC; (4 members)
Figure 3.19 Endmember classes comparison of different initialization algorithms ATGP, UFCLS and
UNCLS

As a second example an Airborne Visible/InfraRed Image Spectrometer (AVIRIS)
image scene shown in Fig 3.20 was used for experiments. It is the Lunar Crater
Volcanic Field (LCVF) located in Northern Nye County, NV. Atmospheric water
bands and low SNR bands have been removed from the data, reducing the image cube
from 224 to 158 bands. The image in Fig 3.20 has 10nm spectral resolution and 20m
spatial resolution. There are five target of interest, the radiance spectra of red
oxidized basaltic cinders, rhyolite, playa (dry lake), vegetation and shade along with a

two-pixel wide anomaly.

cinder vegetation
anomal
shade y
rhyoli
yolite dry lake

Figure 3.20 AVARIS LCVF scene
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Shade
== Rhyolite
=Dry lake
=Cinders
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Figure 3.21 Spectral profile AVARIS LCVF scene

6 endmembers found by ATGP

1% EC; (153 members) 2" EC, (37 members) 3" EC; (15 members)

48



4" EC, (78 members) 5" EC5 (2 members)
(b) Finding 6 endmember classes

Figure 3.22 LCVF: ATGP-generated endmembers and their endmember classes

6™ ECs (14 members)

4" run
Figure 3.23 LCVF: endmembers generated by EVA with ATGP initialization

1% EC, (150 members) 2" EC, (35 members) 3" EC; (16 members)
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4™ EC, (78 members) 5™ ECs (2 members) 6" ECs (16 members)
Figure 3.24 LCVF: endmember classes of 4™ run by EVA

2" EC, (66 members) 3" EC; (46 members)

4™ EC, (2 members) 5" ECs (7 members)
(b) Finding 6 endmember classes

Figure 3.255 LCVF: UFCLS-generated endmembers and their endmember classes

6" ECs (5 members)
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4" run 5" run

Figure 3.26 LCVF: endmembers generated by EVA with UFCLS initialization

1% EC, (161 members) 2" EC, (66 members) 3 EC; (44 members)

4" EC, (2 members) 5™ ECs (7 members) 6" ECs (6 members)
Figure 3.27 LCVF: endmember classes of 5" run by EVA
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(&) 6 endmembers found by UNCLS

2" EC, (41 members) 3 EC; (2 members)

4™ EC, (4 members) 5% EC5 (73 members)
(b) Finding 6 endmember classes

Figure 3.28 LCVF: UNCLS-generated endmembers and their endmember classes

6™ ECs (3 members)

1% run 2" run 3" run

Figure 3.29 LCVF: endmembers generated by EVA with UNCLS initialization
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3" EC; (2 members)

4" EC4 (4 members) 5™ ECs (69 members) 6™ EC (3 members)
Figure 3.30 LCVF: endmember classes of 3" run by EVA

The same experiments done for HYDICE data were also conducted on LCVF data.
Results for endmember classes are shown in Fig 3.22-Fig 3.24, Fig 3.25-Fig 3.27 and
Fig 3.28-Fig 3.29 which used ATGP, UFCLS and UNCLS as initialization algorithms
to produce initial endmembers for EVA, respectively. Endmember class results with
different initial conditions are not identical but they are very similar except that the

order of classes is different.

3.5 Conclusion

In this chapter, an unsupervised method called Endmember Variability (EVA) is
developed that does not require any prior knowledge or assumptions. Furthermore,
finding endmember class algorithm is an iterative process, where an unsupervised

endmember finding algorithm such as ATGP, UFCLS or UNCLS, is used to find
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initial endmembers prior to the implementation of EVA. The set of endmember

classes are refined by an iterative process implemented in EVA.
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Chapter 4 Fisher’s Ratio-Based Approach to Finding

Endmember Classes and Endmembers

4.1 Introduction

As mentioned in Chapter 1 and Chapter 2, the existence of endmembers will be
unlikely guaranteed due to many unforeseeable effects resulting from physical
phenomena in real world problems. Under such a circumstance, endmember
variability needs to be considered when it comes to endmember finding.

Since an endmember class is to group a set of data samples with their spectral
signatures very similar to a true endmember, a logical approach is to assume the true
endmember to be the class center and all other samples in this class are simply
considered as its variants. This further suggests that this class can be used to describe
endmember variability around the endmember. From a pattern classification point of
view, such a class endmember variability corresponds to the within-class variance
that is used in one of most widely used classification technique, Fisher’s linear
discriminant analysis (FLDA) [23] - which makes use of Fisher’s ratio (FR) or
Raleigh quotient defined as the ratio of between-class scatter matrix to within-class
scatter matrix to perform classification.

According to FLDA, Fisher’s ratio defined by

.
FR = max,, WTSBW (4.2)

w'S,w
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is an effective criterion widely used for pattern classification where S, and S, are

between-class and within-class scatter matrices. w is the linear transformation.

In light of this interpretation we can define two types of endmember variability,
between-endmember variability (BEV) and within-endmember variability (WEV)
which can represent intra-endmember class variability and inter-endmember class
variability very similar to within-class variance and between-class variance
commonly used in pattern classification. By virtue of BEV and WEV a criterion
similar to FR can be also defined as ratio of BEV to WEV, referred to as endmember
variability ratio (EVR). As a result, EVR provides an alternative criterion to many
other commonly used criteria for finding endmembers, orthogonal projection used by
pixel purity index (PPI), simplex volume used by minimum volume transform
(MVT), N-FINDR. In other words, a new criterion for finding endmembers can be
derived to maximize EVR, which is equivalent to maximizing BEV while also
minimizing WEV. An algorithm using EVR as an optimal criterion for finding
endmembers is called endmember variability ratio-based endmember finding

algorithm (EVR-EFA).

4.2 Criteria for Endmember Variability

Assume that {ej}:’:1 is a set of desired endmembers and {ECJ.}_p are their

=1

corresponding endmember classes where EC; is the spectral class specified by the j"

endmember €; which is a set made up of {sf}f‘l where s/ is an element in EC; and

considered to be a spectral variant of e, and n, is the total number of elements in
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EC;. As will be described in the following, two types of endmember variability are of
interest, between endmember variability (BEV) and within endmember variability

(WEV).

4.2.1 Between Endmember Variability (BEV)
While WEV has been studied extensively in the literature, between-endmember

variability (BEV) has never been defined and explored in the past. It can be measured
by
BEV (e, €,, -+ €,) =200 a(e,—¢,) (e, —¢,) (4.2)

which is similar to between-class variance used by FLDA.

4.2.2 Within Endmember Variability (WEV)

Within-endmember variability (WEV) can be measured by variances within each of p

endmember classes, {ECj}f’ ) via a distance measure such as Euclidean distance (ED)

j=

given by
WEV (e, e,, -+, €,)=2b.2m(s7 e, ) (sr—e,) (4.3)
Following an idea similar to (3.1) we can define a new criterion as

BEV (e, -~ € ) (4.4)

— j!'“’ep
EVR(e,. -~ e, €,) WEV (6., ¢, - e.)

]

4.3 Finding Endmember Classes

Endmember classes need to be found in order to calculate within-endmember
variability (WEV). According to previous literature, a predefined threshold is used to

find endmember classes. There are two major issues about the predefined threshold.
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(1) Without any prior knowledge, it is usually very difficult to determine the
threshold. (2) For each endmember class, it is supposed to have its own variability.

We cannot simply apply one threshold to all endmember classes. The following

method can be used to solve those two issues. Let {ej}f’l be the desired set of

endmembers and {ECJ.};’:l be the corresponding endmember classes. Endmember

classes can be found using the following method.

r e{EC}J_* < J =arg{min_,_ SAM(r, €,)} (4.5)
where r is a data sample and e, is endmember class center. Similarity measurement

in (4.5) SAM (Spectral Angle Mapper) can be replaced by Euclidean Distance (ED)
or Spectral Information Divergence (SID) [1]. In this way, there is no need to specify

any threshold.

4.4 Design and Development of Endmember Variability — Endmember
Finding Algorithm (EVR-EFA)

Two algorithms can be developed for EVR-based endmember finding approach. One
is derived from an idea similar to successive N-FINDR and is called SuCcessive
EVR-EFA (SC EVR-EFA). Another one is also derived from sequential N-FINDR
and is called SeQuential EVR-EFA (SQ EVR-EFA) which interchanges the order of

implementing inner loop and outer loop in SC EVR-EFA.

58



4.4.1 Successive EVR-EFA

Despite SC EVR-EFA and SC N-FINDR share similar ideas their implementations

are different in terms of their criteria where N-FINDER maximizes simplex volume

and EVR-EFA maximizes EVR specified by (4.4).

SuCcessive EVR-EFA (SC EVR-EFA)

Preprocessing:

1.

2.

Let p be the number of endmembers required to generate.
Initialization:

Let {r.F’P'}i“il be all data sample vectors from Pixel Purity Index (PPI).

Randomly select p pixels as an initial set of endmembers {e(jo)}’_’

) and their

corresponding endmember classes, {EC(eg.O))};’:1 by the method developed in

Section 4.3 and perform data sphering.

Outer loop

For {r™ }IM1 find e which is a desired endmember to replace e!” . (Here we

use index j as a counter to keep track of the number of endmembers already

and currently being processed)

Inner loop (Here we use index i as a counter to keep track of data sample
vector)

For 1<i<M we calculate the Fisher’s ratio

EVR(e0, -, e, 1, e, -, e?) defined in (3.2), (3.3) and (3.4) while

j+11
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fixing other endmembers e” with I<j and e® with I>j . Let

e}’ —arg{max, EVR(e{, ---, e, 1, &%, -, e¥)}.
5. Stopping rule:
If j<p then j<« j+1 and go to step 3. Otherwise, the final set of

(e, e, -, &0’} is a desired set of p endmembers.

Initial conditions:

Determine the value of p

v

Apply PPI to original data {=}

Randomly select an initial set of p pixels from {rf.m } , denoted by {e'f” }f‘

Perform data sphering

Final endmember set

Figure 4.1 Flowchart of SC EVR-EFA using random initial conditions

4.4.2 Sequential EVR-EFA
A similar version to SQ N-FINDR can be also derived, called SQ EVR-EFA as
follows.

SQ EVR-EFA
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1.

4.

Preprocessing:

Let p be the number of endmembers required to generate.

Let {r; }i“il be all data sample vectors from Pixel Purity Index (PPI)

Initialization:
Let {e”, &, ---, e} be a set of initial vectors randomly selected from the
data.

Perform data sphering.
Set i=1 and go to step 3
Outer loop: (Here we use index i as a counter to keep track of data sample

vector r,)

a. Check if i=N. If yes, the algorithm is terminated. Otherwise, let i <—i+1
and continue.

b. Input the i" data sample vector r,. (Note that r now is the i+1% data
sample vector r,,).

Inner loop: (Here we use j as counter to keep track of the j" endmember ;)

a. Using r, to replace each of {e{”, e, -, e{’}, calculate all the Fisher’s
ratios EVR(r, e, -, &) : EVR(e(", 1, €, -, &) :
EVR(e{”, - e, r,) . If there exists one of them is greater than
EVR(e{”, e, -, e{?), go to step 3.

b. Replacement rule:
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The endmember which is absent in the largest Fisher’s ratio among the p
Fisher's ratios EVR(r, e, -, e0) , EVR(e”, r, e, - el) ,
EVR(e”, ---, e, r;), denoted by e{” for index | will be replaced by the
i" sample vector r,, A new set of endmembers is then produced by letting

el =r.and el =e!¥ for j=l and go to step 3.
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Initial conditions:

Determine the value of p

v

rri
Apply PPI to generate a set of {q }

v

A rei r
Randomly select an initial set of p VS from {r}. } , denoted by {e(’U) }
J i=1
EVR"Y = EVR (e‘”’,...,em’,m,e‘o’)
max 1 / P

'

Perform data sphering

Outer loop indexed by i 1

| i=

| e i ------------------------------ -

. 1 1

1

! 1 Inner loop |

: 1 -, PSR/ . (i) (i) (1) |\« !

| ! Initial condition: EVR = EI’R(eI s €, 1

: indexed by j - - '

i : v :

: ' Find !

| | !
1

. 1 1

| ! .max __ (1) (i) PPl (i) (i) !

: ! J =argemax,_ EVR|e”,....e’ r" e e !

| : : —— 1

. J 1

| | |

. | 1

S M EVR?, = mm(wl i

| ! 1

N ! ]

|

i

|

i yes *

i o li) (i) (1) .

: Let £EVR " = EVR ~ andreplace e withr;

I meix meix j-ma.\

i=i+l

Figure 4.2 Flowchart of SQ EVR-EFA using random initial conditions
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4.4.3 Growing EVR-EFA
The SQ EVR-EFA and SC EVR-EFA developed in previous sections deal with p
endmembers at the same time. From computational as well real-time processing
points of view they may not quite fit real world applications. This section we develop
a growing EVR-EFA which grows endmembers via EVR, referred to as G-EVR-EFA
and can be considered an EVR version of SGA. With a slight modification of SC
EVR-EFA an algorithm to implement G-EVR-EFA is detailed as follows.
G-EVR-EFA
Preprocessing:

1. Let p be the number of endmembers required to generate.

Perform data sphering.

2. Initialization:

Let e =arg{max, r'r} be the first endmember. Let (r;}" be all data sample
vectors from Pixel Purity Index (PPI) and {ECJ.}J_p:l be the j™ endmember

class.

3. Outer loop
For 2< j<p, find e’ which is a new desired endmember to be added. (Here
we use index j as a counter to keep track of the number of endmembers
already)

4. Inner loop (Here we use index i as a counter to keep track of data sample

vector)
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For 1<i<N we calculate the Fisher’s ratio EVR(e{?, ---, €, r;) defined in
(3.4).
5. Lete(’ =arg{max, EVR(e{’, -, e/, r,)} .

6. Stopping rule:

If j<p then j<« j+1 and go to step 3. Otherwise, the final set of

{0, €D, -, e9} is a desired set of p endmembers.

Initial conditions:
Determine the value of p

Apply PPI to generate a set of {rf.’"}‘[ }
Randomly select an initial set of p VEs from {qm } , denoted by
Perform data sphering
Middle loop indexed by j - <
] - o
_______________________________ *________________________

1
1
1
i Inner loop
1
1
1
1

E « E|—p k=k+tl

Outer loop indexed by k

Figure 4.3 Flowchart of iterative SC EVR-EFA using random initial conditions
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4.4.4 lterative EVR-EFA
The resulting endmember sets may be different using random initial conditions by SC
EVR-EFA or SQ EVR-EFA. In order to solve randomness issue, iterative version of
EVR-EFA (I-EVR-EFA) is developed as follows.
I-EVR-EFA
1. Randomly generate a set of p initial endmembers, VE® ={e{®, e, ..., e0'}.
2. Let k = 1 which is a counter to keep track of the number of times the
outermost loop is executed.
3. For any k, apply either SC EVR-EFA or SQ EVR-EFA to generate a set of
endmembers, denoted by VE® ={el, &%, ..., e®}.
4. Check if VE®P =VE®. If it is, then the algorithm is terminated. Otherwise,

continue. Let k «—k+1 and go to step 3.
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Initial conditions:
Determine the value of p

Apply PPI to generate a set of {rjPH }

_ rri
Randomly select an initial set of p VEs from {r{.

} , denoted by

P () (0 (0)
E© = {e[m} and EVR" =EVR (g: e € e )
» j i=1 ma s s

Perform data sphering

.
)l
e e s D _
: Outer loop indexed by i - \ 4 l
| i=1 |
e e A
Do I
1

I+ Inner loop — -~ ‘ co |
i ' Initial condition: EVR"” = EVR (e‘l“,...,e"",---,elj') — ! i
© 1 indexed by j ¥ .
| : 1 |
: ;!
Do - - . Lo
I Find M = arg i max,. ., E\'Rte;",.‘.,e“’].r‘” .e‘,",..--,e',']} and v
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o ’ |
: ] 1 :
I [
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- - .
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|
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Figure 4.4 Flowchart of iterative SQ EVR-EFA using random initial conditions
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4.5 Experiment

4.5.1 Synthetic Image Experiments
The same set of synthetic images, including Tl and TE, are used for endmember
variability algorithm (EVA). The detailed introduction of Tl and TE can be found in

Section 3.5.1.

k=0

EC, (20 members) EC; (20 members)

EC, (20 members) ECs (3 embers) o ECs (20 members)
Figure 4.5 Tl data: 6 endmembers and their classes by iterative SC EVA-EFA
(one random initial condition)
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EC, (20 members) EC, (20 members)

EC, (20 members) ECs (20 members) ECs (34 members)
Figure 4.6 Tl data: 6 endmembers and their classes by iterative SC EVA-EFA
(another random initial condition)

k=0 k=1
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EC; (20 members) EC, (334 members) EC; (20 members)

EC, (20 members) ECs (20 members) ECs (20 members)
Figure 4.7 Tl data: 6 endmembers and their classes by iterative SQ EVA-EFA
(one random initial condition)

EC; (20 members) EC, (20 members) EC; (20 members)
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EC, (20 members) ECs (20 members) ECs (332 members)
Figure 4.8 Tl data: 6 endmembers and their classes by iterative SQ EVA-EFA
(another random initial condition)

EC, (20 members) EC; (20 members)

EC, (20 members) ECs (20 members) ECs (20 members)
(b) Finding 6 endmember classes

Figure 4.9 Tl data: 6 endmembers and their classes by G EVA-EFA
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For TE data, the same experiments performed for Tl were also conducted. Three
methods, including iterative SC EVA-EFA, iterative SQ EVA-EFA and growing
EVA-EFA, can found five panel pixels as well as their corresponding endmember

classes.

k=0 k=1

EC, (20 members) EC; (20 members)

EC, (20 members)

EC, (20 members) ECs (21 members) ECs (491embers)
Figure 4.10 TE data: 6 endmembers and their classes by iterative SC EVA-EFA
(one random initial condition)
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k=0 k=1

EC, (20 members) EC; (20 members)

EC, (22 members) ECs (486 members) ‘ ECs (20 members)
Figure 4.11 TE data: 6 endmembers and their classes by iterative SC EVA-EFA
(another random initial condition)

k=0 k=1 k=2
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EC, (22 members) EC; (21 members)

EC, (20 members) ECs (20 members) ECg (20 members)
Figure 4.12 TE data: 6 endmembers and their classes by iterative SQ EVA-EFA
(one random initial condition)

k=0 k=2

k=3
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EC; (22 members) EC, (21 members) EC; (477 members)

EC, (20 members) ECs (20 members) ECs (20 members)
Figure 4.13 TE data: 6 endmembers and their classes by iterative SQ EVA-EFA
(another random initial condition)

() 6 endmembers fi

EC; (20 members) EC, (562 members) EC; (20 members)
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EC, (20 members) ECs (20 members) ECg (22 members)
(b) Finding 6 endmember classes

Figure 4.14 TE data: 6 endmembers and their classes by G EVA-EFA

4.5.2 Real Image Experiments

Real image, HYDICE, as introduced in Section 3.5.2, is used for testing effectiveness
of algorithms developed in this chapter. As shown in Fig 4.15 and Fig 4.16, iterative
SuCcessive endmember variability EFA was used to find endmembers using two
different sets of random initial conditions where the final 9 endmembers were the
same with different extracted orders but requires the number of iterations denoted by
k. These results show that the iterative EFA can correct inconsistency caused by
random initial conditions. The same experiments done by using iterative SuCcessive
EVR EFA in Fig 4.15 and Fig 4.16 were also repeated for iterative SeQuential EVR
EFA in Figure 4.17 and Fig 4.18. It takes 3 and 5 iterations to converge for two
different initial conditions. Interestingly, comparing the results from iterative SC
EVA EFA and iterative SQ EVA EFA, the final set of endmembers are the same and
their corresponding endmember classes are also the same except that the order is

different.
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EC, (1 members)

EC, (3 members) ECs (1 members) EC; (1 members)

EC7 (13 members) ECs (1 members) ECs (52 members)
Figure 4.15 HYDICE: 9 endmembers and their classes by iterative SC EVA-EFA
(one random initial condition)
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EC, (13 members)

EC; (1 members)

a 6

EC, (18 membes) ECs (1 members) ECs (1 members)
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EC; (1 members) ECsg (3 members) EC, (52 members)
Figure 4.16 HYDICE: 9 endmembers and their classes by iterative SC EVA-EFA
(another random initial condition)

EC; (3 members)

EC; (1 members)

EC, (1 members) ECs (1 members) ECs (1 members)

79



EC; (13 members) : 7 ECy (52 members)
Figure 4.17 HYDICE: 9 endmembers and their classes by iterative SQ EVA-EFA
(one random initial condition)

EC; (52 members) EC, (3 members) EC; (1 members)
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S 8 ’?o
EC, (18 members)

ECs (1 members) ECs (13 members)

EC; (1 members) ECs (1 members) EC, (3 members)
Figure 4.18 HYDICE: 9 endmembers and their classes by iterative SQ EVA-EFA
(another random initial condition)

(@) 9 endmembers found by G-EVA-EFA

) 8 rom

EC; (1 members) EC, (16 members EC; (1 members)
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EC, (8 members) ECs (2 members) ECs (2 members)

EC; (52 members) ECs (1 members) ECy (10 members)
Figure 4.19 HYDICE: 9 endmembers and their classes by G EVA-EFA

Another real image (LCVF) is used for testing effectiveness of iterative SC EVA
EFA, iterative SQ EVA EFA and growing EVA EFA. The detailed introduction of
LCVF is shown in chapter 3. The Iterative SC EVA-EFA, iterative SQ EVA-EFA and
growing EVA-EFA were also tested on LCVF data. Results are shown in Fig. 4.23-
Fig. 4.27. As we can see from these figures, dry lake and two anomaly pixels were
found. However, the algorithms considered cinders and shade as a single endmember
class , while vegetation and rhyolite as another single endmember class. The reason
for this is that cinders and shade have very similar spectral profiles and so do the

vegetation and rhyolite.
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k=1 k=2

EC; (1 members) EC, (1 members) EC; (6 members)

EC,4 (20 members) ECs (149 members) ECs (111 members)
Figure 4.20 LCVF: 6 endmembers and their classes by iterative SC EVA-EFA
(one random initial condition)
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EC; (1 members) EC, (18 members) EC; (2 members)

EC, (117 members) ECs (7 members) EC¢ (152 members)
Figure 4.21 LCVF: 6 endmembers and their classes by iterative SC EVA-EFA
(another random initial condition)

k=0 k=1 k=2

k=3
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EC; (40 members) EC, (77 members) EC; (1 members)

EC, (1 members) ECs (22 members) ECs (157 members)
Figure 4.22 LCVF: 6 endmembers and their classes by iterative SQ EVA-EFA
(one random initial condition)

k=0 k=1 k=2
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EC; (1 members) EC, (75 members)

EC, (8 members) ECs (2 members) ECs (47 members)
Figure 4.23 LCVF: 6 endmembers and their classes by iterative SQ EVA EFA
(another random initial condition)

(@) 6 endmembers found by G EVA EFA

EC; (165 members) EC; (1 members) EC; (20 members)

86



EC, (11 members) ECs (2 members) ECs (30 members)
(b) Finding 6 endmember classes

Figure 4.24 LCVF: 6 endmembers and their classes by G EVA-EFA

4.6 Conclusion

Endmember variability has been an issue in finding endmembers since there is no
guarantee that endmembers will be present in the data to be processed. This chapter
develops a new concept to deal with the endmember variability issue, referred to as
endmember variability ratio (EVR)-based approach which is derived from Fisher’s
ratio widely used in Fisher linear discriminant analysis. By taking advantage of EVR
several EVR-based endmember algorithms (EVR-EFAS) algorithms can be designed
and developed. In particular, the well-known N-FINDR can be further extended as a

special case of EVR-EFAs.
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Chapter 5 Fully Abundance-Constrained Linear Spectral

Mixture Analysis for Finding Endmembers

5.1 Introduction

Linear spectral mixture analysis (LSMA) has been widely used for linear spectral
unmixing. Its application to finding endmembers has recently received considerable
interest. An early attempt to use LSMA to find endmembers is N-FINDR developed
by Winter [39] who calculated the maximal simplex volume to find endmembers
where data sample vectors embraced by a simplex correspond to data sample vectors
that can be unmixed by Fully Constrained Least Squares (FCLS) with full abundance
constraints, abundance sum-to-one constraint (ASC) and abundance non-negativity
constraint (ANC). So, with this interpretation N-FINDR can be considered as
unsupervised FCLS which finds a set of signatures to be used to unmix data sample
vectors in an unsupervised manner. In this chapter, a different approach is taken to
develop LSMA-based. Different versions of algorithms, including SeQuential FCLS
(SQ FCLS) and SuCcessive FCLS (SC FCLYS), are developed. In order to deal with
random issues in initial conditions, two versions of FCLS, referred to as lterative

FCLS (IFCLS) and Random FCLS (RFCLS) are also developed.

5.2 Fully Constrained Least Squares

Assume that e, e,, ---, e are signatures used to form a linear mixing model for

LSMA. A linear mixture model for r models the spectral signature of ras a linear
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combination of e, e,, ---, e, with appropriate abundance fractions specified by

a.

(04 T

11

-, a,, as follows

r=Ma+n (5.1)
where r isan Lx1 column vector, Mis an Lx p substance spectral signature matrix,
denoted by leje, e, ], az(al, a,, -+, ap)T is a px1 abundance column vector
associated with r with ¢, being the abundance fraction of the j" substance
signature e, present in the pixel vector r and n is noise or can be interpreted as a

measurement or model error.

A classical approach to solving (5.1) is the least squares estimation given by

N -1
a“(r;e, e, -, ep):(MTM) M'r (5.2)
where a=(r; e, e, -, ep)z(dlLS(r; e, e, -, e)-a’(re, e, -, ep)) and
ac°(r, e, e, ---, e) is the abundance fraction of j" substance signature e

estimated from the data sample vector r . Here the abundance estimation is

determined by r and e, e,, ---, e, . By means of (5.2) can be reconstructed by
ree, e, -, e)=Ma(r; e, e, -, e) (5.3)

By virtue of (5.3), we can calculate the least square error (LSE) resulting from using

FCLS to unmix the data sample vector r using a set of p endmembers,

e, e, -, e, astheaveraged unmixing error (UME)
1_, . 2
UME(e,, e,, -, ep)=WZH(ri—ri(el, e, - e,)) (5.4)
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where {r,}", are all data sample vectors.

5.3 Fully Constrained Least Squares-Based Endmember Finding
Algorithms

When FCLS is implemented for LSMA it assumes that the signatures used to form a
linear mixing model for data unmixing are known and must be provided a priori, in
which case there is no issue in finding signatures. Unfortunately, when such
knowledge is not given, finding these signatures becomes challenging. In the past,
convex geometry-based techniques such as N-FINDR and its variants have been used
for this purpose [39]. Despite that unsupervised FCLS (UFCLS) was previously
developed for finding signatures for LSMA it was designed to find one signature at a
time but no technique particularly designed for finding signatures all together based
on unmixed error criterion (5.4), referred to as FCLS-based endmember finding
algorithm (FCLS-EFA) as N-FINDR does for all endmembers.

Technically speaking, finding an optimal set of p signatures to yield minimal

. : . _ N N!
unmixed error requires an exhaustive search for all possible =
p) piN-p)!
combinations. Practically speaking, this is nearly impossible to be done. This is the
very same issue that also arises in implementing N-FINDR. In order to mitigate this

dilemma two sequential versions of N-FINDR that were developed can be also used

to develop their counterparts for FCLS-EFA for finding all endmembers.
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5.3.1 Sequential FCLS-EFA
Since FCLS-EFA does not have any prior knowledge about endmembers which can
be used as signatures for data unmixing, it must be carried out by an unsupervised
means. Developing sequential FCLS (SQ FCLS) is to make an exhaustive search a
sequential search so that FCLS can be implemented to find all the p endmembers
iteratively in a very effective manner. Its idea is derived from the sequential N-
FINDR which can be described as follows.
SQ FCLS-EFA

1. Initialization:

Let p be the number of endmembers required to generate and

{ef”, el ... e(pO’} be a set of initial vectors randomly selected from the data.

Let {I’I}IN1 be all data sample vectors. Set i =1 and go to step 3.

2. Outer Loop: (using index i as a counter to keep track data sample vector r,)
Check i=N. If it is, the algorithm terminated. Otherwise, let i «<—i+1 and
continue.

3. Input the i" data sample vector r..
4. Inner Loop: (using jas a counter to keep track the j" endmember e,)

For 1< j< p, we recalculate UME(e", ---, e®

17 j-1?

(i) O] i
r, e, ---, €) according

j+1?

to (5.4) which is the LSE unmixed by e, ---, €9, r,, ¥

10 10 Vi S

-+, &%) for the

data sample vector r, . If any of these p recalculated unmixed LSES
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UME(r,, e?, €, ---, e¥), ---, UME(e!, -, e, r) is  greater  than

UME(e, e?, ---, '), go to step 5. Otherwise, go to step 2.

1
5. Replacement Rule:
The endmember, which is absent in the minimal unmixed LSE among

UME(nl e(zl)l eél)l ".l e(pl)), ...l UME(eil), "" e(l)

p-1’

r), will be replaced by the
i” sample vector r,. Assume that such an endmember is now denoted by e
A new set of endmembers is then produced by letting e/ =r, and €' =g

for i # j and go to step 2.

5.3.2 Successive FCLS-EFA
Another sequential version, successive N-FINDR which was also derived for N-
FINDR can be also used to derive successive FCLS-EEA as follows. Its difference
from SQ FCLS-EFA is that the endmembers found by SC FCLS-EFA in previous
iterations are fixed and remain unchanged while the SQ FCLS-EFA found
endmembers must be re-calculated over and over again. As a result, SC FCLS-EFA
produces less optimal set of endmembers but requires less computing time than SQ
FCLS-EFA does.
SC FCLS-EFA

1. Initialization:

Let p be the number of endmembers required to generate and

{ef”, el ... e(pO’} be a set of initial vectors randomly selected from the data.

Let {r,}" be all data sample vectors.
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2. Outer Loop (using j as a counter to keep track the j* endmember ¢, )
For 1< j<p, find e’ which will replace e{”.
3. Inner Loop (using index i as a counter to keep track data sample vector r,)

For 1<i<N, calculate UME(e{’, ---, 7, r, e, ---el”) defined by (5.4)

1 -1 N Vs
for all {r.}" , while fixing other endmembers e with i< j and &® with
1> j.Find ef! =arg{min, UME(, -~ e, 1, ), -~ &)}
4. Stopping Rule:
If j<p, then j« j+1 and go to step 2. Otherwise, the final set of

{e0, &, -, e} is the desired p endmembers.

5.4 Randomness Issues Addressed by Fully Constrained Least Squares-
Based Endmember Finding Algorithms

The SQ FCLS-EFA and SC FCLS-EFA developed in Section 5.3 suffer from
uncertainty caused by random initial endmembers. This problem can be alleviated by
similar developments for endmember initialization-driven N-FINDR, iterative N-

FINDR and random NFINDR.

5.4.1 Initialization Driven FCLS-EFA

A simple way to eliminate random initial conditions is to custom-design an
unsupervised target detection algorithm which can find a specific set of desired
targets used as initial condition for FCLS-EFA. Such an algorithm is called
endmember initialization algorithm (EIA) which ought to have a property that its
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generated targets should be as close as possible in the sense of spectral similarity to
final desired endmembers. For example, these algorithms can be ATGP, UNCLS,
UFCLS, VCA even including those algorithms designed from finding endmembers,
SGA, N-FINDR, etc. By virtue of these EIA-generated targets as initial condition the
randomness of FCLS-EFA can be completely eliminated. By replacing random initial
conditions implemented by FCLS-EFA with EIA-generated initial conditions we can
derive an initialization-driven FCLS-EFA (ID-FCLS-EFA) as follows.

ID FCLS-EFA

1. Initialization:

Assume that p is the number of endmembers to be generated.

2. Implement an EIA to generate an initial condition of p endmembers

{9, e, .. e},

3. Apply FCLS-EFA (either SQ FCLS-EFA or SC FCLS-EFA) to find a final

endmember sets.

5.4.2 Iterative FCLS-EFA

SQ FCLS-EFA and SC FCLS-EFA produce inconsistent endmember results resulting
from randomly selected data sample vectors as their initial conditions. Interestingly, if
we feed back the final endmember results produced by these two algorithms each
time and use them as new initial conditions to re-run these algorithm. Such iterative
process should be able to eliminate inconsistency caused by the uncertainty due to
randomness. The following iterative FCLS-EFA (IFCLS-EFA) is derived from a
similar idea used to derive IN-FINDR.
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IFCLS-EFA

1.

Initialization:
Let {ri}iN:1 be all data sample vectors and E© ={e§°>, e®, .. e‘p‘”} be a set of

initial vectors randomly generated from the data.

Apply SQ FCLS-EFA or SC FCLS-EFA using E® as an initial set of
endmembers to produce final endmember set E® and let k =1. (Note that the
parameter k is used as a counter to keep track how many initial conditions
have been updated).

At k" iteration, apply SQ FCLS-EFA or SC FCLS-EFA using E®as an initial

set of endmembers to generate p endmembers denoted by
E(k+l) — {e(k+1) e(k+1) e(k+1)} .

1 Y2 '
Stopping Rule:

If E“Y 2EY, then k <~k +1 and go to step 4. Otherwise, the algorithm is

terminated and the endmembers in E® is the desired set of endmembers.

5.4.3 Random FCLS

In IFCLS-EFA a feedback loop is implemented to keep feeding back endmembers

generated by previous iterations to next iterations. The random FCLS-EFA (RFCLS-

EFA) presented below takes a completely opposite approach by running FCLS-EFA

as a random algorithm which considers each of FCLS-EFA using one set of randomly

selected data sample vectors as initial condition as a single realization. In this case,

we run FCLS-EFA as many times as we could where each time it uses a new set of

random initial endmembers to produce a new realization. If an endmember is
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significant, it should appear as many realizations as it can. Using this fact RFCLS-
EFA should be able to converge to a set which contains final desired endmembers. Its
detailed implementation is described in the following.
RFCLS-EFA

1. Initialization:

Assume that p is the number of signatures to be generated. Let n=1 denote a

counter to dictate number of runs required to implement FCLS-EFA (either SQ
FCLS-EFA or SC FCLS-EFA).

2. Apply FCLS-EFA to generate p random signatures, denoted by
E®™ ={e§”), el ..., e;"’}.
3. Find the unmixed error resulting from E®, UME(e", ---, ”, ---, el")

specified by (5.4).

4. Find the variance of UME(e", ---, €', ---, e”) for all realizations
produced by n>1, var_{UME(E", ---e”, ---, eM)}.
5. If var_ {UME(", ---, e, ---, el")}>0o", let n<—n+1and go to step 2.

Otherwise the algorithm is terminated.

5.5 Experiments

5.5.1 Synthetic Image Experiments
The same set of synthetic images, including Tl and TE, are used for FCLS-EFA. The

detailed introduction of Tl and TE can be found in Section 3.5.1.
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(a) ATGP (b) UNCLS (c) UFCLS
Figure 5.1 6 endmembers found for TI1 by ATGP, UNCLS and UFCLS

(a) ATGP-SQ FCLS- EFA (b) UNCLS-SQ FCLS-EFA (c) UFCLS-SQ FCLS-EFA

(d) ATGP-SQ N-FINDR (e) UNCLS-SQ N-FINDR (f) UFCLS-SQ N-FINDR
Figure 5.2 6 endmembers found for TI by ATGP-SQ FCLS-EFA, UNCLS-SQ FCLS-EFA, UFCLS-
SQ FCLS-EFA, ATGP-SQ N-FINDR, UNCLS-SQ N-FINDR and UFCLS-SQ N-FINDR




(a) ATGP-SC FCLS-EFA (b) UNCLS-SC FCLS-EFA (c) UFCLS-SC FCLS-EFA

(d) ATGP-SC N-FINDR (¢) UNCLS-SC N-FINDR (f) UFCLS-SC N-FINDR
Figure 5.3 6 endmembers found for TI by ATGP-SC FCLS-EFA, UNCLS-SC FCLS-EFA, UFCLS-
SC FCLS-EFA, ATGP-SC N-FINDR, UNCLS-SC N-FINDR and UFCLS-SC N-FINDR

k=0 k=1 k=2
(a) 1ISQ FCLS-EFA

k=1
(b) ISC FCLS-EFA
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k=0 k=1 k=2
() ISQ N-FINDR

k=1 k=2
(d) ISC N-FINDR
Figure 5.4 6 endmembers found for T1 by ISQ FCLS-EFA, ISC FCLS-EFA, ISQ N-FINDR and ISC
N-FINDR

(b) RSC FCLS-EFA

n=2
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(c) RSQ N-FINDR

n=1 n=2
(d) RSC N-FINDR
Figure 5.5 6 endmembers found for T1 by RSQ FCLS-EFA, RSC FCLS-EFA, RSQ N-FINDR and
RSC N-FINDR

(a) ATGP (b) UNCLS (c) UFCLS
Figure 5.6 6 endmembers found for TE by ATGP, UNCLS and UFCLS

(a) ATGP-SQ FCLS-EFA

(b) UNCLS-SQ FCLS-EFA
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(d) ATGP-SQ N-FINDR () UNCLS-SQ N-FINDR (f) UFCLS-SQ N-FINDR
Figure 5.7 6 endmembers found for TE by ATGP-SQ FCLS-EFA, UNCLS-SQ FCLS-EFA, UFCLS-
SQ FCLS-EFA, ATGP-SQ N-FINDR, UNCLS-SQ N-FINDR and UFCLS-SQ N-FINDR

(a) ATGP-SC FCLS-EFA

(d) ATGP-SC N-FINDR () UNCLS-SC N-FINDR (f) UFCLS-SC N-FINDR
Figure 5.8 6 endmembers found for TE for by ATGP-SC FCLS-EFA, UNCLS-SC FCLS-EFA,
UFCLS-SC FCLS-EFA, ATGP-SC N-FINDR, UNCLS-SC N-FINDR and UFCLS-SC N-FINDR
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k=3
(a) ISQ FCLS-EFA

k=2

k=3
(b) ISC FCLS-EFA

k=1 k=2
(c) ISQ N-FINDR
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k=3
(d) 1SC N-FINDR
Figure 5.9 6 endmembers found for TE by 1SQ FCLS-EFA, ISC FCLS-EFA, 1SQ N-FINDR and ISC
N-FINDR

(b) RSC FCLS-EFA




(c) RSQ N-FINDR

n=1 n=2 n=3
(d) RSC N-FINDR
Figure 5.10 6 endmembers found for TE by RSQ FCLS-EFA, RSC FCLS-EFA, RSQ N-FINDR and

RSC N-FINDR
Table 5.1. Averaged Unmixed Errors for TI produced by various versions of FCLS-EFA and N-
FINDR
FCLS-EFA (N-FINDR) Averaged Unmixing Errors

ATGP-SQ FCLS-EFA (ATGP-SQ N-FINDR) 81.63 (91.59)
UNCLS-SQ FCLS-EFA (UNCLS-SQ N-FINDR) 81.63 (91.59)
UFCLS-SQ FCLS-EFA (UFCLS-SQ N-FINDR) 81.63 (91.59)
ATGP-SC FCLS-EFA (ATGP-SC N-FINDR) 81.63 (91.59)
UNCLS-SC FCLS-EFA UNCLS-SC N-FINDR) 83.01 (91.59)
UFCLS-SC FCLS-EFA (UFCLS-SC N-FINDR) 83.01 (91.59)
ISQ FCLS-EFA (ISQ N-FINDR) 80.95 (91.59)
ISC FCLS-EFA (ISC N-FINDR) 81.07 (91.59)

ATGP 88.57

UNCLS 88.57

UFCLS 88.57
RSQ FCLS-EFA (n=1) (RSQ N-FINDR n = 3) 80.85 (89.93)
RSC FCLS-EFA (n=1) (RSC N-FINDR n =1) 81.17 (91.59)

Table 5.2. Averaged Unmixed Errors for TE produced by various versions of FCLS-EFA and N-
FINDR
FCLS-EFA (N-FINDR) Averaged Unmixing Errors

ATGP-SQ FCLS-EFA (ATGP-SQ N-FINDR) 81.20 (91.27)
UNCLS-SQ FCLS-EFA (UNCLS-SQ N-FINDR) 81.20 (91.27)
UFCLS-SQ FCLS-EFA (UFCLS-SQ N-FINDR) 81.25 (91.27)
ATGP-SC FCLS-EFA (ATGP-SC N-FINDR) 81.32 (91.27)
UNCLS-SC FCLS-EFA UNCLS-SC N-FINDR) 81.32 (91.27)
UFCLS-SC FCLS-EFA (UFCLS-SC N-FINDR) 81.07 (91.27)
ISQ FCLS-EFA (1SQ N-FINDR) 81.34 (91.27)
ISC FCLS-EFA (ISC N-FINDR) 81.48 (91.27)

ATGP 107.98

UNCLS 112.46

UFCLS 101.07
RSQ FCLS-EFA (n =2) (RSQ N-FINDR n = 3) 81.34 (91.27)
RSC FCLS-EFA (n=1) (RSC N-FINDR n = 1) 80.94 (89.34)
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For both Tl and TE data, results for various versions of FCLS-EFA and N-FINDR are
shown in Fig. 1-10. There are three methods to address random issue. In Fig. 1-2 and
Fig. 6-7, three different endmember initialization algorithms, ATGP, UFCLS and
UNCLS, are first used to find initial conditions and FCLS-EFA refined the result by
minimizing averaged unmixing error. In Fig. 4 and Fig. 9, iterative FCLS-EFA and
N-FINDR are used to refine the result by applying a feedback manner. It took 2 or 3
iterations to converge. In Fig. 5 and Fig. 10, random FCLS-EFA and N-FINDR use
different initial conditions and the algorithm stops when the variance is less than a
predefined threshold. From these results, FCLS-EFA cannot find all five panel pixels
while N-FINDR can find four. In the last two rows in Table 5.1, averaged unmixing
errors for random FCLS-EFA and N-FINDR are shown. n = 1 indicates the smallest
UME from the first run among all the realizations. However, averaged unmixing
errors for FCLS-EFA are less than those for N-FINDR as shown in Table 5.1 and
Table 5.2, respectively for Tl and TE. This illustrates that we are not looking for pure
pixels to achieve better unmixing performance but most representative pixels in the

image.

5.5.2 Real Image Experiments

Real image, HYDICE, as introduced in Section 3.5.2, is used for testing effectiveness
of algorithms developed in this chapter. According to [41, 42] the Virtual
Dimensionality (VD) estimated for this scene for LSE was 18.

In order to address the use of random initial endmembers issue three approaches were

conducted. The first approach is to use an EIA to generate a specific set of initial
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endmembers to initialize SQ FCLS and SC FCLS. Fig. 12-13 shows that the results
produced by SQ FCLS-EFA and SC FCLS-EFA along with SQ N-FINDR and SC N-
FINDR with ATGP, UNCLS and UFCLS used as the EIA to generate a specific set of
initial endmembers.

A second approach is to use a feedback approach which iteratively feed back the
results produced by previous iterations as initial conditions for the next iteration. Figs.
14 also show results produced by 1ISQ FCLS and ISC FCLS along their counterparts
ISQ N-FINDR and ISC N-FINDR respectively for comparison.

The third approach is random FCLS-EFA and N-FINDR. SC FCLS-EFA or SQ
FCLS-EFA is applied multiple times by using different random initial conditions. The
algorithm stops when the variance is less than a predefined threshold. In Fig. 15,
results from different initial conditions are very similar. FCLS-EFA can only find 2 or
3 panel pixels while N-FINDR can find four. However, the averaged unmixing errors
from FCLS-EFA are less than those from N-FINDR as shown in Table 5.3. As shown
in Table 5.3, RSQ FCLS-EFA finds the third run which yields minimum unmixing
error among three runs while the third run of RSQ N-FINDR finds minimum
unmixing error 61.77. Similarly, the results for RSC FCLS-EFA and RSC N-FINDR
are tabulated in the row of Table 5.3. The similar conclusion can be made with T1 and

TE data.
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(a) ATGP " (b) UNCLS 7 (0 UFCLS
Figure 5.11 18 endmembers found for HYDICE by ATGP, UNCLS and UFCLS

¥ g ¥ g ¥ 5

® X

( GP-SQ N-FINDR ( UNCLS-SQ N-FINDR () UCLS-SQ N-FINDR
Figure 5.12 18 endmembers found for HYDICE by ATGP-SQ FCLS-EFA, UNCLS-SQ FCLS-EFA,
UFCLS-SQ FCLS-EFA, ATGP-SQ N-FINDR, UNCLS-SQ N-FINDR and UFCLS-SQ N-FINDR
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(a) ATGP-SC FCLS-EFA
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15., : o XN . .
(d) ATGP-SC N-FINDR () UNCLS-SC N-FINDR (f) UFCLS-SC N-FINDR
Figure 5.13 18 endmembers found for HYDICE by ATGP-SC FCLS-EFA, UNCLS-SC FCLS EFA
and UFCLS-SC FCLS-EFA, ATGP-SC N-FINDR, UNCLS-SC N-FINDR and UFCLS-SC N-FINDR
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k=3
(b) 1ISC FCLS-EFA

k=2

=3 k=4 B k=5
(c) 1SQ N-FINDR
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3 Tk
(d) ISC N-FINDR
Figure 5.14 18 endmembers found for HYDICE by ISQ FCLS-EFA, ISC FCLS-EFA, ISQ N-FINDR
and ISC N-FINDR

n=2
(a) RSQ FCLS-EFA

n=2
(b) RSC FCLS-EFA




Intersection (15 endmebers)
(c) RSQ N-FINDR

Intersection (12 endmbers)
(d) RSC N-FINDR

Figure 5.15 18 endmembers found for HYDICE by RSQ FCLS-EFA, RSC FCLS-EFA, RSQ N-
FINDR and RSC N-FINDR
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FINDR

Table 5.3 Averaged Unmixed Errors for HYDICE produced by various versions of FCLS-EFA and N-

FCLS-EFA (N-FINDR)

Averaged Unmixed Errors

ATGP-SQ FCLS-EFA (ATGP-SQ N-FINDR)

49.68 (62.67)

UNCLS-SQ FCLS-EFA (UNCLS-SQ N-FINDR) 50.74 (63.96)
UFCLS-SQ FCLS-EFA (UFCLS-SQ N-FINDR) 50.59 (60.90)
ATGP-SC FCLS-EFA (ATGP-SC N-FINDR) 49.98 (67.84)

UNCLS-SC FCLS-EFA UNCLS-SC N-FUNDR)

52.13 (67.43)

UFCLS-SC FCLS-EFA (UFCLS-SC N-FUNDR)

51.72 (65.23)

ISQ FCLS-EFA (1SQ N-FINDR) 51.81 (77.37)
ISC FCLS-EFA (ISC N-FINDR) 51.68 (74.09)
ATGP 69.74
UNCLS 66.87
UFCLS 61.67
RSQ FCLS-EFA (n = 3) (RSQ N-FINDR n = 3) 52.19 (61.77)
RSC FCLS-EFA (n = 1) (RSC N-FINDR n = 2) 51.91 (70.05)

5.6 Conclusion

In this chapter, average unmixing error is used as an optimization criterion to find
endmembers in hyperspectral images. FCLS-based endmember finding algorithms
(FCLS-EFA) are developed. In order to solve randomness issue, initialization driven
FCLS version, iterative version and random version of algorithms are further
developed. Both synthetic images and real images are used to test the effectiveness of
the algorithms and the results are compared with the counterparts of N-FINDR. As a
result, the found endmember by FCLS EFA are not necessarily pure signatures but
rather those signatures can be used to perform better data unmixing. The experimental
results demonstrate this fact and provide evidence that using endmembers produced

by N-FINDR are not necessarily the best signatures to be used for data unmixing.
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Chapter 6 Conclusion

6.1 Summary

In hyperspectral data processing, existence of endmembers cannot be guaranteed and
endmembers may appear as various forms of true endmembers because of a number
of reasons including environmental, atmospheric and temporal factors. In Chapter 2, a
literature survey and review of endmember variability is conducted. A number of
existing methods reported in the literature dealing with endmember variability are
also summarized and compared in terms of advantages and disadvantages. The main
idea of previous methods is to use a predefined threshold to find endmember classes.
However, the disadvantages of doing so are as follows. 1. How to determine an
appropriate predefined threshold. 2. How to apply thresholds to all the endmember
classes since each endmember class should require a different threshold.

In order to deal with this issue, Algorithm for Finding Endmember Classes (AFEC)
that does not require any prior knowledge or assumptions is first developed to find
endmember classes in Chapter 3. In particular, Endmember Variability Algorithm
(EVA) is designed as an iterative process, where an unsupervised endmember finding
algorithm such as ATGP, UNCLS or UFCLS, is used to find initial endmembers
which will be used by a follow-up AFEC to find corresponding endmember classes.
The set of endmember classes are refined by an iterative process implemented in
EVA.

In Chapter 4, a new concept is introduced to deal with endmember variability,

referred to as endmember variability ratio (EVA)-based approach which is derived
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from Fisher’s ratio widely used in Fisher linear discriminant analysis. By taking
advantage of EVR, several EVR-based endmember algorithms (EVR-EFA) can be
also designed and developed.

In Chapter 5, a new optimization criterion, average unmixing error is used to find
endmembers in hyperspectral images. Fully Constrained Least squares-based
endmember finding algorithms (FCLS-EFA) are developed. In order to solve
randomness issue, initialization driven FCLS version, iterative version and random
version of algorithms are further developed. Both synthetic image and real image are
used to test the effectiveness of the algorithms and the results are compared with the
counterparts of N-FINDR. As a result, the endmembers found by FCLS-EFA are not
necessarily pure signatures but rather those signatures can be used to perform better
data unmixing. The experimental results demonstrate this fact and provide evidence
that using endmembers produced by N-FINDR are not necessarily the best signatures

to be used for data unmixing.

6.2 Future work

A future research direction is to extend the methods developed in this dissertation to
more generic machine learning methods, which could be applied to more applications
such as MRI image, vital signal data processing and as well as fingerprint.

Beside direct applications to other domain, there are other methods that could be used
for endmember variability. For example, compressive sensing has received
considerable interest in recent years. Sparsity and incoherence are two important

conditions in compressive sensing. Sparsity requires endmembers to be sufficiently
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sparse while incoherence requiring endmembers to be unrelated. One possible future
work is to make use of compressive sensing technique to solve endmember variability

issue.
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