This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Design and modeling of the off-axis parabolic deformable (OPD) mirror laboratory

Hari Subedi*
Roser Juanola-Parramon* 1
Tyler Groff*
*NASA GSFC
1 UMBC
Coronagraph Optical Train (LUVOIR)

- Need 2 deformable mirrors (DMs) for wavefront sensing and control
- Long separation between DMs for amplitude and phase mixing
- High actuator count DMs

Issues:
Packaging issues
Higher risk of actuator failure
Low Actuator Count Parabolic DMs

Groff et al. 2016
Comparing Broadband Performance

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Center Contrast</th>
<th>10% Average</th>
<th>20% Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>DM at Plane C</td>
<td>4.974×10^{-7}</td>
<td>5.033×10^{-7}</td>
<td>5.178×10^{-7}</td>
</tr>
<tr>
<td>DMs at A1,A2,B1,B2, Aberr. at C</td>
<td>1.374×10^{-7}</td>
<td>1.609×10^{-7}</td>
<td>2.636×10^{-7}</td>
</tr>
<tr>
<td>DMs at A1,A2,B1,B2, No Aberr. at C</td>
<td>8.30×10^{-8}</td>
<td>9.92×10^{-8}</td>
<td>1.634×10^{-7}</td>
</tr>
</tbody>
</table>

Groff et al. 2016
Advantages of Parabolic DMs

• Simplifies the packaging issue for space missions

• Reduces both cost and risk of having the entire coronagraph instrument’s performance depending on one or two high-actuator count DMs

• Increase in achievable bandwidth correction
 - Controllable surfaces are in conjugate planes to the sources of aberrations.
Lab layout NASA Goddard
Instrument Details

- Coronagraph
- PSF
- Focal Plane/ Zernike Mask
Instrument Details

• Flat Pupil DM
 - BMC 32 x 32 DM
• Parabolic DM
 - Modified ALPAO 11 x11 DM
DM simulations

• Actuator resolution
 - Round up to nearest 10 pm or 100 pm

• Stability
 - Percent stability of the voltage/amplitude applied
 - 0.5%, 1%, and 2%

• Bandwidth 20%

• Assumptions:
 - Perfect Estimation
 - No amplitude aberrations
Error Maps Used for Simulation

a) Pupil Error Map (nm)

b) Parabolic DM Surface Errors (nm)

b) Flat DM Surface Errors (nm)
Selected Design Requirements and Result

- Stability of 0.5% and actuator resolution of 0.1 nm
Other Experiments

- The lab is multipurpose and following experiments to be carried out
 - Non-linear dark hole digging
 - Adaptive estimation of line-of-sight jitter (LOS)
 - Machine learning for LOWFS
Linear vs Non-linear Control

Linear Estimation and Control

\[z = Hx + n \]
\[\hat{x} = (H^T H)^{-1} H^T z \]

\[W_k = (G_k u_k - \delta E_k)^T (G_k u_k - \delta E_k) + \alpha_k^2 u_k^T u_k \]
\[u_{w,k} = (G_k^T G_k + \alpha_k^2 I)^{-1} G_k^T \delta E_k. \]

Figure from Groff et al. 2016

Non-linear control

\[
\text{minimize } W = \sum_{DH} I, \text{ where } I = f(A_{\text{im}}, \Phi_{\text{im}}, V_{\text{DM}}) \\
= |A_{\text{im}} e^{\Phi_{\text{im}}}|^2 \\
W = \sum_{DH} |A_{\text{im}} e^{\Phi_{\text{im}}}|^2 \\
= \sum_{DH} A_{\text{im}}^2
\]

Estimation: \(A_{\text{abb}}, \Phi_{\text{abb}} \)
Control: Just need a single DM?!
Non-linear Control

• DM voltage calculated by non-linear optimization
 - Python L-BFGS-B (quasi-Newton method)
 - Minimize cost function, provide the gradient

• Cost Function
 - Obtained by forward model of the system

• Gradient
 - Obtained by algorithmic differentiation* of each step of the forward model

* Jurling et al.
Simulation Results

• Three different coronagraphs
• Different combination of phase and amplitude error

1) Ripple 3 SPC

2) Lab coronagraph with segments errors

3) LUVOIR B Coronagraph
Adaptive Estimation of LOS

In Simulation, we have shown that residual after correction 0.4 mas.

Assumptions:
- Reaction wheel speed changing over time
- 2.4 telescope observing a star of magnitude 4.83
LOWFS - Machine Learning
Conclusion

• Making OAPs deformable is advantageous
 • Improvement control bandwidth
 • Better for packaging
 • Less risk and cost

• At NASA GSFC we are designing a multipurpose testbed
 • To test parabolic DM architecture
 • Different control algorithms
 - Non-linear dark hole digging, line-of-sight and LOWFS estimation and control