This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Prototype Magnetic Calorimeter Arrays with Buried Wiring for the Lynx X-ray Microcalorimeter

Archan M. Devasia,1,2,3, Manuel A. Balvin1, Simon R. Bandler1, Vladimir Bolkhovsky4, Peter C. Nagler5, Kevin Ryu5, Stephen J. Smith1,2,3, Thomas R. Stevenson1, and Wonsik Yoon1,5

1. NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA, 2. Center for Research in Space Science and Technology, Greenbelt, MD 20771 USA, 3. University of Maryland, Baltimore County, Baltimore, MD 21250 USA, 4. Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420 USA, 5. SSAI Inc., Lanham, MD 20706 USA

Introduction
- Lynx is a large mission concept under development by NASA for the Astro 2020 Decadal survey
- One of the key Lynx instruments is an imaging spectrometer called the Lynx X-ray Microcalorimeter (LXM) which comprises of a very large detector array with > 100K pixels
 - Metallic magnetic calorimeter (MMC) technology is a leading contender for detectors for the LXM
 - MMCs can be used to measure the energy of individual X-ray photons with high precision by sensing changes in the magnetic susceptibility of a paramagnetic metal film (Au:Er) as its temperature rises in response to the absorbed photon energy

Fabrication Summary
- All buried wiring and sensor meander coil layers are processed as follows
 - Nb deposition by dc magnetron sputtering
 - Patterning of Nb by deep UV (DUV) lithography (248 nm) and plasma etch
 - SiO2 interlayer dielectric (ILD) deposition by PECVD
 - Chemical Mechanical Planarization of ILD to desired thickness
 - Patterning of ILD by DUV lithography and plasma etch
- MMC sensor (Au:Er) deposition by sputtering and patterning by lift-off
- Au heat sink deposition by e-beam evaporation and patterning by lift-off
- Stems electroplating through photoresist mold on Au seed layer
- Absorbers electroplating and etch by ion milling

Fabricating High Inductance MMCs
- Sensor meander coil pitch is reduced to 800 nm to increase sensor inductance
- To maintain good magnetic coupling with the reduced pitch, thickness of Au:Er is scaled to 128 nm
- To maintain a large critical current per unit width in the wiring and the sensor meander coils, Nb is anisotropically etched to produce vertical edges, resulting in an approximately square cross section
- By using multiple layers of buried wiring, larger wiring linewidths are maintained, resulting in a decrease in the wiring inductance

UHR array
- Square annulus shaped sensor with non-hydra design
- Superconducting vias at the center of the sensor connect sensor meander coils on the topmost Nb layer to twin microstrip wiring on the bottom most Nb layer
- Au thermal link connects sensor to absorber stem in order to control size of slew rate at readout

Motivation
- Design and fabrication challenges for large size arrays
 - As array size increases, stray inductance of the wiring increases both between pixels and in the fanout to amplifiers
 - Routing of wiring between pixels and readout, on a planar scheme, becomes technologically challenging due to requirements of low inductance, low crosstalk, high critical currents and high yield
- MMCs can be scaled to large array sizes by
 - Maximizing sensor inductance by decreasing sensor meander coil pitch
 - Maximizing magnetic coupling by scaling sensor (Au:Er) and sensor insulator thickness with pitch
 - Maximizing Nb thickness with pitch in order to keep sufficient critical current/width
- Buried layers can be used to achieve large scale, high density wiring
- Well suited for connecting thousands of pixels on a large focal plane to readout chips
- Planarization allows top surface of wafer to be exclusively available for pixels and heat sinking, opening up the possibility for new pixel geometries
- Can alleviate crosstalk between high density, fine pitch wiring

MMC Arrays with Four Buried Nb Layers

Prototype Highlights
- 55800 pixels thermally linked to 5688 sensors
- 4 buried Nb layers
- High yield, low inductance, high density wiring
- Reduced cross-talk through the use of shielding ground planes
- Precludes need for aggressive packing of wiring on one layer by allowing the fanout of wires from sub-arrays under Main array pixels

Main and Enhanced arrays
- Arrays of waffle shaped, multi absorber sensors in a 5 x 5 hydra configuration

Test Results
- Measured critical current at 4K on pixels with 400 nm wide sensor meander coils is better than 30 mA
- Issues with cooling system limited operating temperature to 50 mK
- Each sensor is not coupled to an optimized SQUID
- NEP at T = 50 mK

Array Type	Performance
Enhanced array 800 nm pitch pixel	1.96 eV – 1.99 eV
Main array 800 nm pitch pixel (with noisy SQUID)	10.5 eV – 12.5 eV
Main array 800 nm pitch pixel (noise corrected)	2.8 eV – 3.7 eV

Performance of Main array hydra with 0.8 µm pitch meander coil, 15 mA bias current at T = 50 mK