Objectives
Determine in situ relationships between solar induced fluorescence (SIF) and vegetation photosynthetic capacity under different environmental conditions at tundra and boreal forest sites, and to scale these observations from leaf-level to the plot/canopy level and finally to apply these relationships to the landscape level across the ABoVE domain using satellite data. The satellite imagery will be used to describe SIF spatial variability along with diurnal, seasonal and multi-year changes; and we will apply appropriate radiative transfer and physiologically-based models to derive gross primary productivity (GPP) and describe its variability across the ABoVE domain, validating the satellite-derived GPP estimates against flux tower data.

Methodology
We will use a multi-scale measurement approach to study the scaling of photosynthesis and ChlF from leaf level to canopy level and up to satellite. Measurements will be collected at two sites: near the NEON Barrow and Caribou-Poker Creeks flux towers, tundra and boreal forest, respectively.

Leaf Level
The FLoX leaf clip measures in situ ChlF emission spectra along with spectral reflectance and transmittance. Measurements of laser-induced F' emission spectra indicate significant differences for different boreal forest types (Chappele and Williams 1987).

Canopy Level
FLoX (Dual Fluorescence box) measures canopy SIF and spectral reflectance at ~1 minute intervals. Example of relationships between diurnal observations of canopy SIF from FLoX and leaf level yield to PSII from MoniPAM (YII) for corn on selected days in different parts of the growing season: young (blue), mature green, senescing: initial (red), and advanced (yellow) (Campbell et al. 2019).

Region
Daily SIF retrievals from TROPOMI over the ABoVE domain. Data are 0.5° by 0.5° grid with cloud fraction <0.3, a coarser spatial resolution than the 7 km data that will be used in this study.

Background
Photons absorbed by a chlorophyll molecule may follow three pathways: photochemistry, heat loss (nonphotochemical quenching, NPQ), or Chl fluorescence (ChIF) (Fig. 1 left). SIF is closely linked to the photosynthesis and has the potential to estimate GPP at different temporal and spatial scales. SIF may be particularly useful in high latitude evergreen forests where SIF tracks seasonal photosynthetic activity better than the usually used spectral reflectance signal (NDVI) (Fig. 1 right).

Figure 1. Left: Potential pathways of energy from photons absorbed by chlorophyll in plants. Right: Seasonal patterns for a boreal spruce site of GPP measured at a flux tower, far-red SIF from the GOME-2 satellite, Absorbed Photosynthetically Active Radiation (APAR) derived from MODIS reflectances, and GPP from the MPS-BGC model (Joiner et al. 2014).

Impacts on ABoVE Science
Ground measurements will develop the links between photosynthetic processes with chlorophyll fluorescence and spectral reflectance indices. Guided by the ground results, SIF retrieved from satellite can improve assessments of growing season length and ecosystem productivity, providing new insights into the relationships between season length, productivity, carbon balance, and other critical feedback processes for ecosystems across the ABoVE domain.

Acknowledgements
This work is supported by NASA grant 80NSSC19M0110.