This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Keywords:
All-optical switching
Subwavelength gratings
Fano resonances
Chalcogenide glasses

1. Introduction

Fano resonances [1] originate in any classical or quantum system that admits discrete modes coupled with continuum modes. For an up to date review of their importance in many fields of physics the reader can consult Refs.[2,3]. Due to the particular high quality (Q)-factor available in this kind of resonance, several studies have suggested their possible use for low-power, all-optical switching devices [4,5]. In a recent work [6] we have shown that a simple, one-dimensional (1-D), sub-wavelength, diffraction grating, made of a chalcogenide glass (As$_2$S$_3$) [7], with very narrow slit apertures (a~12 nm) can lead to all-optical switching threshold of few tens of MW/cm2 input intensities and local field intensities well below the photo-darkening threshold of the material.

2. Results and discussions

Let us start our analysis with Fig. 1(a) where we show the geometry we analyze: a TE-polarized, monochromatic, plane wave is incident normally on a subwavelength, As$_2$S$_3$, diffraction grating grown on a glass substrate. The grating parameters are the following: period Λ=864 nm, thickness d=200 nm, n_i is the refractive index of the material filling the slits while a is the slit aperture. We consider three gratings with different slit apertures: respectively a=12 nm, a=48 nm and a=96 nm. In our case Fano resonances are generated by leaky waveguide modes which are coupled to the incident radiation through the following grating-coupler-like equation [6]:

$$\sin(\theta) = \pm n_{WG} \mp m \frac{\lambda}{\Lambda}, \quad m = 0, 1, 2, \ldots, \quad \text{(1)}$$

where θ is the incident angle of the incoming radiation, λ the incident wavelength, n_{WG} the real part of the effective index of the mode of the unperturbed waveguide (in our case the air/As$_2$S$_3$(200 nm)/substrate waveguide), Λ the grating period and m the diffraction order. The grating dimensions have been chosen so to have a Fano resonance in the telecommunication band (\sim1.5–1.6 μm) according to Eq.(1). As previously discussed in Ref. [6], one way to increase the Q-factor of the Fano resonances available in subwavelength gratings mitigating at the same time the need of extremely narrow slits. We call these resonances as “mode-matched” Fano resonances for the reasons that will become clear in a moment. In Section 2 we present our analysis.

Nadia Mattiucci, Giuseppe D’Aguanno, Mark J. Bloemer

Aegis Tech, Nanogenesis Division 410 Jan Davis Dr, Huntsville, AL 35806, USA
Charles M. Bowden Laboratory, bldg 7804, Redstone Arsenal, AL 35898, USA
practical technological limits to how narrow the slits can be done and a slit size $a~12$ nm is at the edge of the current advanced nanofabrication techniques [8]. Here we propose a second path in order to increase the Q-factor of the resonance which is based on the filling of the slits with a material whose refractive index is closer to the refractive index of the grating. This can be accomplished by infiltrating the slits with an index matching fluid using nano-fluidic techniques [10], for example. From a physical standpoint the filling of the slits with a material whose refractive index is closer to the refractive index of the grating should be, to some degree, equivalent to having a grating with narrower slits: in both ways the leaky mode excited by the incident field according to Eq.(1) will augment its dwell time inside the grating becoming closer to the true guided mode of the unperturbed waveguide (mode-matched Fano resonance). This conjecture is indeed confirmed in Fig. 1(b) where we show how the Q-factor $Q=\lambda/\Delta\lambda$ of the Fano resonance remarkably grows as the refractive index of the material filling the slits (n_f) gets closer and closer to the refractive index of As$_2$S$_3$ ($n_{As2S3}=2.44$ at $\lambda = 1.5$ μm [11]).

The growing rate of Q as function of n_f is different for the three cases considered, in particular we note that the grating with wider slits needs a filling material with a refractive index closer to the refractive index of As$_2$S$_3$ in order to match the same Q of the grating with narrower slits. In Fig. 1(c) for the three cases we show the variation of the spectral position of the Fano resonances (λ_{R}) vs. n_f as well as the dispersion of As$_2$S$_3$ which is derived by a linear interpolation of the data reported in Ref.[11]. Note that the intersection point between all the curves in Fig. 1(c) corresponds to the condition $Q\rightarrow \infty$ in Fig. 1(b), as one may expect. Finally in Fig. 1(d) we calculate the pulse duration of a Fourier limited signal necessary to resolve these resonances. Obviously, longer pulses approaching the CW limit are necessary as $Q\rightarrow \infty$, for example at $n_f=2.2$ and $a=12$ nm the pulse duration necessary to resolve the corresponding resonance is ~1 ns. In Fig. 2 we show the nonlinear response when the linear transmission is 42%, for different values of n_f and slit aperture respectively $a=12$ nm (Fig. 2(a)), $a=48$ nm (Fig. 2(b)), $a=96$ nm (Fig. 2(c)). In order to increase the readability of the results, in the additional material we provide an animation (see BistablePath.mov) in which we show in detail for the case with $n_f = 2.3$ of Fig. 2(a) the path that must be followed on the bistable curve for both increasing and decreasing input intensity. Similar paths apply as well to all the other curves. Consistent with our previous predictions, we observe that the input intensity necessary for the inception of the optical bistability decreases as the refractive index of the filling material gets closer and closer to that of As$_2$S$_3$.

The calculation has been performed using the Fourier-modal method (FMM) [12] adapted to the nonlinear case according to the mean field theory proposed in Ref. [13]. The nonlinear refractive index of As$_2$S$_3$ has been taken according to Ref. [14] $n_2 = 2.9 \times 10^{-18}$ m^2/W. In Fig. 3 we show the linear Fano resonances (continuous line for $a=96$ nm, dotted line for $a=48$ nm and dashed line for $a=12$ nm) and nonlinear Fano resonances (asterisks for $a=96$ nm, square for $a=48$ nm and dots for $a=12$ nm) with the onset of optical bistability for the three structures when the Q factor is 10^5 and the input intensities is 20 KW/cm^2. We observe that the nonlinear responses of the three structures are very close, confirming the fact that it is ruled by the Q factor, as one may expect. Moreover, we have also calculated, not shown in the figure, the switching intensities (I_s) at the center of the respective bistability regions with a result of $I_s \sim 1$ MW/cm^2 for all the three cases. From a practical perspective this means that it is possible to overcome the technical limitations that prevent the slit apertures from being too narrow and nonetheless boost the Q-
factor by filling the slits with a material having a refractive index close to the refractive index of the grating. The threshold input intensity can be even decreased down to \(I_0 \approx 0.1 \text{ MW/cm}^2 \) and local field intensities well below the photodarkening threshold of the material [9] if we chose an operative wavelength closer to the reflection peak of the linear Fano resonance as shown in Fig. 4, although in this latter case lowering the input intensity is obtained at the expense of a reduction of the area of the hysteresis cycle. It is also interesting to observe as the hysteresis cycle approaches the optical limiting case as the particular case of a hysteresis cycle with null area.

Fig. 2. (Color online) Nonlinear reflection vs. input intensity \((I_0) \) for three different filling materials: \(n_f = 1 \) (dotted line), \(n_f = 1.7 \) (solid line), \(n_f = 2.3 \) (dashed line). The operative wavelengths have been tuned at 42% linear reflection. In Fig. 2a the slit aperture is \(a = 12 \text{ nm} \), moreover, on the curve representing the case \(n_f = 2.3 \), the large dots indicated with \(S_1 \) and \(S_2 \) and the corresponding arrows represent respectively the switching points for increasing input intensity (\(S_1 \)) and for decreasing input intensity (\(S_2 \)). In Fig. 2b the slit aperture is \(a = 48 \text{ nm} \), while in Fig. 2c is \(a = 96 \text{ nm} \).

Fig. 3. (Color online) Linear Fano resonances for the reflected power (lines) and nonlinear Fano resonances (dots) with the onset of optical bistability in three cases: \(a = 12 \text{ nm} \) (dotted line and circles), \(a = 48 \text{ nm} \) (dotted line and squares), \(a = 96 \text{ nm} \) (solid line and asterisks). The refractive index of the filling material has been chosen in each case in order to have a Q factor of \(10^5 \).

Fig. 4. Color online) (a) Linear Fano resonance of the structure having \(n_f = 2.4 \) and \(a = 96 \text{ nm} \). The marks on the curve indicate the operative wavelengths for the calculation reported in Fig. 4(b). (b) Nonlinear Reflection vs. input intensity \((I_0) \) at different incident wavelengths as reported in Fig. 4(a).
3. Conclusions

In conclusion, we have shown that mode-matched Fano resonances can be exploited to obtain ultra-low power, all-optical switching devices. We believe that our proposed devices may nowadays be realized using advanced nano-fabrication [8] and nano-fluidic techniques [10]. Last, but not least, although here we have concentrated our attention in particular on chalcogenide materials, we would like to point out that the approach reported in this paper is quite general and can be in principle applied to any type of diffraction grating provided that the material has a cubic nonlinearity and low two-photon absorption.

Supplementary materials related to this article can be found online at doi:10.1016/j.optcom.2011.11.118.

Acknowledgments

The authors acknowledge Domenico de Ceglia, Milan Buncick and Scott Davis for helpful discussions. G.D. and N.M acknowledge financial support from DARPA SBIR project “Nonlinear Plasmonic Devices”.

References