This work was written as part of one of the author's official duties as an Employee of the United States Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 105, no copyright protection is available for such works under U.S. Law. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Precision formation flying of an OpticsSat with X-ray Phase Fresnel Lens (PFL) Optics and a DetectorSat with an X-ray camera forming a 1 km focal length X-ray telescope with 55 milli-arcsecond angular resolution and 8 arcsecond FoV.
ConOps

- Loose formation leaves perigee.
- Science formation forms in ~10 hr to 1 km focal length at 5 hr before apogee:
 - Thrusters keep image on X-ray camera within ± 5 mm for ±5 hr around apogee.
 - Navigation filter uses NISTEx-II star tracker & Nav sensors also imaging beacons on OpticsSat to obtain 53 mas telescope pointing resolution.
- Formation relaxes moving to perigee.
- Ground com occurs before perigee.
- Process repeats.

S-band radios provide inter-satellite data link and ranging. ~30 kbps ground com bandwidth around apogee. GPS positions and velocities available for entire orbit, resolution reduced above GPS constellation.

Spacecraft

DetectorSat:
Dry Mass: 72 kg
Wet Mass: 109 kg
Power: 48 W

OpticsSat:
Dry Mass: 9.7 kg
Wet Mass: 12 kg
Power: 24 W

Telemetry:
200 Mbits/orbit

VTXO AS³ Team

Principle Investigator: John Krizmanic¹
Science Team: Mike Corcoran², Alice Harding³, Chris Shrader²
Engineering Team: Neerav Shah³, Steve Stochaj⁴, Phil Calhoun³, Lloyd Purves³, Cassandra Webster³, Kyle Rankin⁴, Daniel Smith⁴, Asal Nasari⁵, Laura Boucheron⁴, Krishna Kota⁴, Hyeongun Park⁴

1 CRESST/NASA/GSFC/University of Maryland, Baltimore County
2 CRESST/NASA/GSFC/Catholic University of America
3 NASA/Goddard Space Flight Center
4 New Mexico State University
5 Space Dynamics Laboratory

AS³ Summary

Spacecraft, flight dynamics, and GN&C finalized in weeklong MPL study at Wallops.
SmallSats use components with flight heritage to the best extent possible.
NISTEx-II Interferometric star tracker operational on ISS STP-H6 platform.
Small charged particle radiation detector included to verify rad environment during science observations.
Mission costing performed by GSFC CEMA office using MPL-developed MELs and Price-H parametric cost model with cost risk analysis: Mission Cost estimate is ~40% above $35M.