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Abstract—Security engineers and researchers use their dis-
parate knowledge and discretion to identify malware present in
a system. Sometimes, they may also use previously extracted
knowledge and available Cyber Threat Intelligence (CTI) about
known attacks to establish a pattern. To aid in this process, they
need knowledge about malware behavior mapped to the available
CTI. Such mappings enrich our representations and also helps
verify the information. In this paper, we describe how we retrieve
malware samples and execute them in a local system. The tracked
malware behavior is represented in our Cybersecurity Knowledge
Graph (CKG), so that a security professional can reason with
behavioral information present in the graph and draw parallels
with that information. We also merge the behavioral information
with knowledge extracted from the text in CTI sources like
technical reports and blogs about the same malware to improve
the reasoning capabilities of our CKG significantly.

I. INTRODUCTION

Representing cybersecurity knowledge in knowledge graphs
allows security researchers to query, retrieve, and reason with
malware information integrated from multiple sources. In this
paper we focus on Open Source Intelligence (OSINT) and mal-
ware behavior data as the two main sources for this knowledge.
OSINT is information about cyber-attacks available publicly
on the Internet, typically collected from vendor reports, blogs,
technical reports, and social media [24], [33]. For additional
meaningful information about malware behavior we collect
malware samples, detonate them in a controlled environment,
and then observe the trends of specific system parameters.

While OSINT has been represented in knowledge graphs
before [28], it has been limited to descriptions of analysis
performed by security researchers. Fusing this with behavior
data adds critical information and forms a better model, as
information from the two sources complement each other.
Knowledge gathered from OSINT sources may be informal,
often lacks in-depth analysis, and is vulnerable to poisoning
attacks [14]. Conversely, malware behavior data can be too
detailed or overly specific to a given system configuration.

We describe an approach to constructing a cybersecurity
knowledge graph (CKG) by integrating the information and
correcting some of these problems. Figure 1a shows an exam-
ple of malware CTI that gives an overview of the malware
functionality but lacks incisive analysis. Our method adds
more granular information to the CTI information in the form

of malware behavior data. There are two key factors for which
we are motivated to use our proposed method.

Enriched CKG: A CKG that has been built from the
information extracted from OSINT text is limited to the
information provided by the author of the text. However, as
seen in Figure 1a, an author sometimes focuses on a particular
aspect of the malware. For example, the writer of this text
does not say how she suspects that the firewall has been
compromised nor how she determined that the file was being
downloaded every 90 minutes. However, she does infer that
the malware has been using a ‘weak password’ vulnerability,
which is something that may not be easily inferred by simply
observing the system parameters of the behavior data. If we
merge the information that has been stated online about the
malware with the behavior data, we can get an enriched CKG.
The new CKG, shown in Fig 2, integrates information that
includes human intuition, along with details about the system
parameters which when observed can raise flags about the
presence of a malware.

Verification of Information: If we only consider informa-
tion extracted from open-source text, our CKG will have to
rely on the conclusions derived by the authors of the text. For
text written by a trusted security organization, we can say with
some confidence that the information is likely to be correct.
However, very often, open source text describing a malware is
written by someone whose identity cannot be verified, which
raises a question on the quality of information present in the
knowledge graph. Since our knowledge graph’s underlying
schemas are based on ontologies, constraints, and rules defined
in OWL [11], contradictory information can be detected. If an
author claims that the network activity will increase after the
malware infects a system, and our behavior data says that there
has been no increase in the network activity, we can infer that
there is a reasoning error. This will lead us to conclude that the
information stated by the author may not be correct, thereby
improving the reliability of our CKG.

The rest of the paper is organized as follows - Section II,
describes some related work. We describe our methodology
for intelligence extraction and behavior collection in Section
III. Knowledge graph reason has been discussed in Section IV.
We conclude in Section V.
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Fig. 1: 1a) An excerpt of a CTI describing a malware. 1b) The knowledge graph representation of the CTI.

II. RELATED WORK

We briefly discuss some related research on CTI, malware
behavior data, and cybersecurity knowledge graphs.

A. Malware Behavior Data

Behavioral analysis is a popular way to detect malware
which primarily focuses on detecting malicious behaviors that
impact a specific set of features. Malware detection approaches
that use behavioral analysis can be categorized into five
categories based on these targeted features:

• Network features [6], [22]: such approaches rely on
using network features to detect malicious traffic patterns;

• System calls [3], [7], [29], [38]: approaches relying on
system calls to detect particular sequences of system calls
that generally used by malware;

• Memory features [25], [39]: approaches using features
like malicious memory access patterns to detect malware;

• Hardware performance counters [5], [8]: approaches
with performance counters (e.g., cache hit/miss) that
detect malware;

• Performance metrics [2], [18], [36], [37]: approaches
using system metrics like CPU or memory utilization to
model normal and malicious application behavior.

We use performance metrics data and focus on features that
can easily be obtained by a light-weight, on-host agent.

B. CTI and CKG

Cybersecurity Knowledge Graphs have been widely used to
represent Cyber Threat Intelligence. CKG stores CTI as an
entity-relationship set. It is an aggregation of semantic triples
that helps in understanding how different cyber entities or
events are related. A semantic triple is of the form ‘entity-A’ -
has relationship ‘R’ - ‘entity-B’. This representation helps with
giving users the capability to query the system to retrieve the
information they desire about a cyber-event. The classes and
possible relationships between their instances are dictated by a

pre-defined schema. This schema also helps in reasoning, as it
can help define specific constraints and axioms that may exist
between the classes. Knowledge graphs for cybersecurity have
been developed before, as can be seen in Unified Cybersecurity
Ontology (UCO) [27]. Open source intelligence has been used
to build CKGs and other agents to aid cyber analyst [19]–[21],
[23], [32]. CKGs have also been used to map out the activity
of different malware to see how they compare. Liu et al. [17]
have used malware features in a knowledge graph to compare
malware instances. Graph based methods have also been post
processed by machine learning algorithms, as demonstrated
by another approach [4], [12], [13]. Some behavioral aspects
have also been incorporated in CKGs, where the authors used
system call information it in a graph [26].

III. METHODOLOGY

Our method fuses CTI information, extracted from text
descriptions of a malware, with malware behavior data that
has been captured after detonating a sample of the malware in
a virtual machine (VM) which is connected to the Internet in a
cloud environment. The malware text descriptions are available
online, in the form of blogs, community posts and threads
about malware, and malware analysis reports [30], [30], [35].
Figure 3, gives the overall architecture of our system. The
sample collection mechanism is described in Section III-A.
We collect the behavior data features (Section III-B), extract
the feature trends of the data (Section III-D2), and ingest
them into a behavioral knowledge graph. Simultaneously, we
look for open source text describing malware samples which
matches the MD5 hash of the malware sample being detonated.
We extract CTI from text description in the form of a CTI
schema described in Section III-C. We fuse semantic triples of
behavior data and CTI into an enriched ‘Fused CKG’ (Section
III-D). Next, we describe individual components in detail.



Fig. 2: Fused KG. The bold gray and green lines show the
new relations added by fusing the behavior data with the
original OSINT data in Fig 1b. The entities on the left side
of the graph like Exploit-Target:‘CentOS’, Attack-Pattern:‘turn
off the firewall’, etc. were extracted from the CTI mentioned
above. The behavior data adds key information like processes
‘sd-pam.exe’, ‘5d10...exe’ getting created, and the trends of
certain I/O and CPU parameters.

Fig. 3: Architecture diagram describing our system. Malware
behavioral data samples were collected by injecting the mal-
ware into VMs working in a real environment connected to
the Internet.

A. Malware Behavioral Data Samples Collection

In this subsection, we describe (1) the malware dataset
used in our experiments, (2) the deployed testbed, and (3)
the developed data collection module.

1) Malware Executables Dataset: Malware executables are
downloaded from VirusTotal1. We developed a script to select
only working malware that considered any executable that ran
successfully to be a working malware instance. However, we
cannot say with certainty if malware actually did malicious
actions during a run or just remained idle. After filtering, the
dataset contains 114 random working malware executables
representing eleven different types: Backdoor, Constructor,
DDoS/DoS, Exploit, Trojan, Virus, Worm, HackTool, Net-
Worm, Trojan-DDoS, and VirTool.

1VirusTotal. https://www.virustotal.com/

2) Experiment Setup: An Openstack2 based cloud testbed
was used in this experiment. The cloud environment consisted
a controller, a network, and three compute nodes comprising
48 cores and 160 GB of memory. Each experiment was done
by running a single VM for a total of 30 minutes. An Ubuntu
16.04 image running a web application was used as the victim
VM. The first fifteen minutes is referred to as the benign
phase where the VM was running without malicious activity.
The next fifteen is referred to as the malicious phase where a
malware was injected and executed into the VM. To simulate
a VM workload, a traffic generator was developed and used
to simulate multiple clients communicating with the VM by
sending random POST and GET requests. This workload is
following a self-similar [15] ON/OFF Pareto distribution.

3) Data Collection: A module was integrated into the
Ubuntu image to collect various VM’s performance metrics.
This data was sent in the form of JSON objects to an outside
storage machine. The data agent module collected metrics
in ten seconds intervals where a total of 180 samples of
features were recorded during a single experiment. A single
experiment was conducted for each malware executable, thus
producing a total of 114 experiments. After each experiment,
the VM is deleted to avoid contamination of clean data in
the subsequent experiment runs. During all our experiments,
we allowed Internet connection and disabled all firewalls to
ensure the malware malicious activity. This is due to the
fact that most sophisticated malware instances suppress their
malicious activity if they cannot reach their command and
control server [16].

B. Behavior Data

To carry out their malicious activities, malware relies on
system resources that can range from negligible to substan-
tial resources utilization. For example, ransomware uses a
considerable amount of CPU, disk and memory to encrypt
the targeted files, while command and control malware sends
and receives a relatively small number of network packets.
Nevertheless, all malware uses some system resources in
one way or another. We rely on performance metrics as
an important sensor to characterize malware behaviors. This
data depends on volumetric system information (e.g. CPU
utilization, number of packets/bytes sent and received, and
memory utilization) which gives a generic overview of the
impact of malware on systems resources.

Table I gives our behavioral data metrics, which form the
time series trends of the operating system’s processes. The
selected metrics are used to show the effectiveness of our
approach; however, additional metrics are available in practice
which can give more in-depth insight into malware behavior.
We grouped the selected metrics into eight categories: (1)
status: indicating the status of processes as sleep, active,
etc., (2) CPU information: giving the detailed CPU utilization
of processes (e.g., CPU utilization spent in kernel and user
space), (3) Context switches: identifying the context switches

2Openstack. https://www.openstack.org/



TABLE I: Virtual machines performance metrics [1].

Metric Category Description
Status Process status

CPU information CPU usage percent, CPU times in user space, CPU times in system/kernel space, CPU times of children processes in user
space, CPU times of children processes in system space.

Context switches Number of context switches voluntary, Number of context switches involuntary
IO counters Number of read requests, Number of write requests, Number of read bytes, Number of written bytes, Number of read chars,

Number of written chars
Memory information Amount of memory swapped out to disk, Proportional set size (PSS), Resident set size (RSS), Unique set size (USS), Virtual

memory size (VMS), Number of dirty pages, Amount of physical memory, text resident set (TRS), Memory used by shared
libraries, memory that with other processes

Threads Number of used threads
File descriptors Number of opened file descriptors

Network information Number of received bytes, Number of sent bytes

TABLE II: Modified UCO Classes and Relationships.

Type List
Classes Software, Exploit-Target, Malware, Indicator, Vulner-

ability, Course-of-Action, Tool, Attack-Pattern, Cam-
paign, Filename, Hash, IP Addresses

Relationships attributedTo, indicates, hasProduct, hasHash, miti-
gates, hasVulnerability, uses

done voluntarily and involuntarily by processes, (4) IO coun-
ters: indicating disk utilization information (e.g., the number of
bytes written and read, etc.), (5) Memory information: showing
the processes memory utilization metrics (e.g., amount of
memory swapped out, memory used by shared libraries, etc.),
(6) Threads: giving the number of threads created in processes,
(7) File descriptors: representing the number of file descriptors
used by processes, and (8) Network information: indicating
processes network utilization metrics such as the number of
bytes sent and received.

C. CTI Extraction Pipeline: Updating UCO 2.0

Unified Cybersecurity Ontology (UCO) [27], based on
Structured Threat Information Expression (STIX 1.0) [10],
describes a schema to represent CTI. UCO 2.0 is an updated
version of the ontology which is based on the updated version
of STIX (version 1.2) [9]. The classes and relationships have
been modified, in accordance with work by Pingle et al.
[27], which best represents CTI extracted from cybersecurity
technical reports. The modified classes and relationships are
given in Table II and briefly described below.

A Software is a piece of published program that can be used
or targeted by a malware, like Microsoft Office. An Exploit-
Target usually relates to the site of the attack and is typically
an operating system like Windows or Ubuntu. Indicators are
known cues about a malicious attack. A vulnerability can be a
bug or a general weakness that can be exploited by malware.
Course-of-Action denotes a sequence of steps that a user can or
must perform to mitigate an attack. Filenames and IPAddresses
are known examples that a malware uses during the attack.
An Attack-Pattern is a sequence of activities that a malware
performs during the attack.

The Hash is a key class for our purpose as it denotes one of
the known MD5 hash values associated with the malware. We
use it to merge the CTI information with the behavior data of
the detonated malware. The attributedTo relationship is about a
campaign that is related to a Malware, Tool, or Vulnerability.

An Indicates relationship holds between an Indicator and a
Malware, or a Tool. hasProduct is a relationship between
two Software instances. Course-of-Action mitigates a Malware
or a Tool. hasHash is a relationship between a Malware
and a Hash. The relationship hasVulnerability exists between
a Software, or an Exploit-Target, with a Vulnerability. A
Malware or a Tool uses an Attack-Pattern or another Tool.
These ontology components represents the schema for our
Cybersecurity Knowledge Graph (CKG) which captures CTI
from text data.

D. Representation of data in a Fused CKG
We have an established pipeline that extracts data from

open-source technical reports or blogs. The pipeline extracts
the cybersecurity-relevant entities and the relationships be-
tween them from the text and assigns them to classes of
the CKG schema based on STIX. The behavioral data is
indexed based on MD5 hashes of the malware detonated in
VM. We search for reports or blogs available on the Internet
that mention the MD5 hashes and run those reports through the
pipeline. This results in an entity-relation set about knowledge
extracted from text reports scraped from the internet.

1) CTI extraction from cybersecurity text: The pipeline
takes cybersecurity text, which can be in the form of blogs or
reports published by verified or unverified sources, as input and
extracts cyber entities mentioned in the report. The cyber entity
extraction is based on a Named Entity Recognizer (NER)
trained on a cybersecurity corpus. We then pass the extracted
cyber entities to a machine learning model which establishes
a relationship existing between each pair of entities [19], [20],
[27]. This results in an entity-relationship set, which tells us
facts about the malware mentioned in the text are inter-related.
This representation of CTI as a knowledge graph helps us to
to integrate and reason over the extracted knowledge. It also
provides interfaces to run queries that can be used to retrieve
the extracted information.

2) Behavioral data extraction: As mentioned in Section
III-A, we observe the parameters in Table I every ten seconds.
After a time interval, we detonate a malware sample and keep
on observing the same parameters. However, this results in
a large volume of data for one malware that is not suitable
to be asserted into a knowledge graph. A security analyst
interested in the behavior of a particular malware may find
it more useful to retrieve information about the pattern certain



system parameters exhibit when a malware is running in the
system. Moreover, for some system parameters, like memory,
context switches are specific to the system.

The exact value of these parameters might not be useful
but their trend may be very useful from a practitioner’s
perspective. We extract the parameter trends from the malware
behavior data and ingest them into the “Behavior Knowledge
Graph”. We separate the behavioral data feed for each malware
into two sub-groups. The first has data from the time obser-
vation starts till the timestamp just before the malware gets
detonated and the second includes data from the timestamp
when the malware gets detonated, till the end of observation.
Once we have these two sub-groups, we can calculate how the
time-series trends differ.

Difference in the value sets between one group and
another: We use this to identify the difference between
features like ‘pid’ and ‘name’ (process names). For process
id and process names we simply check the count and the new
process names respectively, that are being created after the
malware is active in the system.

Difference between the average, min, max values: We use
this for numerical features of our behavioral data. We take the
difference between the average of the features, before and after
the malware detonation. This is particularly useful for fields
related to memory and ‘context switches’. If the average value
of these features jumps by a significant amount, we record
that in our Behavioral KG. We also calculate the difference
between the min and max of certain features. This helps us to
record unnatural spikes for certain features of the data. This
is particularly useful for features like ‘CPU usage’.

Correlation Coefficient: This metric is used to compare
the time series trends of selected features before and after
the malware detonation. If the correlation coefficient for one
particular feature is high positive, then we can say that the
feature remained unaffected by the malware detonation. A
strong correlation between them would mean that the same
trend follows even after malware detonation. However, if the
correlation coefficient is negative or very close to zero, we can
say that the time series trend has changed significantly after
the detonation of the malware. We check this value before we
assert the previous values to the Behavioral KG.

We form a super-set of the classes and relationships present
in the schema of our Behavioral KG, and the classes of
relationships of UCO 2.0. The merged set of classes and rela-
tionships has the ability to capture and represent data coming
from CTI as well as the behavioral parameters. We search for
the MD5 hash, on which the behavior data is indexed, among
open source text descriptors about malware. If there is a match,
we sent the text through the CTI extraction pipeline. We then
assert the entire set of entities and relationships (both behavior
and CTI) to the fused CKG.

IV. KNOWLEDGE GRAPH REASONING

The behavioral knowledge when represented in a knowledge
graph, presents us with query and reasoning capabilities. We
run SPARQL [31] queries to extract the exact information we

desire. For example, if we simply want to query from the in-
formation asserted in the behavioral knowledge graph, we can
run the following query. This simply translates to ‘which pa-
rameters have their maximum values changed for the malware
which has the hash: ‘5d10bcb15bedb4b94092c4c2e4d245b6’.
A point to be noted here is that the values returned have their
maximum values changed by a significant amount. For our
experiments, we chose this threshold as 30%.
SELECT ?x WHERE {

BKG:5d10bcb15bedb4b94092c4c2e4d245b6
BKG:hasParameter ?x.

?x BKG:parameterchange
BKG:increases_maxchange.}

This query results in two values:
cpu_children_sys,io_write_bytes

The reasoning capabilities are enhanced when the behavioral
data is fused with the CTI extracted from text descriptions of
the malware with the same MD5 hash. The following query
asks a more complex question: ‘Return all attack patterns that
a malware uses and the parameters which show high mean
change and the parameters should be associated with an MD5
hash which the malware uses’.
SELECT DISTINCT ?z ?y WHERE {

?x a FusedKG:Malware.
FusedKG:hasHash ?z.
FusedKG:uses ?y.

?y a FusedKG:Attack-Pattern.
?z FusedKG:parameterchange;

FusedKG:increases_meanchange.}

which returns the following three values:
DDoS_Trojan,turn_off_firewall,io_write_bytes

We observe that the fused knowledge graph answers the
question based on the information extracted from both CTI
and the behavioral data. The attack patterns are extracted from
a blog written by the user about this malware which has the
same MD5 hash as the malware detonated for the observation
of the behavior parameters. This reflects how the CKG gets
more enriched after fusion.

V. CONCLUSION AND FUTURE WORK

We successfully demonstrated how fusing CTI informa-
tion with malware behavior data enriches our CKG. Our
fused CKG captures information about analyses performed
by users and also the trends of various system parameters
of the behavior data. Removal of contradictory statements is
enforced by the reasoning capabilities of proposed CKG, and
thus improves the veracity of the data present in the CKG.
The fused CKG helps in aggregating data from OSINT and
malware behavior, which is detonated in our local systems, and
thus aids in the process of discovering more information than
what was present from the individual sources. We believe that
our enriched knowledge gathered from OSINT and malware
behavior addresses some of the key shortcomings of the
previous research conducted in this area.

We plan to improve our system in several ways. We will
enhance our system for ingesting CTI data from more feeds
and automatically update the CKG on regular basis. We



will revise our approach to encoding provenance to use new
features of RDF*, which will facilitate exporting our CKGs
to systems based on property graphs, such as Neo4j. We will
also incorporate our work adding similarity metrics based on
graph embeddings and tensor decomposition and explore how
these can be used.
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