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Abstract— Artificial intelligence (AI)-based decision-making
systems are employed nowadays in an ever growing number
of online as well as offline services–some of great importance.
Depending on sophisticated learning algorithms and available
data, these systems are increasingly becoming automated and
data-driven. However, these systems can impact individuals
and communities with ethical or legal consequences. Numerous
approaches have therefore been proposed to develop decision-
making systems that are discrimination-conscious by-design.
However, these methods assume the underlying data distribution
is stationary without drift, which is counterfactual in many real-
world applications. In addition, their focus has been largely on
minimizing discrimination while maximizing prediction perfor-
mance without necessary flexibility in customizing the trade-
off according to different applications. To this end, we propose
a learning algorithm for fair classification that also adapts to
evolving data streams and further allows for a flexible control
on the degree of accuracy and fairness. The positive results on a
set of discriminated and non-stationary data streams demonstrate
the effectiveness and flexibility of this approach.
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I. INTRODUCTION

Artificial intelligence-based decision-making systems have
become a necessity in both online as well as offline settings
to render all sorts of decisions, such as screening of job
application, loan credit approval, allocation of health resources
and autonomous driving. This trend is likely to continue given
that many AI systems are able to match or even surpass
humans in accuracy and/or throughput [1]. However, without
intervention these systems may make decisions dependent on
the sensitive attributes (e.g., gender and ethnicity) and lead
to discrimination against particular groups of people sharing
one or more sensitive attributes. A growing body of such kind
of discriminatory incidents caused by the AI-based decision-

making systems have been observed and reported [2], [3],
[4]. As a recent example, the AI algorithm behind Google’s
AdFisher tool has suggested signs of gender discrimination
by displaying male job hunters significantly more higher-
paying jobs than to female, even though the AI algorithm
did not consider gender as an attribute [5]. Such incidents
have pointed out the urgent need to consider the potential loss
of fairness and accountability in AI-based decision-making
systems, pulling in diverse scholars from civil organizations,
policy-makers and legal experts.

A number of studies have therefore been proposed to
address the growing concern on the fairness issue of AI
models and to develop discrimination-conscious AI systems.
These studies can be broadly categorized into pre-processing
approaches [6], [7], in-processing approaches [8], [9] and
post-processing approaches [10], [11] based on whether the
elimination of discrimination are focusing on the data level,
the algorithm level and the output of model, respectively.
A common theme amongst all these prior works is the as-
sumption of fairness as a static problem, which means the
inappropriate discriminative correlations (e.g., gender with ap-
titude) is implicitly modeled as a constant and static property.
This is unrealistic to the many domains that have underlying
concept drift over time and leaves users with online-learning
problems without tooling to mitigate these concerns [12], [13].
In addition, the focus of most current work is on minimiz-
ing discrimination performance while maximizing prediction
accuracy, without a flexible control on the trade-off between
fairness and accuracy [14], [15]. If a user wanted to alter
the balance to meet a justified “business necessity” (a legally
encoded concept to allow a balance between accuracy and
performance) [16], they would generally be required to alter a



number of hyper-parameters that have non-trivial interactions
to obtain the desired balance [17]. In our approach we include
a hyper-parameter designed to provide an easy and direct
trade-off between these two factors so that users can more
easily adjust to their own applications, with the goal of
encouraging wider use through easy to obtain results.

Compared with the numerous approaches address static
fairness, discrimination-aware learning in data stream is highly
under-explored and brings unique challenges [18], [19]. In
such applications, the model should be able to address the
tightly coupled non-stationary issue simultaneously, and the
evolution of target concepts is always accompanied and
complicated by the biased decision regions. Transferring ap-
proaches among these two domains is therefore unfortunately
not straightforward, sophisticated design is warranted. Moti-
vated by these significant challenges, this paper introduces
a fair and concept-adapting classifier for discriminated and
time-evolving data streams. This work also takes a step for-
ward by equipping it with flexible fairness control capability
for application-driven fairness-aware learning. To the best of
our knowledge, this is the first work jointly considers non-
stationary data distribution and flexible control on the trade-
off between fairness and accuracy. The contribution of this
paper is three-fold:
• We define a new problem of fairness-aware learning in

data streams with flexible fairness control. Then, we pro-
pose a discrimination-aware learner with add-on concept
drift adaptation ability to handle discriminated and non-
stationary data streams, and is capable of controlling
the trade-off between fairness and accuracy in a flexible
manner.

• We introduce the flexible fair information gain that jointly
considers the information and fairness gain as well as
customizes the trade-off between fairness and accuracy,
thus providing more flexibility than the state of arts.

• The conducted experiments verify the capability of the
proposed model in online settings and for application-
driven fairness-aware learning.

The rest of the paper is organized as follows. Theoretical
background knowledge and related studies regarding fairness-
aware learning are first reviewed in Section II and III, respec-
tively. We then discuss the vanilla Fairness-Aware Hoeffding
Tree classifier which is the base model of our approach in
Section IV. Next, Section V presents the proposed method,
followed by the experimental results in detail in Section VI.
Finally, we conclude the paper in Section VII.

II. BASIC NOTATIONS AND PROBLEM DEFINITION

Let D be the data stream consisting of a sequence of
instances x1, x2, · · · , xt that arrive continuously and possible
infinitely over time. Each instance xt ∈ D is represented over
the schema (A1, A2, · · · , An, Y ) with their respective domains
dom(Ai) and dom(Y ), where A is a set of attributes and
Y is the class label. Moreover, we further assume a special
attribute S ∈ A, referred to as the sensitive attribute, e.g.,
gender and race, with a special value s ∈ dom(S), referred to

as the sensitive value, e.g., female and black, that define the
unprivileged group.

An online classifier F is then a function from A to Y ,
denoted as F : A → Y . The current model Ft is first trained
given x1, x2, · · · , xt and predicts the class of xt+1, i.e., yt+1.
Once the prediction is made, the actual class label of xt+1

is revealed to Ft for model updating from Ft to Ft+1 and
the next instance xt+2 arrives afterwards. This setup is also
known as first-test-then-train or prequential evaluation [20]. In
addition, concept drift occurs when there are changes in the
underlying data distribution such that Pt1(A, y) 6= Pt2(A, y)
for t1 6= t2, and therefore F needs to be updated accordingly.

While maintaining an accurate and up-to-date classifier,
online fairness-aware learning simultaneously requires F does
not discriminate w.r.t the sensitive attribute, i.e., between the
privileged and unprivileged groups. Up to now, more than
twenty fairness measures have been proposed to assess such
discriminative behavior [21]. One of the most widely used
measures is the statistical parity [22] which measures the
percentage difference between privileged and unprivileged
group when being assigned a positive target class, for example
allocating healthcare resources. The unprivileged can claim
that they are discriminated when their positive classification
percentage is lower than the privileged group’s. Without loss
of generality, we assume both the sensitive attribute and class
label are binary-valued. Four respective groups representing
privileged group receiving positive classification (PP), priv-
ileged group receiving negative classification (PN), unprivi-
leged group receiving positive classification (UP), unprivileged
group receiving negative classification (UN) can therefore
created, and the statistical parity in online settings can be
formulated as below:

Disc(Dt) =
PPt

PPt + PNt
− UPt
UPt + UNt

(1)

Compared with the statistical parity in offline settings, Equa-
tion (1) measures the cumulative discrimination up to time
t and Disc(Dt) might also evolve over time, which further
complicates the learning. The aim of online fairness-aware
learning is therefore to maintain an up-to-date F that makes
accurate predictions for Y but also does not discriminate w.r.t
S.

We make explicit that what constitutes “fair” or “discrim-
inative” is dependent on many factors and context [23], as
well as philosophical questions that have been researched long
before the AI communities’ interest [24]. Addressing such
questions about when to use statistical parity over any other
metric, and deeper questions, are critical but beyond the scope
of this work. We select statistical parity because American
user studies have found that it is a measure compatible with
many user’s intuition of what constitutes a “fair” decision [25].
As such we expect many applications could make use of
our method, though an informed user should make a careful
considerable about the relevant factors of their domain [26].



III. RELATED WORK

This work focuses on fairness-aware learning in data
streams, relevant studies therefore include fairness-aware
learning in offline settings, data stream classification as well as
the online fairness-aware learning that lies in the intersection
of the previous two research directions.

A. Offline Fairness-aware Learning

Motivated by the increasing attentive concerns, booming
approaches have been proposed to tackle AI fairness as a
batch learning problem aiming at minimizing discrimination
while preserving prediction performance [27], [2], [12]. Most
of these studies assume offline settings by design and can
be typically categorized into three main families: i) pre-
processing approaches, ii) in-processing approaches and ii)
post-processing approaches, based on whether they mitigate
bias at the data level, the algorithm design or the output of
model, respectively.

The first strategy, pre-processing solutions, consists of per-
forming different data level operations such as transformation
and augmentation to neutralize or eliminate the extent of
inherited bias of the data. The rationality for such type of
approaches is that classifiers trained on the fairly represented
data could make fair predictions. These methods are model-
agnostic and can be employed in conjunction with any ap-
plicable classifier after the pre-processing step. Representative
works include massaging [6] and reweighting [7]. The former
directly swaps the class labels of selected instances to change
data distribution for the sake of balanced representation. The
swapped instances are selected using a ranker based on the
potential accuracy deterioration in order to minimize accuracy
loss while reducing discrimination. While the latter, instead of
intrusively relabeling the instances, assigns different weights
to different communities to reduce discrimination. Instances
belonging to the unprivileged group will receive higher weighs
comparing to instances from the privileged group. However,
methods in this category are typically not quite effective
as standalone unless being used in conjunction with other
methods with sophisticated design.

In contrast, the second category, in-processing approaches,
consists of modifying existing algorithms, usually integrating
fairness as a part of the objective function through constraints
or regularization, to mitigate discrimination, and is therefore
algorithm-specific. [11] is one of the seminal in-processing
works, in which discrimination, reflected by the entropy w.r.t.
sensitive attribute, is incorporated into the splitting criterion
for fair tree induction. In [14], the measure of “decision
boundary fairness” is leveraged to penalize discrimination in
the formulation of a set of convex margin-based classifiers.
More recently, Fang et al. [28] propose the notion of “fair-
group construction” to emphasize sensitive attributes in the
classification process for the sake of improving fairness in
prediction outcomes. Our work belongs to this category by
jointly considering data encoding and diminishing discrimi-
nation of the training data for an accuracy-driven as well as
fairness-oriented model.

The last category, postprocessing techniques, consists of
either adjusting the decision boundary of a model or directly
changing the prediction labels. [22] processes with additional
prediction thresholds to work against discrimination while
the decision boundary of AdaBoost is shifted w.r.t. fairness
in [29]. The latter approaches pay attention to the outcome
of a classifier. In [11], for example, relabeling is performed
on selected leaves of the decision tree to decrease discrimina-
tion while minimizing the effect on predictive accuracy. We
emphasize that transferring such techniques to online settings
is not straightforward as the boundary/prediction could evolve
themselves due to the non-stationary distributions in online
settings.

B. Data Stream Learning

In data stream mining, the data arrives sequentially and
the underlying data distribution might also evolve over time,
known as concept drift [20], [30], [31]. The learning algo-
rithms therefore need to take the evolution of underlying
data distribution into consideration, while remaining stable
on historical but not outdated concepts. Such adaptation is
normally enabled by: 1) incorporating new instances from the
stream into the model [32], [33], and ii) forgetting the previous
outdated knowledge from the model [34], [35].

The first type of adaptation calls for incremental algorithms.
In [36], a probabilistic classifier that updates the probability
distribution based on the new instances from the stream
but does not forget the previous instances is proposed. The
representative work is the Hoeffding Tree classifier [37],
which scans each instance in the stream only once and stores
sufficient information in its leaves in order to grow. The tree
learned is also theoretical guaranteed to be asymptotically
nearly identical to the tree induced by a conventional static
learner. The second category calls for methods that are able
to forget. There is a plethora of such approaches in the
literature, these approaches can be further categorized into
gradual forgetting [38], [39] and abrupt forgetting [40], [41]
methods, depending on the rate at which concept drift presents
in the stream.

C. Online Fairness-aware Learning

A number of studies have been proposed with regard to
offline fairness-aware learning and data stream learning solely
focusing on the elimination of discrimination and concept
drift, respectively. However, fairness in online setting requires
simultaneously taking the removal of prediction dependence
on the sensitive attributes and the evolution of underlying
data distribution into consideration. In [18], massaging and
reweighting are extended for a chunk based fair stream classi-
fication approach in which these two pre-processing methods
are applied before updating the online classifier focusing
on concept drift adaptation. However, as discussed in Sec-
tion III-A, pre-processing methods, even in the offline settings,
are typically not quite effective as the standalone approach let
alone in the more challenging online environments. The appli-
cability of this approach is therefore unknown. More recently,



Zhang et al. [12] improves the splitting strategy of [11] and
operates their model in the online setting. This model was later
extended for enhanced discrimination elimination and prompt
response on concept drift [13]. However, research efforts in
this direction have still been limited. Our work situates in
this highly under-explored research direction by encapsulating
the capability of drift detection and adaptation to tackle online
fairness comprehensively, so as to provide fair online decision-
making.

IV. VANILLA FAIRNESS-AWARE HOEFFDING TREE
(FAHT)

Our Flexible and Adaptive Fairness-Aware Hoeffding Tree
(2FAHT) classifier extends the Fairness-Aware Hoeffding Tree
(FAHT) classifier [12], which is built on top of the Hoeffding
Tree (HT) classifier [37]. To mine high-speed data stream,
FAHT or HT induces a decision tree from the given stream
incrementally, briefly scanning each example in the stream
only once and storing sufficient information in its leaves in
order to grow when future data arrives. The critical decisions
needed during the induction of the tree are when to split a
node and with which example-discriminating test. To this end,
the authors employ the Hoeffding bound [37] to guarantee
that the tree learned converges (with high likelihood) to
the conventional static tree built by a batch learner, given
enough examples. In HT, these two decisions are based on
the information gain (IG) [42], which is exclusively accuracy-
oriented and does not consider fairness. The prior FAHT
method solves the discrimination problem by introducing a
new splitting criterion, called fair information gain (FIG), that
jointly considers the fairness gain and information gain of the
introduction of an attribute split:

FIG(D,A) =

{
IG(D,A), if FG(D,A) = 0
IG(D,A)× FG(D,A), otherwise

(2)
where FG refers to fairness gain that measures the difference
in discrimination due to the split and is formulated as:

FG(D,A) = |Disc(D)| −
∑

v∈dom(A)

|Dv|
|D|
|Disc(Dv)| (3)

where A is an attribute relative to the collection of instances
D that stored in sufficient statistics, Dv, v ∈ dom(A) are
the partitions/subsets induced by A, and each corresponding
discrimination value is gauged according to Equation (1). In
fairness gain, each subset contributes with a weight factor
relative to its cardinality, i.e., |Dv|

|D| , which is identical to
information gain.

The authors [13] later reformulate FG by relaxing the
fairness gain ratio so as to maximize the cumulative fairness:

FG(D,A) = |Disc(D)| −
∑

v∈dom(A)

|Disc(Dv)| (4)

The motivation is to encourages fair splits by giving priority
to splitting candidates that result in a higher discrimination
reduction regardless of their number of distinct values and
less represented attribute values. This is also equivalent to
assigning a bonus to attributes with multi-values and attribute
values with small representation sizes but have a high dis-
crimination reduction when being selected as the splitting
attributes in Equation (3). We adopt this reformulated notion
in our method to select splitting candidates resulting higher
discrimination reductions, which simultaneously provide extra
spaces controlling the level of fairness thus adding more
flexibility on the trade-off between fairness and accuracy when
needed.

The idea of FG is motivated by IG but from the discrimina-
tion perspective. Multiplication is favoured, when combining
them as a conjunctive objective, over other operations, for
example addition, as the values of these two metrics could
be in different scales, and in order to promote fair splitting
which results in a reduction in the discrimination after split,
i.e., FG is a positive value.

The conducted experiments demonstrated the predictive
and anti-discrimination capability of FAHT [12]. However,
there are two limitations for FAHT. First, FAHT focuses on
optimizing for fairness while maximizing accuracy and has no
method to adjust the trade-off between accuracy and fairness.
If FAHT’s parameters do not confirm sufficient fairness, or if
its accuracy is too low to be usable, there is no means to adjust
FAHT’s tree induction to fix these situations. Second, FAHT
is not adaptive to concept drift. FAHT assumes the stream is
independent and identically distributed to converge to the same
tree in the static non-streaming case, leaving it ineffective for
situations where the correlations of the sensitive attribute and
target label change over time.

In this work we will address both of these limitations
to FAHT to create the first method that can adjust the ac-
curacy/discrimination trade-off and learn a useful model in
the face of concept drift. This is achieved by extending the
FAHT model in two ways: 1) by introducing a flexible fair
splitting criterion that allows for flexible control on the fairness
gain and information gain for splitting candidate determination
when inducing the tree (c.f., Section V-A) ; and 2) by adding
the ability to detect and act more promptly to the evolution of
underlying distribution (c.f., Section V-B).

V. 2FAHT: FLEXIBLE AND ADAPTIVE FAIRNESS-AWARE
HOEFFDING TREE CLASSIFIER

This section first outlines the flexible fair information gain
splitting criterion for application-wise fairness-aware learning,
followed by the adaption of changes in the example-generating
process for fairness-aware learning in non-stationary data
stream settings. A number of refinements and modifications
that instantiate the flexible and adaptive learning process are
also specified.



A. The Flexible Fair Information Gain

FAHT integrates the fairness merit into the tree induction,
results into an accuracy-driven and fairness-oriented induction
of the tree. However, such induction process is internally
working and does not allow for a fine-grained control on the
trade-off between accuracy and fairness. To this end, we first
introduce the flexible fair information gain as:

2FIG(D,A) = IG(D,A)× eγ×FG(D,A) (5)

where γ is a tunable parameter, IG and FG stand for infor-
mation gain and fairness gain respectively when considering
attribute A as a potential split based on the sufficient statistics
D, stored in leaves but also non-leaf node to enable concept
drift adaptation (c.f., Section V-B). In this form the FG
criterion becomes a gating mechanism for the information,
and the hyper-parameter γ modules the flow of the gate.
Discriminatory splits will receive a low FG and thus modulate
the information gain, reducing the likelihood of being selected
for splitting. Likewise non-discriminatory splits will receive
large FG values which encourages the current IG score.
Because tree induction is based on maximum score the gating
like approach does not need to be normalized, so we use this
simpler non-normalized equation.

We make note that the use of an exponential term to
combine multiple factors in decision tree induction is a unique
contribution. All prior work we are aware (e.g., [11], [12],
[43]) considers only simple addition, subtraction, multiplica-
tion and division of competing factors. As we will show later,
our exponential modulation allows for a smooth and intuitive
practical means of performing this trade-off between accuracy
and fairness.

The formulation design of 2FIG also comes with the follow-
ing considerations. First, the exponential function in 2FIG is
used for smoothing. For instance, suppose one attribute Aa has
a FG of 0.1 and another attribute Ab has a FG of 0.01. Without
the exponential function the weight of Aa will be 10 times of
that of Ab assuming equal value of IG and γ = 1. This may
overly enforce fairness thus result in underwhelming accuracy.
With the exponential function the weight for Aa is 1.09 times
of that of Ab. Second, when γ is set as 0, i.e., accuracy is
the primary focus of the current application, 2FIG is identical
to IG for the completely accuracy-driven model construction.
For a positive γ value, the merit of a feature increases with the
discrimination reduction of that splitting feature and decreases
with the resultant uncertainty increase. That is to say, the
increment of γ up-weights FG and correspondingly down-
weights IG. So the model favors features that result in a higher
discrimination reduction for the more fairness-oriented model
construction. This proposed 2FIG is therefore used in replace
of FIG for fine-grained fairness-aware learning.

B. 2FAHT: A Flexible and Adaptive Fairness-Aware Hoeffding
Tree Classifier

To overcome the previous discussed second drawback of
FAHT, we further endow 2FAHT with the ability of change

detection and concept forgetting. To this end, 2FAHT keeps
its model consistent with the example-generating process
of the current stream, creates alternative decision subtrees
when evolving data distribution is detected at a node, and
replaces its corresponding branch when needed or prune the
created alternative decision subtree. Such concept drift could
be reflected by whether there is a change in the underlying
data distribution resulting in performance deterioration in that
node. When considering concept drift indications, compared
with the previous online fairness studies [13] following lit-
erature from the data stream community which solely focus
on predictive accuracy as the performance indication, 2FAHT
takes both predictive accuracy and discrimination performance
into consideration as they may have different non-stationary
characteristics. For example, a subgroup could be receiving
increased discrimination but has no discernible impact to
overall accuracy.

In addition, instead of directly determining whether one
node’s performance deteriorates in terms of the numerical
values of accuracy and fairness, 2FAHT monitors whether
there is a new promising attribute at the non-leaf node to reflect
new concepts and declares when branch replacement is nec-
essary. We detect such signals by re-leveraging our previously
introduced flexible fair information gain, and therefore jointly
considers the implications of the evolving data distributions on
accuracy as well as fairness. The sketch of 2FAHT is shown
in Algorithm 1.

Algorithm 1 2FAHT induction algorithm
Input: a discriminated data stream D,

confidence parameter δ,
the number of examples between checks for
grownth ng ,
the number of examples between checks for
drift nd.

2FAHT(D, δ, τ )
1: Let FAHT be a tree with a single leaf (the root)
2: Let Talt(L) be an initially empty set of alternative trees

for non-leaf node
3: Let nL be be the number of examples seen at leaf or

non-leaf node L
4: Init sufficient statistics at root
5: for each instance x in D do
6: Sort example into leaf l using 2FAHT
7: Update sufficient statistics in l and nodes traversed in the sort
8: Increment nL

9: 2FAHTGrow(x, FAHT, δ, τ , ng)
10: for traversed node that has an alternate tree Talt do
11: 2FAHTGrow(x, FAHT, δ, τ , ng)
12: end for
13: if nL mode nd = 0 then
14: CheckPromisingSplit(FAHT, δ, τ , nd)
15: end if
16: end for

2FAHT first sorts each example from the stream into an



appropriate leaf (line 6), depending on the splitting tests
presented in 2FAHT to that point. Compared to FAHT, 2FAHT
also maintains sufficient statistics of the nodes traversed in the
sort in order to update alternative branches (line 7-8) and grow
alternative these branches (line 11). The growing procedure
of 2FAHT is similar to FAHT (line 9). However, 2FAHT
continuously monitors the quality of old search decisions
with respect to the latest instances from the data stream (line
14), in order to keep the model it is learning in sync with
changes in the example-generating process. Such monitoring
is done by periodically checking for promising splits detailed
in Algorithm 3. When checking for promising splits, 2FAHT
creates an alternative subtree for each node that change in
the underlying distribution is detected (line 10-20). Under the
condition that an alternative subtree already exists, 2FAHT
checks whether the alternative branch performs better than the
old branch (line 3). The old branch will be replaced by the
alternative one if so (line 4), otherwise the alternative branch
will be pruned (line 6). The whole learning process is therefore
fairness-aware, flexible and concept-adapting.

Algorithm 2 2FAHT growth algorithm

2FAHTGrow(x, FAHT, δ, τ , ng)

1: if examples seen at l are not all of the same class and nl mode
ng = 0 then

2: Calculate 2FIGl(Ai) for each attribute according to Equation
(5)

3: Let Aa be the attribute with highest 2FIGl

4: Let Ab be the attribute with second-highest 2FIGl

5: Compute Hoeffding bound ε =

√
R2 ln(1/δ)

2nl
6: if Aa 6= A∅ and (2FIGl(Aa) − 2FIGl(Ab) > ε or ε < τ )

then
7: for each branch of the split do
8: Start a new leaf and initialize sufficient statistics
9: end for

10: end if
11: end if

VI. EXPERIMENTAL EVALUATION

Having introduced our 2FAHT algorithm, we will now
show it’s effectiveness. First we will describe the datasets
and sensitive attribute used in our experiments. Second, we
will keep γ fixed at 1 and compare with prior approaches.
This shows that our method maintains the desirable property
of being effective without parameter tuning, making it easier
for others to use. Third, we will show that by altering γ
we can interpolate between a model that favors accuracy vs
discrimination in a continuous manner, giving practitioners the
tools to adjust the results to their needs.

A. Datasets and Experimental Setup

The growing concern on the discrimination bias of AI model
has motivated a number of studies for the development of
discrimination-conscious AI system. However, there is still
a lack of datasets and benchmarks [27]. With respect to the

Algorithm 3 Check promising split algorithm

CheckPromisingSplit(FAHT, δ, τ , nd)

1: for each node L in FAHT that is not a leaf do
2: for each tree in Talt in Talt(L) do
3: if Talt is more accurate or fair then
4: replace current node with its Talt

5: else
6: prune its Talt

7: end if
8: CheckPromisingSplit(FAHT, δ, τ , nd)
9: end for

10: Let AL be the split attribute at L
11: Let Aa be the attribute with the highest 2FIGL other than

AL

12: Let Ab be the attribute with second-highest 2FIGL other than
AL

13: if 2FIGL(Aa)−2FIGL(Ab) ≥ 0 and Aa has not been used
as the root node in Talt(L) then

14: Compute Hoeffding bound ε =

√
R2 ln(1/δ)

2nL
15: if Aa 6= A∅ and (2FIGl(Aa)−2FIGl(Ab) > ε or ε < τ )

then
16: for each branch of the split do
17: Start a new leaf and initialize sufficient statistics
18: end for
19: end if
20: end if
21: end for

highly under-explored fairness-aware learning in massive data
streams, this challenge is further amplified as most datasets
being used in current fairness studies contain less than 1,000
instances, which does not meet the demanding requirement
with respect to the number of instances and drift therein so
as to simulate data stream environments [12]. In addition,
the problem of discrimination is a very complex problem for
learning as it may be due to different factors such as attributes
or subsets that act as proxies to the sensitive attribute. Such
a behavior cannot be easily replicated in other datasets nor
synthetically generated [21]. Therefore, we focus on evaluating
our approach on the real fairness datasets used in the recent
work of this research direction [12], [18], the Adult and the
Census [44] datasets both aiming at determining whether a
person makes over 50K dollars per annum.

The first Adult dataset contains 48,843 instances described
by 14 employment and demographic attributes (attribute
“fnlwg” is removed as suggested). For fair comparison, we
follow the same options of [12], [18] in our experiments by
setting “gender” as the sensitive attribute with female being the
sensitive value and an annual income of more than 50K as the
target class, i.e., the positive classification. The discrimination
level of the whole dataset is 19.45% according to Equation (1).
The second Census dataset has an identical prediction task as
the Adult dataset but is significantly larger in size including
299,285 instances and 41 attributes. The settings of sensitive
attribute, sensitive value and positive classification remain the
same, and the intrinsic discrimination is 7.63%.

Most existing fairness works process these two datasets



in a static manner and there is no temporal information.
We turn them into data stream by randomizing the order
and process them in sequence. The first-test-then-train or
prequential evaluation set up [20] is employed for evaluation,
in which each incoming instance is first being predicted upon
arrival then is available for model training and cannot be
reaccessed or being stored.

B. Minimizing Discrimination While Maximizing Accuracy

This section first experiments 2FAHT’s devised discrimina-
tion eliminating and adaptation capabilities when addressing
discrimination in non-stationary data stream settings. Note
that for fair comparison, the tunable parameter γ is fixed at
the value of 1 to disable tuning. We compare against three
recently proposed fairness-aware online learner FEI [18] as
well as FAHT [12] and its extension FEAT [13] along with two
baselines therein, the Hoeffding Tree (HT) and KHF which
incorporates the discrimination-aware splitting criterion of [11]
into HT. We do not compare with other competing fairness
methods since none of them is capable of addressing fairness
in online settings. We further implemented an exclusively
concept-adapting oriented online learner, denoted HAT [34],
from the data stream mining literature as a baseline. Table I
summarizes the obtained results from 2FAHT and all baselines
trained the same way for all datasets.

TABLE I
MINIMIZING DISCRIMINATION WHILE MAXIMIZING ACCURACY

CAPABILITY BETWEEN 2FAHT AND BASELINE MODELS. THE BEST
RESULTS ARE IN BOLD, AND PERCENTAGE IN PARENTHESIS IS THE

RELATIVE DIFFERENCE OVER THE PERFORMANCE OF THE BEST BASELINE
METHOD, WHICH DEMONSTRATED 2FAHT HAS THE LOWEST

DISCRIMINATION WITH ONLY MINOR REDUCTION TO ACCURACY.

Methods
Metric Adult dataset Census dataset

Disc% Acc% Disc% Acc%
HT 22.59 83.91 6.84 95.06
FEI 22.16 75.51 6.34 81.26

FAHT 16.29 81.83 3.20 94.28
FEAT 15.26 84.01 1.25 95.03
HAT 22.30 84.70 6.54 95.64
KHT 22.61 83.92 6.59 94.82

2FAHT 12.82 83.64 1.15 94.77
(-15.99%) (-1.25%) (-8.0%) (-0.91%)

As we can see from table I, 2FAHT achieves the low-
est cumulative discrimination scores while maintaining fairly
comparable predictive performance on all datasets. Specially,
2FAHT outperforms the best baseline by 15.99% and 8.0%
discrimination reduction on Adult and Census dataset re-
spectively, while the largest margin could be as high as 43.3%
when comparing to the fairness performance of KHT. With
respect to predictive performance, 2FAHT is the second best
predictive classifier, and the most accurate baseline, i.e., HAT,
narrowly outruns 2FAHT by respective 1.25% and 0.91%.
This is expected as HAT is exclusively concept-adapting
oriented by design and its discrimination levels are 42.51%
and 82.42% higher than 2FAHT’s. We can also observe that
FEI is poorly performed although it is proposed for addressing

online fairness. This verifies that a simple/direct combina-
tion of existing techniques from corresponding fairness-aware
learning and data stream mining communities cannot handle
the complex online fairness effectively. On the other hand,
2FAHT’s theoretical design which jointly considers data en-
coding, discrimination reduction and concept-adapting indeed
improves fairness with minimal accuracy loss in evolving
online settings.

C. Minimizing Discrimination Under Accuracy Constrains

We then investigate 2FAHT’s fine-grained control on the
trade-off between fairness and accuracy for the sake of instan-
tiating application-wise fairness-aware learning. To this end,
we adjust the value of γ to minimize discrimination while
controlling loss in accuracy so as to meet certain performance-
related constraints such as the “business necessity” clause [16].
Figure 1 visualizes the results by showing the fairness and
accuracy subject to accuracy constraints with different values
of γ. As expected, as the value of γ increases, i.e., the current
application focuses more on fairness, the fairness upvaluing is
accompanied by the downvalued accuracy.

(a) Auldt dataset (b) Census dataset

Fig. 1. The accuracy-vs-discrimination trade-off fined-grained by tunable
parameter γ. The values of γ range from 100000 to 1 with the common ratio
equals to 10.

VII. CONCLUSIONS

This paper focuses on the highly under-explored
discrimination-aware learning in evolving data streams.
To address this challenge, we propose 2FAHT with embedded
flexible fair splitting criterion and endow it with the ability
of change detection and concept forgetting to handle
discriminated and non-stationary data streams. What’s more,
2FAHT moves one step further to allow for application-wise
fairness-aware learning. The positive results of conducted
experiments show the flexibility and versatility of 2FAHT in
online settings. One immediate future direction is to extend
these results in conjunction with our previous works [45],
[46] for the fair allocation of health care resources. We also
plan to apply these results along with our initial work in [47]
targeting the more challenging unsupervised fair clustering
domain.
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