This work is on a Creative Commons Attribution 4.0 International (CC BY 4.0) license, https://creativecommons.org/licenses/by/4.0/. Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Turbulence-free Interference Induced by the Turbulence Itself

Thomas A. Smith and Yanhua Shih

Department of Physics, University of Maryland, Baltimore County, Baltimore, MD 21250, USA

SUPPLEMENTARY MATERIAL

The following supplementary material provides a calculation of the second-order coherence function in the Heisenberg picture.

Using Glauber’s theory of quantum coherence, a laser beam with TEM$_{00}$ spatial mode can be approximated as being in a single spatial-mode and multifrequency coherent state

$$|\Psi\rangle = \prod_\omega |\alpha(\omega)\rangle,$$

which is a pure state representing the state of a group of identical photons. When optical turbulence is introduced, a random phase shift is introduced to each path. The field operator at coordinate (x_j, t_j) of the jth photodetector

$$\hat{E}^{(+)}(x_j, t_j) = \int d\omega \hat{a}(\omega) g_A(\omega; x_j, t_j) e^{-i\phi_A(t_j)}$$

$$+ \int d\omega \hat{a}(\omega) g_B(\omega; x_j, t_j) e^{-i\phi_B(t_j)}$$

$$= \hat{E}_A^{(+)}(x_j, t_j) + \hat{E}_B^{(+)}(x_j, t_j)$$

where $g_A(\omega; x_j, t_j)$ and $g_B(\omega; x_j, t_j)$ are the Green’s functions (or propagators) which propagate the ω mode of the state from slit-A and slit-B to the photodetector D_j at space-time coordinate (x_j, t_j). With the help of the quantum state and the field operators, the second-order coherence function $G^{(2)}(x_1, t_1; x_2, t_2)$ is calculated as follows

$$G^{(2)}(x_1, t_1; x_2, t_2)$$

$$= \langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En}$$

$$= \langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En}$$

which results in sixteen expectations to evaluate. In this equation, $\langle \langle \rangle \rangle_{En}$ means ensemble average. For brevity, we will drop terms that have no contribution to the measurement of $(n(x_1)n(x_2))$ or cannot survive the ensemble average by taking into account all possible turbulence introduced random phases along the A-path and the B-path,

$$G^{(2)}(x_1, t_1; x_2, t_2)$$

$$= \langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En}$$

$$= \langle \langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En},$$

where $\psi_i(x_j, t_j)$ is the effective wavefunction of the group-i identical photons,

$$\psi_i(x_j, t_j) = \langle \Psi | \hat{E}_{i}^{(+)}(x_j, t_j) |\Psi\rangle$$

$$= \int d\omega \alpha(\omega) g_i(\omega; x_j, t_j) e^{-i\phi_i(t_j)}.$$

In this notation, the photon number fluctuation correlation

$$\langle \Delta n(x_1) \Delta n(x_2) \rangle$$

$$= \langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En}$$

$$+ \langle \langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En}$$

is the cross terms of the following superposition of pairs of two-photon effective wavefunctions

$$\langle \langle |\Psi| \hat{E}^{(-)}(x_1, t_1) \hat{E}^{(-)}(x_2, t_2)$$

$$\times \hat{E}^{(+)}(x_2, t_2) \hat{E}^{(+)}(x_1, t_1) |\Psi\rangle \rangle_{En},$$

which corresponds to two different yet indistinguishable alternatives for the two distinguishable groups of identical photons to produce a joint photodetection event of D_1 and D_2: (1) group-A of identical photons propagate to D_1 and group-B of identical photons propagate to D_2; and (2) group-A of identical photons propagate to D_2 and group-B of identical photons propagate to D_1; indicating the interference of two distinguishable groups of identical photons; which we can label as two-photon interference.

6M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).