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Detection and analysis of Circulating Tumor Cells (CTCs) have shown promising 

cancer clinical and research applications. A major challenge for the detection and 

analysis of CTCs is their rare nature. CTCs are found at very low concentrations in 

blood. Therefore, large volumes of sample are needed for meaningful enumeration, 

which especially impedes the analysis of CTCs using standard flow cytometry (due to 

its low throughput). This issue is addressed by the recent development of a high 

throughput imaging cytometer equipped with a wide field flow-cell. This wide-field 

flow cytometer adapts a technique known as “streak photography” where exposure 

times and flow velocities are set such that the cells are imaged as short “streaks”. Streak 

cytometry technology enables analysis of cells in very low concentrations (0.1 cell /ml) 

in large volumes (10 ml) and rapidly (1 minute). However, dynamic imaging conditions 

in streak cytometry introduce more challenges to current automated cell counting 

methods, especially with low cost, low resolution webcams or smartphone cameras 

affordable for use in point of care and global health settings. The lack of automatic 

enumeration methods for streak imaging limits clinical utility of wide field streak 



  

cytometry. In this dissertation we propose to combine traditional geometrical and 

intensity distribution (GID) features with visual words plus a novel image classification 

method based in relational features that characterize an object in relation with other 

objects in frames in a video file. This new cell identification/quantification method, 

Relational Streak Algorithm (RSA), consists of three parts: (1) finding streaks with a 

binary mask that contains potentially all the cells in a frame, (2) identifying candidate 

cells using GID features, and (3) filtering out spurious cells and identifying true cells 

with machine learning approaches for image classification by GID features, visual 

words, and relational features. We incorporate the relational features in a selective 

permeable filter that can either discard cells, allow cells to proceed through the filtering 

layers, or defer the cells to the most sensitive classifier (in this case the visual words 

classifier) for final classification. We evaluated the RSA using samples with nominal 

concentrations of 1 cell per mL and 1 cell per 10 mL (consistent with acceptable 

numbers of CTCs considered to show clinical significance). The RSA performed well 

with both concentrations. In the 1 cell per mL dataset, the algorithm achieved 88% 

sensitivity with an F1 score of 91%. In the 1 cell per 10 mL dataset, the algorithm 

achieved sensitivity of 84% with an F1 score of 75%, outperforming earlier versions of 

the algorithm and current tools for cell tracking (CellTrack and MTrack2) used as 

comparisons. These findings demonstrate superiority of the new analytical capabilities 

of streak-based cytometry when coupled with the RSA for automated cell detection and 

counting. This cell counting capability enables automated low-cost streak imaging flow 

cytometry detector for clinical and research use and offers the possibility of expansion 

of cell-based clinical diagnostics to resource-poor settings.  
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Chapter 1: Introduction 

 

1.1 Circulating tumor cells 

 
When a primary tumor reaches a critical mass, it sheds tumor cells that migrate into 

blood vessels and circulate in the bloodstream. These rare cells, called circulating 

tumor cells (CTCs), are responsible for development of distant cancer metastases. 

Detection and analysis of CTCs have shown promising applications for cancer care and 

clinical cancer research including cancer prediction, prognosis, early detection, 

guidance in treatment selection, disease monitoring and surveillance, among others. 

Recently, CTC technology has matured enough to achieve acceptable reproducibilit y 

and sensitivity levels to explore clinical utility 1-4. Detection of CTCs, however, is 

challenging since they are found in very low concentrations in blood and need large 

sample volumes for meaningful detection and enumeration. This limitation impedes the 

analysis of CTCs by current standard flow cytometry, which has sparked the interest of 

the scientific community to develop technologies to address this issue 5-9.  

 

Since CTCs can be released by a tumor in early stage cancer, a great potential 

application of CTCs is in cancer prevention. This is particularly important in low and 

middle income countries (LMICs) where cancer is usually diagnosed in an advanced 

stage, which limits treatment options10. However, technologies for cell detection are 

not usually suitable for low resource settings such as found in LMICs. CTC technology 
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suitable for low resources settings must be affordable, portable and designed to work 

with minimal infrastructure11-15.  

 

1.2 Medical diagnostic technologies for low resource settings 

 
Over 80% of the population of the world live in low and middle income countries 

(LMICs) and more than 700 million people live on less than $1.9 a day16,17. In addition, 

cancer is one of the leading cause of death in the world (second after heart disease in 

the US) with around 70% of the cancer death occurring in LMICs where inaccessible 

or late stage diagnosis, poor prognosis and/or lack of treatment alternatives is common 

10. Diagnostic cancer technologies developed for high income countries are often not 

suitable for low resource settings, either because they are not affordable or not 

compatible with needs and conditions in LMICs, consequently development of 

affordable technology for low resources settings, including analysis of CTCs, is 

challenging 11-14. In order to be suitable for use in low resource settings, CTCs as other 

diagnostic technologies must be designed to work with minimal medical infrastructure 

and limited access to health care along with portability, ease of use, local expertise and 

readily availability of components for troubleshooting 12,15. 

 

Lab-on-a-chip (LOC) technology provides a potential approach for the development of 

Point of care multichannel detection analytical tools suitable for low resources settings 

18-22. LOC has facilitated the implementation of chemical and biological assays outside 

laboratory environments 23.  Optical detectors using charged-coupled device (CCD) or 
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complementary metal-oxide-semi-conductor (CMOS) cameras coupled to a 

microfluidic chip have been proposed for development of biosensor array allowing 

many areas of the sample to be interrogated simultaneously24-27. 

Many CCD-based LOC detection systems for multiple applications such as 

immunodetection and food poison applications; and infections agents have been 

developed with sensitivity compatible with their current laboratory counterparts.  

However, these LOCs devises uses expensive state-of-the-art technology, for example 

cooled CCD cameras such as the ones used for astronomy applications limit their use 

in LMICs due to prohibitive cost 19,20,24-26,28-31.  

 

Many LOCs for microcopy applications have also been developed to address the issue 

of cost, including wide-field microscopy where the regular optical lenses are replaced 

by fiber-optics. These lensless-on-a-chip microscopes are lightweight, portable and can 

achieve high resolution and are suitable for use in telemedicine applications 32-40. This 

technology can be coupled to a microfluidic device for detection and analysis of CTCs 

in LMICs, but the microfluidic is still limited by low flow rate impeding the system to 

analyze large volumes of samples (necessary for rare cells detection). In addition, these 

systems use high speed imaging to capture the motion of the cells producing large files 

requiring more computer power for management and the cells are imaged as a small 

group of pixels that are difficult to distinguish from noise. 

 

Mobile phones have been adapted for biodetection, integrating image capabilities and 

communication, and can be effectively used for mobile Point-of-Care (POC) devices 
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in mobile health (mHealth) applications41-51.  However, the cameras in these phones 

often have high noise levels and they are also less versatile with their optical systems 

than webcams (e.g., inability to change lenses).  Cytometry in a cell phone has been 

described (optofluidic fluorescence cytometry) as alternative for remote and resources-

limited environments. While mobile and versatile, the flow rate of this system is ~1 

ul/min, which also limits the analysis to small volumes. 

 

A high throughput microfluidic cytometer, the streak-mode wide field flow cytometer, 

was developed to address the issue of large sample volume limitation on standard flow 

cytometry for the analysis of CTCs, and to address technical difficulties that would 

impair utility in low resources settings 52,53.  This device uses a wide field flow-cell 

instead of the conventional narrow cell used in traditional cytometry, which enables the 

analysis of large volumes at low flow rates in brief, clinically useful periods of time. 

The wide field cytometer adopts a technique used in Particle Image Velocimetry (PIV) 

known as “streak photography” where exposure times and flow velocities are set such 

that the particle images are displayed as short streaks.  Since the streaks are imaged 

over a large number of pixels, they become more easily distinguishable from noise that 

appears as speckles, a difference that increases the sensitivity of the device enough to 

enable the use of low sensitivity webcams or mobile phone cameras (mobile phones 

are extensively used in LMICs) and make the device suitable for low resource 

settings52,53. However, in the initial method the cells were count manually making the 

technology not practical for clinical applications, and no method for cell identification 
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and enumeration specific for streak image cytometry (a barrier to the translation of the 

device to clinical settings) has been published. 

 
 

1.3 Aims and motivation  

 
The main aim of this dissertation is to describe our development of a method for 

quantitative analysis of cells by streak image cytometry with automated cell counting 

that will make streak imaging cytometry useful for research and clinical applications. 

 

This dissertation describes the development of a relational streak image detection 

algorithm to improve the detection level, reproducibility and to make the technology 

operational for research or clinical settings, especially for LMICs.  

 

The algorithm combines geometrical and intensity distribution features with relational 

features and visual words for the detection and enumeration of streak images of single 

cells.  One important contribution of this technology is its unique capacity for analyzing 

very small cell concentrations (0.1 cell /ml) in large volumes (10 ml) in short times (1 

minute) which enable high throughput analysis of circulating tumor cells. This cell 

counting capacity enables automated low-cost streak imaging flow cytometry based on 

a CCD detector, and offers the possibility of expanding cell-based clinical diagnostics 

to resource-poor settings. The wide-field streak image cytometer and our relational 

streak detection algorithm developed in this thesis provides a simple, affordable, and 

portable cytometer which we expect will facilitate the expansion of cell-based 
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diagnosis into low resources settings. This technology could also be implemented in 

other rare cell applications beyond circulating tumor cells, such as analysis of immune 

cells, e.g., T-cells, B-cells, hematopoietic stem cells, or rare cells related to respiratory 

disease where bulk cell population analysis fails to characterize rare cell signatures by 

diluting the contributions of rare target cells. The high throughput characteristic of this 

technology also could be used in applications beyond rare cell analysis, such as 

bacterial contaminants in water or food, or rapid analysis of bacterial susceptibility to 

antibiotics, etc. These potential applications will be discussed in more detail in chapter 

10 (Future Development and Potential Applications). 

 

The rest of this dissertation is organized as follows. Chapter 2 provides background 

information and a literature review of CTC biology, technology and current CTC 

detection methods.  Chapters 3 and 4 focuses on common computational algorithms 

useful for cell image detection and tracking. Chapter 5 includes information about 

sample preparation and ground truth. Chapter 6 introduces the first algorithm 

developed for streak image cytometry. Chapters 7 and 8 describe the development of 

the relational streak algorithm and its evaluation. Chapter 9 discusses results and 

provides points for discussion and future development. Finally, chapter 10, as 

mentioned above, discusses limitations of the technology, future developments and 

potential applications beyond CTCs. 
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Chapter 2: Circulating Tumor Cells 
 

2.1 Introduction 

 

Tumor development alters local metabolism producing physiological changes in the 

tumor microenvironment. For example, high metabolism, which is the characteristic of 

many cancers, produces early changes in levels of oxygenation around the tumor 

followed by a decrease in oxygenation in the central part of the tumor often causing 

central necrosis54. The tumor cell around the tumor becomes more metabolically active 

and when the tumor reaches a critical mass, tumor cells shed from the primary tumor 

and migrate into the circulatory system and travel through the bloodstream or lymph 

vessels 3. These rare cells called circulating tumor cells (CTCs) cross through the wall 

of vessels resulting in systemic dissemination and extravasation in distant parts of the 

body producing of distant cancer metastases (Figure 2.1).  

 

 
Figure 2.1: Circulating Tumor Cells. CTCs are shed from the primary tumor, travel through 
the circulatory system and cleave in distant organs producing cancer metastases. 
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 CTCs were first reported in 1869 in the blood of patients with subcutaneous tumors, 

but only after recent advances in cell technology, their identification and 

characterization has been made possible 55.  Subpopulations of CTCs with tumor-

initiating potential can act as mediator for micro-metastases that can eventually 

generate a larger lesion. Nowadays, the clinical applications of CTCs include early 

detection, diagnosis, prognosis, treatment monitoring, identification of therapeutic 

targets and evaluating treatment efficacy (to help patients from being exposed to 

ineffective therapeutics) 1-4,56,57. 

 

Death of cancer patients is rarely caused by the primary tumor and cancer metastases 

account for most of cancer related deaths (nearly 90% of cancer deaths occur due to 

cancer metastases). This could be attributed to the fact that the treatment decisions are 

usually based on the characteristics of the primary tumor (since biopsy of metastatic 

lesion are difficult to obtain), but the metastatic lesion shows high heterogeneity 

compared with the original tumor resulting to cancer patients may receive a suboptimal 

treatment.  Therefore, there is a need for technologies to better evaluate metastatic 

cancers 1,3,55,57-60 in this area. Characterization of CTCs through genetic signatures, or 

physiological or physical features to identify CTCs that are capable of metastases 

(among from the ones that are not) and understanding the metastatic process is an active 

area of cancer research.  
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2.2 Circulating tumor cells sample size and sampling probability 

 

The detection of CTCs in peripheral blood is challenging since CTCs occur at very low 

concentration. CTCs are found in frequency of 1-10 cells per ml of whole blood in 

metastatic patients, (~1 CTC per 106 – 108 white blood cells (WBC)), this frequency 

reduce in half in non-metastatic patients 8,61.  However, the significant number of CTCs 

per ml of blood associated with poor prognosis is not well defined, in addition, the 

frequency of CTCs obtained from a sample of blood may not reflect the cell population 

60. For example, CellSearch data traditional suggested  that 5 CTCs per 7.5 ml of blood 

is associated with poor prognosis, but after of  reanalysis of published CellSearch data 

was found that the CTC threshold for identification of patients with poor prognosis can 

be potentially reduced from the current value of 5 cells to 1cell per 7.5 ml as clinical 

significant 62. In addition, since the proportion of CTCs in different cancers is not 

uniform, the determination of a cut off number of CTCs per ml of blood to stablish 

prognosis and disease outcome is challenging.  For example, a re-analysis of 

CellSearch data from healthy donor, patients with benign conditions and patients with 

metastatic cancer (Breast, Colorectal and Prostate) shows the variability of the percent 

of patients with CTCs over cut off values of 1, 5, 10, 50, 100, 500 and 1000 CTCs per 

7.5 ml of blood (Table 2.1) 63. 
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Table 2.1: Frequency of CTC in 7.5 mL of blood from normal donors, patients with benign 
disease, and patients with metastatic breast, colorectal, and prostate cancer before initiation 
of a new line therapy. The numbers represent the percentage of patients with CTC above 
threshold 63. 

  
 

To put the this results in the perspective of this thesis, the concentration of CTCs in 

blood was estimated using the data from Table 2.1 considering samples with at least 1, 

5, 10, 50, 100, 500 and 1000 CTCs per 7.5 ml of blood, as well as the number of patients 

(N)  for each of the normal, benign and metastatic breast, prostate, and colorectal 

cancer. For this estimation, cell counts are assumed to follow Poisson distribution. The 

CTC concentration 𝜌𝜌 was estimated using the Maximum Likelihood method: 

 

 

 

Where (𝑙𝑙𝑖𝑖) = [ 0, 1, 5, 10, 50, 100, 500, 1000], (𝑢𝑢𝑖𝑖) = [ 0, 4, 9, 49, 99, 499, 999, ∞], 

and 𝑛𝑛𝑖𝑖 is the number of subjects with [𝑙𝑙𝑖𝑖,𝑢𝑢𝑖𝑖] CTCs in V=7.5 ml.   

 

The estimation was done using MATLAB 2016b with the Newton-Raphson algorithm 

to maximize numerically the symbolic log-likelihood, whose numerical evaluation 

required 1033 decimal digits of precision to handle numerical underflows. The results 

are given in Table 2.2 Table 2.2 shows that healthy donors and individuals with benign 
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condition have less than 0.005 CTC/ml. Breast and prostate metastatic patients have 

about 1 CTC/ml, while metastatic colorectal cancer patients have about 0.07 CTC/ml. 

 

Table 2.2: Maximum Likelihood Estimation of the number of CTCs in blood. Estimation is done 
assuming a Poisson cell count process and using the CTCs experimentally detected by the 
CellSearch system in 7.5ml blood samples taken from patients that are healthy/benign or have 
metastatic cancers. 

Type CTCs in 7.5 ml of blood  CTCs in 1 ml of blood  
Healthy Individual 0.00461 0.000615 
Benign Condition 0.01536 0.002048 
Metastatic Breast Cancer  7.51387 1.001849 
Metastatic Colorectal Cancer 0.51784 0.069045 
Metastatic Prostate Cancer 7.64334 1.019112 

 

Another challenge for detection of CTCs is heterogeneity and the lack of cell markers 

expressed for all CTCs. For example, a common biomarker used to identify CTCs is 

Epithelial Cell Adhesion Molecule (EpCAM), however, some CTCs lose EpCAM in 

the transition from epithelia cells to a more invasive/aggressive form, through the 

epithelial–mesenchymal transition process, and may not express EpCAM 8,64. 

 

 

2.3 Current commercial methods for isolation of CTCs 

 
Many research and commercial platforms have been developed for enumeration, 

capturing and isolation of CTCs, a brief review of some of these methods representing 

different platforms are provided in this section.  
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2.3.1 Methods based on immunoaffinity 

 
 
Many methods have been developed based on antibodies targeting tumor-associated 

surface antigens to capture CTCs such as the CTC-Chip and the Herringbone-Chip, 

CellSearch, GEM (based on microvortices mix), Ephesia, MagSweeper, and 

CellCollector (in vivo isolation of CTCs). A sample of these technologies are briefly 

described below. 

 

CellSearch® System: CellSearch® (Veridex LLC, Raritan, NJ, USA, developed in 

the early 2000s) is the only FDA approved technology for enumerating CTCs in the 

clinic as aids for prognosis and treatment monitoring for metastatic breast cancer, 

prostate cancer and metastatic colorectal cancer8,65. The CTCs are enriched by positive 

selection using EpCAM expressed on the surface of the cells as a target. The blood 

sample is mixed with magnetic iron nanoparticles attached to anti-EpCAM antibodies 

and the CTCs are isolated through an electromagnetic field. The enrichment step is 

followed by immunofluorescent staining for CK and positive CTCS identification by 

semi-automated fluorescence microscopy. Five or more CTCs in 7.5 ml of blood 

indicated a bad prognosis for breast cancer or prostate cancer patients (three or more 

for colorectal cancer patients)  7,55,65.  

 

MagSweeper™: This device was developed at Stanford University. CellSearch® 

enriches CTCs using epithelial cell surface markers such as EpCAM and 

immunomagnetic beads. The sample containing the CTCs are incubated with 
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antibodies attached to magnetic beads (similar to CellSearch®) and loaded into the 

sample wells. Round-bottom, neodymium, magnetic rods (robotically driven) sweep 

through the wells in overlapping concentric circular loops covering the entire well area 

while applying a magnetic force to capture the CTCs. The capture cells attached to the 

rods are washed with a buffer and the rods (with the attached cells) are robotically 

moved to the release wells where the magnetic field is removed, and the cells are 

released.  Several rounds of capture-wash-release-recapture can be applied to eliminate 

normal cells or any other cells not specifically attached to magnetic particles. This 

device can process 9 ml of blood per hour and is able to capture more than 50% of the 

labeled CTCs 8,66. 

 

Cell Collector® (GILUPI nanomedizin, Netzwerk Diagnostik Berlin, Germany): The 

Cell Collector is a in vivo technology for isolation of CTCs. The enrichment is achieved 

using a stainless-steel medical wire (Seldinger guide wire), with a 20 mm tip covered 

with a 2 μm thick gold layer. The wire is functionalized with anti-EpCAM antibodies 

attached to the gold layer through synthetic polycarboxylate. Using a conventional 20G 

intravenous cannula, the guidewire is inserted into the cubital vein exposing the 

functional gold tip to the blood allowing CTCs to be captured. The guide wire is left 

inside the vein for 30 minutes (screening around 1.5 liters of blood) and then retrieved 

for CTCs analysis through immunofluorescence or Polymerase Chain Reaction (PCR). 

Using this technique, CTCs were successfully enriched from the blood of breast cancer 

and non-small-cell lung cancer (NSCLC) patients8,67. 
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2.3.2 Methods based on biophysical properties 

 
These methods use physical properties such as density (AccuCyte), size (Micro Spring 

Array, ClearCell), size/deformability (ISET, previously described), or electrical 

properties (DEPArray) or an electrical signature (ApoStream) for isolation of CTCs. 

 

AccuCyte® – CyteFinder® System (RareCyte, Inc, Seattle WA, US): Uses a density-

based enrichment method (AccuCyte) combined with digital scanning microscopy 

(CyteFinder).  Different fractions of the blood are separated by centrifugation using the 

AccuCyte kit.  The white cell layer (where the CTCs are found) is extracted and spread 

onto 8 SuperFrost®-Plus microscope slides (150 μL per slide). Then, the cells on the 

slides are fluorescence stained and analyzed under a 4-channel digital scanning 

microscope (CyteFinder). Using a computer software, the objects are classified as (1) 

“Cell,” (2) “Not a Cell” and (3) “Indeterminate,” according to the fluorescence 

signature produced by the surface antigens. The CTCs are identified for surface 

markers such as EpCAM. The identified CTCs can be extracted using a single-cell 

retrieval device (CytePicker™) for subsequent analysis by PCR8,68. 

 

ClearCell® FX1 System (Clearbridge BioMedics): ClearCell takes advantage of 

hydrodynamic forces (inertial lift and Dean drag forces), cell size and inertial 

movement of cells in curvilinear microchannels for cell separation. In this device, cells 

are under the influence of inertial lift force and Dean drag force. Neutral buoyant 

particles under the influence of inertial lift force arise from mainstream and move away 

from the center of the channel towards the channel’s walls. In addition, the curvilinear 
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nature of the channels introduces a secondary rotational flow-field perpendicular to the 

flow direction producing a drag force. The balance of these forces would determine the 

location of the cells as a function of their size; cells of distinct size will migrate to 

distinct lateral positions near the channel wall allowing size-based separation 69-71.  

 

DEPArray® System: DEPArray® (Menarini Silicon Biosystems, Bologna, Italy) is 

based on a microfluidic chip configured by an array of individual controllable 

electrodes with embedded sensors that allow the creation of a dielectrophoretic (DEP) 

force enabling the capture of cells in DEP cages. The captured cells are scanned and 

imaged by an automated fluorescence microscope, the cell images are analyzed for 

morphological features and staining patters to discriminate between tumor and normal 

cell. The identified CTCs can be moved to the recovery chamber and deployed to a 

tube outside the chip through changing the DEP field around the cell. This system was 

used for successful detection and recovery of CTCs in colon cancer 7,8,72,73. 

 

 

2.3.3 Microfluidic based analysis of CTCs 

 
Microfluidic devices have been extensively used for enumeration and isolations of 

CTCs. Since microfluidics can be designed to produce minimal shear stress and cells 

do not require fixative for processing, CTCs can be isolated with minimal damage74. 

Many microfluidic techniques are based on surface cell makers identified by 

antibodies, but the efficiency of this approach is limited to the sensitivity of the 

antibody75.  In traditional microfluidic devices, cells follow streamlines due to 
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laminar/uniaxial flow conditions. This lack of mixing results in limited interactions 

between cells and antibodies amplifying the problem of antibody sensitivity 74. To 

address this issue of limited cell-antibody interaction, novel microfluidic designs have 

been reported. For example, the integration of a microposts array functionalized with 

antibodies (e.g. anti-EpCAM) into the chip can be used to break up the streamline flow 

and enhance cell-antibody interactions; this approach was implemented in the CTC-

chip 76. CTC-chip was an improvement from traditional microfluidic chips, but still 

relies on laminar flow and is dependent on a complex microposts structure difficult to 

scale up for production74. An alternative to address this issue is to design the walls of 

the microchannels with surface ridges or herringbones to produce turbulence and 

disrupt the streamline flow increasing the interaction between cells and the antibody-

coated walls(Figure 2.2). This approach combined with immunomagnetic particles or 

other methods has been shown to effectively identify and isolate CTCs 74,77-79.   

 

 
Figure 2.2: Representation of three distinctive designs of microfluidic channels: c) Tradition 
design channel resulting in laminal flow conditions.  b) Microposts array structure that enables 
to break up the streamline flow and enhance cell-antibody interactions (CTC-chip). a) 
Herringbone walls produce turbulence and disrupt the streamline flow (adapted from 74). 
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Another alternative to improve capture efficiency of CTCs is replace antibodies by 

aptamers. Aptamers (single-stranded nucleic acid oligomers) have high affinity for 

molecular targets with faster tissue penetration compared with antibodies and have 

been showed to successfully capture and enumerate CTCs 75. However, as antibodies, 

they are limited to the sensitivity and availability of the aptamer.  

 

Reverse transcriptase polymerase chain reaction (RT-PCR) and quantitative real-time 

RT-PCR have been also used to indirectly identify CTCs through the detection of the 

expression of target genes in peripheral blood and other bodily fluid in patients with 

different cancer types such as metastatic breast, colorectal, gastric and bladder cancer 

among others 80-83. RT-PCR has shown high sensitivity in detection of CTCs, but one 

issue is the destructive nature of the sample processing. For RNA extraction 

(preliminary step for RT-PCR), cells must be homogenized impeding RT-PCR to be 

use for enumeration or further morphological analysis of CTCs 84.  

 

One alternative to the use of cell markers or nucleic acid for CTCs identification and 

isolation is to use physical characteristic of the CTCs such as size or deformabilit y. 

CTCs are usually larger than normal cells and many microfabricated filtering systems 

have been developed to take advantage of this characteristic. Size detection methods 

are label-free, simple and fast and allow morphological and genetic characterization of 

individual cells 85. One issue for size separation is that CTCs are highly deformable and 

must go through a chemical fixation process to be stiffened otherwise they can squeeze 

themselves through filter pores, but stiffed cells are difficult to elute from filter pores 
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making it difficult for downstream analysis. In addition, upon fixation, cells are no 

longer viable (cannot be cultured) 86.  

 

Several methods have been proposed to avoid the fixation step before filtration. For 

example, ISET (Isolation by Size of Epithelial Tumor Cells, developed through funding 

from the French National Institute of Health and Medical Research), was reported to 

successfully isolate CTCs in blood from patients with cutaneous Melanoma. ISET uses 

a filtration system based on a polycarbonate membrane with calibrated 8-μm-diameter 

cylindrical pores.  ISET can achieve isolation of CTCs (without cell fixation) applying 

gently negative pressure producing a vacuum over the filtration system84,87,88. In 

addition of the need for cell fixation, size separation, faces other challenges with small 

CTCs since they can still fall through the filter. Large white normal cells can also be a 

problem, since they can be enriched as the CTCs and contaminate the CTC population 

yielding limited purity. In addition, direct filtration systems are prone to clogging, 

amplifying the issue of low throughput associated with CTCs separation by size 9,89.  

 

2.4 Flow cytometry and CTCs analysis 

 
While the most common technique for cell detection and counting is flow cytometry, 

it has not been used for CTC analysis. Flow cytometry utilizes microfluidic sheathing 

and integration of optic through a technique based in hydrodynamic focusing90. Briefly, 

a central channel is enclosed by an outer sheath of fluid with faster flow. As the outer 

fluid moves, it creates a drag force in the central channel increasing the velocity in the 
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center and reducing the velocity in the walls. The center flow stream is compressed 

between two sheath streams producing a single line of particles/cells (Figure 2.3). In 

flow cytometry, cells are labeled with fluorophores and exited by a laser allowing that 

individual cell to be interrogated one at a time. Flow cytometry can interrogate a large 

number of cells in a short time providing quantitative information based on the cell’s  

fluorescent signature and multiparameter analysis in cell populations 91. 

 

 
Figure 2.3: Hydrodynamic focusing. Using microfluidic sheathing the cells are aligned in a 
single line, and individual cells can be interrogated by the laser (figure adapted from 
https://www.thermofisher.com). 
 

 

The latest technologies in microfluidic sheeting include passive hydrodynamic 

focusing generated by chevron grooves embedded on the walls of the microchannel. 

This allows the sheath fluid to surround the stream enabling the analysis of thousands 

of particles per second 90,92.  

 

One problem with hydrodynamic focusing is a low flow rate due to high hydrodynamic 

resistance of the cell. For example, standard cytometers have a flow rate around 10-20   

µL/min93, limiting the device to small volume samples or long analysis, impeding this 

technology for analysis of rare cells which require large sample volumes since CTCs 

https://www.thermofisher.com/
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are in extremely low concentrations94. Higher flow rates (100-1000 µL/min) have been 

reported in cytometers using sound waves to focus the cells into a single cell flow in 

the cytometer, a process called “Acoustic-assisted hydrodynamic focusing.” This 

method minimizes the impact of higher pressure over the fluidic and allows the cells to 

remain confined  in  a narrow region eliminating issues associated with increased flow 

rate in traditional cytometry 93. 

 

 Other approaches have been proposed to address the challenges of large volume 

analysis in flow cytometry including combining full field imaging sensors (as optical 

detector) with classical flow cytometry 91.  One way to address this issue of low number 

of cells is to perform enrichment of CTCs before to flow cytometry detection using 

positive and/or negative selection (many techniques use a combination of both). 

Negative selection aims to remove normal cell from the CTC population including red 

and white blood cells. Red blood cells can be eliminated using a lysis buffer. White 

cells can be isolated using biomarkers expressed by normal white cells, but not 

expressed by CTCs such as CD45 or CD66 or methods that combine density gradient 

centrifugation with biomarker-based enrichment 8,95. By contrast, positive selection 

(more widely used than negative selections) aims to capture and isolate CTCs from the 

total cell population95. This can be achieved using physical properties of the CTCs, 

(e.g. size, density electrical charge or deformability) or biological properties using 

immune markers expressed on the surface of the CTCs such as EpCAM, N-cadherin, 

Cytokeratin, EGFR and others 8,55,61 
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2.5 Limitations of current technologies for analysis of CTCs 

 
There are two main limitations of current methodology for the analysis of CTCs 60:  

(i) Complexity of the device that could make it not suitable for Point-of-care (POC). 

(ii) Sample volume needed for accurate analysis. 

 

Point of Care for CTCs analysis: POC technology has the potential to play a 

significant role in patient diagnosis and management especially in LMICs. POC assays 

must be simple, convenient, affordable, and provide rapid results. For example, 

CellSearch (the only FDA approved CTC method) employs a complex multi-step 

sample preparation method and extensive human interaction for identification of 

intact/damaged CTCs. This requires a trained expert for the interpretation of individua l 

CTCs (based on established selection guidelines) and potentially introduces operator 

variability into test results 60. 

 

Sample volume needed for analysis: LoC technology can be suitable for POC 

settings, but as previously discussed the rare nature of the CTCs introduce a difficult 

challenge for cell detection. Inconsistent results have been reported among different 

CTC assays, including LoC methods, pertaining detection rate  60. Detection rate refers 

to the number of CTCs detected divided by the total number of CTCs in the whole 

sample.  Since only few CTCs can be found in a blood sample, missing as little as one 

cell can considerably decrease the detection rate. 
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The detection rate can be increased by increasing the sample volume within the 

clinically allowable range, for example detectable CTCs were found for 20% more 

patients when using 30 ml instead of 7.5 ml of blood. The volume of blood was also 

found to be a limiting factor in flow cytometry-based CTC assays60. However, 

increasing the sample volume to 30 ml can increase the detection time to levels 

incompatible with clinical practice in POC settings where high-throughput technology 

is required. As discussed above, LoC devices are compatible with POC settings, but 

current LoC technology for CTCs detection suffers from throughput too low for 

meaningful CTCs enumeration. Table 2.3  shows the flow rates of current technologies 

for CTC detection, which highlights the slow rate of modern microfluidic systems 96. 

 
Table 2.3: Rare cell detection technologies and flow rate6. 
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2.6 Streak cytometry 

 
To address the limitations described above (Sample volume and POC) for rare cell 

detection specially in LMICs, a wide field streak flow cytometer for high volume 

throughput analysis (Table 2.3) has been developed 52,53. The wide field streak flow 

cytometer is based on video imaging flow cytometer integrated with a wide flow cell 

for high throughput that allows it to interrogate a large sample volume in brief time. 

The device is composed by a 1W 450 nm laser used for fluorescent excitation 

(Hangzhou Brand New Technology Co., Zhejiang, China). The fluorescent emission is 

detected using a green emission filter with center wavelength 535 nm and bandwidth 

50 nm (Chroma Technology Corp., Rockingham, VT). A Sony PlayStation Eye 

webcam equipped with a c-mount CCTV lens (Pentax 12 mm f/1.2) is used as the 

photodetector. The webcam sensor is connected to a 32-bit Windows-based laptop 

computer via a USB2 port (Figure 2.4). The camera control software is used to set 

camera parameters (exposure time, frame rate and gain) and to save video in an 

uncompressed AVI format. The target cells are fluorescently tagged, and the 

fluorophores are excited by the laser, and imaged by the web-cam (Figure 2.4). The 

signal can also be analyzed by a cell-phone or tablet, keeping the system affordable, 

portable and easy to use. A key component of this devise is the wide, high throughput, 

flow cell that is used instead of the conventional narrow hydrodynamic focusing cells 

used in traditional flow cytometry. 
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Figure 2.4: Schematic of the wide-field cytometer. The sensing element includes a 12 mm f/1.2 
CCTV lens and two green filters. The excitation source is a 450 nm 1 W laser.  
 

The channel of the flow cell was widened to 20 mm to maximize enabling the analysis 

of higher volumes (e.g., 20 ml instead of 20 ul) at lower flow rates, which is not possible 

with most conventional flow cytometers. To provide uniform excitation across the 

width of the channel, the laser source is injected into the side of the flow cell such that 

it forms a linear   band of excitation across the center of the field of view (Figure 2.5). 

 

 
Figure 2.5: Wide view flow cell. The  wider flow cell allows analysis of higher volumens. 

 

The image modality for the wide-field flow cytometer is based on a technique used in 

Particle Image Velocimetry (PIV) known as “streak photography.” Streak photography 

has been reported since 1950s for illustrating motion in fluid; the term “Particle Image 
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Velocimetry” first appeared in the literature in 1984 97,98. In streak photography, the 

particles are illuminated by a continuous light source and exposure times and flow 

velocities are set such that the particles are imaged as short “streaks.”  In this case the 

high flow rate moving cells are imaged in low frame rate exposure so that the path of 

the moving cells results in a “streak,” (Figure 2.6) whose length is proportional to the 

exposure time 94,97. Since streaks are imaged with a large number of pixels, they are 

easily distinguished from the noise, which appears as “speckles.” This increases the 

detection capabilities of the device, making it more suitable for analysis using current 

low sensitivity, high noise webcams or mobile phone cameras. In addition, since the 

images are taken at low speed, the file size is reduced by a factor of 40 94.  

 

 
                   Figure 2.6: Image of a cell crossing a frame in streak mode cytometry. 
 

 

One disadvantage of streak photography is that in the presence of many particles, their 

paths overlap too often impeding the separation of individual particles99.  However, 

this is not a problem in the case of identifying CTCs since as was mentioned before, 

CTCs are in an extremely low concentration in blood.     
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Chapter 3: Algorithms Useful for Cell Tracking 
 
 
 

3.1 Introduction 

 
Cell detection and tracking are important problems with numerous clinical 

applications, and subjects of intense study in recent years. Despite inherent value, the 

tasks are too burdensome for manual methods, and would appear to be ripe for 

automation.  However, several challenges confront automated detection and tracking, 

including poor image quality (e.g., low contrast, high noise levels), weak signals,  and 

overlapping cells 100. Cell tracking methods generally consist of two main image 

processing steps: (i) cell segmentation (the spatial aspect of tracking) that requires 

recognition and detection of potentially relevant objects (cells), including 

discrimination of these cells from the background. Segmentation allows the 

identification of objects inside an image 101, but provides little information about the 

relation of the objects with each other. This issue is addressed by the second major step 

for cell tracking, (ii) association of the relevant objects with each other across the whole 

image. This step is considered the temporal aspect of cell tracking100. 

 

 

3.2 Recognition of relevant objects or detection phase: Cell segmentation 

 
Image segmentation is an important problem in digital imaging processing. Several 

methods useful for a wide range of applications have been reported for different fields 

of study 102,103 including cell recognition for clinical applications such as classification 
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of white blood cells, identification of bone marrow cells in images, detection of cancer 

cells in volumetric images of blood  for leukemia diagnosis among others 104-111. This 

discussion will focus on methods relevant to cell segmentation. 

 

Segmentation is a process of partitioning a digital image into several parts or segments 

and extracting regions of interest (ROI) from these image segments 112. Segments 

correspond to a set of pixels within a determined range, and the collection of all the 

segments represents the entire image. Segmentation can be described as a pixel labeling 

problem where a pixel is assigned to a class and each class is used to discriminate a 

significant structure in the image. The goal of segmentation is to discriminate the most 

meaningful areas of the image 100,113-115.  Segmentation methods are broadly classified 

as classical (based on filtering and statistical techniques) and non-classical approaches 

such as neural networks, fuzzy logic and genetic algorithms116. Classical segmentation 

approaches include three major categories (Figure 3.1): (i) Intensity-based 

(thresholding), (ii) Edge-based segmentation and (iii) Region-based segmentation 

113,117. Some literature describes other categories of segmentation methods such as 

Clustering-based methods, Watershed segmentation, etc. 112,117. 

 

 
Figure 3.1: Classification of image segmentation methods. Two major methods for classical 
image segmentation are thresholding and edge detection.  
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3.2.1 Segmentation by intensity thresholding 

 
Intensity thresholding is perhaps the simplest and reasonably technique to separate 

objects from the background. Thresholding has been extensively used for multiple 

applications in a variety of fields such as cell imaging, knowledge representation, 

ultrasonic image analysis, thermal imaging, computed tomography, confocal 

microscopy, etc. 118-126 and it constitutes an important tool for cell and particle tracking 

127,128.  

 

The fundamental principle of thresholding is based on a characteristic feature of the 

image such as pixel values that can be classified into two or more dominant groups 

129,130. These groups can be separated by a threshold T such that any point p(x, y) > T 

in the threshold image g(x, y) is called an object point. A point otherwise is called a 

background point. Thus the threshold g(x, y) can be defined as follows118,130: 

 

𝑔𝑔(𝑥𝑥, 𝑦𝑦) = �1 𝑖𝑖𝑖𝑖 𝑝𝑝(𝑥𝑥 ,𝑦𝑦) > 𝑇𝑇
0 𝑖𝑖𝑖𝑖 𝑝𝑝(𝑥𝑥 ,𝑦𝑦) ≤ 𝑇𝑇 

 

The threshold can be set manually (choosing a defined value as the threshold) or 

derived automatically from information based on an intensity histogram. Thresholding 

techniques can be further classified as local or global thresholding (Figure 3.2). In 

addition, global thresholding can be subclassified as Traditional, Iterative or Multistage 

thresholding 118,131. Multistage thresholding is a two-stage method, with the first stage 

image divided into three sub-images:  foreground and background and an additional 
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fuzzy image. In the second stage, the pixels are classified as belonging to one of the 

three images, with the pixels classified as belonging to the fuzzy image required to 

provide additional information to determine if each belongs to background or 

foreground. Multistage thresholding is used mostly for handwriting images Traditional 

thresholding (Otsu method) is the most widely used global thresholding method. Otsu 

method divides the image into two classes, foreground and background. Iterative 

methods (Triclass) are based on Otsu’s method, but produce an additional class.  Since 

these methods were more relevant in the development of the streak detection algorithm, 

they are  discussed  in more detail below. 118,131.  

 

 
Figure 3.2: Classification of Thresholding (figure adapted from 118). 
 

 

Otsu method 

Otsu’s method, named after Nobuyuki Otsu, is a non-parametric unsupervised method 

for automatic threshold selection based on the variance of pixel intensity. The Otsu 

algorithm performs an exhaustive search for the optimal threshold by iterating through 

all the possible threshold values and calculating the spread of pixel intensity levels on 

both side of the threshold. The aim of Otsu’s algorithm is to find the minimal intra-

group variance (within-class variance). The within-class variance σ𝑊𝑊2  is defined as a 

weighted sum of the background and foreground variance 118,129,131-133 as shown below: 
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                                      σ𝑊𝑊2 =  ω𝑏𝑏σ𝑏𝑏2 +  ω𝑓𝑓σ𝑓𝑓2                                          

𝜎𝜎𝑊𝑊2 = 𝑊𝑊𝑖𝑖𝑊𝑊ℎ𝑖𝑖𝑛𝑛 𝐶𝐶𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖𝐶𝐶𝑛𝑛𝑉𝑉𝐶𝐶;  𝜔𝜔 = 𝑊𝑊𝑊𝑊𝑖𝑖𝑔𝑔ℎ𝑊𝑊;𝑏𝑏 = 𝑏𝑏𝐶𝐶𝑏𝑏𝑏𝑏𝑔𝑔𝑉𝑉𝑏𝑏𝑢𝑢𝑛𝑛𝑏𝑏;𝑖𝑖 = 𝑖𝑖𝑏𝑏𝑉𝑉𝑊𝑊𝑔𝑔𝑉𝑉𝑏𝑏𝑢𝑢𝑛𝑛𝑏𝑏 133 

 

A 24x14 pixels window corresponding to a section of a streak in one frame (Figure 3.3) 

will serve to illustrate the functionality of Otsu’s algorithm (Figure 3.3). 

 

 
Figure 3.3: Amplified section of a streak. Amplified 24x14 window, showing the streak 
(signal) and background.  
 
 

A histogram of the 24x14 window in figure 3.3 shows that the pixels of the image can 

be classified in two groups according to their intensity (Figure 3.4). The purpose of the 

Otsu algorithm is to find the optimal cut off or threshold that separates these groups 

(background from foreground). 
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                       a          b    c 
Figure 3.4: Histogram representation of a streak. (a) amplified 24x14 window (a) 336 pixels 
section showing the streak and the background, (b) histogram of the window section. (c) table 
showing the number of pixels for each level of intensity.  
 

 

Otsu’s method calculates the weight of the pixel in the background and the foreground 

for each possible threshold value from 0 to 255. The weigh is calculated by adding the 

number of pixels in the group (foreground or background) and dividing it by the total 

number of pixels as shown below. 

 

𝑊𝑊𝑊𝑊𝑖𝑖𝑔𝑔ℎ𝑊𝑊  𝑏𝑏𝑖𝑖 𝐹𝐹𝑏𝑏𝑉𝑉𝑊𝑊𝑔𝑔𝑉𝑉𝑏𝑏𝑢𝑢𝑛𝑛𝑏𝑏    ω𝑓𝑓 =
Number of  Foreground Pixels

Total Number of Pixels  

𝑊𝑊𝑊𝑊𝑖𝑖𝑔𝑔ℎ𝑊𝑊  𝑏𝑏𝑖𝑖 𝐵𝐵𝐶𝐶𝑏𝑏𝑏𝑏𝑔𝑔𝑉𝑉𝑏𝑏𝑢𝑢𝑛𝑛𝑏𝑏    ω𝑏𝑏 =
Number  of Background Pixels

Total Number of Pixels  

 

To illustrate this effect, a threshold of 185 will be used as an example. Figure 3.5 shows 

the threshold value that separates the two groups. Pixels with intensity less than 185 
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are called background, the rest are called foreground. The weight of the background 

(noise) and the foreground (signal) is calculated below (Figure 3.5). 

 

 

 

𝑊𝑊𝑊𝑊𝑖𝑖𝑔𝑔ℎ𝑊𝑊     ω𝑏𝑏 = 232
336

= 𝟎𝟎.𝟔𝟔𝟔𝟔𝟎𝟎𝟔𝟔                  

                        

𝑊𝑊𝑊𝑊𝑖𝑖𝑔𝑔ℎ𝑊𝑊     ω𝑓𝑓 = 104
336

= 𝟎𝟎.𝟑𝟑𝟎𝟎𝟔𝟔𝟔𝟔  

 

 
Figure 3.5: Otsu method weight calculations. Histogram representation of the pixels from 
the24x14 window(right) and weight calculation (left). 

 

The next step is to calculate the variance for the background and foreground class. The 

variance is calculated by the sum of the squares of intensity minus the mean divided by 

the total number of pixels. The mean 𝜇𝜇 is the sum of each individual pixel intensity 

multiplied by the number of pixels with that intensity and divided by the total number 

of pixels in the class. 

 

𝑀𝑀𝑊𝑊𝐶𝐶𝑛𝑛  𝜇𝜇 =
𝑆𝑆𝑆𝑆𝑀𝑀(𝐼𝐼𝑛𝑛𝑊𝑊𝑊𝑊𝐶𝐶𝑖𝑖𝑊𝑊𝑦𝑦 ∗ 𝑁𝑁𝑢𝑢𝑁𝑁𝑏𝑏𝑊𝑊𝑉𝑉 𝑏𝑏𝑖𝑖 𝑝𝑝𝑖𝑖𝑥𝑥𝑊𝑊𝑙𝑙𝐶𝐶)

𝑇𝑇𝑏𝑏𝑊𝑊𝐶𝐶𝑙𝑙 𝑁𝑁𝑢𝑢𝑁𝑁𝑏𝑏𝑊𝑊𝑉𝑉 𝑏𝑏𝑖𝑖 𝑃𝑃𝑖𝑖𝑥𝑥𝑊𝑊𝑙𝑙𝐶𝐶  

 

𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖𝐶𝐶𝑛𝑛𝑏𝑏𝑊𝑊  𝜎𝜎2   =
𝑆𝑆𝑆𝑆𝑀𝑀(𝐼𝐼𝑛𝑛𝑊𝑊𝑊𝑊𝐶𝐶𝑖𝑖𝑊𝑊𝑦𝑦− 𝜇𝜇)

𝑇𝑇𝑏𝑏𝑊𝑊𝐶𝐶𝑙𝑙 𝑁𝑁𝑢𝑢𝑁𝑁𝑏𝑏𝑊𝑊𝑉𝑉 𝑏𝑏𝑖𝑖 𝑃𝑃𝑖𝑖𝑥𝑥𝑊𝑊𝑙𝑙𝐶𝐶 
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This process is illustrated below using the values of the table in figure 3.4. Pixels with 

intensity from 75 to 184 were used to calculate the background variance (there were no 

pixels with values of intensity lower than 75), and the rest of the pixels are used to 

calculate the foreground variance (pixels with intensity from 185 to 255) 

Background 

𝑀𝑀𝑊𝑊𝐶𝐶𝑛𝑛    𝜇𝜇𝑏𝑏 =
(75 ∗ 1) + (76 ∗ 2)+. .… + (183 ∗1) + (184∗ 1)

232
=

31390
232

= 135.30 

𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖𝐶𝐶𝑛𝑛𝑏𝑏𝑊𝑊   𝜎𝜎𝑏𝑏2 =
((75− 135.30)2 ∗ 1)+. . .+((184 − 135.30)2 ∗ 1)

232
=

160028.9
232

= 𝟔𝟔𝟔𝟔𝟔𝟔.𝟕𝟕𝟕𝟕 

Foreground 

𝑀𝑀𝑊𝑊𝐶𝐶𝑛𝑛    𝜇𝜇𝑓𝑓 =
(185 ∗ 1) + (186 ∗1)+. .… + (254 ∗5) + (255∗ 4)

104
=

24277
104

= 233.43 

            

𝑉𝑉𝐶𝐶𝑉𝑉𝑖𝑖𝐶𝐶𝑛𝑛𝑏𝑏𝑊𝑊   𝜎𝜎𝑏𝑏2 =
((185− 233.43)2 ∗ 1)+. . . . +((255− 233.43)2 ∗ 4)

104
=

43299.43
104

=𝟒𝟒𝟒𝟒𝟔𝟔.𝟑𝟑𝟒𝟒 

 

Within class variance at threshold value of 185 

The last step of Otsu’s algorithm is to calculate within class variance. For this example, 

the within class variance for threshold 185 is calculated as below: 

 

σ1852 =  0.6905 ∗ 689.77 +  0.3095 ∗ 416.34 = 𝟔𝟔𝟎𝟎𝟔𝟔. 𝟒𝟒𝟒𝟒 

 

As was mentioned before the within class variance (intra-group variance) is calculated 

for all possible threshold values, and the optimal threshold is the one with the lowest 

intra-group variance. 
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It is important to notice that MATLAB function “graytresh()” computes a global 

threshold using Otsu’s method, but normalizes the intensity to values between 0-1. The 

table in the figure below (Figure 3.6) shows the normalized values of intensity with the 

minimal within class variance at level 185.  

 

  
Figure 3.6: Within class variance and Otsu thresholding. Right:The values of within class 
variance and norlized intesity for each level of intensity showingxx . Left: black&White image 
resulting from aplying Otsu method at intensity level of 185. 
 

Otsu’s method is more effective in images with bimodal histograms, and the above 

example used an ideal area of the image where two distinctive peaks are easily 

identified, but in real-life applications where the peaks are not easily identified, Otsu’s 

method can lead to suboptimal results134. Iterative methods have been  reported to 

perform better than the traditional Otsu method for both synthetic and real images134. 

 

Iterative thresholding method (Triclass) 

As mentioned before, the iterative method divides the pixels in three classes (Figure 

3.7). In the first iteration, Otsu’s method is applied as described above to obtain an 
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optimal threshold and the mean of the two classes (background and fore ground) is 

calculated. Based in the mean, the pixels in the histogram are divided into three classes. 

The pixels with values smaller that the small mean are classified as background; the 

pixels with values larger than the large mean are classified as foreground; and the pixels 

with values between the two classes (called “to-be-determined” or TBD) are used for 

the next iteration where the same procedure is applied again. The process continues 

until a pre-defined termination rule is reached, e.g., a pre-set threshold 118,131,134. 

 

 
Figure 3.7: Representation of the Iterative Thresholding method. In each iteration, the 
histogram becomes smaller until the termination rule is reached, and the optimal threshold is 
found. 
 

During the last iteration (determined by a preset condition) the remaining pixels are 

divided in only two classes. The final classes (background and foreground) are 

determined by the logical union for the classes from each iteration 118,131,134 as shown 

below. 

𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 = 𝒃𝒃𝟒𝟒⋃ 𝒃𝒃𝟐𝟐⋃…⋃ 𝒃𝒃𝑩𝑩 

𝑭𝑭𝑩𝑩𝑩𝑩𝑭𝑭𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 = 𝒇𝒇𝟒𝟒⋃ 𝒇𝒇𝟐𝟐⋃…⋃ 𝒇𝒇𝑩𝑩 
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3.2.2 Segmentation through edge detection 

 
Edge detection is an alternative method to identify cells from the background. Edge is 

a basic characteristic feature of an image and is defined as the point at which an image 

sharply changes amplitude attributes such as brightness, luminescence or intensity, that 

give the observer the impression of an area transitioning between two different regions. 

Edge detection techniques take advantage of the discontinuity in brightness or intensity 

to identify the boundaries of the objects of interest. This boundary or edge represents 

points of significance changes in depth values determined by the local information of 

the pixels 113,135,136.  

 

The changes in intensity can be found using first- or second-order derivatives. First 

order derivative-based edge detection operators (such as Roberts, Prewitt or Sobel 

operators) find edges by computing the image gradient. Second order derivative 

operators look into the second derivative’s zero-crossing to find the edges 130,136. 

 

First order derivative edge detection, gradient based algorithms 

The image gradient is a measurement of rate of change in the image intensity. The 

gradient is defined as a vector oriented in the direction of the gradient, perpendicular 

to the edge and with the strength of the edge represented as the magnitude of the 

gradient vector. Since an image can be represented as a continuous derivative of the 

intensity of a group of pixels, then the image gradient can be calculated using the partial 

derivative at each pixel location 130,136. 
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The image gradient (G) is defined as: 

                                     𝐺𝐺(𝑖𝑖) = �𝑔𝑔𝑥𝑥 𝑔𝑔𝑦𝑦 
� = �

𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 
𝜕𝜕𝑦𝑦
𝜕𝜕𝑥𝑥 

�   

where the image magnitude (M) is defined as:   𝑀𝑀(𝐺𝐺) = �(𝑔𝑔𝑥𝑥)2 + (𝑔𝑔𝑦𝑦)2                     

 

The direction of the gradient is given by the angle (α) at points x, y: 

                                    α(𝑥𝑥, 𝑦𝑦) = tan−1 �𝑔𝑔𝑦𝑦𝑔𝑔𝑥𝑥   
�           

Prewitt kernel 

An approximation of the gradient of the image intensity function can be used for edge 

detection in digital images. For example, the Prewitt operator (Prewitt kernel, figure 

3.8) convolves the image with a small 2-D (3x3) pixel mask to estimate the partial 

derivative of the image at a point in the x- and y- directions: 

 

 
                 (a)                                            (b)                                             (c) 
Figure 3.8: Prewitt mask and partial derivatives approximation. a) 3x3 mask in x-direction. 
b) 3x3 mask in y-direction. c) Pixel location. 
 

An approximation of the partial derivatives can be found using the Prewitt operator as 

shown below: 

                                       𝑔𝑔𝑥𝑥 = 𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

= (𝑉𝑉7 + 𝑉𝑉8 +  𝑉𝑉9)− (𝑉𝑉1 +  𝑉𝑉2 +  𝑉𝑉3)      

                                       𝑔𝑔𝑦𝑦 = 𝜕𝜕𝑓𝑓
𝜕𝜕𝑦𝑦

= (𝑉𝑉3 +  𝑉𝑉6 +  𝑉𝑉9)− (𝑉𝑉1 +  𝑉𝑉42 +  𝑉𝑉7)     
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To illustrate this procedure, the Prewitt operator will be used to calculate the image 

gradient in section of a frame containing a streak. In this example Prewitt’s method will 

be implemented using convolution. Figure 3.9 shows a window section of a frame 

containing a streak with the intensity values represented in the matrix on the right of 

the image. Prewitt’s method convolves the image with a 3x3 mask (Figure 3.8, yellow 

3x3 window)). The mask is stepped across the image and with each step the central 

value (pixel 𝑉𝑉5 in red) is replaced with the magnitude of the vector at that location. In 

this example the magnitude of the target pixel (in red, figure 3.9) will be calculated. 

 

 
                       (a)                                                                        (b) 
Figure 3.9: Streak representation as pixel intensity values. a) Section of a frame with a streak. 
b) pixel intensity represented as double. 
 
 
1) Each pixel is multiplied by the value in the corresponding location in the 3x3 mask 

(either -1, 1 or zero) as shows in figure 3.10. To ensure that the dynamic range of the 

output matches the input, in this case, the result is normalized by dividing by 6 e.g., for 
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the Prewitt operator, the sum of the absolute value of the mask is: |-1| + |-1| +|-1| + 1 + 

1 +1 = 6. 

 

 
Figure 3.10: Convolution using a Prewitt mask. Each pixel is multiplied by a corresponding 
value in the mask and divided by 6 to normalize it. 
 

2) The partial derivatives in x- and y-directions are estimated by adding all the values 

of the resulting matrix as indicated below: 

 

𝑔𝑔𝑥𝑥 =
𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥 = (0.1300) + (0.1549) + (0.1555)+ (−0.1431) + (−0.1581) + (−0.1411)

= −0.00196  

𝑔𝑔𝑦𝑦 =
𝜕𝜕𝑖𝑖
𝜕𝜕𝑦𝑦 = (0.1411) + (0.1562) + (0.1555)+ (−0.1431)+ (−0.1385)+ (−0.1300)

= 0.04118  

 

3) The magnitude of the gradient is calculated using the formula below, and the target 

pixel is replaced with the value of the magnitude (Figure 3.11). The procedure is 

repeated until all the values of the pixels in the image are replaced by their 

corresponding magnitude value of their gradient. 

             

                                    𝑀𝑀(𝐺𝐺) = �(−0.00196 )2 + (0.04118 )2 =0.041223 
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Figure 3.11: Gradient magnitude and pixels. The target pixel is replaced with the magnitude 
of the gradient.  
 

 

4) Using a predetermined threshold value (for this example the threshold used is 0.18) 

the image is binarized assigning ‘1’ to the edges and ‘0’ to the background as shown 

below: 

𝑔𝑔(𝑥𝑥 ,𝑦𝑦) = �   1 𝑖𝑖𝑖𝑖 𝑝𝑝(𝑥𝑥, 𝑦𝑦) > 𝑇𝑇ℎ𝑉𝑉𝑊𝑊𝐶𝐶ℎ𝑏𝑏𝑙𝑙𝑏𝑏
0 𝑖𝑖𝑖𝑖 𝑝𝑝(𝑥𝑥 ,𝑦𝑦) ≤ 𝑇𝑇ℎ𝑉𝑉𝑊𝑊𝐶𝐶ℎ𝑏𝑏𝑙𝑙𝑏𝑏  

 

Using this procedure, all pixels with magnitude values under 0.18 are suppressed (set 

to zero), and all the other pixels are set to 1. Pixels set to ‘1’ are considered to be the 

edges of the object in the image. The result of this operation is illustrated in figure 3.12, 

in this case the target pixel in this example (in red) ended up being a non-edge pixel. 
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Figure 3.12: Binary image representation. The image from the previous step is 
binarized (threshold= 0.18) 
 
 

MATLAB implementation of edge detection is done using the function “edge()”. The 

MATLAB command “PrewittImage = edge(StreakImage, 'Prewitt', 0.18)” return the 

resulting filtered image using Prewitt’s operator with a threshold of 0.18. As is shown 

in figure 3.13, the convolution method returns the same image as the MATLAB 

“edge()” function. Figure 3.13 shows that Prewitt method successfully identify the 

streak’s edges on the right of the frame but missed the edges of the streak on the left.  

 

 
Figure 3.13: Edge detection using the Prewitt operator. a) Original image. b) Thresholding 
using convolution. c) Thresholding using MATLAB function “edge()”. 
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Some issues with gradient based methods are their lack of flexibility to modify the 

kernel or coefficients, and they are very sensitive to noise. Second order derivative 

methods can minimize these issues 136. 

 

Second order derivative, zero crossing edge detection method 

The magnitude of the first derivative allows the observer to infer the presence of an 

edge. For accurate detection of boundaries, a single pixel-wide boundary is desirable if 

the edge is discrete, but this is challenging for gradient-based methods since these 

search for the maximum derivative. An alternative to the maximum derivative is the 

zero-crossing effect of the second derivative that is the intersection between the zero 

intensity and the extrema of the second derivative (usually the zero-crossings of the 

Laplacian image). The advantage of the zero-crossing method is that it results in a 

single pixel-wide boundary 130,137.   

 

The sign of the second derivative determines if an edge pixel is in the dark side or the 

bright side of the edge, and the point where the Laplacian changes sign, is the zero 

crossing 130,137,138.  Laplacians can be calculated by summing the second partial 

derivative in the ‘x’ direction and the second partial derivative in the ‘y’ direction. The 

formula for the Laplacian L(x, y) is as follows: 

𝐿𝐿(𝑥𝑥 ,𝑦𝑦) =  
𝜕𝜕2𝑖𝑖  

𝜕𝜕2𝑥𝑥 +
𝜕𝜕2𝑖𝑖  

𝜕𝜕2𝑦𝑦  
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A discrete approximation of the second partial derivative for the Laplacian operator 

can be found as follows: 

 

′𝑥𝑥′ 𝑏𝑏𝑖𝑖𝑉𝑉𝑊𝑊𝑏𝑏𝑊𝑊𝑖𝑖𝑏𝑏𝑛𝑛:     
𝜕𝜕2𝑖𝑖  

𝜕𝜕2𝑥𝑥 = 𝑖𝑖(𝑥𝑥 + 1, 𝑦𝑦) + 𝑖𝑖(𝑥𝑥 − 1, 𝑦𝑦) − 2𝑖𝑖(𝑥𝑥, 𝑦𝑦) 

 

′𝑦𝑦′𝑏𝑏𝑖𝑖𝑉𝑉𝑊𝑊𝑏𝑏𝑊𝑊𝑖𝑖𝑏𝑏𝑛𝑛:       
𝜕𝜕2𝑖𝑖  

𝜕𝜕2𝑥𝑥 = 𝑖𝑖(𝑥𝑥 ,𝑦𝑦 + 1) + 𝑖𝑖(𝑥𝑥, 𝑦𝑦 − 1)− 2𝑖𝑖(𝑥𝑥 ,𝑦𝑦) 

 

 

To illustrate this procedure a horizontal section of a streak (1x13 pixels) will be used 

as example (Figure 3.14). 

 

 
Figure 3.14: Graphic representation of a 1x13 pixel windows showing the pixels intensity 
values.  
 

 

In this example, the second partial derivative for pixel  𝑦𝑦6 as a function of the intensity 

in the ‘y’ direction is calculated as follows: 

𝜕𝜕2𝑖𝑖  

𝜕𝜕2𝑥𝑥 = 𝑖𝑖(𝑥𝑥 ,𝑦𝑦6 + 1) + 𝑖𝑖(𝑥𝑥 ,𝑦𝑦6 − 1) − 2𝑖𝑖(𝑥𝑥, 𝑦𝑦6) 

= 𝑖𝑖(𝑥𝑥 , 𝑦𝑦7) + 𝑖𝑖(𝑥𝑥 ,𝑦𝑦5) − 2𝑖𝑖(𝑥𝑥 ,𝑦𝑦6) 
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Since ‘x’ is constant when moving in ‘y’ direction, ‘x’ values can be neglected: 

 

𝜕𝜕2𝑖𝑖  

𝜕𝜕2𝑥𝑥 = 𝑖𝑖( 𝑦𝑦7) + 𝑖𝑖( 𝑦𝑦5)− 2𝑖𝑖(𝑦𝑦6) 

                                                  = ( 237) + ( 236) − 2(255) 

                                                  = ( 237) + ( 236) − (510) 

                                                  = −37 

 

Using the same procedure, the second derivative for all pixels in the horizontal section 

(1x13 pixels) is calculated and values plotted to identify the zero crossing as shown in 

figure 3.15. As mentioned above, the sign of the partial derivative indicates which side 

of the edge the pixels are located. For the brighter side of the edge, the partial derivative 

has a negative sign and a positive sign for the darker side of the edge, therefore the zero 

crossing (when the partial derivative changes sign) indicates the boundary of change in 

intensity. Figure 3.15 shows a marked change of intensity from pixel 𝑦𝑦4 to pixel 𝑦𝑦5  

(from 90 to 336) where the edge of the streak is located. These changes in intensity are 

detected by the change in the sign of the second derivative (from +137 to -127). From 

pixel 𝑦𝑦5 the intensity increased until pixel 𝑦𝑦7, which changed the sign of the second 

derivative in pixel 𝑦𝑦8 (+27). Between pixel 𝑦𝑦9 and pixel 𝑦𝑦10  another change in intensity 

from 196 to 216 is detected (the derivative changed from +26 to -66). In pixel 𝑦𝑦12 , the 

intensity increases to 112 changing the sign of the derivative again (from-9 to +99).  
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            Figure 3.15: Second partial derivative and zero crossing points.  
 

Note that the zero crossing between pixels 𝑦𝑦4 and 𝑦𝑦5 in figure 3.15, indicates a true 

edge of the streak, but the zero crossing between pixels 𝑦𝑦10  and 𝑦𝑦11  might not represent 

a true edge and probably correspond to noise. 

 

The Laplacian of the image can be calculated adding both partial derivatives, as showed 

below.  

  𝐿𝐿(𝑥𝑥 ,𝑦𝑦) = [𝑖𝑖(𝑥𝑥 + 1,𝑦𝑦) + 𝑖𝑖(𝑥𝑥 − 1,𝑦𝑦) − 2𝑖𝑖(𝑥𝑥, 𝑦𝑦)] + [𝑖𝑖(𝑥𝑥 ,𝑦𝑦 + 1) + 𝑖𝑖(𝑥𝑥 ,𝑦𝑦 − 1)

− 2𝑖𝑖(𝑥𝑥 ,𝑦𝑦)] 

                 = 𝑖𝑖(𝑥𝑥 + 1,𝑦𝑦) + 𝑖𝑖(𝑥𝑥 − 1,𝑦𝑦) − 4𝑖𝑖(𝑥𝑥 ,𝑦𝑦) + 𝑖𝑖(𝑥𝑥, 𝑦𝑦 + 1) + 𝑖𝑖(𝑥𝑥 , 𝑦𝑦 − 1) 

  = 1 ∗ 𝑖𝑖(𝑥𝑥 + 1, 𝑦𝑦) + 1 ∗ 𝑖𝑖(𝑥𝑥 − 1, 𝑦𝑦) − 4 ∗ 𝑖𝑖(𝑥𝑥, 𝑦𝑦) + 1 ∗ 𝑖𝑖(𝑥𝑥 , 𝑦𝑦 + 1) + 1

∗ 𝑖𝑖(𝑥𝑥, 𝑦𝑦 − 1) 

This corresponds to the Laplacian operator for digital images and can be represented in 

the Laplacian kernel (Figure 3.16): 
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      Figure 3.16: Laplacian kernel. The operator can be calculated adding the second partial       
      derivatives (x and y directions) of the image. 
 
  

To illustrate the results of this process the Laplacian kernel (combined with the 

MATLAB conv2() function) was used to identify the edges of the streak in the image 

in figure 3.17. The Laplacian kernel was able to identify the two streaks in the frame, 

but also picked up some noise.  

 

 
Figure 3.17: Applying Laplacian operator to streak imagine. 
 
 
 
The above example shows one of the limitations of the second derivative: high 

sensitivity to noise. To mitigate this issue, a Gaussian filter (see formula below) may 

be used to filter out noise as the first step in second derivative-based methods. 

𝐺𝐺(𝑥𝑥, 𝑦𝑦) =  
1

2𝜋𝜋𝜎𝜎2
𝑊𝑊− 𝑥𝑥

2+𝑦𝑦2
2𝜋𝜋𝜋𝜋2  
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Combining the Laplacian and Gaussian filter equations yields the Laplacian of 

Gaussian (LoG) operator (the Marr-Hildreth method) for edge detection: 

 

𝐿𝐿𝑏𝑏𝐺𝐺(𝑥𝑥 , 𝑦𝑦) =  −
1

𝜋𝜋𝜎𝜎4  �1−  
𝑥𝑥2 + 𝑦𝑦2

2𝜎𝜎2
�  𝑊𝑊−

𝑥𝑥2+𝑦𝑦2
2𝜋𝜋2  

 

Figure 3.18 shows the LoG operation using the MATLAB function “edge()”, with a 

threshold of 0.017. The LoG operation eliminates noise, but has the expense of losing 

signal, as seen in figure 3.18, it produces fragmented edges. LoG has another potential 

problem: it can generate false edges. These issues require a more nearly optimal 

operator: 

 

 
Figure 3.18: LoG operator. The LoG operator applied to streak images can cause 
fragmentation. 

 

Canny edge detector operator 

The Canny edge detection method was developed by John F. Canny in 1986139 with the 

idea that a more nearly optimal operator could be derived to find edges in the presence 

of noise. The approximation of a more nearly optimal edge detector is found in the first 
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derivative of the Gaussian image in the direction of the gradient. The Canny method 

has since been extensible used in many applications, and is discussed in more detail 

below.  

 

According to Canny, a more nearly optimal edge detector operator must have the 

following characteristics:  

• Minimize the probability of false edge production and missing real edges. 

• Detected edges must be close to true edges. 

• Provide only one point for each true edge point. 

 

Canny is a multistep algorithm that requires application of the Gaussian filter to smooth 

the image before starting the edge identification process. After the Gaussian filter is 

applied to the image, the process continues with the following steps: (i) Find the 

gradient direction of each pixel and quantize in one of 4 directions, (ii) Apply a non-

maximum suppression method to provide only one point for each edge pixel, and (iii) 

Eliminate weak edges, these steps are described in more detail below. 

 

Step 1: Finding the gradient direction and magnitude 

After smoothing the image using Gaussian filtering, next calculate the gradients of the 

image in both directions. As we have seen earlier, several operators could be used to 

find the magnitude and direction of the gradient. Canny-based methods usually use the 

Sobel operator (Figure 3.19) to calculate the direction of the gradient (where the edge 

is perpendicular to the gradient).  
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                                     a                                 b                                c 
  Figure 3.19: Sobel kernel. a) 3x3 mask in x-direction. b) 3x3 mask in y-direction. c) Pixel  
  location. 
 

To illustrate this process, the magnitude and the direction of the gradient using Sobel 

operator over a streak image will be calculated as (section in yellow, figure 3.20) 

 

 
Figure 3.20. Pixel values of a section of a streak. A 9x17 pixel window from a section of a 
streak, with pixel values shown to the right.  
 

 

Calculating partial derivatives using Sobel operator 

Based on the Sobel mask, the formulas to approximate the derivative of the gradient 

can be modified as follow: 

 

𝑔𝑔𝑥𝑥 =
𝜕𝜕𝑖𝑖
𝜕𝜕𝑥𝑥 = (𝑉𝑉7 +  2 ∗ 𝑉𝑉8 +  𝑉𝑉9)− (𝑉𝑉1 + 2 ∗ 𝑉𝑉2 + 𝑉𝑉3) 

𝑔𝑔𝑦𝑦 =
𝜕𝜕𝑖𝑖
𝜕𝜕𝑦𝑦 = (𝑉𝑉3 +  2 ∗ 𝑉𝑉6 + 𝑉𝑉9)− (𝑉𝑉1 +  2 ∗ 𝑉𝑉42 +  𝑉𝑉7) 
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Applying a procedure similar to the Prewitt calculations, and using the modified 

formulas from Sobel kernel, the partial derivatives in x and y direction are calculated 

as showed in figure 3.21. 

 

 
Figure 3.21: Sobel operator. Applying Sobel operator to the image and calculating the 
partial derivatives in x direction (𝑔𝑔𝑥𝑥) and y direction (𝑔𝑔𝑦𝑦). The result of the partial 
derivatives were normalized by dividing by 8. 
 

Calculating the edge angle at each pixel location 

Using partial derivatives, the gradient and the edge angle can be calculated (the 

direction of the gradient is given by the angle (α) at points x, y). 

 

                                    α(𝑥𝑥, 𝑦𝑦) = tan−1 �𝑔𝑔𝑦𝑦𝑔𝑔𝑥𝑥   
� 

                               α(𝑥𝑥 ,𝑦𝑦) = tan−1 �0.223039
0.003431  

�  

                   α(𝑥𝑥 ,𝑦𝑦) = 𝑊𝑊𝐶𝐶𝑛𝑛−1  [65.00]  

                    α(𝑥𝑥, 𝑦𝑦) = 1.555413 

Converting α(𝑥𝑥 ,𝑦𝑦) to degrees: 

                    α(𝑥𝑥, 𝑦𝑦)𝑑𝑑𝑑𝑑𝑔𝑔𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 89.1186°  
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The angle in degrees is replaced in the position of each pixel as showed in figure 3.22 

 
Figure 3.22: Edge angle. The pixel values are replaced by angle in each pixel location. 
 

 

The Canny algorithm allows the edge direction to have one of four possible 

orientations: Horizontal edge (0°), Vertical edge (90°) and two diagonal edges (45° and 

125°). To calculate the edge direction, Canny approximates the angle value to those 

orientations as follows: 

 

1)  If the angle is between 0° and 22.5° or between 180° and 157.5°, the angle is 

approximated to 0°, and the edge is a horizontal edge (yellow area in figure 3.23). 

2) If the angle is > 22.5° and < 67.5°, the angle is approximated to 45°, and the edge 

is considered to be a diagonal edge (pink area in figure 3.23). 

3)  If the angle is > 67.5° and < 112.5°, the angle is approximated to 90°, and the edge 

is considered to be a vertical edge (green area in figure 3.23)  

4) If the angle is > 112.5° and < 157.5° the angle is approximated to 135°, and the 

edge is considered to be a diagonal edge (blue area in figure 3.23). 

 

*Similarly, this principle is applied for negative angles as show in figure 3.23 
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Figure 3.23: Calculating edge angles (Canny method). Graphic representation for 
approximating angles used in Canny edge detection. The four possible orientations are show 
in yellow (horizontal), pink and blue (diagonal) and green(vertical). 
 

 

Using the above scheme (Figure 3.23), the angle values are approximated for each 

pixel, see below (Figure 3.24). 

 

 
Figure 3.24: Replacing edge angles in the figure matrix. The angles are approximated to one 
of the 4 possible values and replaced in each pixel location. 
 
 
 
 
The edge direction and the gradient can be found using the angle values. Figure 3.25 

shows examples of edge and gradient on different pixels. In this example the central 

pixel (in red) is considered a vertical edge with the gradient moving from left to right.   
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Figure 3.25: Gradient and edge direction in the figure matrix. Red and blue arrows 
represent the gradient and edge direction respectively. Pixels with angle of 45o or 135 o 
are considered diagonal edges, pixels with angle of 0o are considered horizontal edges 
and pixels with angle of 45 or 135 are diagonal edges.  
 

Calculate the edge gradient magnitude at each pixel location 

As was mentioned earlier, the magnitude of the gradient can be calculated using the 

partial derivative as follows: 

𝑴𝑴(𝑮𝑮) = �(𝑩𝑩𝒙𝒙)𝟐𝟐+ (𝑩𝑩𝒚𝒚)𝟐𝟐  

 

Using the partial derivatives in both directions calculated in figure 3.21, the magnitude 

of the gradient, for this example, is found applying the above formula. 

 

𝑀𝑀(𝐺𝐺) = �(0.003431)2 + (0.223039)2 = 0.223066 

 

Then, the magnitude values are replaced in each pixel location in the whole image as 

shown in figure 3.26. The magnitude and the orientation of the gradient is used in the 

next step to identify the edges. 
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Figure 3.26: Gradient magnitude. The magnitude of the gradient is replaced in each pixel. 
  

Step 2: Non-maximum suppression 

Recalling the third requirement mentioned above for the Canny algorithm, the 

algorithm must provide only one point for every to true edge point. This requirement 

is achieved by using the gradient direction and magnitude of each pixel through the 

non-maximum suppression method. In this method, each pixel is compared with the 

neighbors at both sides of the gradient: if the magnitude of the pixel gradient is the 

largest compared to its neighbors, the pixel value is preserved. Otherwise the pixel is 

suppressed (set to zero). This process is illustrated in figure 3.27. 

 

 
Figure 3.27: Gradient direction. The red arrow represents the gradient direction. If the 
magnitude of a pixel is smaller than its neighbors on either side of the gradient (light blue 
color), the pixel is suppressed (set to zero). In this example, only the intensity values of the 
pixels in the 4th column were preserved, which identifies the vertical edge from the background. 
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Step 3: Hysteresis thresholding 

This is the last step in the Canny algorithm: The Hysteresis threshold is a double 

threshold applied to the image for two ranges of gray scale, such that, for an edge pixel 

in image 𝐼𝐼𝑝𝑝, with wide threshold 𝜏𝜏2  and narrow threshold  𝜏𝜏1 , if the gradient value of 

pixel 𝐼𝐼𝑝𝑝  is greater than the wide threshold, the pixel is considered a strong edge pixel.  

Otherwise, if the pixel value is lower than the wide threshold and larger than the narrow 

threshold, the pixel is considered a weak edge pixel. If the pixel value is smaller than 

the narrow threshold, then the pixel is suppressed (set to zero). Finally, all weak pixels 

not connected to a strong pixel are also suppressed 140,141. 

Thus, the Hysteresis threshold H for pixel 𝐼𝐼𝑝𝑝  can be defined as follow: 

 

     𝐻𝐻�𝐼𝐼𝑝𝑝�  = � 
1     𝑖𝑖𝑖𝑖 𝐼𝐼𝑝𝑝  ≥  𝜏𝜏2 

   1      𝑖𝑖𝑖𝑖 𝐼𝐼𝑝𝑝  ≤  𝜏𝜏2  
0     𝑏𝑏𝑊𝑊ℎ𝑊𝑊𝑉𝑉𝑒𝑒𝑖𝑖𝐶𝐶𝑊𝑊

𝐶𝐶𝑛𝑛𝑏𝑏 𝐼𝐼𝑝𝑝  ≥  𝜏𝜏1 𝐶𝐶𝑛𝑛𝑏𝑏 𝐼𝐼𝑝𝑝 𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑊𝑊𝑏𝑏𝑊𝑊𝑊𝑊𝑏𝑏 𝑊𝑊𝑏𝑏 𝐶𝐶 𝐶𝐶𝑊𝑊𝑉𝑉𝑏𝑏𝑛𝑛𝑔𝑔 𝑊𝑊𝑏𝑏𝑔𝑔𝑊𝑊 𝑝𝑝𝑖𝑖𝑥𝑥𝑊𝑊𝑙𝑙 

 

 

To illustrate the importance of the threshold selection in the Canny method, figure 3.28 

shows the result of applying the MATLAB function “edge()” with the Canny option to 

use the different high-low threshold combination. The high threshold is used for low 

edge sensitivity and low threshold is used for high edge sensitivity. The MATLAB 

“edge()” function can choose threshold values automatically depending of the 

characteristics of the input data (Figure 3.28.a,b). Increasing the threshold value results 

in less sensitivity in detection and therefore fewer detected edges, which results in the 
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elimination of unwanted edges (noise), but can also produce fragmentation of the edges 

or result in completely missing weak edges of foreground objects (Figure 3.28.c). 

 

 
Figure 3.28: Canny method, threshold selection. Using MATLAB function edge() with Canny 
option. (a) Threshold automatically selected by the system. (b) Increasing low and high 
threshold values result in the elimination of most of the unwanted edges (noise), but also cause 
fragmenting of the streaks, or completely missing the streaks.  
 

 

There are other methods for cell segmentation such as a template matching approach, 

watershed and others. In the template matching method, a template of the shape of the 

cell is created, matched, or otherwise is suppressed. This method works well for cells 

that do not change shape significantly but has limited value when significant variation 

in cell morphology is encountered 100. Other methods apply region-based 

segmentations where objects and background are segmented by combining 

morphological filters and used as the base for watershed segmentation142. In watershed 

segmentation, the image is treated as topographic relief with an algorithm based on an 



 

57 
 

immersion analytical process. The image is considered much like a topographic map 

where the high is equivalent to the intensity subdividing the image into regions based 

delimited contours. The algorithm is sensitive to noise and tend to yield over-

segmentation100,143,144 

 
 

3.3 Association of the relevant objects with each other 

 
After the objects are identified through segmentation, they can be associate and linked 

with other objects in different frames. For the purpose of streak detection and 

association, this can be achieved by associating cells with the nearest cells in the next 

frame using the centroid position. One problem with this approach is potential mismatch 

with a nearest not related cell. To avoid this problem other parameters can be considered 

for cell association such as: similarities in intensity, shape, surface area, orientation of 

major and minor axes, estimated displacement etc.  A combination of these features will 

reduce the chance of mismatches 100. Several methods for object tracking have been 

proposed for tracking of cells such as parametric active contours (snakes) or mean-shift 

based methods for tracking cancer cells and others100,115,145,146. These methods were 

designed to account for the complexity of the cell movement by considering different 

cell shape, size, speed, and direction. However, streak imaging has several advantages 

that facilitate the tracking of the cells. For example, the cells are represented by uniform 

shape (streaks) with comparable size moving in only one direction with very little 

variation from the straight line. In addition, due to the rare nature of the cells, they don’t 

usually overlap, which allows the prediction of their position in consecutive frames. 
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These characteristics of streak cytometry imaging allows the use of simple methods such 

a cell association through centroid position for tracking the streaks across the frames.  

 

3.4 Cell identification 

 
Computational methods for cell detection in streak imaging (either through thresholding 

or edge detection) must be very sensitive due to the rare nature of the cells under 

analysis. High sensitivity comes with the side effect of an overwhelming number of 

spurious cells identified as cells, for example a sample with around 30 non-spurious 

cells can have hundreds of spurious cells. To address this issue an image classification 

method needs to be implemented. 

 

Several methods including morphometric-based filters, or image feature methods such 

as ‘bag of features’ combined with machine learning classifiers can be applied to address 

this issue. 

Bag of features (BoF) 

The BoF approach represents an adaptive method to model image structures. In contrast 

to image segmentation, BoF looks for small characteristic regions that may represent 

the images. These small regions are extracted from all the images in the collection, and 

summarized in a set of code words or visual dictionary. The  images can be represented 

as an orderless collection of local features without large scale spatial information and 

no relative location (bag) that correspond to the frequency of the code words that its 

contains101. BoF is derived from a bag-of-words model used in natural language 
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processing where a document can be represented as a normalized histogram of words 

count. A dictionary of words is extracted from the document and a term vector is created 

where each element in the vector is a word in the dictionary and the magnitude of the 

element is the number of times that the term appears in the document divided by the 

total number of words in the dictionary (the dictionary omits non-informative words and 

uses a single term for synonyms)147.  

 

Similar to a bag-of-words, a bag-of-features consists of visual vocabulary or codewords 

that correspond to features extracted from the set of images (for the BoF each feature 

cluster corresponds to a visual word) 147,148.  BoF has been successfully used in object 

detection, identification of visual patterns in biomedical images, image classification, 

etc. 101,147. 
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Chapter 4: Computational Tools for Cell Detection and Tracking 

 

4.1 Introduction 

 
Commercial and public domain software tools and methods for cell motion tracking 

have been intensively reviewed 149. Some of those tools such as TimeLapseAnalyzer 

(TLA) 150 provide a framework for cell detection, but require a user’s own 

implementation of an image pre-processing pipeline (e.g., thresholding, and object 

detection). General computational tools such as ImageJ 151 provide capabilities for 

development of cell tracking tools such as iTrack4U (an automatic cell tracking 

program based on a mean-shift algorithm) and ImageJ libraries 152 or MTrack2 153 (an 

ImageJ plug in). MTrack2 relies on manual thresholding for streak detection and size 

filtering to eliminate small artifacts 135. MTrack2 identifies fluorescence objects in each 

frame, and then determines which objects in successive frames are closest together. If 

these objects are within a user-defined distance (the maximum velocity of the objects) 

they are assembled into tracks. When multiple objects are within the distance 

determined by the maximum velocity the closest object is selected and the object is 

flagged in the output 135,149,153. Some tools such as CellTrack 154, and CellTracker 155, 

perform image segmentation using classic edge detection algorithms (such as the 

Canny edge detector) for detecting cells.  

As mentioned above, most of the available computational tools for cell detection 

and tracking use intensity thresholding or edge detection for segmentation. Two 

representative tools for these methods are:  MTrack2 (thresholding-based) and 
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CellTrack (edge detection-based). These methods were used to compare the 

performance of the first streak detection algorithm described in the next section (Streak 

Detection Algorithm and Preliminary Results).  

 

4.2 MTrack2 

 
MTrack2 153 is an ImageJ plugin originally developed at the University of California 

San Francisco in 2004 to track and analyze the velocity and directional persistence of 

movements  of Caenorhabditis elegans (roundworm) 156. MTrack2 is based on  the 

MultiTracker plugin 157 (University of Texas Austin) which is based in the Object 

Tracker plugin 158. MTrack2 identifies objects in each frame and uses the object’s 

center of mass (centroid) to track direction and distance covered in subsequent frames. 

If the centroid location is within a user-specified distance (maximum velocity), 

MTrack2 groups the objects in tracks (each track can contain one or more objects). In 

the case that multiple objects are within a user-specified distance, the closest object is 

considered to belong to the same track. 

 

For this dissertation, the objects to be identified by MTrack2 are individual streaks. 

Note that streaks are usually fragmented and MTrack2 identifies each fragment as a 

different object. Therefore, further processing using a MATLAB application was used 

to associate the objects that belong to the same streak in the same frame. Using the 

centroid location (provided by MTrack2) the objects detected by MTrack2 are grouped 

in streaks in different frames and the streaks are identified as cells.  
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MTrack2 allows the user to select the minimum track length (number of frames where 

the user expects to find the same object). For our purposes, due to their length, the 

streaks are expected to show in no more than four frames, but since MTrack2 can miss 

a streak in a frame, we set the minimum track length to one frame. MTrack2 also allows 

us to set the minimal object size for streak detection. For this work we set the minimum 

object size to 20 pixels to reduce the chance for detecting small artifacts 159. Critical for 

the streak detections using MTrack2 is threshold selection. Manual threshold selection 

is done before running the MTrack2 to determine which objects will be detected and 

counted (Figure 4.1). For this dissertation we set a threshold for each sample between 

100-150 159. 

 

Figure 4.1: MTrack2 threshold selection. The threshold was selected for each sample and it 
ranged between 100- 150. As noted in the figure, two streaks are clearly identified after 
thresholding the frame. 
 

To illustrate the importance of the threshold selection for MTrack2, figure 4.2 shows 

the difference between object detection using two different thresholds (for this example 

we created an artificial video file with four frames and two cells). MTrack2 returns a 

video file with centroid locations and labels from each object detected in each frame. 
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As show in figure 4.2a, MTrack2 could detect objects in both streaks in the frame (true 

positives, green ellipses), but in addition it picked up objects that don’t correspond to 

streaks (false positive, red ellipses). With a more restrictive threshold (Figure 4.2b) 

MTrack2 did not pick up any false positive, but it did not detect the object for the streak 

in the left, producing a false negative result.  

 

 
Figure 4.2: Comparing threshold selections. Selecting a lower threshold enabled MTrack2 to 
detect both streaks but increases the false positive number (red circles) (a). Selecting a higher 
threshold decreases or eliminate false positives, but missed a true positive as shown in (b) 
 

 

MTrack2 provides an analysis output text file with the frame number, label and location 

of all objects detected. Figure 4.3(a) shows MTrack2 output from the video file with 4 

frames to illustrate the process. Frame #2 shows 3 objects (Flags 1, 2 and 3). The same 
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objects were identified in Frame #3 plus an additional object (Flag 4). In addition, 

MTrack2 produces a summary (at the bottom of the form) including the track number, 

the number of the frames where the object was found and the distance in pixels traveled 

by the object. Figure 4.3(b) show the magnified area in the frames 2 and 3, where the 

objects were detected. 

 

 
Figure 4.3: MTrack2 output. (a) Text file produced by MTrack2 showing the frame number 
and the x,y pixel location of the centroid for each object in the frames. (b) Screen shot of the 
frames where the objects are located. In this case, all the objects were identified as belonging 
to the same cell. 
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4.2.1 Counting cells 

 

The output text file from MTrack2 is converted to MS Excel format and uploaded to 

MATLAB where is formatted and stored as a .mat file. Figure 4.4(a) shows the 

MATLAB formatting of the MTrack2 data for sample # 32: Columns 1 and 2 represent 

the “x,y” pixel locations of the objects centroids; column 4 represents the label and 

column 5 the frame number of the objects identified by MTrack2. In this example 

MTrack2 detected 13 objects in frame #387, (objects numbered from 338 to 350, 

column 4 figure 4.4(a)). Figure 4.4(b) shows the spatial distribution of the objects in 

the frame (frame 387). 

 

 
                                 (a)                                                                            (b) 
Figure 4.4: MTrack2 output data and annotation. (a) MTrack2 data formatted by MATLAB. 
Column 1 and 2 represent the centroid pixel (x, y) location respectively. Column 4 corresponds 
to the label assigned by MTrack2 and column 5 the frame number (column 3 is a place holder 
used in further processing). (b) Annotation using the object number provided by MTrack2 
(column 4 ), over the ground truth. Object 338, 340, 341, 342, 343 and 345 matched with the 
ground truth cell #16. 
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4.2.2 Association of the MTrack2 objects 

 
The MTrack2 objects are grouped and relabeled according to the distance of their 

centroids: For objects in the same frame, all the objects within minimal centroid 

distance of 5 pixels in the ‘x’ coordinate are labeled in the same group. Objects that 

appeared in one more of the next three consecutive frames showed minimal centroid 

distances of 7, 9 and 10 pixels respectively. The grouped label is stored in column #3 

(Figure 4.5).  Noted that MATLAB uses “Intrinsic Coordinates” as the default for the 

Image Processing Toolbox. The intrinsic coordinates (x,y) correspond to pixel indices, 

where the center point of a pixel is identical to the column and row index for that pixel.  

Therefore the upper left corner of an image is located at x=0.5, y=0.5 160. For example, 

objects 338, 340, 341, 342, 343 are grouped and relabeled as object 338 (column 3) and 

objects 347, 348 and 349 also are in the range of 5 pixels therefore are relabeled as 

object 347 (column 3). 

 
Figure 4.5: MTrack2 data. The objects are grouped and relabeled according to the ‘x’ 
coordinate of their centroid. Columns 1 and 2 represent x, y locations of the centroid; column 
3, 4 and 5 represents the group label, the MTrack2 object ID and the frame number 
respectively. 
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4.3.3 Matching MTrack2 detected cells with the ground truth 

 
All MTrack2 objects where the centroid is 5.0 pixels or less from the ‘x’ location of the 

beginning or end of the ground truth streak (in the same frame) are considered to belong 

to the corresponding ground truth streak. For objects in the next three consecutive 

frames, the association centroid distance described above is applied, and the details of 

the matching procedure are described in the chapter “Sample Preparation and Ground 

Truth”. In the case of objects not associated with ground truth streaks (false positives) 

we discarded all the objects that have only one appearance in the same frame. For 

example, in sample 32, frame 387 (Figure 4.5 above) objects 339, 344, 346 and 350 

(column 4) were discarded.  

 

Figure 4.6 shows the result of this procedure: Columns 6 -11 represent the ground truth 

information, as described in the chapter “Sample Preparation and Ground Truth”, when 

an MTrack2 object match with the ground truth streak the MTrack2 objects is 

considered as true positive (TP) and the ground truth information is added to the 

corresponding row (columns 6-11). When no match is found, the object is considered 

a false positive (FP) and the default value (zero) is applied to the corresponding row. 

In addition, in the case of the FP objects, only objects with more than one appearance 

in the same frame are counted. For example, in column 3, only objects 338 (true 

positive) and 347 (False Positive) are considered for counting in frame 387, the rest of 

the objects were discarded. 
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Figure 4.6: Matching MTrack2 data with ground truth. When a match is found (true positive) 
columns 6 to 11 are filled with the information from the ground truth. The default value when 
no match is found is zero. Columns 5 and 6 correspond to the frame number, column 7 
corresponds to the cell number, and columns 8 to 11 represent the (x,y) location of the start 
and end of the streak respectively. Column 1and 2 represent the x,y location of the centroid; 
column 3 represents the group label and column 4 represents the MT2 object ID 
 

Figure 4.7 (sample 32 frame #387) shows the spatial distribution of MTrack2 objects 

compared with the ground truth. Objects 338, 340,341, 342, 343, 345 (Figure 4.7(a)) 

are relabeled as group object # 338 (Figure 4.7b) and determined to belong to ground 

truth cell # 16. Objects 348, 347 and 349 are relabeled as group object #347 (FP). 

Objects 339, 344, 346 and 350 were discarded. 

 

 
Figure 4.7: Distribution of MTrack2 objects. (a) Spatial distribution of the MTrack2 objects. 
(b) The objects are relabeled and all objects with only one appearance in the frame are 
discarded 
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4.3 CellTrack 

 
CellTrack is an open source, self-contained, extensible and cross-platform software 

package developed at the Ohio State University in collaboration with the Middle East 

Technical University (Ankara, Turkey) 154. CellTrack provides general purpose 

imaging processing and object segmentation methods and implements an edge-based 

method based on active contour models for detection and tracking of cell boundaries. 

CellTrack requires the input of the initial edge threshold and the linking threshold for 

efficient edge detection. For this dissertation, the initial edge detection threshold was 

set between 30-60, and the edge linking threshold was set between 20-50 for all samples 

as described in our previous work 159. Figure 4.8 shows a screen shot of the CellTrack 

graphic user interface (GUI) showing two streaks crossing the frame (the same frame 

as shown in figure 4.1). Several objects from the streak on the right were detected. In 

the streak to the left only 2 objects were detected. 

 

 
            Figure 4.8: CellTrack GUI showing two streaks crossing the frame (black ovals).  
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CellTrack provides an output video file (.avi) showing the objects detected in each 

frame (Figure 4.9). The samples were run through CellTrack and the .avi file containing 

the objects detected were saved for counting streaks. 

 

 
                                a                                                                         b  
Figure 4.9: CellTrack object detection. (a) Original frame. (b) Frame after being processed by 
CellTrack 
 
 

4.3.1 Counting cells 

 
The .avi files containing the objects detected by CellTrack were processed using a 

MATLAB application developed for this purpose. All the objects within 40 pixels from 

the left and right boundaries of the frame were not included in the process. In addition, 

to eliminate small artifacts detected by CellTrack, all the objects with sizes less than 

70 pixels were discarded. All the remaining objects are considered to be valid. A valid 

CellTrack object is defined as a streak that potentially belongs to a cell. 

 

Using the MATLAB function “regionprops()” the centroid, bounding box, and size of 

the remaining objects were stored in an array (Figure 4.10). Figure 4.10 shows the 

properties of three objects detected in frame 731, where columns 1-2 represent the ‘y, 
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x’ pixel coordinate of the centroid; columns 3-6 represent the bounding box; column 7 

represents the size of the object; column 9 represents the frame number and column 8 

is a sequential number assigned to each object in the frame.  

 

 
Figure 4.10: CellTrack data. Columns 1,2 represent ’x, y’ location of the centroid; Columns 
3-6 represent the bounding box; column 7 represents the object size; column 8 represents a 
sequential number of the objects in each frame and column 9 represents the frame number. 
 
 
 

4.3.2 Association of the CellTrack objects 

 

Using an approach similar to MTrack2, the objects were associated according the ‘x,y’ 

pixel coordinates of their centroid (within minimal centroid association distance) to 

determine if they belong to the same streak. All the objects within the minimal 

association distance were grouped and relabeled. Figure 4.11 shows the result of this 

operation; Objects 1 and 2 in frame 731 were determined to belong to the same streak 

and were grouped and relabeled as streak 601 (Figure 4.11, column 10); object #3 was 

relabeled as streak 604.  
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Figure 4.11: CellTrack, objects association. An additional column is added to indicate the 
group label (column 10) 
 

 

Figure 4.12 shows the spatial distribution of the objects detected in the frame as 

provided by CellTrack. Figure 4.12(a) shows all the objects detected by CellTrack. 

Figure 4.12(b) shows only the valid objects after eliminating the artifacts. Notice that 

in this example two objects were considered valid, but object 604 is probably a FP. 

        

 
                                            a                                                                      b 
Figure 4.12: CellTrack, spatial representation of the objects detected. The figure shows that 
only three objects among all the objects detected by CellTrack in this frame are considered to 
belong to potential cells (valid objects). Two objects are considered to belong to the same 
streak and relabeled as streak #601 
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4.3.3 Matching CellTrack detected cells with the ground truth 

 

Using the ground truth (GT) and the centroid location, the CellTrack objects were 

associated with corresponding GT cells. Figure 4.13 below shows that CellTrack streak 

601, corresponds to ground truth cell 21 (Figure 4.13 column 12). The zero in columns 

11-16 indicate that these streaks cannot be associated to a true cell (false positive). 

 

 
Figure 4.13: CellTrack, association of the streaks with the GT. Columns 11, 12 represents 
the frame number and cell Id respectively. Columns 13-16 are the x,y location of the start/end 
of the GT streaks. 
 

In figure 4.14 (last step in the process), the frame with the identified streaks is overlaid 

with the corresponding ground truth frame. Figure 4.14 shows that streak number 601 

matches with a cell in ground truth (true positive). On the other hand, object 604 cannot 

be associated with a ground truth streak and is deemed a false positive. 

 

 
Figure 4.14. Association of a CellTrack object with the ground truth. Object 601 was 
associated with cell 21(true positive). Object #604 is a false positive. 
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Chapter 5:  Sample Preparation and Ground Truth 
 

 

5.1 Sample preparation 

 
The webcam-based wide-field streak cytometer and the data used in this dissertation 

were reported in previous work 52,53. Briefly, THP-1 monocytes were removed from a 

culture medium and the cells were labeled with SYTO-9 dye added to 1 mL of 

suspended cells. After labeling, cells were diluted to a level of approximately 1 cell/μL 

(measured by microscopy). From this solution, lower concentration samples of 1 

cell/ml and 0.1 cell/ml were generated by single-step dilution. Samples were injected 

into the wide–field webcam–based streak mode flow cytometer (described in chapter II 

5) in batch sizes of 30 ml with the flow rate set to 10 ml/min. The samples were imaged 

at 4 frames per second and the video files were saved as uncompressed AVI format.  

 

5.2 Ground truth  

 
In order to compare different cell tracking methodologies on the streak images, cells 

used for ground truth were visually identified for each sample using a MATLAB 

application developed to assist tagging and recording their locations while crossing the 

frames 159,161. First, using the MATLAB “VideoReader()” function, the video files were 

converted to a “VideoReader” object and each frame was stored in a cell array where 

each cell contains a matrix representing a frame from the video file. Subsequently, the 
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cell array is loaded into a MATLAB application developed for this thesis “Avi()” where 

the frames can be visually inspected by a human for streaks cells.  

The “Avi()” application facilitates tagging the streak and recording the frame number 

and the location of each streak by a click of the mouse (Figure 5.1). 

 

 
Figure 5.1: Avi() application GUI. The figure shows 2 consecutive frames and the tagging of 
the streaks  (by the click of the mouse). Avi() assists in the task of labeling and recording the 
location of visually identified streaks. The streak in frame 212 is the third streak in the sample 
(tag# 3) with x,y location starting in pixels 304,2  and ending in pixels 504, 108. The same 
streak (tag# 3) is also identified in frame 213 along with a new streak (tag# 4) 
 

 

The Avi() tool returns a video file with the ground truth streaks labeled, and a data file 

containing the tag number and the pixel location of the beginning and the end of each 

streak (Figure 5.2). This data file is used in subsequent steps to match the ground truth 

with different methodologies for cell detection and tracking.  

After the cells are identified, labeled, and their location recorded using the “Avi()” tool, 

the next step is to determine the signal to noise ratio (SNR) of the ground truth cells. 
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Figure 5.2: Avi() data file output. Each row of the ‘Cdt’ file represents a frame in the sample 
and holds a structure containing the cell list with cell number and location for each streak in 
the list (Cdt.cellList). In this example row 212 on the ‘Cdt’ file (frame 212) holds a structure 
with one cell (cell #3), and row 213 holds the information for cell #3 and #4 in frame 213. In 
‘Cdt.cellList’ Column 1 represents cell number/label, columns 2 and 3 represent ‘x,y’ pixel 
location of the end of the streak 
 
 

5.3 Signal to noise ratio (SNR) determination 

 
The cells are enclosed in a bounding box and the SNR determined using the enclosed 

cells as signal.  The SNR of a cell is defined as the maximum of the SNRs of all of its 

occurrences. The SNR of a cell’s occurrence is computed from the intensity values of 

the pixels within its bounding box and a noise box. The noise box is defined as the area 

that consists of the 5 outer pixels of a 12 pixels dilation of the cell’s bounding box (7 

pixels away from the signal) (Figure 5.3). The signal consists of all the pixels enclosed 

within the cell's bounding box; this ensures that pixels associated with the cell are not 

used in estimating the background noise. The background noise is the average of the 

pixels in the rectangular frame (noise frame) surrounding the 5-pixel wide buffer 

rectangle and enclosed signal streak rectangle.  
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Figure 5.3: Schematic representation of the of the areas used to calculate SNR. 
 

Using the indications above, the SNR is calculated as follow: 

 

𝑺𝑺𝑺𝑺𝑺𝑺 = 𝟒𝟒𝟎𝟎 𝒍𝒍𝑩𝑩𝑩𝑩𝟒𝟒𝟎𝟎 �
𝝈𝝈𝒔𝒔𝒔𝒔𝑩𝑩𝑩𝑩𝑩𝑩𝒍𝒍−𝒃𝒃𝑩𝑩𝑩𝑩𝟐𝟐

𝝈𝝈𝑩𝑩𝑩𝑩𝒔𝒔𝒔𝒔𝑭𝑭𝟐𝟐 � 

where  𝒃𝒃𝑩𝑩𝑩𝑩 = 𝝁𝝁[𝑩𝑩𝑩𝑩𝒔𝒔𝒔𝒔𝑭𝑭] 

 

Using the formula above the SNR is calculated for each cell and the average SNR is 

calculated for each sample. 

 

5.4 Matching detected cells to the ground truth 

 
To facilitate the automatic evaluation of various cell detection/identificat ion 

algorithms, we developed a MATLAB application for matching the detected cells to 

the ground truth cells (described previously 159,161). First, a complete weighted bipartite 

graph is built with vertices consisting of all the detected cells ‘D’ and all the ground–
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truth cells ‘T’ in all the video frames (Figure 5.4a), and with edges between (D, T) with 

weight equal to the minimum distance (across all the frames where both cells appear) 

between the bounding boxes (in the same frame) of the cells corresponding to ‘D’ and 

‘T’ (Figure 4b). Next, we remove all edges with weight above a user provided threshold 

and replace the edge weights 𝑒𝑒(𝐷𝐷,𝑇𝑇) with 𝑒𝑒(𝑚𝑚𝑚𝑚𝑥𝑥) −𝑒𝑒(𝑑𝑑,𝑡𝑡), where 𝑒𝑒(max ) is the 

maximum edge weight (Figure 5.4c). Finally, we compute a maximum weight 

matching in the resulting graph (Figure 5.4). 

 

 This matching procedure associates each detected cell with at most one ground truth 

cell. Note that some detected cells may not match any ground truth cell; in which case, 

we consider such detected cells to be “false positives” (FP). Similarly, some ground 

truth cells may not be matched with any detected cell; in which case, we consider such 

ground truth cells to be “false negatives” (FN). The matched detected cells are 

considered “true positives” (TP). 

 

 
Figure 5.4: Matching detected cell with the ground truth.. (a) Complete weighted bipartite 
graph using the distance as weight. (b) Minimal weigh is used to match Detected and True 
cells. (c) Using a user defined threshold, all the weights above the threshold (in this case 
distance of 2) are removed and the matched cells are classified as true positive (TP), the 
unmatched true cells are classified as false negative (FN) and the unmatched detected cells are 
classified as false positive (FP) 
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Upon counting the FN, FP, and TP cells, several performance metrics are computed: 

the precision, false negative rate (FNR), sensitivity (or recall), and the F1 score as 

shown below. These performance metrics are used to evaluate the cell 

detection/identification algorithms developed in this work (Table 5.1). Note that true 

negatives are not practical nor relevant in our context (since any sequence of boxes of 

pixels that does not match a ground-truth cell is a true negative). 

 

Table 5.1: Performance metrics used in this dissertation 
Performance metric Definition 

Number of True Positives TP 

Number of False Positives FP 

Number of False Negatives FN 

Precision (or Positive Predictive Value) 𝑃𝑃𝑉𝑉𝑊𝑊𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑏𝑏𝑛𝑛 =
𝑇𝑇𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃 

Recall (or Sensitivity) 𝑆𝑆𝑊𝑊𝑛𝑛𝐶𝐶𝑖𝑖𝑊𝑊𝑖𝑖𝑆𝑆𝑖𝑖𝑊𝑊𝑦𝑦 =
𝑇𝑇𝑃𝑃

𝐹𝐹𝑁𝑁+ 𝑇𝑇𝑃𝑃 

Miss Rate (False Negative Rate) 𝐹𝐹𝑁𝑁𝐹𝐹 =
𝐹𝐹𝑁𝑁

𝐹𝐹𝑁𝑁 + 𝑇𝑇𝑃𝑃 

False Discovery Rate  𝐹𝐹𝐹𝐹𝐹𝐹 =
𝐹𝐹𝑃𝑃

𝐹𝐹𝑃𝑃 + 𝑇𝑇𝑃𝑃 = 1 −𝑃𝑃𝑉𝑉𝑊𝑊𝑏𝑏𝑖𝑖𝐶𝐶𝑖𝑖𝑏𝑏𝑛𝑛 
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Chapter 6:  Automated Streak Detection Algorithm 
 

6.1 Streak detection algorithm  

 
The streak detection and tracking algorithm in this chapter was reported in our previous 

work 161. The algorithm uses a decision rule based on geometrical and intensity 

distribution (GID) features e.g. intensity, length, SNR etc. to classify cells as spurious 

and non-spurious. The center of mass (centroid) of the bounding box of the streaks is 

used to track the cells in consecutive frames. The process identifies candidate cells from 

streaks and matches detected cells to ground truth cells. The algorithm is implemented 

in MATLAB R2014b and consists of three major procedures: (1) binary mask creation 

for all potential streak locations, (2) candidate cell identification based on the binary 

mask developed in the previous step, and (3) true cell identification by filtering out 

spurious candidate cells. These steps are illustrated in the flow chart in figure 6.1. After 

identification as true cells, they can be matched to the GT cells.  

 

  
Figure 6.1: Flow Chart: Streak detection and cell counting Algorithm . Three-step process 
for automated streak detection and cell counting: (1) finding streaks, (2) identifying candidate 
cells, and (3) filtering out spurious cells to identify true cells from the streaks. 
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6.1.1 Streak detection and binary mask; Procedure I, ComputeStreakMask() 

 
The objective of this procedure is to create a binary mask with the location of all the 

streaks in representing cells (procedure I, “ComputeStreakMask.”). The major steps of 

this procedure (in MATLAB-like pseudocode) are given below. Streaks are defined as 

vertical elements that are expected to belong to cells.  In this step we identify all 

potential streaks through thresholding using the Otsu method132 and noise reduction 

using a 2D order-statistical filter. 

 

 

 

Step 1: The 640x480 pixel frames are preprocessed by removing 40 pixels in left and 

right margins to eliminate artifacts shown in the margins of the frame (Figure 6.2a). 

 

Steps 2-3: The image intensity is adjusted by histogram equalization, then two threshold 

values (of the image intensity) are selected using Otsu’s method to quantize the image 

into three levels (Figure 6.2b).  
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Step 4: To fill small gaps along the boundary of the foregrounds objects, a 

morphological “close” with a 3x2 pixels rectangle is slid across each frame. This 

generates unwanted noise (Figure 6.2c), but better defines the foreground objects (no 

gaps along the boundary). 

 

 
                   (a)                                            (b)                                                (c) 
Figure 6.2:  Streak detection algorithm, Procedure I, steps 1-4. Notice in (c), the streaks are 
hidden by high noise generated by the procedure to fill small gaps along the boundary of 
foreground objects. 
 

 

Step 5: In order to reduce the background noise generated in the previous steps, a 2D 

order statistical filtering is performed. Briefly, a 23x1 pixels rectangle is slid across the 

frame, replacing the pixel value at the rectangle origins with the 3rd smallest of the pixel 

values contained in the rectangle. The result of this operation will eliminate pixels with 

low values around the foreground object but will preserve pixels with small values 

inside the foreground object (Figure 6.3a, 6.3b).  
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Step 6: The three-level threshold image is converted to a binary image (Figure 6.3c). 

 
                    (a)                                                 (b)                                                      (c) 
Figure 6.3: Streak detection algorithm, Procedure I steps 5, 6. (a) resulting high noise image 
from the previous step, (b) 2D order filtering was used to reduce background noise and (c) the 
three- level image is converted to a binary image. 
 
 
 
 
Steps 7, 8: These steps are necessary to clean small artifacts from the image and 

eliminate extrusions from the boundary of foreground objects. All objects (potential 

streaks) smaller than 50 pixels are eliminated (Figure 6.4a, b), then a morphological 

open, with an 81x1 pixels rectangle, is performed to remove non-vertical short objects, 

which most probably represent artifacts. The final result of this procedure is a binary 

mask with the location of all the streaks that potentially represent cells (Figure 6.4c). 

 

                      
                  (a)                                              (b)                                              (c) 
Figure 6.4: Streak detection algorithm Procedure I, steps 7,8. All the foreground objects 
smaller than 50 pixels along with non-vertical short objects are discarded. In addition, 
all the extrusions of the boundary of foreground objects are eliminated providing a 
clean, well defined mask of detected streaks (c). Notice the binary mask (c) includes 
three streaks, but only the streak in the middle corresponds to a real cell. 
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6.1.2 Identifying candidate cells; Procedure II, ComputStrkAndCandteCells()  

 
The goal of this step is to identify candidate cells using the streak location in the binary 

mask. This is achieved by procedure II, “ComputeStreakAndCandidateCells.” 

 

 

 

The binary mask from the previous step is overlaid on the original image and each streak 

representing a potential cell is enclosed in a boundary box for further possessing (Figure 

6.5). The following features are computed for each streak: (a) area, (b) bounding box 

(centroid, height, and width), (c) major and minor axes length of enclosing ellipsoid, 

(d) eccentricity, (e) orientation, (f) perimeter, and (g) descriptive statistics (min, max, 

media, quantiles, variance, sum) of the values of the streak’s pixels. Most of these 

features are provided by the “regionprops” MATLAB command. Streaks (across all 

frames) are grouped and labeled as equivalent if they are expected to belong to one cell 
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based on the displacement of their centroids within a tolerance level. Using their 

centroid and orientation, streaks are partitioned into equivalent classes and identified as 

a candidate cell (equivalent streaks are defined as streaks that belong to the same cell).  

The streaks that are in the same equivalence class are now identified as candidate cells.  

For each candidate cell, we compute aggregates (min, max, mean, median, range, 

variance) of the features of its streaks. Note that in MATLAB’s image coordinate 

system, the x–axis (y–axis) runs along the image’s width (height), increasing from left–

to–right (top–to-bottom) with the (0, 0) point at the upper-and-left-most pixel. By the 

end of this step the streaks are annotated and the candidate cells are identified for each 

frame. 

 

 
Figure 6.5: Overlaying the binary mask with the original image. Based on the binary mask, 
three objects are identified and classified as candidate cells (green lines) in the original frame. 
 
 

6.1.3 Identifying true cells; Procedure III, FilteringSpuriousCells() 

 

The candidate cells identified in the previous steps are evaluated according to 

intensity and length. The goal of this procedure is to eliminate cells with low 

probability of being true cells. The major steps of this procedure are listed below:   
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At this point a decision rule is applied to eliminate spurious cells and identify the 

candidate cells with a high probability to be real cells. Cells are evaluated according to 

their intensity, length, width and displacement of the centroid in the ‘Y’ direction. 

 

Step 1: Create a subset of cells (subset ‘J’) that have mean intensity greater than 160 

and length greater or equal to 125, or mean intensity greater than 200 and centroid 

displacement in ‘Y’ direction greater than 150 and length less than 350. 

 

Step 2: Retain in this subset ‘J’ only cells with intensity greater than 160; and width 

less than 10; and length greater than 110. 
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Step 3-5: In these steps the decision rule includes the number of cells per frame. Due 

to the nature of the rare cells (since it is expected to be a small number of cells per 

frame) if more than 10 cells are found in a frame, only the cells with length greater than 

the 90th quantile and intensity greater than 75th quantile are retained in ‘J.’ Conversely, 

in frames with fewer than 10 cells, all the cells are retained in ‘J.’ A graphic 

representation of the decision rule is show in figure 6.6.  

 

 
Figure 6.6: Decision rule, procedure III. The purpose of the desion rulre is to eliminate 
Spurious cells. 
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The results from procedure 3 are shown in figure 6.7.  As the result of the previous 

procedure, three candidate cells are identified, but only one candidate cell is selected as 

non-spurious according to the decision rule in procedure 3.  

 

  
                                 (a)                                                                                   (b)   
Figure 6.7: Eliminating Spurious cells. Only one object was classified as a non-spurious 
cell(b) from the three objects identified in the previous steps (a). 
 
 
 
 

6.2 Performance results of the streak detection algorithm  

 
The streak algorithm was evaluated in video files from 27 samples of 30 ml with a 

nominal concentration of 1 cell/ml. The SNR was determined for each ground truth cell 

and the average SRN for each sample was calculated. Each detected cell was compared 

with the ground truth and classified as TP, FP or FN as described in the “Sample 

Preparation and Ground Truth” chapter. Using the TP, FP and FN count, the FPR, TPR, 

FNR and Sensitivity was calculated for each sample. Table 6.1 shows the results of the 

streak algorithm compared with the ground truth. The samples are ordered by the 

average SNR of the ground truth cells.161 
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Table 6.1: Samples ordered by SNR of the ground truth cells (1cell/ml): ID= Sample ID; FP = 
False Positive; FN=False Negative; TP = True Positive; FPR = False Positive Rate; FNR = 
False Negative Rate; TP = True Positive Rate; GT= Ground Truth; SNR Signal-to-Noise Ratio. 

 
 

 
 

Table 6.1 shows that the average precision for the streak algorithm is 91%, however 

the average sensitivity of the algorithm is only 77%, matched by the high False 

Negative Rate (22%).  

Ordering the samples by SNR reveals that the sensitivity of the algorithm is affected 

by the SNR of the sample. Figure 6.8 shows the distribution of the samples according 

to SNR and sensitivity; the red dots represent samples with SNR grater or equal to 4.41 

dB (higher SNR), the green dots represent samples with SNR lower than 4.41 dB (lower 
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SNR). The two clusters can be easily distinguished indicating a potential cut off value 

for the sensitivity of the algorithm based in the SNR of the samples. 

 

 
Figure 6.8: Sample distribution according to Sensitivity vs SNR. The samples can be clustered 
in two groups: The red samples have SNR grater or equal to 4.41dB and the green samples 
have SRN lower than 4.41dB.  
 
 
 
 
Table 6.2 shows average values of FNR, precision, sensitivity and F1 score grouped by 

average SNR. For samples with an SNR equal or greater than 4.41 dB, the algorithm 

has sensitivity greater or equal to 83% (Table 6.1) with an average precision of 91% 

(Table 6.2), and for samples with SNR lower than 4.41 dB the average Sensitivity is 

58%. This finding indicates that samples with SNR equal or greater than 4.41 dB would 

be desirable for the best performance of the algorithm. 161. 
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Table 6.2: Samples classified into two groups according to their SNR (1cell/ml). The figure 
shows average false negative rate (FNR), precision, sensitivity, and F1 score. 

SNR Average FNR Average 
Precision 

Average 
Sensitivity 

Average F1 
score 

< 4.41 dB 0.42 0.88 0.58 0.69 

>=4.41 dB 0.09 0.93 0.91 0.92 

All SNRs 0.22 0.91 0.78 0.83 

 
 
 

Our algorithm was further evaluated by comparison with two current cell tracking tools 

MTrack2 and CellTrack (Table 6.3). The streak detection algorithm performed better 

than MTrack2 and CellTrack for the detection of cells in the 1 cell per ml samples. 

Sensitivity, precision and F1 score for all SNR samples were considerable better in the 

streak detection algorithm than the other two methods. 159. 

 

Table 6.3: Comparison between the streak detection algorithm (1cell/ml) with two methods for 
cell tracking. 

 
 

 

One of the issues of the streak detection algorithm is the need for the user to pre-define 

values for the decision rule such as: intensity over 150, length over 110, width less than 

10, etc. Predefined values are selected for a specific cohort and need to be modified if 

variations of the image acquisition procedures are introduced (e.g., changes in flow rate 

or exposure time) because they will affect the size and speed of the streaks. A more 

adaptive procedure would be desirable to avoid this issue. For example, in Step 4, an 
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evaluation of all the streaks in the frame is done to calculate the optimal intensity at the 

90th quantile and optimal streak length of the 75th quantile to determine if the cells 

should be kept or discarded. These estimations are done without consideration of the 

user’s predefined values and taking into consideration all the cells in the frame, which 

can result in a better way to discriminate between spurious and non-spurious cells.  

More nearly optimal cut off values for intensity or length could yield more nearly 

accurate identification of cells increasing true positive detections and decrease false 

negative detections, as well as decrease the number of false positive detections. Finally , 

the algorithm performed better with higher values of Signal-to-Noise Ratio (SNR), 

which underscores an unmet need a better cell classification system for low SNR 

samples. Analysis of the performance of the algorithm in samples with low cell 

concentrations (samples with 1 cell per 10 ml) in the presence of greater amounts of 

debris that produce high (overwhelming) numbers of spurious cells in comparison with 

the extremely low concentration of non-spurious cells raises another issue.  

 

Our results motivated a need to develop a more adaptive algorithm with less 

dependence of high SNR that can accurately identify and discriminate true cells from 

artifacts. This motivation led us to develop a “Relational Streak Detection Algorithm” 

discussed in the next chapter. The relational streak algorithm improves upon the streak 

algorithm in this chapter by integrating the following three modifications to the 

algorithm.  
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a) Enhance the decision rule implemented in the previous version of the algorithm by 

use of geometrical and intensity distribution (GID) features to create an image classifier 

through that uses several machine learning routines. 

 

b) Incorporate visual word features extracted by the bag of features (BoF) method to 

create an image classifier based on a visual vocabulary. 

 
 

c) Integrate relational features extracted from the images to create a selective 

permeable filter. This is a concept analogous to selective cell membrane permeability , 

in which only certain molecules are allowed to enter or exit a cell. The computational 

equivalent of this concept is described in the next section. 
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Chapter 7:  Relational Streak Detection Algorithm 
 

The relational streak algorithm combines the geometrical and intensity distribut ion 

(GID) features (used in the previous version of the algorithm) with visual words 

features extracted by the bag of features (BoF) and relational features.  

 

7.1 Geometrical and intensity distribution (GID) and visual words features 

 
These features were extracted by the previous version of the algorithm and include 

streak height, width, orientation, streak bounding box area, pixel intensity, signal to 

noise ratio among others. Using a machine learning routine, an image classifier is 

created based in GID features. The machine learning methods were selected by the 

available method at the MATLAB classification learner App. 

Visual word features were extracted from the streak images using the MATLAB bag-

of-feature method to create a visual dictionary. All the candidate cells were used to 

create the image dataset for this purpose. 

 

7.2 Image dataset 

 
The image files were created cutting a rectangle using 10 pixels from the left and right 

of the centroid, and the length of the bounding box of the streak. This creates a 21 pixels 

width rectangle with the length corresponding to the length of the streak. Figure 7.1 

shows a ground truth streak and the corresponding jpg file and label. The jpg files were 
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labeled using the sample, number, frame number and cell ID. These image fragments 

of the candidate cells were stored in two different folders corresponding to two image 

categories:  Ground truth images ‘Te’ for true positive candidate cells and non-ground 

truth images ‘Fe’ (false positive candidate cells). Using this procedure, 1077 ‘Te’ 

images and 24602 ‘Fe’ images from the 1 cell per ml samples were created.  

 

 
Figure 7.1: Streaks images for BoF. The image database is created from the streaks identified 
previously by the binary mask and classified as candidate cells by the decision rule on the 
previous version of the streak algorithm. Using the centroid location, a 21 pixels wide square 
containing the streaks is stored as jpg file and labeled according to sample number, frame 
number and cell ID. The ground truth and non-ground truth images are stored in different 
folders for training the image classifier. Notice that in this example the actual bounding box of 
the streak is 7 pixels wide.  
 
 

7.3 Bag of features (BoF) 

 
Using the MATLAB function “bagOfFeatures()”, the Speeded-Up Robust Features 

(SURF) from the two images categories (Te, Fe) were extracted. The feature point 
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location for the two categories are selected using the Grid method, and the features are 

extracted from the point location using a GridStep of [8 8] and block widths of [32, 64, 

96, 128].  

 

After the stronger features are extracted from all the images, a 500 words visual 

dictionary is created using K-Means clustering.  

 For our samples, around 50,000 SURF features were grouped in 500 clusters where 

each cluster represent a word in the image dictionary. Figure 7.2 illustrates this process 

using the MATLAB function “detectSURFFeatures()” for extracting the SURF 

features and the creation of the 500 word visual dictionary represented in the visual 

words histogram.  

 

 

Figure 7.2: Visual words histogram . To illustrate this procedure, the Features were extracted 
using the MATLAB function “detectSURFFeatures()” and clustered in 500 word vocabulary 
represented in the visual word dictionary. In the figure, the 10 stronger features detected by 
the SURF algorithm are represented by green circles.  
 
 



 

97 
 

7.4 Relational features 

 
The classifiers used until this point only consider individual streaks to eliminate 

spurious candidate cells. These classifiers do not take in consideration the relation 

between the streaks that represent a cell, or the spatial location of the streaks from 

different cells. For example, the vertical edges of wide objects can be mistaken as two 

cells running in parallel (similar ‘y, x’ coordinate location and similar height); since 

the chance that two cells appear in the same frame is low, the chance that two cells 

running in parallel is even lower, therefore parallel candidate cells have a great chance 

of being spurious cells. However, this effect can be mimic by a true cell running beside 

an artifact. Figure 7.3 shows two frames with parallel streaks, the frame in the left show 

several debris structures, but only one was picked up as a 2 candidates cells.  

 

 
Figure 7.3: Parallel streaks. The edges of wide objects can produce apparent parallel streaks. 
Since the streaks in this figure have similar location and similar height, they are classified as 
parallel streaks and considered spurious.  
 

 

Another example is the width ratio of the streaks of a cell. Streaks in a non-spurious 

candidate cell can have variable lengths, but their width should be similar, therefore 
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candidate cells with significance variation on the width of their streaks are suspicious 

to be spurious. Figure 7.4 shows a candidate cell with two streaks with considerable 

different widths, these candidate cells have a high probability of being spurious cells 

as is confirmed by visual inspection. 

 

 
Figure 7.4: Streaks with considerable different width. Candidate cell number 192 in frames 
3 and 4 have 2 streaks with considerable different width to be classified as a non-spurious cell 
 
 

 

In addition, some artifacts tend to appear in similar location in different frames, this is 

especially noted in the edges of the frame due to the way that the image is obtained 

(Figure 7.5). To identify these artifacts, the location of the streaks in different frames 

needs to be taken in consideration. For the identification of these artifacts, the edges of 

the frame were partition in 8 vertical segments of 8 pixels wide e.g.  [8, 16, 24, 32, 40, 

48, 56, and 64] along all the frames of sample. If many candidate cells appear in the 

same vertical partition, it might indicate the presence of an artifact in that section of the 

frame across the sample. 
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                            a                                                             b                                                              c 
Figure 7.5: Stationary cells. Six different frames showing steaks in a partition location. a) 
Frames 17 and 18 shows two streaks in  ‘x’ pixel location 597 and 594, these streaks can be 
easily mistaken as non-spurious, but frames in (b) 19 and 20 and (c) 737 and 738 also have 
streaks in the same partition ( ‘x’ pixel location: 594,594, 593,594 respectively) indicating that 
they are spurious cells  
 

 

Another relational characteristic of the candidate cells that can be used as a relational 

feature is the number of candidate cells in a frame. Due to rare nature of cells, is 

expected to find only one candidate cell for every few frames, for example, as 

mentioned in chapter I, blood from a metastatic cancer patient can contain as little as 1 

circulating tumor cell per ml. Each sample is 30 ml flowing at 10 ml per minute through 

the device’s flow chamber with the camera capturing 4 frames per second; 

consequently, cells can appear in no more than 3 frames, therefore it is expected to find 

no more than 3 consecutive streaks (1 cell) for every 33 frames. If a frame contains 

only one streak, the frame can be considered “clean” and the candidate cell in the frame 

has a good chance to be a non-spurious cell. For the classification purpose, it is a good 
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idea to protect candidate cells in clean frames from the intermediate filtering layers and 

defer the classification decision to the highest layer.    

 

Finally, there is another important characteristic of the cells images that can be used as 

a relational feature, the number of streaks that represent a candidate cell. Due to the 

length of the streaks, non-spurious candidate cells are expected to appear in 2 or, in 

some cases, 3 consecutive frames (each occurrence in the frame is represented as one 

streak), therefore most of the non-spurious candidate cells are represented by more than 

one streak, but there are many single streak candidate cells or SSCs (candidate cell 

represented by only one streak). For example, around 3 out of 4 non-spurious candidate 

cells are non-SSCs (in the 1 cell per 10 ml samples), in contrast in the same data set 

this proportion is reversed and 3 out of 75 spurious cells are non-SCCs. Spurious SSCs 

represent more than 96% of all spurious candidate cells and more than 92% of all 

candidate cells in the sample, therefore SSCs are highly suspicious to be spurious. 

However, caution must be taken using this feature to avoid discard non-spurious SSCs. 

One advantage of non-SSCs is that they can afford to lose one of its occurrences and 

still be correctly classified by its other occurrences; since SSCs do not have this 

advantage, SSCs should be protected from intermediate filtering layers to avoid the 

chance to eliminate non-spurious SSCs by mistake. This advantage is showed in the 

prediction protocol in cases of classification conflicts e.g. when the final classifier 

ended up classifying one occurrence of a candidate cell as ‘Te’ (true cell) and another 

occurrence from the same candidate cell as ‘Fe’ (in this case is the function of the 

classification protocol to eliminate the conflict). Since only few candidate cells have 
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more than 2 occurrences, ties are very common and in the case of ties, the classification 

protocol favors positive selection and solve the conflict declaring all the occurrences 

for that candidate cell as ‘Te’. One issue with relational features is that they cannot be 

computed by standard classifier based on geometrical or intensity distribution features, 

or by visual words (bag of features) of individual cells alone and in isolation from the 

other cells; therefore, a separate filter will be necessary to incorporate these features 

into the algorithm. As will be discussed in the next section, the bag of feature method 

yields excellent sensitivity, but in samples with elevated level of debris, the algorithm 

performed poorly, in this case the integration of relational features can improve the 

algorithm performance. 

 

The integration of the relational features is implement through a selective-permeable 

filter, a filter that discards some candidate cells, allow other candidate cells to go 

through the regular pipeline, and allow others to skip the intermediate filters in the 

pipeline and move forward to the highest, most sensitive layer of the pipeline (in this 

method the most sensitive layer is the visual word classifier). 

 

 

7.5 Selective permeable relational features filter 

 

Filters usually provide a binary response, either an object is allowed or not allow to 

move to the next step (permeable or impermeable). Our selective permeable filter 

provides a third option to skip some layers of the filter but still allow the object to 
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proceed to the final layer (Figure 7.6, 7.7). In this case, using relational features, the 

filter makes the following decisions: 

 

a) Proceed: The candidate cells can proceed with the next layer of filtering. 

 

b) Discard: The candidate cells in this category are very suspicious to be spurious, 

therefore are eliminated without further analysis. Since there is no turning back from 

this step, the classifier parameters for this category are extremely exclusive and is 

expected that only few cells fall in this group. In the relational streak filter the discard 

option includes only parallel streaks (cells that are close together and with similar 

height). To avoid eliminating true cells, the discard option is the last step in the 

relational filter. Under some conditions some parallel cells can be protected under the 

defer option in the lower layers of the filter.  

 
 

c) Defer: This is the selective part of the filter, the candidate cells in this category are 

suspicions to be spurious and will probably be discarded in further layers of the filter 

but considering the spatial information and the relational characteristic of the cell, the 

filter defers the classification decision directly to the highest layer of the filter, 

protecting these candidate cells from intermediate filtering layers. For example, since 

parallel cells are discarded in the last layer of the relational filter, some parallel cells 

can be deferred directly to the visual words classifier skipping the discard step of the 

relational classifier filter. 
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7.6 Relational features parameters 

 
 
The parameters of the relational features such as minimal width/width ratio or the 

number of streaks allow for each edge partition, and other features used in the filter 

were determined adaptatively considering all the streaks in the same sample.  

 

a) Parallel streaks: Streaks were considered parallel if their centroids are 50 pixels 

or less apart in the ‘x’ coordinate, and 15 pixels or less apart in the ‘y’ coordinate, in 

addition their height must not be more than 10 pixels difference. Most parallel 

candidate cells are considered spurious, but depending on certain characteristic of the 

cell, provisions to protect non-spurious candidate cells are implemented in the 

relational selective permeable filter. 

 

b) Width/Width ratio (WWR): Ratio of the width of two streaks (cell occurrences) 

in consecutive frames that belong to the same candidate cell. The closer this ratio is to  

1 the more similarity in the width of the streaks. Therefore, streaks with WWR lower 

than the 20th quantile of the WWR of all the streaks in the sample or those located in 

the edge (were the most of artifacts can appear), or is in the edge but is the not the only 

cell in the edge partition or is not the only cell in the frame, must proceed through the 

regular filter pipeline otherwise they are deferred.  

 

c) Single-streak cells(SSCs): The non-spurious cells are expected to appear in more 

than one frame therefore most of the non-spurious cells should be represented by more 
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than one streaks. SSCs are suspicious to be spurious cells, therefore to avoid discarding 

no-spurious SSCs, all the SCCs that are a single cell in the frame, and they are not in 

the edge or they are in the edge but is the only one in the partition, are deferred. 

 
 

 
Figure 7.6: Selective Permeable Filter, Relational Feature Classifier. First the cells are 
evaluated by the number of streaks. SSCs are further evaluated by their location and relation 
with other cells in the framer and in the sample to make the decision of proceed or defer. Non-
SSCs in addition are evaluated according to their width/width ratio. The cells that are not 
deferred until this point are evaluated if they are parallel cells to decide to proceed or discard 
(no defer decision at this stage. 
 
 

 

7.7 Relational streak algorithm pipeline 

 
The algorithm pipeline is composed of three major layers plus a classification decision 

protocol (Figure 7.7). The algorithm combines spatial and temporal information of the 

candidate cells along with relational features. 
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Layer I: Selective permeable filter also known as relational features classifier: 

Based on relational features, candidate cells are evaluated according to their location 

on the frame and in relation with other cells in the frame and/or the whole sample. 

Candidate cells at this layer can proceed to the next layer, can be discarded as spurious 

cells or can be defer to the highest sensitive layer (the visual words classifier), more 

detailed description of this layer is provided in figure 7.6. 

 

Layer II: Geometrical & intensity distribution (GID) classifier: At this layer a 

machine learning routine is implemented to classify the candidate cells into the two 

main categories ‘Te’ and ‘Fe’ according to geometrical and intensity distribut ion 

features. These features were extracted in previous steps (as described above) and are 

feed in to the machine learning routine. The machine learning methods for this project 

were selected among the available methods provided by MATLAB “Classification 

Learner” App; these methods include: quadratic support vector machine, cubic support 

vector machine, median gaussian support vector machine, bagged tree ensemble, 

boosted tree ensemble, RUSBoosted tree ensemble, coarse decision trees, and fine K-

Nearest Neighbors (KNN). These methods yielded the best performance on the F1score 

and sensitivity metric (F1 score over 0.8 sensitivity over 70%) for the classification of 

candidate cells in the 1 cell per ml dataset. At this layer all the candidate cells marked 

as “Procced” by the first layer are classified into the two main categories. The candidate 

cells marked as “Defer’ skip this layer and classified in the third layer. 
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Layer III: Visual words classifier, bag of features classifier (BoF). This method was 

discussed in the chapter 3, its implementation in this project was discussed above. 

Briefly, feature point locations are identified in each image fragment and SURF 

features are extracted from the selected point locations providing a descriptor for each 

interest point. Then, the features are clustered in groups according to their descriptor, 

each cluster becomes a visual word in the visual vocabulary. MATLAB uses the K-

Means method to cluster the features to create a 500-word vocabulary. Then, a 

histogram is computed using the visual words, thus the images of occurrences of 

candidate cells can be represented as a histogram according to the frequency of their 

visual words. At this layer all the candidate cell proceeding from the second layer along 

with those marked deferred are classified into the two major categories ‘Te’ and ‘Fe’. 

 

 
Figure 7.7:  Classification pipeline. Layers 1 take into relational features of the cells to decide 
on proceed or defer. Layers 2 and 3 made the classification decisions. All deferred cells skip 
all the  intermediate layers and proceed directly to the last layer for classification decisions. 
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7.8 Final prediction protocol 

 
At this point the algorithm has provided two set of classifications, by the GID layer and 

by the BoF classifier. The function of the final prediction protocol is to combine these 

classifications to provide a final classification; in addition, it is also charged to solve 

classification conflicts. The final classification protocol follows the following steps: 

 

a) By default, all the streaks are originally classified as ‘Fe’, this includes streaks from 

the cells discarded by the selective permeable filter.  

 

b) All streaks classified as ‘Fe’ by the GID are send to the final prediction protocol. 

 
 

c) All the streaks classified as ‘Te’ by the GID classifier are reclassified by the BoF 

classifier, either as ‘Te’ or ‘Fe’, and send to the final prediction protocol. 

 

d) All the steaks marked as “Defer” are classified according to the BoF classifier, 

either as ‘Te’ or ‘Fe’ and send to the final prediction protocol. 

 

By the end of step 4, all the candidate cell occurrences have a classification either as 

‘Te’ or ‘Fe’. 
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Classification conflicts: Non-SSCs can generate a classification conflict when one 

occurrence is classified differently that another occurrence that represent the same 

candidate cell. This may happen when one occurrence is marked ‘Defer’ while the other 

occurrence is classified ‘Fe’ by the GID classifier. In this case the deferred occurrence 

can be classified as ‘Te’ by the BoF classifier generating a conflict. A classification 

conflict can also happen if the BoF classify two occurrences from the same candidate 

cell differently. In this case, if the candidate cell has odd number of occurrences, the 

conflict is solved by simple majority, otherwise (in case that the candidate cell have 

even number of occurrences) the conflict is solved with positive selection e.g. the 

candidate cell is classified as ‘Te’.  Figure 7.8(a) and (b) represent the final decision 

protocol and the classification conflict resolution. Figure 7.8(a) represent a candidate 

cell with two streaks occurrence, one of the occurrences was deferred by the relational 

filter (Layer I), skipping the GID classifier (Layer II), and later is classified by the BoF 

classifier as ‘Te’ (layer III), the occurrence is placed in the final prediction protocol as 

‘Te’. On the other hand, the second occurrence from the same candidate cell is 

classified as ‘Fe’ by the GID classifier and placed in the prediction protocol as ‘Fe’ 

generating a conflict. In this case the conflict is solved by favoring the positive selection 

and both occurrences are classified as ‘Te’. 
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Figure 7.8: Final prediction protocol and classification conflict resolution. (a) A candidate 
cell with two streaks occurrence. (b) A candidate cell with three streaks occurrence. 

 

 

Figure 7.8(b) represent a candidate cell with odd number of occurrences. One of the 

streak occurrence is deferred by the relational filter and then classified as ‘Te’ by the 

BoF classifier this case the conflict is solved by simple majority. The second streak 

occurrence was originally classified as ‘Te’ by the GID classifier, but later reclassified 

as ‘Fe’ by the BoF classifier generating a conflict. The third occurrence is classified as 

‘Fe’ by the GID classifier. In this case the conflict is solved by simple majority. 
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Chapter 8:  Experimental Results 
 

8.1 Geometrical & intensity distribution classifier 

 
Eight machine learning method were selected from the MATLAB Learner Classifier 

App to implement the GID classifier. MATLAB provides the capability of 

automatically generate codes for the learning model selected. The selected models were 

exported from the Learner Classifier App into the streak algorithm to compare the 

performance of different learning models with the visual words classifier. The machine 

learning method selected for this work are the following: 

quadratic support vector machine, cubic support vector machine, median gaussian 

support vector 

machine, bagged tree ensemble, boosted tree ensemble, RUSBoost tree ensemble, 

coarse decision trees, and fine K-Nearest Neighbors (KNN). These methods yielded 

the best performance on the F1 score and sensitivity metric (F1 score over 0.8 

sensitivity over 70%) for the classification of candidate cells in the 1 cell per ml dataset.  

 

 

8.2 Relational features classifier  

 
To improve the performance of the streak algorithm, relational features were 

incorporated in a selective permeable filter providing the option to defer the 

classification of some streaks to the highest sensitive classifier (in this case the visual 

word classifier) skipping intermediate levels of filtering. 
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8.3 Visual words classifier (bag of features) 

 
The image dataset formed from all the occurrences of candidate cells for the training 

and validation of the classifiers were created as described in the previous section. The 

images for the 1 cell per ml and 1 cell per 10 ml dataset were processed separately and 

stored in different folders. 

 

As mentioned previously, the SURF features were extracted from the image data using 

the MATLAB function “bagOfFeatures()”. The SURF features are stored as a 

“bagofFeatures” object and later used to train the image classifier using the MATLAB 

function “trainImageCategoryClassifier()”. This function take as input the 

“bagofFeatures” object (created in the previous step) and an image dataset (the 

training set) and create a category classifier model as show in the code below.  

 

“categoryClassifier = trainImageCategoryClassifier (traininSet, bagofFeatueObject)” 

 

The category classifier is stored as an “imageCategoryClassifier” object and used to 

predict the category labels in the validation set. 

 
 

8.4 Cross validation 

 
The images of the two datasets (1 cell per ml and 1 cell per 10 ml) were processed 

separately. The samples were randomly partitioned into five disjoint sets of 
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approximately equal size. A group of four partition sets of images was used as the 

“training set” to build the classification model (derived from the MATLAB 

“bagOfFeatures()” function). Then, using this classification model, the labels of the 

validation set (the remaining 5th partition set) were predicted into one of the two 

categories (Fe, Te). The steps for the 5-folds cross validation procedure are described 

in more details below. 

 

8.4.1 Sample partition 

 
The index for the cross validation, were obtained through a customized routine 

“crosvalindSmpl()”  based on the MATLAB function “crossvalind()”  that randomly 

assigns each sample to one of the 5 partition sets. The output of “crosvalindSmpl()”  is 

a table with the sample number paired with the index for one the 5 partition sets. Figure 

8.1 shows the indexes for the sample partition for the 1 cell per ml dataset. The indexes 

for the cross validation were saved for further comparison among different machine 

learning procedures. 

 

 
Figure 8.1: Output of “crosvalindSmpl()”.  Each sample is randomly assigned to one of five 
groups, for example group 1 is formed by samples 16,13,34,27,17 and 20. In the first iteration 
of the 5-fold cross validation, samples from group 2,3,4 and5 are used as the training set and 
samples for group 1 are used as the validation set. In the second iteration samples from group 
1,3,4, 5 are used as training set and samples from group 2, e.g. samples 19,23,9,12,26 are used 
as validation set and so on. 
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8.4.2 Training and validation set 

 
In each iteration (using the group index), the samples from 4 partitions are used as a 

training set and the samples from the remaining partition is used as the validation set. 

For example, in the first iteration samples from partitions 2, 3, 4 and 5 are used as the 

training set and samples from partition 1 (e.g. samples 16, 13, 34, 27, 17, and 20) are 

used as the validation set.  In the second iteration samples from partitions 1, 3, 4 and 5 

are used as training set and samples from partition 2, (e.g. samples 19,23,9,12 and 26) 

are used as validation set and so on (Figure 8.1). 

 

8.4.3 Balancing the training and the validation set 

 
After the training set is selected, the number of images in each category (Te, Fe) is 

balanced according to the category with the least number of images, using the 

MATLAB function “splitEachLabel()” as shows in the code line below: 

 

“traininSet = splitEachLabel (TrainingSet, minSetCount, 'randomize')”, 

 

The code line above indicates that images from the category with the larger number are 

randomly selected to match the number of images in the category with the least number 

of images. For example, in the case of 1 cell per ml dataset, the category ‘Te’ has 1077 

images from a total of 25679 (category Fe has 24602 images), therefore 1077 images 

are randomly selected for category “Fe” to match the number of images from the 

category ‘Te’, leading to a balanced training dataset. 
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8.4.4 Classification prediction 

 
Using the category classifier in each iteration, the non-spurious candidate cells in the 

samples corresponding to the 5th partition are classified into the two categories (Fe, Te) 

and aggregated in table for analysis of the classifier performance. The same procedure 

is performed for both sample datasets (1 cell per ml and 1 cell per10 ml dataset).  

 
 

8.5 Results 

 
Since the algorithm combine two classifiers; the geometrical & intensity distribut ion 

(GID) classifier and the visual words classifier (bag of features, BoF), a series of tests 

were designed to evaluate the performance of these two classifiers as standalone 

methods compared with the relational streak algorithm. Recall that the relational streak 

algorithm combines GID, visual words and relational features for classification of the 

candidate cells. The GID classifier was implemented using the machine learning 

routines mentioned above, each one evaluated as standalone method. For the visual 

words classifier (bag of features) MATLAB relies on the multiclass linear SVM as the 

default classification routine. For comparison between the different methods, the same 

cross-validation partition of the samples was used for these tests. The results are shown 

in Tables 1 - 4.  

 

Table 8.1 shows the result of performance of the two classifiers as standalone methods. 

The GID classifier using quadratic SVM yield the highest F1 score (0.91). The BoF 
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classifier yields the highest sensitivity but produces the third highest number of false 

positives diminishing its F1 score (0.88). In general, all methods performed relatively 

well with average sensitivity of 85% and average F1 score of 0.87. 

 

Table 8.1: Performance of the GID and BoF classifiers (1 cell/ml) as standalone methods. FP 
= False Positive; FN= False Negative; TP = True Positive; GT =Ground Truth 

 

 

 

Table 8.2 shows the performance of the GID classifier and the BoF classifier as 

standalone methods for the 1 cell per 10 ml dataset. The visual words method shows 

the highest sensitivity but the second lowest F1 score (0.27). This is due to considerable 

number of false positives with consequent false discovery rate. The best F1 score was 

obtained by the GID classifiers using Bagged Tree Ensemble as the classification 

method. In general, the methods did not perform as well in the 1 cell per 10  ml dataset 

as in the 1 cell per ml dataset. The average sensitivity for the 1 cell per 10 ml dataset 

was 62% with a F1 score of 0.49.  
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Table 8.2: Performance of the GID and BoF classifiers (1 cell/10ml) as standalone methods. 
FP = False Positive; FN= False Negative; TP = True Positive; GT =Ground Truth 

 

 

 

Table 8.3 shows the performance of the relational streak algorithm. The relational 

streak algorithm shows similar average sensitivity as the standalone methods but 

produced a better average F1 score. The average sensitivity for the relational feature 

algorithm is 87% (85% for the standalone methods) and an average F1 score of 0.91 

(0.87 for the standalone methods). 

 
 
Table 8.3: Performance of the Relational Streak algorithm (1cell/ml). FP = False Positive; 
FN= False Negative; TP = True Positive; GT =Ground Truth 
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Table 8.4 shows the performance of the Relational Streak algorithm for the 1 cell per 

10 ml dataset. The performance of the algorithm showed considerable improvement 

over the performance of the standalone methods. The average sensitivity for the 

relational algorithm is 82% with a F1 score of 0.73 compared with 62% and 0.49 for 

the standalone methods respectively. 

 

Table 8.4: Performance of the Relational Streak algorithm (1 cell/10 ml). FP = False Positive; 
FN= False Negative; TP = True Positive; GT =Ground Truth 

 

 

 

Up to this point the cross validation was performed using the same index for sample 

partitions, for the next tests, the samples are repartitioned each time (i.e. the partition 

indices of the samples are randomly selected each time).   

 

In the next tests, the relational streak algorithm is compared with the its previous 

version as well as two standard cell tracking computational tools, MTrack2 and 

CellTrack.  
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The GID classifier for this test was selected from the eight classifiers tested before, in 

this case the method selected is bagged tree ensemble. Since, as discussed before, the 

previous version of the algorithm showed limited performance in samples with SNR 

lower than 4.41 dB, the results of this tests are ordered according to average SNR 

(Table 8.5).  

 

Table 8.5: Results of the Relational Streak algorithm (1 cell/m). The samples are ordered by 
average SNR. FP = False Positive; FN= False Negative; TP = True Positive; GT =Ground 
Truth. 
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In samples with SNR equal or greater than 4.41 dB, the streak algorithm and the 

relational streak algorithm performed similarly (Table 8.6). In samples with SNR lower 

than 4.41 dB, the relational streak algorithm shows considerable improvement over the 

previous version with an average F1 score of 0.85 and average sensitivity of 78%.  The 

relational streak algorithm significantly outperforms MTrack2 and CellTrack for all 

SNRs. 

 

Table 8.6: Performance of the relational streak detection algorithms (1 cell/ml) dataset 
compared with other cell tracking methods. The table show the samples clustered by SNR 
groups 

 

 

 

Table 8.7 shows the results of the relational streak algorithm for samples with nominal 

concentration of 1 cell per 10 ml. For this test the GID classifier was implemented using 

bagged tree ensemble for classification, the indexes of the sample were randomly 

selected. As in the 1 cell per ml dataset, the samples in this test are ordered by average 

SNR. 
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Table 8.7: Results of the relational algorithm (1 cell/10 ml). Samples are ordered by SNR. FP 
= False Positive; FN= False Negative; TP = True Positive; GT =Ground Truth. 

 
 

Table 8.8 shows the results of the performance of the relational streak algorithm using 

the 1 cell per 10 ml dataset. In this dataset, the previous version of the algorithm showed 

limited performance in all levels of SNR. The relational streak algorithm showed 

improvements in the F1 score in all levels of SNR. Both algorithms showed similar 

sensitivity for samples with average SNR equal or greater than 4.41 dB, but the 

relational algorithm yielded a much better F1 score. The relational streak algorithm 

performed better than the current cell tracking method used in this test. 

 

Table 8.8: Performance of the relational algorithms (1cell/10 ml) compared with other cell 
tracking methods. The table show the samples clustered by SNR groups 
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Chapter 9:  Discussion and Conclusion 
 

 9.1 Analysis of results, 1cell per ml dataset 

 
Preliminary data from the previous version of the algorithm indicated that the algorithm 

performed well in samples with SNR equal or greater than 4.41 dB but performed 

poorly in samples with SNR lower than 4.41 dB in the 1 cell per ml dataset. One of the 

motivations of this work was to develop an algorithm able to detect cells regardless of 

the level of noise. For this purpose, we evaluated the correlation between sensitivity 

and F1 score with SNR values (clustering high SNR and low SNR values) in the two 

versions of the algorithm e.g. streak detection v/s relational streak detection algorithm. 

Comparing sensitivity vs SNR in the two algorithms in samples with SNR lower that 

4.41 dB, the sensitivity of the relational algorithm ranges from 0.62 to 0.94, but the 

streak algorithm shows a more spread range between 0.24 to 0.82 (Figure 9.1).  

 

 
                                        a                                                                               b 
Figure 9.1: Clustering of the samples with low and high SNR. (a) Streak detection algorithm. 
(b) Relational streak algorithm. The streak algorithm show a more spread range of sensitivity 
than the relational algorithm 
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The coefficient of variation (CV) in this group (SNR<4.41) was considerable different 

in the two algorithms (0.12 and 0.28 for the for the relational and the streak algorithm 

respectively) indicating that the sensitivity shows greater variability in the streak 

algorithm than the relational algorithm for samples with low SNR (Table 9.1). 

 

Table 9.1: Performance of the streak v/s relational algorithm (1 cell/ml) for samples with low 
and high SNR. The sensitivity of the streak algorithm in samples with low SNR shows a greater 
coefficient of variation than the relational algorithm (0.28 and 0,12)  

 

 

In addition, a t-test (two tails, type 1) shows significant difference between the 

sensitivity of the relational algorithm compared with the streak algorithm (p=0.003) in 

samples with low SNR. The F1 score of the two algorithms also shows significant 

difference (p=0.001) in this SNR group (Table 9.2). The precision however did not 

show significance difference between the two algorithms in this SNR group (p=0.173). 

This is due to the proportion of false positives and false negatives. Precision does not 

consider false negatives; conversely, sensitivity does consider false positives.   

 

Table 9.2: t-test result comparing sensitivity, precision and F1 score (1 cell/ml) for the streak 
algorithm and the relational algorithm for samples with low and high SNR. 
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Table 9.3 shows a summary of the false positive and false negative results from both 

algorithms. The streak detection algorithm has a disproportional large number of false 

negatives compared with the relational streak algorithm (128 and 66 respectively). A t-

test shows that there is significance difference between false negatives in both 

algorithms (p=0.0003), but did not show significance difference between the false 

positive results (p=0.27). 

 

Table 9.3: Streak detection v/s Relational algorithm (1 cell/ml). False positive and false 
negative numbers for the streak detection algorithm and the relational streak algorithm on 
samples with SNR lower than 4.41 dB. 

 
 

 

On the other hand, precision and F1 score, show no significance difference between the 

two algorithms for samples with SNR greater or equal to 4.41 dB (p=0.5 and p=0.07 

respectively), as shown in Table 9.2 above. 
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The data showed up to this point indicate that the relational algorithm performed better 

than the streak algorithm, but we have not answer the question if the algorithm is robust 

to noise. Figure 9.2 shows the sensitivity and F1 score distribution of the samples with 

nominal concentration of 1 cell per ml according to their average SNR values. In both 

cases the relational algorithm shows less spread and higher values of sensitivity and F1 

score than the streak algorithm. 

 

 
                                    a                                                                          b 
Figure 9.2: Sensitivity and F1 score distribution according to SNR (1 cell/ml). The relational 
streak algorithm shows less spread and better performance than the streak algorithm for 
samples with nominal concentration of 1 cell per ml. (a)Sensitivity distribution according to 
SNR. (b) F1 score distribution.  
 

 

To evaluate the robustness of the algorithm to changes in signal intensity and noise 

level, an intra-algorithm comparison of sensitivity, precision and F1 score between 

samples with low SNR and high SNR was performed. The results are showed in Table 

9.4. The average sensitivity of the relational algorithm is 78% and 94% for samples 

with low and high SNR respectively, this value shows less spread than the average 

sensitivity for the streak algorithm for low and high SNR (58% and 91%), however a 

t-test (two tails , type 3) shows significant statistical difference between the average 
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sensitivity for the relational streak algorithm between the samples with high and low 

SNR (p=0.00014) indicating that the algorithm is affected to noise.  

 

Comparing the F1 score for the relational streak algorithm, a t-test also shows 

significant statistical difference between samples with low and high SNR (p=0.00058), 

confirming the conclusion that the algorithm although improved its performance 

compared with the previous version, is still affected by noise and performed 

significantly better in samples with high SNR. than in samples with low SNR. 

 

 
Table 9.4: Summary of the result (1 cell/ml). Sensitivity, precision and F1 score for the streak 
detection algorithm and the relational streak algorithm for the 1 cell per ml dataset. 

  
 
 
 
 

9.2 Analysis of results, 1cell per 10 ml dataset  

 
In preliminary result the streak algorithm performed poorly in samples with nominal 

concentration of 1 cell per 10 ml. The relational algorithm in general shows higher 

values of sensitivity and F1 score in all levels of SNR compared with the streak 

algorithms (Figure 9.3).  
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                                        a                                                                               b 
Figure 9.3: Sensitivity and F1 score distribution according to SNR (1 cell/10ml). The 
relational streak algorithm shows less spread in sensitivity and F1 score and better 
performance than the streak algorithm. (a)Sensitivity distribution according to SNR. (b) F1 
score distribution. 
 

 

Comparison between the F1 scores of the two algorithms shows statistically significant 

difference (t-test, 2 tails, type 1) in samples with SNR lower than 4.41 dB (p=0.015), 

and for all SNR (p=0.003). Sensitivity improves from 0.52 to 0.79 in samples with 

SRN lower than 4.41 dB. Sensitivity also improves from 0.65 to 0.84 considering all 

samples regardless SNR values, however no statistically significant difference was 

found comparing the sensitivity of the two algorithms in these SNR groups (p=0.057, 

p =1, and p = 0.075), as showed in Table 9.5.   

 

Table 9.5: Summary of the result (1 cell/10 ml). Sensitivity, precision and F1 score for the 
streak detection algorithm and the relational streak algorithm for the 1 cell per 10 ml dataset. 
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In addition, like the 1 cell per ml dataset, no statistically significant difference was 

found in samples with SRN greater than or equal to 4.41 dB for sensitivity and F1 score 

(p=1 and, p =0.15 respectively) for the 1 cell per 10 ml dataset.  

These results (lack of statistical significance) could be attributed to the lack of power 

of the t-test to reject the false null hypothesis (type II error) due to the small sample 

size and effect size. Using the MATLAB function “sampsizepwr()”,   we find that for 

samples with SNR equal or greater than 4.41 dB the power of the t-test is less than 40% 

for the three metrics e.g. sensitivity, precision and F1 score (Table  9.5) indicating that 

there is a 60% chance of a type II error. This is mostly due to the small sample size for 

this group (n = 4). Similarly, Table 9.5 also shows 66% and 52% power of the t-test on 

the sensitivity of the algorithm for samples with SNR lower than 4.41 and for all SNRs 

respectively. In these the number of samples seems appropriate, but the effect side is 

rather small, e.g. from 0.52 to 0.79 in samples with SNR lower than 4.41 dB, and from 

0.65 to 0.84 in all SNRs. 

  

9.3 Conclusion 

 
In this dissertation, an algorithm for detection and tracking of rare cells for streak mode 

imaging in a wide-field flow cytometer (originally designed for low resources settings) 

was developed. The algorithm integrates geometrical and intensity distribution features 

of streak images with relational features and visual words for classification and 

counting of rare cells. The algorithm achieves sensitivity of 94% with a F1 score of 
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0.94 in samples with nominal concentration of 1 cell per ml, and 84% sensitivity with 

F1 score of 0.75 in samples with nominal concentration of 1 cell per 10 ml. 

 

The algorithm improved performance from its previous versions in both datasets. In the 

1 cell per 10 ml dataset, on samples with SNR lower than 4.41dB the algorithm’s F1 

score improved from 0.38 to 0.76, and in all SNRs the algorithm improved it’s F1 score 

from 0.41 to 0.75. In this dataset, on samples with SNR equal or greater than 4.41 dB 

the algorithm also showed improvement from 0.60 to 0.91, however due to small 

sample size this finding need to be subject to further research. The algorithm also 

outperformed the two cell-tracking computational tools (MTrack2 and CellTrack) used 

in this work.  

 

The algorithm is still affected by noise and performed better in samples with SNR equal 

or greater than 4,41 dB, but the Relational Streak algorithm showed more robustness 

to changes in intensity and noise level than its previous version. It is worth pointing out 

that even with low quality images the Relational Streak algorithm has the capability of 

detecting very low number of cells (e.g. nominal concentration of 1 cell per 10 ml) in 

a large volume (30 ml). 

 

In conclusion, in this thesis, we have demonstrated the utility of the Relational Streak 

algorithm for the identification and accurate classification of rare cells from streak 

cytometry images. The main advantage of this technology is the unique capability of 

analyzing very small cell number (0.1 cell /ml) in a large volume (10 ml) in short time 
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(1 minute) enabling the analysis of rare cell in clinical samples. The Relational Streak 

algorithm is simple, intuitive and take advantage of the relational features of the objects 

for eliminating artifacts and accurate cell classification. The algorithm was 

implemented in MATLAB, thus heavily depending on dedicated MATLAB packages 

and libraries that involve license fees incompatible with low resources settings. 

MATLAB was selected only for prototyping purposes and is envisioned that equivalent 

codes can be developed in open source C++ libraries such as OpenCV for the future 

implementation of the algorithm in low resources settings. The wide-field steak mode 

flow cytometer empowered with the relational algorithm for cell detection and counting 

results in a simpler, affordable and portable flow cytometer which could facilitate the 

integration of cell-based diagnosis in low resources settings. 
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Chapter 10:  Future Development and Potential Applications 
 

10.1 Limitations and future development 

 
As was mentioned before, the Relational Streak Algorithm performed better in samples 

with high signal to noise ratio (SNR > 4.41 dB) than samples with low SNR. The 

quality of the signal and the noise levels contributing to the low SNR can be attributed 

to thermal noise of the CCD compounded by the long exposure time.  In future 

development of this technology, this issue could be addressed by using a higher quality 

imager (e.g., a cool CCD) with consequent improvement of the detection level161.  

Sample autofluorescence can also elevate noise. Sample autofluorescence arises from 

endogenous tissue components and fixative in human or animal samples and result in 

a broad emission that overlaps the fluorescence signal. One characteristic of 

autofluorescence is its complex intensity decay from multiple components with a range 

of short lifetimes (up to few ns).  Therefore, one way to decrease the impact of 

autofluorescence is to use dyes with longer decay lifetimes than autofluorescence 

components. For example, azadioxatriangulenium (ADOTA) has a lifetime of ~25ns 

162. Rich, et al. showed that using ADOTA improves SNR by eliminating > 96% of 

autofluorescence discarding photons detected within 20ns of the excitation pulse 163.  

 

The algorithm described here was implemented for a single wavelength fluorescence 

excitation and single wavelength emission limiting the detection to a single color for 

single biomarker.  However, flow cytometry applications usually require multiple 
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biomarkers to allow interrogation and counts of distinct cell types at the same time. For 

example, individuals infected with immunodeficiency virus (HIV) type 1, usually have 

more CD8 than CD4 lymphocytes in their blood (CD4/CD8 ratio <1)164, whereas 

healthy individuals have a CD4/CD8 ratio between 1 and 4, and people with immune 

diseases tend to have a higher CD4/CD8 ratio. Therefore, multiplexed detection would 

expand the capabilities of this technology for evaluation of cell population ratios for 

HIV diagnosis in LMICs. Since multiple targets can also be identified in the same cell, 

the efficiency of the algorithm can be improved by decreasing the false negative rate, 

e.g., if the signal is weak in one target, the cell can still be identified using the second 

target. Multiplexed detection can be achieved by using a single multiwavelength 

excitation source and a single camera with a split filter for two color detection, see 

figure 10.1(II). Another approach could use two cameras each equipped with a different 

filter, see figure 10.1(III)). For multiplexing the algorithm can be extended by running 

the streak detection process for each fluorescent marker independently and then 

eliminating the spurious cells by combining cells identified by the markers used. For 

best detection multiple excitation sources with  a matching filter can be used (specific 

to the target fluorophore). However, this configuration would complicate the design of 

the device. 

 

An alternative to the use filters for multi-maker detection is digital separation of colors 

into several spectral components (the image can be digitally sliced into distinct R/B/G 

channels) for analysis of emission intensity for each source, see figure 10.1(IV). Zhang, 

et al. proposed this filter-free approach to simultaneously identify green and red signals 
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in fluorescently labelled cells for development of an affordable miniature fluorescence 

microscope for point of care diagnosis 165,166. Higher spectral resolution can be obtained 

by using multispectral analysis. Digital color separation can be combined with the color 

separation methods described above to improve spectral resolution.  

 

To implement these approaches, the Relational Streak algorithm will need to be 

modified to incorporate the difference in the signal acquiring method. For example, the 

exposure and the flow rate must be adjusted to produce long streaks which can be 

detected by both parts of the filter.  Our relational streak algorithm can be implemented 

using this technique to identify multiple colors and empower the streak cytometer with 

multiplexing capabilities.  

 
 

 
Figure 10.1: Multicolor streak flow cytometry. I) monochrome detection (current method). II) 
One camera with split filter. III) Two cameras with two filters. IV) Digital color separation.   
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Section10.2 Potential applications 

 
The main advantage of this technology is its unique capacity for analyzing very small 

cell numbers (0.1 cell /ml) in a large volume (10 ml) in short time (1 minute). There 

are many rare-cell clinical applications besides circulating tumor cells (demonstrated 

in this dissertation) that can utilize this unique capability. In all of these applications , 

different cut-off values and parameters may need to be used, but the fundamental 

principle of integrating relational features, visual words, and geometrical/intens it y 

distribution features for object detection still applies. 

 

10.2.1 Rare cells analysis other than CTCs 

 
A major challenge to understand disease progression is identification of the molecular 

changes in a specific immune cell population, but this is difficult where key molecular 

drivers are exceedingly rare among tremendous cellular diversity, such as is the case 

for antigen-specific memory B cells in the lymph node. T-cells also have considerable 

cellular diversity from rearrangements of T-cell receptors (TCR) during their 

development. This feature provides extreme flexibility in the immune system for 

adapting to changing conditions and reactions to diverse antigens 167,168. 

Haematopoietic stem cells (HSC) are another example where rare cell detection 

technology can be useful. HSC are found in peripheral blood in a proportion of 1 cell 

per 106 cells, comparable to CTCs (1 cell per 107 cells) (Table 10.1). Since HSCs have 

the ability differentiate into any other kind of blood cell, they play roles in the treatment 

of cancer and other disorders of the blood or immune system. In addition  HCS in 
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peripheral blood can also differentiate in other cell linages such as adipocytes, which 

are useful in tissue engineering applications 167. 

 

          Table 10.01: Examples and frequency of rare cell types167 
Cell type Frequency 
Antigen-specific T cells 1 cell per 106 cells (in peripheral blood) 

Circulating tumor cells 1 cell per 107 cells (in peripheral blood) 

Endothelial progenitor 
cells 

1 cell per 105 cells (in peripheral blood) 

Hematopoietic stem cells 1 cell per 104 cells (in bone marrow) 

Hematopoietic stem cells 1 cell per 106 cells (in peripheral blood) 

   

 

High throughput rare cell detection technology can also apply to study of respiratory 

diseases. Respiratory diseases, including lung infection and chronic obstructive 

pulmonary disease (COPD) (excluding cancer) accounted for around 4.3 million deaths 

in 2016 (third cause of death after ischemic heart disease and stroke) worldwide169.  

Extensive studies in cell populations of mononuclear phagocytes (MNPs) has been 

done in mouse models, but the challenges of working with rare cells in inaccessible  

human tissue has impeded the translation of these findings to respiratory human disease 

170. One common challenge of these applications is the need to evaluate large volumes 

of sample in short times to ensure the recovery of diagnostically useful rare cells. Bulk 

cell population analysis will dilute the contribution of rare cells to the overall 

expression pattern, and as a result, cause the loss of unique molecular signatures. In 

addition, transcriptions from contaminant cells can be mistaken for rare cell signatures 

and lead to erroneous conclusions168 
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10.2.2 Public health applications in LMICs 

 
Wide field streak flow cytometry empowered by the Relational Streak algorithm can 

be used for many health applications in LMICs, for example, to study bacterial 

resistance to antibiotics. The spread of bacterial resistance to antibiotics present a 

substantial challenge for control of infectious diseases and represents one of the biggest 

threats to low resource areas and global health171. Common infectious diseases usually 

can be treated with known effective antibiotics, but rapid emergence of resistant 

bacteria has the effect of making many common infectious diseases such pneumonia or 

salmonellosis harder to treat 171-173. One way to address this issue is to test the bacterial 

susceptibility profile before initiation of treatment. This makes antimicrobia l 

susceptibility testing (AST) critical for successful disease treatment 174,175. Traditional 

AST methods such disk diffusion and gradient diffusion require complex infrastructure 

that usually delivers results 24 or more hours after sampling176. Rapid AST methods 

exist, but if available, are prohibitively expensive for many LMICs177. The streak-

imaging cytometer empowered by the relational streak algorithm may be able to help 

if implemented to quantify the rate of microbial growth in response to antibiotic 

exposure. Bacteria incubated briefly (~ 30 minutes) with an antibiotic and followed by 

a fluorescence viability assay to differentiate dead vs. live bacteria, and the ratio of 

live/dead bacteria calculated (this application was included in a grant proposal 

submitted to NIH). The Relational Streak algorithm also can be coupled with other 

technologies suitable for LMIC use, such as miniature microscopy 165 to detect and 

evaluate disease related bacteria in contaminated water or food. Disease related 

bacterial contamination of drinking-water is a major public health problem. The burden 
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of drinking-water related diseases is high in many LMICs where diarrhea remains a 

leading cause of child death. Global access to drinking water is monitored by WHO 

and UNICEF 178. Since testing for individual pathogens is impractical and expensive, 

the environmental protection agency (EPA) proposes a total count of coliform bacteria 

as an alternative standard for determining the bacterial safety of waters  179. For this 

application a flow cell could be integrated with a miniature microscope and a rapid 

bacterial count implemented using the Relational Streak algorithm. 

 

Furthermore, this technology could be implemented in mobile smart phones (which are 

more commonly available than webcams in low and middle-income countries). The 

computational capabilities of the phone could support the analysis of the streak images 

and connect to the internet to transmit the results to a physician for interpretation. Smart 

phones also can also access remote processing more powerful than a phone’s limited 

computational power for more complex analysis. In this case the mobile phone would 

transmit only data to a more powerful platform for analysis and interpretation. 
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