
TOWSON UNIVERSITY

OFFICE OF GRADUATE STUDIES

COLLABORATION FRAMEWORK FOR A CONTEXT-AWARE ENVIRONMENT

WITH MULTI-DEVICE ENABLED APPLICATIONS

by

Kyung Eun Park

A Dissertation

Presented to the faculty of

Towson University

in partial fulfillment

of the requirements for the degree

Doctor of Science in Information Technology

Department of Computer and Information Sciences

Towson University

Towson, Maryland 21252

December 2012

ii

TOWSON UNIVERSITY

OFFICE OF GRADUATE STUDIES

DISSERTATION APPROVAL PAGE

This is to certify that the dissertation prepared by Kyung Eun Park, entitled

“Collaboration Framework for a Context-Aware Environment with Multi-Device Enabled

Applications),” has been approved by the dissertation committee as satisfactory

completing the dissertation requirements for the degree of Doctor of Science in

Information Technology.

__ __________________

Chair, Dissertation Committee, Dr. Yanggon Kim Date

__ __________________

Committee Member, Dr. Ramesh K. Karne Date

__ __________________

Committee Member, Dr. Robert J. Hammell II Date

__ __________________

Committee Member, Dr. Sungchul Hong Date

__ __________________

Committee Member, Dr. Yuanqiong Wang Date

__ __________________

Dean of Graduate Studies Date

iii

© 2012 By Kyung Eun Park

All Rights Reserved

iv

ACKNOWLEDGEMENTS

There have been a number of people without whom this dissertation could not have been

completed. I would like to deeply express my gratitude to Dr. Yanggon Kim who has

broadened the horizon of my research terrain through the considerate support and

constant propulsion. He helped me develop an earnest interest in the research process and

encouraged me to complete this dissertation. I also would like to thank the committee

members: Dr. Ramesh K. Karne, Dr. Robert J. Hammell II, Dr. Sungchul Hong, and Dr.

Yuanqiong Wang for their invaluable advice, their perceptive comments, and their

ongoing efforts to help me be a better researcher. I also would like to thank Dr. Chao Lu,

Chair of Department of Computer and Information Sciences, Dr. Marius Zimand, and Dr.

Yeong-Tae Song for their thoughtful support.

I would like to express my undying gratitude to my parents, my mother-in-law and my

father-in-law who passed away, for their love, and support and for modeling what a

person should be like. I also would like to thank my sisters, my brothers and the rest of

my family for their love and encouragement. I would like to give my special thanks to my

wonderful kids, Ian and Eugena for sharing the most precious time with me in the U.S.A.

Most importantly, I wish to thank my beloved husband, Dr. Juno Chang, from the bottom

of my heart for his endless faith, support, and love which allow me to complete this work.

v

I dedicate this dissertation to my family,

my husband, my son, and my daughter

for their faithful support and everlasting love.

I deeply love you all.

vi

ABSTRACT

COLLABORATION FRAMEWORK FOR A CONTEXT-AWARE ENVIRONMENT

WITH MULTI-DEVICE ENABLED APPLICATIONS

KYUNG EUN PARK

With the proliferation of smart computing equipment, the range of intelligent

application services is widely expanding with continuous attempts to make the best

use of the contextual information from individual data sources. Accordingly, RFID

(Radio Frequency Identification) or GPS (Global Positioning System) technologies

are combined with the contextual information to enhance the accuracy and

availability of many smart services. Another remarkable phenomenon is the

explosively growing number of smartphone users, who stay connected to the Internet

and interact with service providers at all times. This environment requires us to

recognize a certain situation when receiving contextual information from various

sensors and mobile communication devices. Additionally, the situation needs to make

any related services activated and collaborated.

First, this research attempts to present an intelligently coordinating framework

maintaining RFID-enabled applications. According to technology development, the

framework has been evolved to the collaboration framework for a context-aware

vii

environment with multi-device enabled applications. A variety of sensor data such as

RFID tag events, sensing data from USN (Universal Sensor Network) sensor devices,

and location information or instantaneous service requests from a wide range of

mobile communication devices can be managed within the framework, the XCREAM

(XLogic Collaborative RFID/USN-Enabled Adaptive Middleware). It enables us to

develop various applications including an emergency rescue system, a smart facility

management system, a frequent mobility supporting system, a multi-agent

collaboration system, and a personalized mobile security/safety system.

Upon receiving an event, the framework classifies the event based on the XOntology

model, analyzes its contextual status with the existing facts (events) and knowledge

(rules), and relates the contextual information to the appropriate actions (services).

The event’s associated service(s) is registered to the framework through the common

interface of the XLogic script language, which increases the flexibility and

interoperability across the extended framework environment, encompassing multiple

application services.

In order to support the context-awareness scheme, the XOnt agent has been integrated

into the existing XCREAM framework. It examines all the collected events to see if

they correspond to any conditions of certain rule(s) that could trigger associated

actions of the rule(s). The XOnt agent will be seamlessly integrated with the

XOntology in the Phase II XOnt agent.

viii

This research introduces the Context-Aware Inference (CAI) model based on general

situation analysis. The situation analysis is used as the context-aware mobile security

option which is applicable when developing mobile security-focused applications.

The performance and collaboration validity tests have been performed on the

simulation environment of the XCREAM framework. The test results show that the

framework works well in a collaborative service environment in which many

heterogeneous application services and multiple event sources are complicatedly

related with each other.

The major contribution of this research is the construction of the scenario-based

collaboration framework for a context-aware environment. Most importantly, the

framework communicates with multi-device enabled applications through the XLogic

script language, which is developed as a multi-device access scheme and used to

compose service scenarios. Further the simulation has been accomplished to prove the

performance and the collaboration validity of the framework. In order to support

context-awareness, the rule-based context awareness scheme has been introduced

within the XOnt agnet. In addition, the application of an ontology scheme is expected

to enhance the availability of the contextual information and support future

development of the finely customized services by combining the ontology scheme

with the rule-based scheme of the framework.

ix

TABLE OF CONTENTS

LIST OF TABLES ... xi

LIST OF FIGURES.. xii

LIST OF ABBREVIATIONS .. xiv

Chapter 1. Introduction ... 1

Chapter 2. Literature Review .. 9

 2.1 RFID and its Standardization .. 9

 2.2 Events Stream Handling ... 13

 2.3 Continuous Query Processing ... 14

 2.4 USN Middleware .. 15

 2.5 Rule Engines ... 17

 2.6 Context-Awareness ... 22

 2.7 Inter-Application Context Sharing .. 24

 2.8 Context Representation with Ontologies .. 25

 2.8.1 Ontologies ... 26

 2.8.2 Reasoning out of Formal Ontologies .. 28

 2.9 Problem Statements .. 28

 2.10 Solution: Proposed Ideas with the Collaboration Framework 29

Chapter 3. The XCREAM Framework ... 32

 3.1 Research Strategy.. 32

 3.2 The XCREAM Components ... 34

 3.2.1 The Event Handler .. 34

 3.2.2 The Collector Agent .. 35

 3.2.3 The Proxy Agent ... 36

 3.2.4 The Event Activation Agent .. 36

 3.2.5 The Web Application Service (WAS) Agent ... 37

 3.2.6 The Phase-I XOnt Agent ... 37

 3.3 XOntology... 41

 3.3.1 Ontology Adoption.. 41

x

 3.3.2 XOntology Components ... 41

 3.3.3 XOntology Modeling .. 44

 3.3.4 Phase-II XOnt Agent ... 46

 3.4 XLogic Script Language ... 48

 3.5 XLogic Script Execution Modes ... 50

 3.5.1 Trigger Mode .. 51

 3.5.2 Immediate Mode ... 51

 3.6 Context-Aware Inference (CAI) Scheme .. 52

 3.6.1 Smart Airport Environment... 52

 3.6.2 Situation Analysis Rules ... 53

 3.6.3 Context-Aware Mobile Security Option ... 61

Chapter 4. Simulation ... 64

 4.1 Simulation Environment ... 64

 4.2 Performance Tests ... 65

 4.2.1 Parsing Efficiency Tests .. 65

 4.2.2 Event Processing Tests .. 67

 4.3 Collaboration Validity Tests .. 69

 4.3.1 1 Event Generator vs. N Applications ... 69

 4.3.2 N Event Generators vs. 1 Application ... 71

 4.3.3 M Event Generators vs. N Applications .. 73

Chapter 5. Conclusion ... 77

APPENDICES .. 80

 APPENDIX A: THE XCREAM APPLICATION, SPORTS COMPLEX MANAGEMENT

SYSTEM (SCMS) .. 81

 APPENDIX B: THE EXTENDED COLLABORATION MODEL WITH THE XCREAM

FRAMEWORK .. 92

 APPENDIX C: XLOGIC SCRIPT LANGUAGE AND ITS EXTENSION FOR XONTOLOGY . 95

 APPENDIX D: XLOGIC SCRIPT LANGUAGE SPECIFICATIONS 98

REFERENCES ... 107

CURRICULUM VITAE ... 121

xi

LIST OF TABLES

Table 1. Rule Engines: Drools vs. Jess ... 18

Table 2. Ontology Classes ... 43

Table 3. Ontology Properties .. 44

Table 4. Existence Availability Rules ... 54

Table 5. Access Availability Rule ... 56

Table 6. Expected Transit Time Rule .. 58

Table 7. Sensor Range Rule .. 60

Table 8. Average Parsing Time depending on the Number of Statements of the XLogic

Scripts .. 66

Table 9. Average Event Processing Time depending on the Number of Events in Trigger

Mode .. 67

Table 10. 1 EG vs. N Apps .. 70

Table 11. N EGs vs. 1 App .. 72

Table 12. M EGs vs. N Apps ... 74

Table 13. XLogic Script Tags.. 96

xii

LIST OF FIGURES

Figure 1. The XCREAM Framework Configuration .. 2

Figure 2. Service-Oriented Architecture (SOA) ... 3

Figure 3. Event Driven Architecture (EDA) ... 4

Figure 4. The XCREAM Framework ... 7

Figure 5. EPC Network .. 11

Figure 6. Drools Rule Syntax.. 20

Figure 7. Syntax for Rule Pattern ... 20

Figure 8. Drools Inference Scheme .. 21

Figure 9. The XCREAM Framework ... 35

Figure 10. The XEM Interface (Server Setting) ... 37

Figure 11. The XEM Interface (Service Scenario Management) 38

Figure 12. Rule Matching Process of the Phase-I XOnt Agent .. 40

Figure 13. The XOntology of Smart Airport Mobile Security Control 42

Figure 14. XOntology Class Hierarchy on Protégé .. 45

Figure 15. XOntology Property Hierarchy on Protégé ... 46

Figure 16. Phase-II XOnt Agent with Jena API .. 48

Figure 17. XLogic Script for “PassengerInfoService” ... 50

Figure 18. Trigger Mode Execution .. 51

Figure 19. Immediate Mode Execution .. 52

Figure 20. Existence Availability Rule ... 55

Figure 21. Matching Result of Existence Availability Rule.. 55

Figure 22. Access Availability Rule .. 57

Figure 23. Matching Result of Access Availability Rule .. 57

Figure 24. Expected Transit Time Rule .. 59

Figure 25. Matching Result of Expected Transit Time Rule .. 59

Figure 26. Sensor Range Rule .. 60

Figure 27. Matching Result of Sensor Range Rule ... 61

Figure 28. Read Suitability Model .. 62

file:///D:/0.%20A%20Dissertation%20On%20Going/Park_Dissertation_20121129_FinalEditing_14_melissa.docx%23_Toc342055450

xiii

Figure 29. Event Supervising Model .. 63

Figure 30. Simulation Environment .. 64

Figure 31. Parsing Efficiency Test Model... 65

Figure 32. Average Parsing Time .. 66

Figure 33. Event Processing Test Model .. 67

Figure 34. Average Event Processing Time .. 68

Figure 35. 1 EG vs. N Apps Test Model ... 70

Figure 36. Average Time for 1 EG vs. N Apps ... 71

Figure 37. N EGs vs. 1 App Test Model ... 71

Figure 38. Average Time for N EGs vs. 1 App ... 72

Figure 39. M EGs vs. N Apps Test Model .. 73

Figure 40. Average Time for M EGs vs. N Apps .. 75

Figure 41. The SCMS Configuration .. 81

Figure 42. Event Flow of the SCMS ... 82

Figure 43. Network Configuration of the SCMS .. 83

Figure 44. DFD of the SCMS ... 83

Figure 45. Athlete Registration ... 84

Figure 46. Athlete Management .. 85

Figure 47. Room Management ... 85

Figure 48. Gym Management ... 86

Figure 49. Food Management ... 86

Figure 50. Collaboration Scenario of the SCMS .. 88

Figure 51. The Extended Collaboration Framework .. 92

xiv

LIST OF ABBREVIATIONS

CAI Context-Aware Inference

DBMS Database Management System

EPC Electronic Product Code

EPCIS EPC Information Service

DL Description Logic

DRL Drools Rule Language

GPS Global Position System

JEXL Java Expression Language

KIF Knowledge Interchange Format

NIST National Institute of Standards and Technology

OWL Web Ontology Language

RDF Resource Description Framework

RFID Radio Frequency Identification

SCMS Sports Complex Management System

SPARQL SPARQL Protocol and RDF Query Language

SWRL Semantic Web Rule Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

USN Universal Sensor Network

W3C World Wide Web Consortium

XCREAM XLogic Collaborative RFID/USN-Enabled

 Adaptive Middleware

XEM XCREAM Enterprise Manager

XLogic eXtensible Logic

XML Extensible Markup Language

XSD XML Schema Definition

1

 Introduction Chapter 1.

Rapid progress in wireless telecommunication and multi-device (RFID/USN)

sensor technology encourages us to apply this advanced smart computing

power to existing IT solutions. Developers and end-users are also motivated by

the demand for elaborate services which use the latest technology.

Additionally, current IT systems are more likely to collaborate with each other

and maximize the synergy effect from their inter-related systems. Accordingly,

sharing of information across many involved parties should be resolved to

support the collaboration effectively. As a solution to this requirement, an

intermediate framework rather than individually paired connections is

considered. Because numerous direct interfaces cause a heavy burden on

developers and the target environment, a middleware framework will be

responsible for processing minute details.

In order to provide end-users with the highly sophisticated services of

interconnected applications, we need to consider a new type of orchestrating

service framework which collects a large amount of sensor data from many

data sources and delivers this real-time data to the related application services.

The framework must have a robust and reliable infrastructure, able to handle a

huge amount of tag and sensor data and propagate them to the appropriate

services according to predefined scenarios. The new framework will be

responsible for triggering services by monitoring incoming events, which

represent the current state of environment, and performing pre-registered

action plans according to the identified events.

2

These requirements first led us to develop a scenario-based collaborative

framework, the XCREAM (XLogic Collaborative RFID/USN-Enabled

Adaptive Middleware) framework, which seamlessly integrates numerous

heterogeneous application services and plays an organizing role in today’s

pervasive computing environment as described in the previous researches

[49]–[51].

The XCREAM is placed between multi-device middlewares and

application services as in “Figure 1.” It collects the ECReports format sensing

data from multi-device middlewares [67], [68], interprets them, and delivers

them to the correspondent business application services, establishing an

integrated collaborative working environment.

Figure 1. The XCREAM Framework Configuration

3

The XCREAM framework allows us to easily develop multi-device

enabled applications because it acts like a bridge between physical sensors and

application services. By using the XCREAM framework as a bridge, most

sensor specific details are migrated to the XCREAM framework from

individual application services, and individual connections between

autonomous solutions of institutions or agencies are replaced by the

framework-to-service connections.

The framework not only conforms to the EPCglobal’s ALE interface [68]

but also provides its own XML infrastructure language, called “XLogic

(eXtensible Logic).” XLogic script is registered to the framework and is

triggered whenever a specific event is identified or a certain measurement

value reaches its threshold. In addition, a script caching mechanism is

integrated into the framework to immediately process the XLogic script,

saving time spent on parsing the script.

The XCREAM framework adopts the service-oriented architecture

(SOA) as an interface scheme for multi-device enabled application services. It

adopts a conventional request/reply mechanism as described in “Figure 2”.

Figure 2. Service-Oriented Architecture (SOA)

4

This not only guarantees the independence of individual services, but it

also gains flexibility when extending the framework infrastructure, enabling

new collaborative services to work with the XCREAM or other application

services. The SOA makes it possible to increase the reusability of the business

services. Easily applicable service functionalities through the SOA also

provide the foundation for stable provision of composite services. The

additional advantage of using SOA consists in retaining a loose coupling of the

service building blocks across the whole service framework. Further, SOA

technology allows a business application to request any services which are

exposed to others with SOA interfaces, regardless of the service platform

environment. Moreover, the SOA has been focused as a flexible integration

technology in parallel with the demands for the fast development of multi-

device enabled applications as well as the sharp increase in the numerous

device-oriented services [17], [18], [25].

Figure 3. Event Driven Architecture (EDA)

5

The interface scheme of the XCREAM follows an event-driven

architecture (EDA) among the constituent agents of the XCREAM and the

external application services. The EDA introduces long-running asynchronous

process and an EDA node transmits events and does not care about the

availability of others based on post/notify mechanism (see “Figure 3”). The

internal agents composing the XCREAM framework are designed according to

this architecture, immediately propagating processed events to others and

selectively processing received events [56], [57]. The applications work

independently with individual multi-device middlewares and execute service

scenarios only when the triggering events from the multi-device middleware

are recognized.

The adoption of the SOA and the EDA to the XCREAM framework

plays a cooperative role in interfacing event generators with their consumers

such as application services. These services cope actively with the changes and

update their scope more flexibly by easily establishing or withdrawing

interfaces with numerous event generators [24].

Generally, multi-device enabled services such as an emergency rescue

system, a smart facility management system, or a supply chain management

system not only provide their own services but also perform more advanced

collaborative services by interfacing within the XCREAM framework.

Furthermore, smartphones allow the users to stay connected to the

Internet at all times, and the pervasiveness of the sensor devices gives them the

opportunity to use the information from the devices. These factors increase the

6

need to process a huge number of data transactions and infer the present

situation from the current context. The factors that are included in the current

context are the owner’s current location, status values of various sensors,

media preferences, community accessibility, and so on. This new environment

also encourages the development of personalized context-aware services.

The need to analyze the factors present in the current context encouraged

us to try to integrate the new XOnt agent into the XCREAM collaboration

framework through the ontology based context-aware scheme [27]. Analyzing

incoming events, the XOnt agent promotes applications to share the contextual

information in a highly networked pervasive computing environment. In

particular, we focused on the facts that smartphones work either as information

providers or as information consumers, and the location information of

smartphone users is to be combined with sensor information. This situation

results in the extension of the range of contextual information and the need to

intelligent analysis of current state [63]. All the collected sensor information

should be examined if it meets any condition that triggers a correspondent

command or rule through the reasoning process of a rule engine with the

XCREAM framework [11].

As illustrated in “Figure 4,” the extension of the XCREAM has been

accomplished by adding a new agent called the XOnt agent, which analyzes a

particular situation among the numerous event data. The XOnt agent

recognizes a certain condition by comparing various sensor inputs with its pre-

7

constructed knowledge base. It then activates related services (actions)

depending on the rule matching mechanism of the XOnt agent.

With the introduction of the XOnt agent, the applications work more

efficiently and comprehensively than before because each service is defined by

a finer rule-based scenario. The XOnt agent observes all incoming events,

finds certain context, and triggers the appropriate service(s). For example:

when a handicapped passenger with a RFID-embedded boarding pass is

approaching a boarding gate, the airline employee is already aware of his/her

arrival, and is ready for the passenger. In addition, the XOnt agent combined

with the XOntology scheme is discussed as the Phase II XOnt agent scheme.

Figure 4. The XCREAM Framework

8

In addition, the XOntology has been introduced as the ontology

specification of the XCREAM framework. It defines the entities of real-world

objects and their properties in order for the application services to share the

concepts and relationship information. The adoption of ontology into the

framework results in enhancing the interoperability and system reusability.

The XOntology is composed of core and extended ontology sets. The core

ontology includes person, place, and time information. The extended ontology

covers high-level applied concepts such as inventory management, logistics,

surveillance function, environmental monitoring, and so on.

This research also includes the Context-Aware Inference (CAI) model

specialized to the context-aware mobile security option [47]. This option is

made on the basis of the general situation analysis in combination with the

XOntology specification classifying the real-world entities.

The performance and collaboration validity tests have been performed

on the simulation environment of the XCREAM framework. The test result

shows that the framework works well in a collaborative service environment in

which many heterogeneous application services and multiple event sources are

complicatedly related with each other [48].

9

 Literature Review Chapter 2.

This overviews various related researches, starting with an auto-identification

with RFID technology and ending with rule-based reasoning methodology for

collaboration framework for a context-aware environment. RFID-enabled

auto-identification technology is related with the data collection and automatic

recognition of the numerous events at the front-end of the framework. To

effectively manage the massively incoming events, continuous event and query

processing technology is considered as a filtering scheme. And also, USN

middleware technology is examined when devising the framework [17], [18],

[25]. The second half of this chapter includes rule engines and context-

awareness capability for systematic reasoning, and ontologies for inter-

application context sharing.

Each research topic includes problem statements, research strategies,

and adopted solutions of the XCREAM framework.

2.1 RFID and its Standardization

A lot of research efforts in the past decade are aimed at defining RFID tag

specification and handling the RFID tag data. Past research also focused on

formalizing seamless communication protocols and enhancing system

performance and correctness.

RFID-enabled network infrastructure was initially proposed by the

Auto-ID Labs [54] at MIT. The labs were dedicated to creating the Internet of

Things using RFID and Wireless Sensor Networks. The labs, evolved into

10

EPCglobal, developed ubiquitous automated identification technologies. It is

based on the networked physical world by proposing the EPC (Electronic

Product Code) Network. EPCglobal also suggested an open architecture

system composed of the EPC, EPC tags and readers, local networking

technology, and RFID middleware [67], [68]. The EPC network identifies

goods using a unique numbering system called an Electronic Product Code

(EPC), enabling all objects in the world to be linked via the Internet [18], [67].

An EPC number is a universal identifier for any physical object and

works. EPC can be termed a “Pure Identity EPC URI” because it identifies

computer systems including electronic documents, database, and electronic

messages in the form of an Internet Uniform Resource Identifier (URI).

The EPC Tag Data Standard [66] defines the Electronic Product Code

and specifies the memory contents of Gen 2 RFID Tags.

urn:epc:id:sgtin:0614141.112345.400

In addition, memory limitations of RFID tag causes the EPC not to be

stored in URI form but in an encoded form with “EPC Binary Encoding” on

the tag.

 The EPC Network consists of three major components: the Savant, the

EPC Information Service (EPCIS), and the Object Name Service (ONS). The

reader may or may not be regarded as part of the EPC Network. The following

“Figure 5” shows the structure of an overall EPC Network [32].

11

Figure 5. EPC Network

The above EPC Network is known as a local EPC Network, which is

valid within a company or a private network. Each local EPC Network can be

linked together through the Internet, so the information can be globally

reachable and sharable. In this case, a global public ONS system may be used

to connect EPC Networks in a similar way how the Domain Name System

(DNS) supports on the Internet [32], [67].

Generally, the Savant contains two interfaces, one for readers and the

other for applications. In this research, the XCREAM plays the Savant’s role

by receiving the EPC numbers of tags and forwarding them to the appropriate

multi-device applications. In addition to the tag information, The XCREAM

also handles the sensor data from the USN devices. The tag information is

directly stored in the EPC database or sent to the EPCIS which processes the

tag data. By querying the EPC database, the ONS in an EPC Network

ONS (cache)

Savant

EPC Information Service
(EPC Database)

Reader

12

recognizes the location information of data needed by an application. If the tag

number is not resolved into a Uniform Resource Locator (URL) within the

local EPC Network, the ONS searches for the external global public ONS

across the Internet to get the location of the information associated with the

EPC number. The EPC Information Service (EPCIS) is a gateway between any

enterprise applications which request information and the EPC internal

database which returns corresponding results [32], [67].

The XCREAM framework follows the interface mechanism of the

Application Level Events (ALE) Specification of EPCglobal [68]. This

mechanism not only enhances independence between the front-end data

collector and the applications, but also increases flexibility when adding

additional readers or sensors and applications to the framework. Especially, the

request/reply method of the XCREAM corresponds to the main API of the

ALE, including define, undefine, getECSpec, getECSpecNames, subscribe,

unsubscribe, poll, immediate, getSubscribers, etc. Moreover, the XCREAM

recognizes ECSpec and ECReports [68].

The latest ALE Specification (ALE Ver. 1.1.1) defines the reading and

writing activities between the physical data sources and client applications [68].

In the reading activity, the ALE Specification receives EPCs and related data

from data sources, accumulates and filters the data, and reports them to the

recipients in various forms. On the other hand, the writing activity involves

isolating the individual data channels, reading and writing the operations of the

data, and generating the reports in various forms. The writing activity allows

13

applications to exercise specific operations such as “lock” and “kill” to

enhance the level of security when using the RFID technology. This feature is

added to make up for the lack of safety in the first version.

2.2 Events Stream Handling

Regarding the handling of events, a lot of research efforts have been made in

the last decade to formalize the event, the behavior of the events, and the

relationship between them.

The study on event streams was derived from the concern for handling

time-varying data within a time-series management system. Then, the active

database rose to the surface of event-based temporal reasoning [41]. Active

database has been frequently compared with the data stream management

system because active database uses triggers to support automatic responses to

events. The action may change the value of the database, whereas, the rapid

materialization of ubiquitous computing environments revitalize the events

stream handling issue. Data stream management system demands complex

events processing schemes to treat the inflow of events from their sources. In

addition, the process supports the continuous queries over the running streams

[36], [52].

Many researchers have analyzed events and distinguished the nature of

the event queries over event streams from the traditional queries on the

relations [4], [36], [41], [64].

14

The most important difference between event query and ordinary query

used in the traditional DBMS is that the former is initiated by an event, while

the latter is self-activated [12]. In particular, time-varying event query needs to

keep the event history in event repository. As a solution to this, the sliding

window mechanism has been chosen to constrain the number of event at a

particular point of time [21].

2.3 Continuous Query Processing

Under highly networked environments, a variety of automatic identification

devices generate huge amounts of event streams. This means that a new

querying scheme is required to recognize arriving events and to evaluate

corresponding queries. In order to do so, users need to issue a continuous

query (CQ) which is invoked once and runs continuously over the event

streams and database. In addition, the system is notified whenever the data

matches the query [60]. The continuous query processing system must be

capable of monitoring incoming events during a certain predefined time

interval and dynamically performing query evaluations [12], [13]. Whereas,

query transactions of traditional database management system (DBMS) are

generally processed over the present relations [4], [29], [36], [41], [64]. The

XCREAM interprets the XLogic script, which contains immediate (single) or

trigger (continuous) mode event query request, into a Java runnable object,

transforming the written script into an executable form. The runnable objects

are activated by a specific event as in the event driven systems.

15

Many data stream management systems (DSMS), such as TelegraphCQ

[12]; NiagaraCQ [13]; OpenCQ [34]; and STREAM [83] have been developed

as solutions to multiple continuous, high-volume, and possible time-varying

data streams. The TelegraphCQ adopts an adaptive query engine to process

queries efficiently in volatile and unpredictable environments. The NiagaraCQ

keeps scalability by grouping CQs. The OpenCQ uses a query processing

algorithm based on the incremental view maintenance [7]. The STREAM

maintains an adaptive and dynamic central scheduler of query operators over a

shared stream queue which holds high-volumes of data.

These systems are primarily focused on CQ optimization, by allowing

traditional DBMS or their own data stream management system to support

CQs over data streams and conventional relations. The XCREAM supports

CQs over time-varying RFID tags or sensor data found in trigger mode. It also

attempts to enhance the performance by caching the runnable objects of the

XLogic scripts correspondent to them.

2.4 USN Middleware

The requirements of early USN middleware were comparatively simple due to

its direct connection to a specific application service. As various computing

applications, such as e-Healthcare, e-Transportation, e-911, and e-Eco, are

rapidly introduced to our daily life, it is expected that the increase of

information sharing from variable multi-device data sources will stimulate the

development of composite services [28]–[30]. Several middleware researches

16

are conducted on the following examples: MiLAN middleware [25], developed

to guarantee QoS (Quality of Service) as its top priority; event-based DSWare

middleware [33], which uses a continuous stream of sensor data to send

information on to USN application system; Impala middleware [35], which can

dynamically change functions of sensor node middleware according to changes

in USN application services and changes in the surrounding environment of

sensor networks through wireless communication; TinyDB middleware [37]

and Cougar middleware [62], which carry out the requirements of USN

application systems, using distributed processing by considering sensor data

from the sensor network.

In COSMOS (Common System for Middleware of Sensor Network), a

system developed by ETRI, key functions of middleware, jointly needed for

various types of USN application services, were extracted. In addition,

technology development and standardization to provide these in a standardized

way were carried out. The main functions of COSMOS are as follows: query

support (temporary, permanent, and event), support for simultaneous

processing of lots of queries in large-capacity sensor network environments,

and support for abstraction of heterogeneous sensor networks [46].

Oracle Complex Event Processing (Oracle CEP) combines distributed

caching to publish output events to a replicated, distributed cache, thereby

making the results of its computation highly available. Distributed caching

technology can also enhance the performance and scalability of Oracle CEP

applications [76].

17

The XCREAM also supports the caching mechanism of the runnable

objects of the XLogic Scripts. Further, incoming events are transmitted to the

Proxy agent, triggering the runnable object of the associated scenario to be

executed.

2.5 Rule Engines

Out of the many kinds of rule engines available, the Drools [72] and the Jess

[74] are picked to be candidates of the XCREAM framework for its popularity

and continuous technical support. The range of the XCREAM has been

become wider by allowing additional sensors or mobile devices like

smartphones to interact with the associated applications. As a result, the need

to systematize the process of controlling the information and performing the

rules of the action plan increases.

The following “Table 1” summarizes the key features of both rule

engines. It gives a comparative chart for the selected inference engines

measured on different performance metrics, including their main algorithms,

OWL-DL entailment, Java and rule support, version, and licensing issues.

Most importantly, both rule engines are based on the RETE algorithm, which

matches data tuples (“facts”) against productions (“rules’) in typical pattern-

matching production system interpreters [19], [40].

18

Table 1. Rule Engines: Drools vs. Jess

Rule Engine Drools Jess

Algorithm RETE Algorithm RETE Algorithm

OWL-DL Entailment No Yes

Java Support Yes Yes

Rule Support

DRL

(Drools Resource

Language,

Own Rule Format)

SWRL

Version 5.4 & 5.5 Beta 7.1

Licensing Free / Open source Academic use only

 Drools

The Drools rule engine is a business logic integration platform with Java-based

object-oriented rule engine, providing a unified and integrated platform for

rules, workflow, and event processing. The Drools 5 adopts an optimized

version of the RETE algorithm [19], [73], called RETE-Object-Oriented

algorithm, in order to give high performance. It has its own writing rules called

DRL (Drools Rule Language) and is flexible enough to match the semantics of

a problem domain with DSLs (Domain Specific Languages), graphical editing

tools, web based tools, and developer productivity tools. It has useful features,

including rule debugging and rule authoring tools like the IDE plug-in [72]. As

a rule engine, the Drools Expert allows us to do declarative programming,

explaining the source of the solution and the decision-making process [73].

Particularly, dynamic configuration of various sensor devices in present

environment is effectively supported by separating rules from internal

controlling structure of the framework.

19

 Jess

The Jess is also a Java-based rule engine and scripting environment. It uses an

enhanced version of the RETE algorithm to process rules. It can also directly

manipulate and analyze Java objects, as it is entirely in Java language. It

provides a powerful Java scripting environment in which you can create Java

objects, invoke Java methods, and implement Java interfaces without

compiling any Java code. It supports SWRL (Semantic Web Rule Language)

[2] and the rules can be expressed in XML or Lisp languages. The Jess is not

an open-source project, therefore, it will not allow us to alter its source code.

But it is available with no cost for research purposes [74].

We chose the Drools engine as the rule engine of the XCREAM

framework and integrated it with the XOnt agent for its open license policy

and its easy-to-use interface mechanism, especially simple DRL scheme. As it

is Java-based open source software, Java classes and methods within its rule

definitions are readily embedded in the existing framework. The rule syntax

for the Drools engine and a simple DRL rule for a fire alarm system are shown

in “Figure 6.” The method(s) for the action(s) triggered by the matched

condition(s) should be placed within “then” clause. Among conditional

elements, a pattern element is the most important conditional element and

matches on each fact that is inserted in the working memory of a session [73].

20

rule "<name>"

 <attribute>*

 when

 <conditional element>*

 then

 <action>*

end

rule “When the fire is gone turn off the sprinkler”

when

 $room : Room()

 $sprinkler : Sprinkler(room == $room, on == true)

 Not Fire(room == $room)

then

 modify($sprinkler) { setOn(false) };

 System.out.println(“Turn off the sprinkler for room “ +

 $room.getName());

end

A pattern contains zero or more constraints and has an optional pattern

binding. The following “Figure 7” diagram shows the syntax for a rule pattern

of the Drools rule engine.

Figure 6. Drools Rule Syntax

 Figure 7. Syntax for Rule Pattern

21

A rule file can contain multiple rules, queries, and functions, as well as

some resource declarations like imports, globals and attributes that are

assigned and used by the rules and queries [73].

Figure 8. Drools Inference Scheme

Generally, a rule engine tries to derive answers or new knowledge from

previously known rules and facts as shown in “Figure 8” [72]. The main

function of a rule engine is to analyze patterns by matching facts and rules and

executing their corresponding actions. An action is likely to generate new

knowledge or carry out specific method(s) of a specific object.

This pattern matching process of the production system uses the RETE

algorithm, which infers conditions from facts and rules in a match-resolve-act

fashion [19], [72], [73]. The RETE algorithm is an efficient pattern matching

algorithm designed by Dr. Charles L. Forgy [19]. It applies the matching

algorithm only to the changed facts and enhances the matching performance.

He created a production system program consisting of an unordered collection

of if-then statements called productions. In this system, the data operated on by

the productions is held in a global data base called working memory. An

22

individual production is composed of LHS (Left Hand Side), a sequence of

patterns, and RHS (Right Hand Side), an unconditional sequence of actions.

The interpreter executes a production system by performing the following

typical cycle: (1) Match; (2) Conflict resolution; and (3) Act [19].

2.6 Context-Awareness

In the earlier stage of context-aware technology, many people wanted to define

their own meaning of “context,” and many types of variation of “context” were

found. The term, “context-aware,” was introduced in Schilit and Theimer

(1994) [55] for the first time. The authors describe context as location,

identities of nearby people and objects, and changes to those objects. Three

years after, Ryan (1997) [53] referred to context as the user’s location,

environment, identity, and time. After that, one of the most accurate definitions

is given by Dey and Abowd (2000) [14], who regard context as “any

information that can be used to characterize the situation of entities (i.e.,

whether a person, place, or object) that are considered relevant to the

interaction between a user and an application, including the user and the

application themselves” [8].

As various kinds of event data and services interact with each other in an

environment, a single event can relate to numerous services, and several

different events may have to do with the same specific context. This means

that the framework can link interconnected environments between physical

devices and cyber application services. Also, we realized that original events

23

and the identified context data which exist within the framework should be

mutually understandable by related parties. As a result, an ontology scheme is

additionally applied as mutual communication method in the XCREAM

framework in combination with a context-awareness scheme. This method not

only allows applications to share contextual information based on the common

ontology specifications but also provides a powerful way to develop adaptively

collaborative services.

The XOnt agent has been added to the XCREAM framework in order to

sort out valid contextual information among numerous incoming events. Once

the XOnt agent receives various events from multiple sources, a tightly

coupled rule engine, called Drools [72], makes a decision regarding whether a

certain context has been met. This is accomplished by evaluating the pre-

registered rules with the newly received events and the current as-is condition

[11].

The XOnt agent includes the XOntology [27] as a context representation

scheme which is shared by related application services. The original events

and the resulting context within the framework should be understandable by

related parties. To achieve this, an ontology scheme is applied as a mutual

communication method in the XCREAM framework in combination with the

context-awareness scheme. The integration of an ontology scheme not only

allows applications to share contextual information based on the common

ontology specifications but also increases the collaboration rate between

24

application services. We will discuss context representation with ontology in

the following section in more detail.

2.7 Inter-Application Context Sharing

Since an Internet connection is available at any time and any place, we have

faced an increasing demand to take full advantage of this highly intelligent

environment where multiple data sources are available. Particularly, the

demand leads us to develop a ubiquitous infrastructure framework in which all

the context data collected from various sources is managed and shared across

the correlated applications of all interested parties.

First of all, the underlying framework needs to understand various kinds

of context information according to a common context description scription.

This is done in order to enhance the effectiveness in representing and sharing

the information. Most importantly, the common context description scheme

needs to be clear and general enough to be accepted by all related parties.

As a solution to representing contextual information, RDF (Resource

Description Framework) [43], [85]–[87] and OWL Web Ontology Language

[3], [23], [43], [84] of the Semantic Web standards are applied to the common

context description scheme of the framework. According to the World Wide

Web Consortium (W3C), “the Semantic Web provides a common framework

that allows data to be shared and reused across application, enterprise, and

community boundaries.” The ultimate vision of the Semantic Web is to make

automated semantic agents access the Web on their own and carry out tasks

25

only by referring to the semantics encoded into the Web page on behalf of

users [31].

In the Semantic Web, we regard the things in the world as resources: a

resource can be anything that someone might want to talk about and that can

be easily understood as a thing or an entity [1]. In current environment, a

user’s current location, real-time traffic information, environmental

information like temperature, bio-information like one’s blood pressure, and a

RFID tag attached to a traveler’s luggage are all examples of things to be

focused on.

2.8 Context Representation with Ontologies

The current ubiquitous computing environment contains lots of smart objects

working with their corresponding application services. This phenomenon

requires us to recognize the current situation out of the complicated

combination of contextual information. In addition, the application services

need commonly understandable scheme to share the contextual information in

this environment. First of all, the sharing of current context begins with the

clear definition of common vocabularies. Once we build the dictionary of the

common vocabularies, we further proceed to detect a situation determined by

the individual or combined contextual information. This process is treated by

adopting an ontology scheme as a tool for denoting the contextual information

and describing the relationships among the individual entities.

26

2.8.1 Ontologies

Ontologies have been described as “a specification of a conceptualization,” by

Gruber in 1993 [23]. He mentions that: “what ‘exists’ is exactly that which can

be represented”. In other words, all the intelligent equipment and objects in the

current computing environment should be represented in a certain ontology

language and shared by various parties. In the real world, especially Semantic

Web world, ontology is about “the exact description of things and their

relationships” [88].

A general ontology model describes concepts of target domain,

properties and attributes of these concepts, constraints on properties and

attributes. Additionally, it optionally examines individuals, defining a common

vocabulary and encouraging a shared understanding [44].

On the other hand, Neches et al emphasize the importance of ontology as

a method to enhance knowledge sharing and reusability across different

applications [10], [42]. Once ontologies for a specific domain have been built,

it can be shared and reused for other domains by adding new concepts into the

existing one.

As a domain modeling tool, ontology languages such as RDF (Resource

Description Framework), RDFS (RDF Schema) and OWL Web Ontology

Language of the Semantic Web standards describe the common vocabularies

and their relationships within the framework.

RDF is a primary representation language for domain models or

ontologies. It allows us to define things, namely resources as well as their

27

properties, the relationships between resources [14], [15], [80]. RDF is

composed of triples (statement), subject-predicate-object, and the formation of

a graph of the resources [45]. RDF serves as a general-purpose language for

representing information in the Web; whereas, RDFS includes the vocabulary

of RDF [87]. RDFS is introduced to strengthen the semantic capability of RDF.

In other words, it provides a syntactic specification mechanism to allow us to

describe resources as classes and their relationships as properties.

In OWL, a class denotes a group of individuals characterized by a

certain common attribute, and it contains the set of objects. While modeling a

domain of interest, inter-class relationships are described as a set of

subsumption relations, a collection of superclass-subclass relationships [59].

These relationships are represented as a class hierarchy. In a similar way, a

hierarchy of properties, attributes, or relationships are formed to a property

hierarchy in OWL scheme [3], [84].

A semantic model of a domain of interest and its associated rules need to

be built by a domain expert who may not be familiar with expert system based

on artificial intelligence or formal logic theory. Semantic/context

representation languages such as RDF or OWL are too complicated to use at

ease, especially while modeling a domain. As a result, the Semantic

Application Design Language (SADL) is defined as “a language for building

semantic models and expressing rules that capture additional domain

knowledge” [69]. In addition, a model defined in SADL for an application

domain can be mapped into OWL ontologies, too.

28

In chapter three, the ontologies of a smart airport mobile security option

are developed with the semantic representation of the domain by using the

Protégé [78] ontology development tool.

2.8.2 Reasoning out of Formal Ontologies

Knowledge is represented in the form of ontologies since machines interpret

and express concepts, relations, and specifications. The knowledge base is

extended by deriving new facts from existing ontologies. Knowledge can be

formalized by using Knowledge Interchange Format (KIF) [20], [22],

Conceptual Graphs [58], [65], or Description logics (DL) [6], [61], [85].

Among them, Description Logic is picked up to formally represent concepts

because it is expressive enough to describe logics of realistic applications.

Usually, a reasoner checks consistency of the T-Box of terminology which

describes terminology and rules and the A-Box of assertions, which looks at

assertions about individual concepts. It also checks subsumption relationship

across the existing relations [5], [6], [26], [61]. This scheme will be applied to

the Phase-II XOnt agent.

2.9 Problem Statements

The research has focused on establishing a collaboration framework for a

context-aware environment with multi-device enabled applications. In addition,

a simple and expressive interface mechanism between the framework and the

applications is expected to provide a flexible and dynamic system

29

configuration within the framework. As the applications increasingly correlate

with each other in the ubiquitous computing environment, a single event can

make a great impact on almost every application service. Once a single event

appears, it should be forwarded to the associated service(s), according to the

automatic identification of the related services within the framework.

The identification procedure makes the target framework immediately

recognize the context changes that result from the occurrence of an event.

Within the target framework, the associated application services should be

identified according to a systematic analyzing method such as an ontology

modeling system that is based on contextual information classification and a

rule-based inference scheme.

2.10 Solution: Proposed Ideas with the Collaboration Framework

As a solution to the identified problem in this research, the need for a

collaboration framework for a context-aware environment with multi-device

enabled application, the XCREAM (XLogic Collaborative RFID/USN-

Enabled Adaptive Middleware) has been proposed. The framework mediates

between smart devices (physical objects) and collaborative application services

(cyber services) by collecting massive events from a variety of event origins

and distributing them to the appropriate service parties depending on the

predefined application business scenarios.

The application services are connected to the framework through the

Web interfaces of the XCREAM Enterprise Manager (XEM). Actual

30

interaction is made by using the XLogic script language as a unified interface

scheme between the framework and individual application services. In doing

so, the script provides flexibility and interoperability for newly extended

services in the future.

The XCREAM framework has been tested to examine its performance

by checking the processing time for interpreting the XLogic statements and

handling RFID tag events from the data origin to the individual application

agents. Additionally, a validation of the framework in terms of collaboration

feasibility has been accomplished.

The Context-Aware Inference (CAI) scheme has been suggested to

present a widely applicable collaboration model for a fast-growing pervasive

computing environment. The CAI scheme is applied to the design of the

context-aware mobile security option.

Accordingly, the XCREAM is extended to help the framework

recognize a special situation, specifically an airport domain that combines

contextual information. The most typical contextual information includes the

current status of an airport environment or the passengers' current location.

The contextual information is combined with the XOntology specification,

classifying the real-world entities of an airport. Within this environment,

general situation analysis rules are applied to the acquired facts in order to

recognize a violation of the rules, indicating an occurrence of any abnormal

situation. The CAI scheme is advanced to suggest the common mobile security

option for the customized multi-device enabled applications.

31

The extension of the XCREAM has been accomplished by adding a new

agent called the XOnt agent, which reasons a particular situation among the

numerous event data. The XOnt agent recognizes a certain condition by

comparing various sensor inputs with a pre-constructed knowledge base and

activates related services (actions) depending on the rule matching mechanism

of the XOnt agent. In addition, the XOnt agent deploys the XOntology scheme,

allowing the application services to share the concepts and relationship

information while enhancing interoperability and system reusability.

32

 The XCREAM Framework Chapter 3.

This chapter begins by stating the individual agents’ role from the standpoint

of an event driven system. Individual agents collect events from physical data

sources and transport them to their associated application services. The

following sections explain the execution process of service scenarios written in

the XLogic script language, introducing a unified interface between the

framework and individual application services. In addition, the context-aware

inference (CAI) scheme has been suggested to present a widely applicable

context-aware mobile security option in a fast-growing pervasive computing

environment.

3.1 Research Strategy

The XCREAM was first implemented as a scenario-based adaptive service

platform, and it managed more adaptive service scenarios among highly

correlated business applications [51]. By registering scripts written in a XML

infrastructure language called the XLogic, individual services are seamlessly

integrated into the XCREAM. The XLogic scripts describe specific service

scenarios related to events such as automatic identification or remote

measurement data which come from separate multi-device middlewares.

The XCREAM has evolved into a scenario-based collaborative

framework, playing as a mediator between smart physical objects and

collaborative cyber services, gathering massive events from a variety of event

origins, and distributing them to the appropriate service parties depending on

33

predefined business scenarios. The sports complex management system

(SCMS) [50] (see Appendix A), a prototype system based on the XCREAM,

was presented in order to show how the framework flexibly helps applications

collaborate with each other by allowing them share events through the unified

XLogic script language [48], [49].

A rapidly growing demand for collaboration among numerous and

heterogeneous business applications encourages the applicability written in a

XML infrastructure language called the XLogic of the XCREAM and gives the

framework the opportunity to extend its range. This research was followed by

validating the framework in terms of collaboration as well as testing its

performance [48]. This framework is also applied to build a mobile real-time

tracking system by integrating smartphone applications with the framework

[63].

Recently, the core XCREAM framework has been extended with the

XOnt agent in order to support context-aware collaboration in the complex

sensing network environment [11]. Because events from individual sensor

devices are increasing, the demands to handle various contextual events also

increased, encouraging us to use them as the basis of decision-making for

figuring out a current situation. In addition, we have included an ontology

scheme as the conceptualization method of events, objects and contextual

information [27]. Furthermore, our research focused on applying the

framework to a real world example, an airport, and using the multi-device

application services to understand the distinct characteristics of the

34

environment. This resulted in setting up the context-aware inference (CAI)

scheme, which can be extensively applicable to similar environments. As this

model is based on the rule production system, the fundamental rules are to be

used as basis knowledge in order to derive new knowledge. This context-aware

collaborative framework will be advanced, so it can carry out the high-level

rules which are demanded for more complicated scenarios in the new services

[11], [47].

3.2 The XCREAM Components

The XCREAM framework is composed of five agents including the Collector

agent, the Proxy agent, the Event Activation agent, the XOnt agent, the Web

Application Service (WAS) agent, and the Event Handler as shown in “Figure

9.”

3.2.1 The Event Handler

The Event Handler maintains the runnable objects of the XLogic scripts, which

invoke the corresponding web services of the application services.

The Event Handler is in charge of managing the remaining agents and

delivering events received from each agent to the appropriate parties. Internal

events just pass through the Event Handler. The Event Handler propagates

events to all the agents, and the agents accept only events of interest for further

processing and ignore the remaining events. The following “Figure 9” shows

the overall flow of events across the XCREAM framework.

35

Figure 9. The XCREAM Framework

3.2.2 The Collector Agent

Events originated from multi-device middlewares are collected by application

services through the following two types of queries to the XCREAM

framework: a snapshot query and a continuous query. The former requests the

framework immediate real-time identification or sensor data. Whereas, the

latter requires the framework to keep the registered query in an active state and

send the matching results to the application services during a specified period.

The Collector agent is connected to various multi-device middlewares

through multi-threaded socket connections on the pre-allocated port and is in

charge of forwarding the identification or sensor data to the Event Handler

after converting them to the corresponding Java objects, called

“ReportsArrivedEvent” (see “Figure 9”).

36

3.2.3 The Proxy Agent

The Proxy agent is responsible for shortening the overall-event processing

time. An XLogic script, which has been executed, is in the memory as an

executable Java object rather than the XML script itself saved in the repository.

This buffering scheme remarkably reduces parsing time compared to the fetch-

and-execution scheme from the repository. This makes it possible to effectively

manage the system resources throughout the whole lifetime of the XLogic

script.

The Proxy agent usually extracts the unique identification information of

“ReportsArrivedEvent,” which is forwarded by the Event Handler. If the value

equals to one of the XLogic script residents in memory, then the XLogic is

converted into “XLogicScriptExecuteRequestEvent” and sent back to the

Event Handler. If it is not found in memory, then the XLogic in XML form is

queried and then parsed to be placed in memory as an executable Java object.

Accordingly, the event is delivered to the Event Handler.

3.2.4 The Event Activation Agent

The Event Activation agent not only executes the XLogic script but also keeps

the statistics of the active XLogic, including the success and failure ratio, the

last completion time, and the current status. This information is presented

online in real-time through a web interface, the XCREAM Enterprise Manager

(XEM) and helps the user establish an execution strategy based on the

acquired statistical data.

37

3.2.5 The Web Application Service (WAS) Agent

The WAS agent exposes the useful functions to the service providers by

providing users with Web interfaces. It acts as the web server of the XEM

through which service scenarios are registered to the XCREAM framework.

The following two figures are the XEM interfaces for showing server

configuration (“Figure 10”) and service scenario management (“Figure 11”)

through XLogic script language.

Figure 10. The XEM Interface (Server Setting)

3.2.6 The Phase-I XOnt Agent

The context-aware system plays an important role in the current pervasive

computing environment because it recognizes and propagates contextual

information in certain situations, such as a person’s or object’s current location,

available network connection, room temperature, and air pollution level in a

specific region.

38

Figure 11. The XEM Interface (Service Scenario Management)

In the XCREAM framework, a certain context is recognized by a rule

engine that is integrated into the XOnt agent. The rule engine analyzes all the

incoming events, reasons the relationship between them according to the

registered rules, and determines the best-fit context situation. The framework is

designed to trigger appropriate action(s) associated with service scenarios.

This approach is expected to increase the usability of contextual

information including identification information or sensor data because the

XOnt agent triggers related services and enables service providers to develop

context-aware services. The XOnt agent consists of the following components:

1) XOnt Agent Implementation

The XOnt Agent Implementation component is in charge of managing the Fact

Generator and the Knowledge Controller. In addition, it communicates with

the Event Handler. This component usually extracts the unique identification

XCREAM Framework

39

information from the “ReportsArrivedEvents,” which are delivered by the

Event Handler. When “ReportsArrivedEvents” arrives, the component sends

the event to the Fact Generator.

2) Fact Generator

The Fact Generator is responsible for converting the events in its queue into

facts and forwarding them to the rule engine of the XOnt agent.

3) Rule Engine

The rule engine is integrated into the XOnt agent to help the XCREAM

framework recognize a special situation (context) by combining contextual

information of an environment. The Drools rule engine is chosen as a rule

engine in the framework. This rule engine generates new knowledge through a

pattern matching process and then sends the knowledge to the Knowledge

Controller.

4) Knowledge Controller

The Knowledge Controller not only receives newly inferred knowledge from

the rule engine, but it also transforms the knowledge into its corresponding

“ReportsXOntKnowledgeEvents” event. Once the event has been generated,

the controller forwards it to the Event Handler via the XOnt Agent

Implementation.

40

In order to describe the reasoning process of the framework in detail, the

event flow of a rule matching process which is initiated by the Event Handler,

is shown in “Figure 12”.

Figure 12. Rule Matching Process of the Phase-I XOnt Agent

The Drools [72] rule engine has been integrated into the Phase-I XOnt

agent [11], [47]. The Phase-I agent validates the feasibility of the reasoning

option within the XCREAM framework. In the Phase-II agent, this option will

be further extended and combined with ontology features.

41

3.3 XOntology

As described earlier, the current computing environment contains lots of smart

devices working with corresponding application services. This situation

requires us to introduce a communication scheme between them which

includes a flexible interface with common vocabularies.

3.3.1 Ontology Adoption

The XCREAM framework needs to understand various kinds of context

information according to a common context description scheme in order to

enhance the effectiveness in representing and sharing information. The context

representation of the framework is described by the XOntology scheme, which

is composed of the core and extension ontologies. By defining the common

ontologies, identified context is understood and shared between the related

parties of the framework. In addition to defining the common concepts as

XOntology classes, the relationships between the ontology classes are also

defined as properties.

3.3.2 XOntology Components

The XOntology is devised as an extensible structure for the XCREAM

framework. It is composed of the core and extension ontology sets. The

relation between ontology sets are defined as properties, which includes

general and domain specific properties like the security property. The

42

following “Figure 13” introduces the hierarchical structure of the XOntology

of the smart airport mobile security control system.

The core ontology classes encompass person, place, and time concepts,

and the extension ontology describes high-level concepts that depend on

domain specific concepts or entities. The example ontology describes the

ontology hierarchy of an application domain of the smart airport mobile

security control system, which includes agent, aircraft, cargo, event, IT

systems, mobile device, public transportation, security device, service, and

vehicle. The individual classes are not only drawn by analyzing real-world

airport management rules, regulations [77], and the latest airport IT solutions

[81], but they are also derived by combining general security issues in the

computer security handbook of NIST (National Institute of Standards and

Technology) [75].

Figure 13. The XOntology of Smart Airport Mobile Security Control

43

Table 2. Ontology Classes

Classes Subclasses

Core

Ontology

Classes

Person
Passenger, Employee, FlightCrew,

Contractor, etc.

Place

Terminal, CheckIn, SecurityCheck,

PassportControl, Gate,

ImmigrationCheck, BaggageClaim,

Custom, SecurityIDArea, Lounge,

ParkingLot, AirCargoHandlingArea,

AirOperationsArea, Clinic, FireStation,

PoliceStation, QuarantineStation, etc.

Time TimeInterval, ExactTime, etc.

Extension
Ontology

Classes

(for Smart

Airport

Mobile

Security

Control)

Event USNInfo, LocationInfo, Behavior, etc.

Service Security, Business, Administrative, etc.

Vehicle

CargoDolly, CargoLoader, Trailer, Truck,

Bus, FuelingVehicle, PassengerStair,

RampEquipment, etc

Cargo Freight, Baggage, Animal, etc.

Aircraft Airplane, Helicopter, etc.

Agent

Airlines, Logistics, Police, Firefighting,

Hospital, Construction, Catering,

Cleaning, etc.

SecurityDevice
RFIDReader, USNSensor, CCTV,

WirelessAP, etc.

MobileDevice
Smartphone, Laptop, HandheldDevice,

Camera, etc.

ITSystems

AerialControl, PassengerMonitoring,

FacilityManagement, BuildingOperation,

ImmigrationControl, CargoHandling,

SecurityControl, FlightSchedule,

AgentITSystems, etc.

PubTrans Rail, GroundBus, etc.

44

The constituent subclasses of the core and extension ontology classes in

the XOntology scheme are described in “Table 2.”

In addition, relationships between classes and attributes of a member of

a class form property hierarchy in the XOntology scheme. The properties are

classified into the General Properties, commonly applied properties across the

core ontologies, and the Extension Properties, domain specific properties (see

“Table 3”).

The XOntology hierarchy, subclass-superclass hierarchy, is defined by

using the Protégé ontology development tool, where the ontologies written in

the Protégé are exported into a variety of formats including the RDF(s), the

OWL, and the XML Schema [15], [78], [79].

Table 3. Ontology Properties

Property Category Subproperties

General Properties
hasID, hasOwner, hasLocation,

hasExactTime, hasInterval, etc.

Extension Properties

(for Smart Airport

Mobile Security

Control)

hasAccess, hasConnection, hasSecurityLevel,

hasAlert, hasThreat, etc.

3.3.3 XOntology Modeling

This section explains the XOntology modeling specifications designed on

Protégé. Once the XOntology for a mobile security system has been developed,

45

it can be shared and reused by many applications, featuring a context-aware

mobile security control option.

Before we proceed to develop the ontology hierarchy of a domain, we

need to list the key terms and their properties [44] as in the previous two tables.

After then, the derived terms are defined as classes of the domain as in the

following “Figure 14.”

OWL as an ontology language has three types of properties: object

properties, datatype properties, and annotation properties [15]. The object

properties explain the relationships between two resources (individuals of

classes), whereas the datatype properties relate a certain data value to an

individual. The annotation properties are used to add meta-data to classes,

properties, and individuals.

Figure 14. XOntology Class Hierarchy on Protégé

46

The following “Figure 15” includes the object properties of the

XOntology which are categorized into general properties and extension

properties for the purpose of mobile security control.

Figure 15. XOntology Property Hierarchy on Protégé

A property is a way of describing a relationship between individuals,

which are members of classes. An individual is an object in the real-world and

is related to other objects and to data values using datatype properties [9].

3.3.4 Phase-II XOnt Agent

As a rule engine of an open source project, the Drools [72] has been chosen

and integrated with the XOnt agnet in the Phase-I XOnt agent [47] for its

highly practical application mechanism and strong support by the JBoss

Community [72]. The Phase-I was used to validate the feasibility of the

47

reasoning option within the XCREAM framework. Naturally, the research was

extended to support the OWL ontology scheme for better expressive power

across a wide range of applications within the framework or even in the

Internet. Especially, the fact that the Drools features its own rule format and

reasoning function encouraged me to consider the OWL ontology scheme and

its associated inference mechanism for the Phase-II XOnt agent.

The Phase-II XOnt agent is integrated with the Jena API [70]. It allows

the ontology-based applications to build and share the ontology model and

communicates with each other. Once an event has been delivered to the Event

Handler, it is sent to the Context Mapper of the XOnt agent, and it is

determined whether the event fits the contextual information associated with

the predefined rules. The RDF triples, stored in the Ontology Context

Repository, are queried and updated by the SPARQL (SPARQL Protocol and

RDF Query Language) through the SPARQL API [38], [71] within the Jena

API.

The Phase-II XOnt agent is under development, defining XOntology

with core and extension ontologies in terms of the smart airport mobile

security control system. The Phase-I XOnt agent based on the rule engine is

combined with the ontology reasoning scheme in the Phase-II system [2], [16],

[39]. The following “Figure 16” shows the component and event flow of the

Phase-II XOnt agent with Jena API.

48

Figure 16. Phase-II XOnt Agent with Jena API

3.4 XLogic Script Language

The initial motivation for the development of the XCREAM was the

construction of the collaboration framework for the various kinds of

information systems used in many independent sites as well as the newly

introduced multi-device enabled application services. As the solution to a

completely seamless interfacing scheme, the research team designed an XML

based infrastructure interface scheme, the XLogic script language. The

external systems just need to register XLogic scripts of the service scenarios to

49

the repository, which correspond to the RFID identification or the USN sensor

data through the XEM of the XCREAM framework.

The XLogic script language follows the XML-based scheme and

provides the application services with the following statements in the form of

the XML tags:

 XLogicScript statement

 invokeWebService statement

 iterator statement

 set statement

 if, then, else statements

 while, foreach statements

 wait statement

 continue, break statement

 print statement

In addition, the following statements are to be added to the existing set

in order to support ontology-based context-aware inference.

 XOntScript statement

 object statements

 location statement

 time statements

50

“Figure 17” shows a part of the XLogic script, which registers a service

called “PassengerInfoService” with the final destination of the tag data to be

sent to the specified URL.

Figure 17. XLogic Script for “PassengerInfoService”

The XLogic script language and its specifications are described in more

detail in Appendix C and D.

3.5 XLogic Script Execution Modes

Incoming events from data sources are processed in two modes within the

framework: a trigger mode in which a received event will activate a pre-

registered XLogic script and an immediate mode in which an XLogic script is

<xlogic:invokeWebService service="PassengerInfoService"

 url="http://smartairport.caiair.com/pm/flight"

 name="find_passenger">

 <rawtags xmlns="smartairport">

 <xlogic:iterator name="tag" source="tags">

 <tag>${tag}</tag>

 </xlogic:iterator>

 </rawtags>

 </xlogic:invokeWebService>

 <xlogic:set name="passenger" select="//id">${find_passenger}

 </xlogic:set>

51

converted into a Java object and executed immediately as soon as the script has

been registered to the XCREAM framework.

3.5.1 Trigger Mode

An XLogic script, which is defined as trigger mode, is executed when the

external event is collected by the XCREAM according to the flow of event in

“Figure 18.”

Figure 18. Trigger Mode Execution

3.5.2 Immediate Mode

Immediate mode refers to the mode in which an XLogic script written by a

user is executed immediately. If a user writes and executes an XLogic script

through the XEM, then it is sent to the Event Activation Agent through the

WAS Agent and then the XLogic script written in the XML form is

transformed into a Java object and then the Java object is executed (see

“Figure 19”).

Collector
Agent

App.
Service 1

App.
Service 2

App.
Service 3

Event Handler

Repository

Proxy Agent Event
Activation
Agent

Reports

Reports

Reports

Reports

SOAP

SOAP

SOAP

SO
AP

①

①

①

①

② ③

④

⑤ ⑥

⑦

⑦

⑦
⑦

RFID/USN
Middleware

RFID/USN
Middleware

RFID/USN
Middleware

RFID/USN
Middleware

52

Figure 19. Immediate Mode Execution

3.6 Context-Aware Inference (CAI) Scheme

The Context-Aware Inference (CAI) scheme [47] suggested in this research

uses rule engine, the Drools [72], [73], that matches the pre-registered rules in

its rule base with the real-time contextual information, which is referred to as

facts. The CAI scheme enables time-varying combination of facts to be

matched with the context-aware situation analysis rules according to their

constraints (conditional elements of the rules).

3.6.1 Smart Airport Environment

A smart airport is chosen as a prototype environment where the CAI scheme is

applied to the smart airport mobile security control option. The major entities

of the model are described in section 3.3.2 (see “Figure 13”), including

passengers, sensor generating events, air cargoes, and additional smart airport

facilities and their corresponding ontology classes are also introduced in

WAS
Agent

App.
Service 1

App.
Service 2

App.
Service 3

Event
Activation

Agent

Parsing

USER

Enterprise
Manager

RFID/USN
Middleware

RFID/USN
Middleware

①
XLogic
Script

Events Events

②

J ava
Object

③ ③

④

④

④

53

“Table 2.” The ontology classes are categorized into the core ontology for the

basic identification of person or any objects with additional information like

identified place and time information and the extension ontology for the smart

airport mobile security control option. All the concepts and detailed properties

of the smart airport environment are shared across the agents and their IT

systems through the XOntology of the XCREAM framework.

3.6.2 Situation Analysis Rules

The Context-Aware Inference (CAI) scheme in this research is supported by

the assumptions and constraints of the smart airport environment, which are

necessary to reason the expected context in the example environment and

categorized in the form of the situation analysis rules: the Existence

Availability rule (EA Rule); the Access Availability rule (AA Rule); the

Expected Transit Time rule (ETT Rule); and the Sensor Range rule (SR Rule).

These are used as the fundamental knowledge base of the XCREAM

framework. All the facts like real-time contextual information such as USN

sensor data and identification information of passengers, employees, and even

cargoes are matched according to the fundamental rules [73].

1) Existence Availability Rule (EA Rule)

The expected pairs of places and their associated availability of simultaneous

existence are listed in “Table 4,” which lists the constraints of the Existence

Availability rule.

54

Table 4. Existence Availability Rules

Place ‘A’ Place ‘B’ Sync. Availability

CheckIn SecurityCheck Yes

SecurityCheck PassportControl Yes

SecurityCheck ImmigrationCheck No

PassportControl Gate001 Yes

Gate ParkingLot No

Lounge Gate002 Yes

Gate001 ImmigrationCheck No

Gate020 ParkingLot No

Gate101 ParkingLot No

Gate120 ImmigrationCheck Yes

CheckIn BaggageClaim No

… … …

The Existence Availability rule defined in “Figure 20” is used for

validating identification results and figuring out the abnormal identification.

Based on the Existence Availability rule, the rule engine is to decide whether a

person could appear at different places at the same time.

“Figure 21” shows that a person (“Kyungeun Park”) is identified at

different places at the same time and indicates that she may cause a certain

security violation.

55

rule “Existence Availability Rule”

 when

 $PR1: PersonRecognition ($PRperson1 : person,

 $PRplace1 : place)

 $PR2: PersonRecognition (person == $PRperson1,

 place != $PRplace1,

 $PRperson2 : person,

 $PRplace2 : place)

 $PR3: eaRules (place1 == $PRplace1,

 place2 == $PRplace2, sync == false)

 then

 System.out.println("EA Violation::" + $PRperson1 +

 ": @" + $PRplace1 + " and " +

 "@" + $PRplace2);

end

EA Violation::Kyungeun Park: @SecurityCheck and

@ImmigrationCheck

Figure 20. Existence Availability Rule

Figure 21. Matching Result of Existence Availability Rule

2) Access Availability Rule (AA Rule)

The Access Availability rule is used for validating whether any person is

passing or staying unapproved area, scanning all recognized person objects in

working memory for any possibility of illegal pass. Many places in an airport

and their associated ID type(s) are listed in the following “Table 5.”

56

Table 5. Access Availability Rule

Place Accessible ID

CheckIn “N” (Not required)

SecurityCheck,

PassportControl,

Lounge, Gate,

 Gate001, Gate020

“T” (Departure Flight Boarding Pass),

“I” (Any ID)

Gate101, Gate120,

ImmigrationCheck,

BaggageClaim, Custom,

“R” (Arrived Flight Boarding Pass),

“I” (Any ID)

AirOperationsArea A, B

AirCargoHandlingArea C

QuarantineStation D

SecurityIDArea A, B, C, D

… …

The Access Availability rule validates whether identified person or

employees at a certain place of an airport has eligible to be there with a proper

ID card or boarding pass. The conditional part after “when” matches ID type of

a person identified (see “Figure 22”).

“Figure 23” shows several access violations resulted from illegal access

with invalid ID. For example, in order to access “AirOperationsArea”, the “A”

or “B”-type IDs are required and a person with departure boarding pass should

not be recognized in “ImmigrationCheck.” In addition, departure boarding pass

or employee ID are required to access at boarding processing places like

“SecurityCheck” or “PassportControl.”

57

rule “Access Availability Rule”

 when

 $PR1: PersonRecognition ($PRperson : person,

 $PRplace : place)

 $AA1: aaRules (getPlace() == $PR1.getPlace(),

 (getIDType() not contains "I" &&

 getIDType() not contains $PR1.getID()) ||

 (getIDType() contains "I" &&

 $PR1.getID() == "N") ||

 ($PR1.getID() == "T" &&

 getIDType() not contains "T") ||

 ($PR1.getID() == "R" &&

 getIDType() not contains "R"),

 getIDReq() == true)

 then

 System.out.println("AA Violation::" + $PRperson + " (" +

 $PR1.getID() + "): " + "appeared @ " + $PRplace +

 " illegally. ");

end

 Figure 22. Access Availability Rule

Figure 23. Matching Result of Access Availability Rule

AA Violation::David Texas (C): appeared @ AirOperationsArea

illegally.

AA Violation::Amanda Maryland (C): appeared @ AirOperationsArea

illegally.

AA Violation::Kyungeun Park (T): appeared @ ImmigrationCheck

illegally.

58

3) Expected Transit Time Rule (ETT Rule)

The Expected Transit Time rule is used to determine the earliest (MinTime) or

the longest (MaxTime) expected time of arrival to move from one location to

another (see “Table 6”). Each combination of two different places, where

RFID reader or any other identification facilities are installed, is assigned

MinTime and MaxTime, presenting time constraints. This information is used

to deduce an abnormal behavior of individual passengers or employees in an

airport by comparing time difference between the expected transit time and the

actual time spent to move. “Figure 24” describes the Drools rule to define the

Expected Transit Time rule and capture the abnormal behavior to help the

smart airport mobile security control system find and handle immediately.

Table 6. Expected Transit Time Rule

LeavingFrom ArrivingAt
MinTime

(min)

MaxTime

(min)
Sync.

CheckIn SecurityCheck 5 150 Yes

SecurityCheck PassportControl 5 30 Yes

SecurityCheck ImmigrationCheck -300 0 No

PassportControl Gate001 0 100 Yes

Lounge Gate020 0 60 Yes

Gate001 ImmigrationCheck -300 0 No

Gate020 ParkingLot -300 0 Yes

Gate101 ParkingLot 10 100 No

Gate120 ImmigrationCheck 0 60 Yes

CheckIn BaggageClaim -300 0 No

59

rule “Expected Transit Time Rule”

 when

 $PR1: PersonRecognition ($PRperson1 : person,

 $PRplace1 : place, $PRtime1 : time)

 $PR2: PersonRecognition (person == $PRperson1,

 place != $PRplace1, $PRperson2 : person,

 $PRplace2 : place, $PRtime2 : time)

 $ETT1: ettRules (place1 == $PRplace1,

 place2 == $PRplace2, getSync() == true,

 $ettMinTime : minTime, $ettMaxTime : maxTime)

 $PR3: PersonRecognition (!$PR1.withinTimeRange($PR2,

 $ettMinTime, $ettMaxTime))

 then

 System.out.println("ETT Violation::" + $PRperson1 +

 ": " + ($PRtime2 - $PRtime1) + "(min) spent between @ " +

 $PRplace1 + " and " + "@ " + $PRplace2);

end

ETT Violation::Amanda Maryland: 75(min) spent between @ Lounge
and @ Gate020

“Figure 25” tells “Amanda Maryland” spent 75 minutes to move from

“Lounge” to “Gate020,” which takes 15 minutes longer than the maximum

transit time, registered with 60 minutes. This matching result will alarm the

system administrator and make him (her) keep track of the person and take

security measures, if needed.

Figure 24. Expected Transit Time Rule

Figure 25. Matching Result of Expected Transit Time Rule

60

4) Sensor Range Rule (SR Rule)

The allowable ranges of sensors are provided in “Table 7” [82]. An abnormal

sensor value is to be identified by the analytic matching procedure of the rule

engine and the associated action is performed.

Table 7. Sensor Range Rule

Sensor Min Max

Temperature (°F) -10 130

Illumination (lux) 100 1,000

Noise (dB) 0 80

CO (ppm) 0 9

Ozon (ppm) 0 0.12

Lead (ppm) 0 100

FineDust (μg) 0 150

Figure 26. Sensor Range Rule

rule “Sensor Range Rule”

 when

 $SE1: SensorEvent ($SEsensor : sensor, $SEvalue : value,

 $SEtime : time, $SEplace : place)

 $SR1: srRules (getSensor() == $SEsensor,

 $SEvalue < getMinValue() || > getMaxValue())

 then

 System.out.println("SR Warning::" + $SEsensor + " @ " +

 $SEplace + " : " + $SEvalue +

 " (min) " + $SR1.getMinValue() +

 " (max) " + $SR1.getMaxValue());

end

61

Figure 27. Matching Result of Sensor Range Rule

“Figure 26” describes Sensor Range rule and recognize abnormal sensor

status based on the available range values. In “Figure 27”, abnormal cases are

listed after matching the SR rule.

3.6.3 Context-Aware Mobile Security Option

Based on the essential knowledge of the situation analysis discussed in the

previous section, one-step forward reasoning will be available to develop wide

range of dynamic solutions which basically request agile reaction to constantly

changing environment. Among many choices, the context-aware mobile

security option can draw keen attentions from real-world solutions, because the

more the smart ubiquitous computing environment is available with various

USN sensors and advanced identification technology, the more increasingly

the service providers face strong demands to customized and responsive

functions as well as crucial security control options. It is true that the inclusion

SR Warning::Ozon @ AirCargoHandlingArea : 0.15 (min) 0.0 (max) 0.12

SR Warning::Lead @ AirCargoHandlingArea : 200.0 (min) 0.0 (max)

100.0

SR Warning::CO @ AirCargoHandlingArea : 12.0 (min) 0.0 (max) 9.0

SR Warning::Noise @ AirCargoHandlingArea : 200.0 (min) 0.0 (max)

80.0

SR Warning::Illumination @ AirCargoHandlingArea : 50.0 (min) 100.0

(max) 1000.0

SR Violation::Temperature @ AirCargoHandlingArea : 140.0 (min) -10.0

(max) 130.0

62

rule “Determine if an object is supposed to be read here.”

 when

 $PR1: PersonRecognition($PID :

 isNotSuitable(objectid, readerid)

 $OR1: ObjectRecognition($OID :

 isNotSuitable(objected, readerid))

 then

 $PR1.notifyViolation($PID);

 $OID.notifyViolation($OID);

 end

of the newest technology encourages us to develop far more personalized

solutions for each personnel than ever. This circumstance, however, results in

growing possibility of taking advantage of the acquired information or abusing

them on purpose. By this reason, it is not too much to say that almost every IT

solutions might be secured with the context-aware mobile security option

against malicious intruders, making ill use of the well-established high-tech

environment.

The situation analysis forms fundamental four rules of an environment

by analyzing the behavior and status of the objects and defining the

assumptions and constraints of the objects. Accordingly, the general

knowledge of the context-aware mobile security option can be summarized

into the following general models, upon reviewing the situation analysis cases.

Figure 28. Read Suitability Model

63

1) Read Suitability Model

This model validates whether any recognized person or object is supposed to

appear at a specific place, during a certain period of time. The model plays a

basic role in reasoning complex scenarios which are related with a

combination of variety of information from many sensors (see “Figure 28”).

2) Event Supervising Model

This is also a general reasoning model with a variety of sensors. Usually, this

model causes the alarm signals to be delivered to their corresponding

application services, for example, a smart airport monitoring service (see

“Figure 29”).

Figure 29. Event Supervising Model

rule “Determine if emergency situation happens.”

 when

 $FIRE : exists Fire()

 then

 Notify($FIRE.room.getName());

end

64

 Simulation Chapter 4.

The XCREAM framework was tested in a simulation environment in order to

show its performance and prove the validity of the collaboration. This chapter

includes the description of the testbed environment as well as performance and

collaboration validity test results, looking at the configuration details of

individual test cases.

4.1 Simulation Environment

In order to evaluate the performance of the XCREAM framework, the

following simulation environment has been built (see “Figure 30”). The

environment includes a collection of event generators which produce

sequences of ECReports [68] containing RFID tag identification events to send

to the XCREAM framework. The XCREAM framework is also interfaced with

many applications and matching events trigger these services.

Figure 30. Simulation Environment

100.0Mbps Ethernet

▶ Core 2 Duo
2.33GHz

▶ 2GB Memory

▶ Core2 Duo
2.33GHz

▶ 2GB Memory

▶ Core 2 Duo
2.33 GHz

▶ 2GB Memory

Event
Generator

ECReports
(XML)

XCREAM
Framework

Applications

(2) Direct Delivery (WSDL)

 (1) & (2) Direct Acknowledgement to its Event Generator (TCP/IP)

Request

(1) Delivery (WSDL)

100.0Mbps Ethernet

▶ Core 2 Duo
2.33GHz

▶ 2GB Memory

▶ Core2 Duo
2.33GHz

▶ 2GB Memory

▶ Core 2 Duo
2.33 GHz

▶ 2GB Memory

Event
Generator

ECReports
(XML)

ECReports
(XML)

XCREAM
Framework

Applications

(2) Direct Delivery (WSDL)

 (1) & (2) Direct Acknowledgement to its Event Generator (TCP/IP)

Request

(1) Delivery (WSDL)

Request

(1) Delivery (WSDL)

65

4.2 Performance Tests

The performance test of the framework has been carried out by checking the

efficiency of the framework in terms of two perspectives: parsing efficiency

and event processing capacity.

4.2.1 Parsing Efficiency Tests

The first performance test measured the time the framework took to convert

the XLogic scripts, given in XML form, into a Java object in immediate mode.

For this test, multiple set of XLogic scripts, requesting numerous tag data, are

adopted as in “Figure 31.”

The experiment has been accomplished by calculating the elapsed time

between the start and end point of a parsing process. In order to obtain the

average elapsed parsing time, each XLogic script has been parsed 20 times.

The following “Table 8”shows the results of the performance test and

shows the average parsing time depends on the number of statements in the

XLogic scripts. The test results show that the XCREAM framework spends

linearly increasing time to parse the variable sets of XLogic scripts depending

on the number of statements contained in the scripts (see “Figure 32”).

Figure 31. Parsing Efficiency Test Model

XCREAM

Application
100, 200, 300, 400, 500, 600 … . 1000 statements

66

Table 8. Average Parsing Time depending on the Number of

Statements of the XLogic Scripts

No. of Statements of

XLogic Script (lines)
Average Parsing Time (msec)

100 0.67

200 0.81

300 1.01

400 1.16

500 1.35

600 1.57

700 1.79

800 2.12

900 2.33

1,000 2.51

Figure 32. Average Parsing Time

67

4.2.2 Event Processing Tests

The event processing test is used to show the robustness of the system by

taking time durations to process a number of events as shown in “Table 9”. In

the testbed (see “Figure 33”), an XLogic script, registered by a specific

application service in trigger mode, recognizes a RFID tag event and delivers it

to the application service.

Figure 33. Event Processing Test Model

Table 9. Average Event Processing Time depending on the

Number of Events in Trigger Mode

No. of Events

from the Event Generator
Average Processing Time (sec)

100 0.57

200 0.88

300 1.16

400 1.39

500 1.85

600 1.97

700 2.41

800 2.67

900 3.05

1,000 3.29

The following graph (see “Figure 34”) shows the event processing time

for a various number of events sent to the XCREAM framework in trigger

mode.

Event
Generator

Application

XCREAM

Current time

Acknowledgement

68

Figure 34. Average Event Processing Time

Reviewing the test results of the previous two performance tests, the

XCREAM framework processes huge amounts of transactions within an

acceptable time delay. In the parsing efficiency test, 1,000 XLogic statements

are parsed within 2.5 seconds. Thus, we can regard that the framework works

reasonably because the service scenario can be defined with the convenient

XLogic interface, and the service providers only need to focus on the service

logics instead of the individual connections to various kinds of sensor devices.

In addition, the event processing test is completed within 3.3 seconds to

process 1,000 events, especially RFID tags. It indicates that the performance of

the framework is about 300 transactions per second (tps). This is more than

acceptable because most commercial services require middleware servers to

process about 100 transactions per second.

69

4.3 Collaboration Validity Tests

The main idea of developing the XCREAM is to establish a collaborating

infrastructure for numerous application services, and the tests verify that

collaboration validity was a success. These tests include three processing

scenarios with or without the XCREAM by varying the number of event

generators and application services of the simulation environment: 1 event

generator versus N applications; N event generators versus 1 application; and

M event generators versus N applications.

The simulation experiments, occurring at the event generator side,

measure the elapsed time from just before sending tag events, ECReports of

RFID tag identification event(s) generated by the event generator(s), to just

after all the acknowledgements from their receivers, application services, have

been received via the XCREAM framework or not.

4.3.1 1 Event Generator vs. N Applications

The first test configures one event generator which generates a sequence of

1,000 ECReports and a varying number of application services (see “Figure

35”). The test results (see “Table 10” and “Figure 36”) indicate that the direct

interface process is faster than processing through the XCREAM because

direct interface requires less transaction for the event transmission than the

XCREAM model. Nevertheless, we are encouraged with the test result because

it shows the XCREAM provides gradually increasing performance as well as

the reliable communication interface to the individual applications.

70

Figure 35. 1 EG vs. N Apps Test Model

Most importantly, this test confirms that the XCREAM framework could

support highly interrelated application services to be included within the

framework. This feature is the fundamental requirement in order to realize the

collaboration between various applications in our target environment.

Table 10. 1 EG vs. N Apps

Test Type
1 EG/

1 App

1 EG/

2 Apps

1 EG/

5 Apps

1 EG/

10 Apps

1) Direct Interface

No. of total

transactions

(connections)

 on EG side

1,000 1,000 1,000 1,000

Average time

(sec) / tps
1.7/588 1.52/658 1.38/725 1.41/709

2) XCREAM

No. of total

transactions

(connections)

on EG side

2,000 2,000 2,000 2,000

Average time

(sec) / tps
3.17/631 2.59/772 2.3/870 2.29/873

71

Figure 36. Average Time for 1 EG vs. N Apps

4.3.2 N Event Generators vs. 1 Application

The second experiment, described in “Figure 37,” increases the number of

event generators and lets the individual event generators produce events by

1,000 divided by the number of event generators.

Figure 37. N EGs vs. 1 App Test Model

72

Table 11. N EGs vs. 1 App

Test Type
1 EG/

1 App

2 EGs/

1 App

5 EGs/

1 App

10 EGs/

1 App

1) Direct Interface

No. of total

transactions

(connections)

on all EG sides

1,000 1,000 1,000 1,000

Average time

(sec) / tps
1.7/588 1.45/690 1.24/806 1.17/855

2) XCREAM

No. of total

transactions

(connections)

on all EG sides

2,000 2,000 2,000 2,000

Average time

(sec) / tps
3.17/631 3.01/664 3.05/656 2.98/671

The test results (see “Table 11” and “Figure 38”) show that the

XCREAM works reliably even in an environment with numerous RFID

readers and multiple-devices such as a highly networked ubiquitous computing

environment.

Figure 38. Average Time for N EGs vs. 1 App

73

The XCREAM model in this case shows that there is almost two times a

difference between direct interface and the XCREAM model. However, this

case is not suitable for our target environment because the framework is

developed to support the collaboration among multi-device enabled

applications. According to this reason, the experiment proceeds to test M event

generators versus N applications case as far more relevant environment than N

event generators versus 1 application case.

4.3.3 M Event Generators vs. N Applications

Figure 39. M EGs vs. N Apps Test Model

74

The final test is designed to check the validity of the collaboration under the

XCREAM framework, looking at the real-world with varying number of the

event generators and various business applications. As shown in the previous

experiments, the XCREAM works better with multiple applications. Whereas,

the number of event generators does not influence the overall performance

significantly. According to the test results, the number of applications is fixed

to ten at this time, and only the number of event generators is increased. An

event generator generates events by 1,000 divided by the number of the event

generators (see “Figure 39”). In addition, the XCREAM will deliver the events

to the individual applications by 1,000 divided by the number of applications

which is fixed with 100 in this case.

Table 12. M EGs vs. N Apps

Test Type
1 EG/

10 Apps

2 EGs/

10 Apps

5 EGs/

10 Apps

10 EGs/

10 Apps

1) Direct Interface

No. of total

transactions

(connections)

on all EG sides

1,000 1,000 1,000 1,000

Average time

(sec) / tps
1.41/709 1.38/725 1.32/758 1.41/709

2) XCREAM

No. of total

transactions

(connections)

on all EG sides

2,000 2,000 2,000 2,000

Average time

(sec) / tps
2.29/873 2.24/893 2.27/881 2.19/913

75

The test results (see “Table 12” and “Figure 40”) show that the

XCREAM works well in an environment where multiple applications

collaborate with each other. This means the XCREAM can be applied to the

complex smart environment, where the orchestration among various business

applications is strongly required. It is also expected to enable various

application services to be flexibly added to or dropped from the framework.

Figure 40. Average Time for M EGs vs. N Apps

The above tests show that indirect collaboration interface has doubled

the number of connections; therefore, it takes a longer time than direct

interface to process the events from event generators to the individual

application service agents. However, the test result in M-to-N test case implies

that the XCREAM works well with its competitive transaction performances.

76

As a result, this framework is expected to be used to build complex

smart environment in which various application services are flexibly added to

or dropped from.

It is true that this collaboration validity tests motivate us to develop the

next phase of the framework in order to promote the development of

collaborating services. The Phase-II XOnt agent is used to combine its rule

matching mechanism with ontology-based representation scheme to specify a

variety of sensors and their characteristics and enhance information sharing

across the framework.

77

Conclusion Chapter 5.

This research aims at presenting a collaboration framework, the XCREAM

framework, for a context-aware environment with multi-device enabled

applications as an intelligently coordinating framework over lots of application

services. The framework mediates between smart devices (physical objects)

and collaborative application services (cyber services) by collecting massive

events from a variety of event origins and distributing them to the appropriate

service parties depending on the predefined application business scenarios.

This research first built a RFID/USN middleware framework which

collects RFID tag data, finds the service scenario(s) related to the tag events,

and directs the associated application services to work and collaborate with

each other. The application services are connected to the framework through

the SOA-based Web interface, called the XEM, and integrated to the

framework by registering the associated service scenario(s) that are written in

the XLogic script language. This interface scheme could give many additional

application services flexibility and interoperability in the future. The XLogic

script language has been developed as a key element of the XCREAM

framework and evolved to support a new context-aware environment by

extending its tag elements in this research.

As the next step, the performance and collaboration validity tests were

accomplished. In the performance tests, the XLogic script interpreting and

event processing rates are reasonably acceptable, with about 400 tps and 300

tps respectively, because the framework presents the convenient service

78

scenario registration mechanism to the application providers. On the other

hand, the collaboration validity tests take a longer time than direct interface to

process the events from event generators to the individual application service

agents. The M-to-N test case, however, shows that the XCREAM works well in

a multi-device enabled environment with its competitive transaction

processing capacity.

Also, application cases (see Appendix A and B) which simulate the

collaboration of multiple agencies were presented to validate the collaboration

capability of the framework. The proposed applications put variable

heterogeneous service systems together within an infrastructure environment

and made them organically flow through the XCREAM framework without

disturbing any autonomy belonging to the individual application services.

In addition, the context-aware inference (CAI) scheme suggests a widely

applicable collaboration model for a fast-growing pervasive computing

environment. To support the CAI scheme, the XCREAM framework has been

extended by adding a new agent called the XOnt agent, which basically infers

the current situation out of contextual information depending on the rule

matching mechanism of the XOnt agent. The framework allows the XOnt

agent to deploy the XOntology specification, classifying the real-world entities

in order to enhance its interoperability and reusability across 3
rd

-party services.

The CAI scheme motivates the design of the context-aware mobile

security option which is based on a general situation analysis described by four

fundamental rules: Existence Availability Rule; Access Availability Rule;

79

Expected Transit Time Rule; and Sensor Range Rule. The assertive adoption of

the context-aware mobile security option results in transforming normal

application services into context-aware security-enabled solutions.

This new attempt leads the research to the development of the Phase-II

XOnt agent which shares the knowledge across the XOntology scheme and the

rule engine. In addition, the application of the ontology scheme is expected to

enhance the availability of the contextual information and support the future

development of the finely customized services by combining the ontology

scheme with the rule-based scheme of the framework. This subject is still

under research and development and will be left to the next phase of the

XCREAM framework.

The study concludes by providing an intelligent collaboration

framework, the XCREAM framework, for a context-aware environment with

multi-device enabled applications. Since I started this research in 2006, the

information technology environment has been rapidly innovated from

enterprise-centric solutions to personalized adaptive services. In order to

proactively cope with the significant changes, the framework has also been

evolved from the initial coordinating framework to a context-aware

collaboration framework. Furthermore, I hope the target framework of this

research can be extended to present context-aware personalized/customized

security services or a new type of social networking infrastructure based on a

wide variety of contextual information.

80

APPENDICES

81

APPENDIX A: THE XCREAM APPLICATION, SPORTS COMPLEX

MANAGEMENT SYSTEM (SCMS)

In order to assess the feasibility of the XCREAM framework’s collaboration

capability, the SCMS (Sports Complex Management System) is developed.

The SCMS enables multiple 3
rd

 party service systems to be interfaced with the

framework. It also provides athletes with seamlessly customized services in

combination with several application services which offer various services to

athletes through their specific solutions.

The SCMS is designed to provide a variety of RFID-enabled services

within a collaborative service framework. An antenna attached to a RFID

reader identifies a RFID tag, and then a RFID reader retrieves tag information

from the RFID antenna. The RFID reader sends the tag information to the

XCREAM framework. The XCREAM delivers the event to the specific

application according to the predefined scenarios.

Figure 41. The SCMS Configuration

82

(A) The SCMS Components

The SCMS consists of four major business applications: The Registration

System (RS); The Restaurant Management System (RMS); Gym Management

System (GMS); and Athlete Management System (AMS). The following

“Figure 42” shows the event flow of the SCMS.

Figure 42. Event Flow of the SCMS

Users are authenticated with a SSN throughout the whole processes.

Once authenticated, the user is given the permission to get an RFID tag from

the RS and can use various facilities such as the gym, restaurant, pool, and so

on. Each facility is controlled by the XCREAM framework and cooperates

with other systems by sharing athletes’ identification information. While users

are operating any facilities, the related data is kept in the database and

immediately transferred to other systems, if needed. The following figures

83

introduce the network configuration and the data flow diagram (DFD) of the

SCMS (see “Figure 43” and “Figure 44”).

Figure 43. Network Configuration of the SCMS

Figure 44. DFD of the SCMS

84

The followings are captured images of the user interface of the SCMS

including: (1) Athlete Registration (see “Figure 45”); (2) Athlete Management

(see “Figure 46”); (3) Room Management (see “Figure 47”); (4) Gym

Management (see “Figure 48”); and (5) Food Management (see “Figure 49”).

(1) Athlete Registration

Figure 45. Athlete Registration

85

(2) Athlete Management

Figure 46. Athlete Management

(3) Room Management

Figure 47. Room Management

86

(4) Gym Management

Figure 48. Gym Management

(5) Food Management

Figure 49. Food Management

87

(B) Collaboration of the Application Services

The following test scenario has been devised to verify the functionalities of the

middleware platform, especially for collaboration processes among

heterogeneous application services.

1. Player “A” who is the member of the baseball team of “B” has

arrived at the complex training center, “XX Corp.” and has been

undergoing intense training.

2. “A” goes to the cafeteria in the center for breakfast.

3. When he just enters the restaurant, he is recognized as a member of

the “B” team by sensing his RFID-enabled ID card in the Cafeteria

Management System.

4. After “A” places his favorite foods on the tray, he just passes the

counter in which the RFID antenna has been installed.

a. The food expense is calculated and transmitted to the

Cafeteria Management System and is charged to the “B”

team with the food expense at the end of the month.

b. The total calories of the food are calculated and sent to the

Player Management System of the “B” team, which keeps

track of the individual player’s health record.

The following XLogic script (see “Figure 50”) is presented to describe

the above collaboration scenario.

88

<?xml version="1.0" encoding="UTF-8"?>

<xlogic:XLogicScript

 xmlns:xlogic="urn:xcream:xlogic:script:xsd:1"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="urn:xcream:xlogic:script:xsd:1

 http://triton.towson.edu/xlogic.xsd”>

 <!-- Bookmark 1 -->

<xlogic:set name="tags" select="//tag"> ${_REPORTS}

</xlogic:set>

 <!-- Bookmark 2 -->

 <xlogic:invokeWebService service="PlayerInfoService"

 url="http://baseballteam.bcity.com/pm/baseball"

 name="find_player">

 <rawtags xmlns="bcity">

 <xlogic:iterator name="tag" source="tags">

 <tag>${tag}</tag>

 </xlogic:iterator>

 </rawtags>

 </xlogic:invokeWebService>

 <xlogic:set name="player" select="//id"> ${find_player}

</xlogic:set>

Figure 50. Collaboration Scenario of the SCMS

http://www.w3.org/2001/XMLSchema-instance
http://baseballteam.bcity.com/pm/baseball

89

 <!-- Bookmark 3 -->

 <xlogic:invokeWebService service="RestaurantPayService"

 url="http://restaurant.xxcorp.com/PayService"

 name="restaurant_pay_result">

 <foods xmlns="xxcorp">

 <xlogic:iterator name="tag" source="tags">

 <food>${tag}</food>

 </xlogic:iterator>

 </foods>

 </xlogic:invokeWebService>

 <!-- Bookmark 4 -->

 <xlogic:invokeWebService service="CalorieService"

 url="http://restaurant.xxcorp.com/CalorieService"

 name="calorie_result">

 <foods xmlns="xxcorp">

 <xlogic:iterator name="tag" source="tags">

 <food>${tag}</food>

 </xlogic:iterator>

 </foods>

 </xlogic:invokeWebService>

 <xlogic:set name="calorie" select="//calorie">

 ${calorie_result}

</xlogic:set>

Figure 50. Collaboration Scenario of the SCMS (cont.)

http://restaurant.xxcorp.com/PayService
http://restaurant.xxcorp.com/CalorieService

90

 <!-- Bookmark 5 -->

 <xlogic:invokeWebService service="PlayerManagementService"

 url="http://baseballteam.bcity.com/pm/baseball"

 name="manage_result">

 <updateFoodLog xmlns="bcity">

 <player>${player}</player>

 <calorie>${calorie}</calorie>

 </updateFoodLog>

 </xlogic:invokeWebService>

</xlogic:XLogicScript>

Figure 50. Collaboration Scenario of the SCMS (cont.)

The execution process of the above XLogic script is as follows:

1. Tag data arrives at the Subscriber Agent of the middleware platform.

2. XLogic is executed according to the processing sequences of the

trigger mode.

3. The captured tag data are set to variable, called tags (Bookmark 1).

4. From the tags, the player’s tag information is set to variable, player

(Bookmark 2).

5. The tag ID of the food is transmitted to “RestaurantPayService” of

the Cafeteria Management System to accumulate the charges to the

whole expenses (Bookmark 3).

http://baseballteam.bcity.com/pm/baseball

91

6. The tag ID of the food is transmitted to “CalorieService” of the

Cafeteria Management System and all calories are calculated

(Bookmark 4).

7. The calculated caloric value is sent to “PlayerManagementService”

of the Player Management System to help the baseball team keep

track of the nutrition history of the player (Bookmark 5).

In this scenario, the XLogic script, designed to show the collaboration

among heterogeneous application services, has been experimented and shared

with the external services such as “RestaurantPayService,” “CalorieService,”

and “PlayerManagementService” according to the expected execution

sequences.

92

APPENDIX B: THE EXTENDED COLLABORATION MODEL WITH THE XCREAM

FRAMEWORK

The XCREAM framework or similar infrastructure framework are

increasingly applied to our environment. As a result, frequently seamless

integration between many service frameworks, which previously have been

operated independently, is expected.

Figure 51. The Extended Collaboration Framework

This section suggests an extended collaboration model with the

XCREAM framework by introducing a housing complex where fire sensors

and medical sensors are installed and a centralized command and control

93

system (C&C system) is maintained by a housing company (see “Figure 51”).

Usually, a fire station maintains its own C&C system with many fire sensors

across its governing region and location identifiable fire engines equipped with

GPS (Global Positioning System) and wireless communication facilities. A

local traffic agency may operate an Intelligent Traffic System to control the

traffic lights on the road. Hospitals of that region have their own medical

systems, especially, an emergency rescue system that controls the conditions of

emergency rooms and keeps track of an emergency situation.

The growing needs to develop highly collaborative service systems

enhance the applicability of the XCREAM framework. Individual systems

autonomously work their own business processes and expose some of their

functions as service interfaces.

“Figure 51” assumes an extended application environment, in which two

frameworks, “A” and “B,” collaborate to serve complex services. The

framework is then connected to service specific middlewares such as a fire

sensor and navigator-enabled middleware, a traffic sensor-enabled middleware,

and a medical sensor-enabled middleware.

The following scenario is supposed for the framework “A”:

1. If a fire alarm starts to beep, the sensor data is delivered to the fire

sensor and navigator–enabled middleware.

2. This is propagated to the framework “A” as well as the Fire Station

C&C System of the local fire station.

94

3. The system orders a fire engine to be dispatched to the housing

complex. And the route information to the destination is sent to help

the Intelligent Traffic System control the traffic lights along the route

of the fire engine.

 The second scenario describes how the framework “B” works

depending on the medical emergency event:

1. When a medical sensor starts to beep, the data is transmitted to the

framework “B” through the home sensor-enabled middleware.

2. The framework “B” executes a pre-registered scenario of the

Medical Emergency Control System.

3. The location information of the housing complex, delivered from

the home sensor enabled middleware, will be recognized with the

event.

4. The service scenario for this situation is activated by the framework

“B” and the Medical Emergency Control System orders an

ambulance to be dispatched.

5. Throughout the emergency rescuing process, the Intelligent Traffic

System controls the traffic lights along the route of the ambulance

and the Medical Emergency Control System follows up the patients

with the continuing sensor data.

95

APPENDIX C: XLOGIC SCRIPT LANGUAGE AND ITS EXTENSION FOR

XONTOLOGY

The XLogic script is a kind of scenario written by the user. A user can

write an XLogic script using the XLogic script language at the XEM. The

scenario below is one example of the XLogic script. The following XLogic

script is part of a sample service using the XCREAM, finding food information

after identifying a RFID tag.

The XLogic languages are similar to conventional programming

languages such as Java and C++ and easy for users to write a scenario. The

scenario responds when specific tag information comes into the XCREAM.

As the XCREAM is extended to have ontology-based context awareness

features, the existing XLogic script system should be extended to support

wider concepts and operations.

For example, users may want to handle timestamp of the identified tag

data by using time operators or compare a certain predicate with other

predicate or any value (literals) by using logical operators

As a result, the basic XLogic script system should be extended by

enabling time operators and logical operators: SINCE, UNTIL, BETWEEN a

AND b, =, <, >, <=, >=, &&, ^^, and != (see “Table 13”). By adopting these

operators, application services become powerful enough to express the

ontology-based context aware functions with the XOnt Agent.

“Table 13” summarizes the XLogic script tags including object, location,

time, and XOntScript as well as the existing tags.

96

Table 13. XLogic Script Tags

Tags Description
Required

Attributes

Optional

Attributes

XLogicScri

pt

Root statement of

XLogicScript,

xmlns:xlogic,

xmlns:xsi,

xsi:schemaLocat

ion

name,

creationDate

invokeWeb

Service
Invokes web service.

name,

url,

service

port,

namespace,

async

iterator
Sets parameter when

invoking web-service

name,

source
-

set Sets variable using JEXL. name select

if Controls flow of statement(s). condition -

then Coexists with an <if> tag. - -

else Comes with an <if> Tag. - -

while Iteration statement. condition -

foreach Iteration statement.
name,

source
-

wait
Holds process during given

milliseconds.
- -

continue Continues loop statement. - -

break Escapes loop statement. - -

print Prints JEXL statement. - -

XOntScript

Root statement of XOntScript

Used to define ontology-based

context-aware script

xmlns:xlogic,

xmlns:xsi,

xsi:schemaLocat

ion

name,

creation date

object
Shows information of the

identified object

PID,

name,

idtype

cellno,

description,

tagno

location Describes location information

name,

address
*
,

latitude and

longitude
**

address
**

,

latitude and

longitude
*

time Returns time information -

exacttime

between …

and …,

before,

after,

every

97

The location of an identified person, object, and sensors is specified with

an object tag. The location information is considered in two ways: (1) logical

location like street address with a floor number, parking lot number, or room

number and (2) physical location with latitude and longitude of GPS-based

positioning system. Regarding positioning and its user friendly representation,

GEO coding or reverse GEO coding should be considered to cover the gap

between the logical and physical representations.

98

APPENDIX D: XLOGIC SCRIPT LANGUAGE SPECIFICATIONS

The Expression Language for the XLogic Script is JEXL (Java

Expression Language). Users follow “xlogic.xsd,” which is XSD (XML

Schema Definition) file, in order to write the XLogic script.

(A) <XLogicScript> Tag

(1) Description

When writing XLogic script, the root tag always starts with XLogicScript tag.

The XLogicScript tag can include all other tags.

(2) Script example

<xlogic:XLogicScript

xmlns:xlogic="urn:xcream:xlogic:script:xsd:1"

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="urn:xcream:xlogic:script:xsd:1 http://triton.

towson.edu/xcream/xlogic.xsd” name=”” creationDate=””>

</xlogic:XLogicScript>

(3) Attributes

Attributes Description Required/Optional

xmlns:xlogic XLogic namespace required

xmlns:xsi xsi namespace required

xsi:schemaLocation
Value of location of the namespa

ce and the schema
required

name Name of the script optional

creationDate Date of creation of the script optional

99

(B) < invokeWebService > Tag

(1) Description

Invokes the associated web-service.

(2) Script specification

<xlogic:invokeWebService name=”” url=”” service=”” port=”” namespace=””

async=””>

</xlogic:invokeWebService>

(3) Attributes

Attributes Description Required/Optional

name
Stores result which is

transformed to XML
required

url Location of the web-service required

service Name of the web-service required

port Port for the web-service optional

namespace Namespace of the web-service optional

async
Indicates whether the synchroni

zation mode is set
optional

(C) < iterator > Tag

(1) Description

Sets parameter when invoking web-service. It always follows

<invokeWebService> tag.

(2) Script specification

<xlogic:iterator name=”” source=””></xlogic:iterator>

100

(3) Attributes

Attributes Description Required/Optional

name Variable name required

source
XLogic variable name of the

script
required

(D) < set > Tag

(1) Description

Sets a variable using JEXL. This tag extracts specific value of expression using

XPath.

(2) Script specification

<xlogic:set name=”” select=””>${}</xlogic:set>

(3) Attributes

Attributes Description Required/Optional

name Sets name of variable required

select
XPath of extracted value which

is XML type from JEXL
optional

(E) <if> Tag

(1) Description

Controls flow of statement(s). It should be followed by a <then> tag. If its

condition attribute has been met, then statement(s) following the <then> tag is

(are) executed.

(2) Script specification

<xlogic:if condition=”${}”></xlogic:if>

(3) Attribute

101

Attributes Description Required/Optional

condition

Logical condition of the if

statement

Returns a boolean value

required

(F) <then> Tag

(1) Description

Coexists with an <if> tag. Statement(s) following a <then> tag is (are) only

executed when the condition of the <if> tag has been met.

(2) Script specification

<xlogic:then></xlogic:then>

(3) Attributes

NA

(G) <else> Tag

(1) Description

Comes with an <if> Tag. Statement(s) following an <else> tag is (are) only

executed when the condition <if> tag has not been met.

(2) Script specification

<xlogic:else></xlogic:else>

(3) Attributes

NA

(H) <while> Tag

(1) Description

102

Iteration statement. It continuously iterates until the condition of JEXL has

been met.

(2) Script specification

<xlogic:while condition=”${}”></xlogic:while>

(3) Attribute

Attributes Description Required/Optional

condition
Condition of <while> statement

Returns a boolean value
required

(I) <foreach> Tag

(1) Description

Iteration statement. It continuously iterates as long as the value of the variable

matches a certain value.

(2) Script specification

<xlogic:foreach name=”” source=””></xlogic:foreach>

(3) Attribute

Attributes Description Required/Optional

name
Name of a variable capturing a

value of source
required

source Value sources required

(J) <wait> Tag

(1) Description

Holds process during given milliseconds. It is requested by using JEXL.

(2) Script specification

103

<xlogic:wait>${}</xlogic:wait>

(3) Attributes

NA

(K) <continue> Tag

(1) Description

It make the control of a loop continue one more time unconditionally within a

<while> statement or a <foreach> statement.

(2) Script specification

<xlogic:continue></xlogic:continue>

(3) Attributes

NA

(L) <break> Tag

(1) Description

Excapes loop statement. It completely escapes iteration from <while>

statement or <foreach> statement.

(2) Script specification

<xlogic:break></xlogic:break>

(3) Attributes

NA

104

(M) <print> Tag

(1) Description

Prints JEXL statement.

(2) Script specification

<xlogic:print>${}</xlogic:print>

(3) Attributes

NA

(N) <XOntScript> Tag

(1) Description

Root tag of extended XOntScript statement. Used to define ontology-based

context-aware script

(2) Script specification

<xlogic:XOntScript

xmlns:xlogic="urn:xcream:xlogic:script:xsd:1"

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation="urn:xcream:xlogic:script:xsd:1 http://triton.towson.

edu/xcream/xlogic.xsd”

name=”” creationDate=””>

</xlogic:XOntScript>

105

(3) Attributes

Attributes Description Required/Optional

xmlns:xlogic XLogic namespace required

xmlns:xsi xsi namespace required

xsi:schemaLocation
Value of location of the namespa

ce and the schema
required

name Name of the script optional

creationDate Date of creation of the script optional

(O) <Object> Tag

(1) Description

Shows information of the identified object.

(2) Script specification

< xlogic:object PID=”” name=”” tagtype=”” >${}</ xlogic:location>

(3) Attributes

Attributes Description Required/Optional

PID Person Identification Number required

name Name of object required

idtype ID type required

cellno Cell phone number optional

description Description of an object optional

tagno RFID tag number optional

(P) <Location> Tag

(1) Description

Describes location information.

106

(2) Script specification

< xlogic:location name=”” address=””>${}</ xlogic:location>

(3) Attributes

Attributes Description Required/Optional

name Name of a location of interest required

address Address of a location of interest required/optional

latitude, longitude
Latitude, Longitude Pair of a

location of interest
required/optional

(Q) <Time> Tag

(1) Description

Returns time information.

(2) Script specification

< xlogic:time exacttime=””>${}</ xlogic:time>

(3) Attributes

Attributes Description Required/Optional

exacttime Notifies a specific time optional

between … and … Sets time duration optional

before
Sets a time to apply before

operation
optional

after
Sets a time to apply before

operation
optional

every Sets a periodic operation optional

107

REFERENCES

[1] D. Allemang and J. Hendler, Semantic Web for the Working

Ontologist, Morgan Kaufmann Publishers, Waltham, MA, USA,

2011.

[2] G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J.

Maluszynski, and P. F. Patel-Schneider, Combining Rules and

Ontologies: A Survey, Technical Report

IST506779/Linköping/I3-D3/D/PU/al, Linköping University,

February 2005. IST-2004-506779 REWERSE Deliverable I3-D3,

Available from: http://rewerse.net/deliverables/m12/i3-d3.pdf.

[3] G. Antoniou and F. V. Harmelen, “Web Ontology Language:

OWL,” Handbook on Ontologies, 2004, Available from:

http://www.cs.vu.nl/~frankh/postscript/OntoHandbook03OWL.p

df.

[4] A. Arasu, S. Badu, and J. Widom, “CQL: A Language for

continuous queries over streams and relations,” DBPL, 2003.

[5] F. Baader, I. Horricks, and U. Sattler, “Description Logics,” In F.

V. Harmelen, V. Lifschitz, and B. Porter, editors, Handbook of

Knowledge Representation, chapter 3, Elsevier, 2008, pp.135-

180, Available from:

http://www.cs.ox.ac.uk/ian.horrocks/Publications/download/200

7/BaHS07a.pdf.

108

[6] F. Baader and W. Nutt, “Basic Description Logics,” In F. Baader,

D. Calvanese, D.L. McGuinness, D. Nardi, P.F. Patel-Schneider,

editors, The Description Logic Handbook: Theory,

Implementation and Applications, chapter 2, Cambridge

University Press, 2003, pp.47-100, Available from:

http://www.inf.unibz.it/~franconi/dl/course/dlhb/dlhb-02.pdf.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom,

“Models and Issues in Data Stream Systems,” ACM, 2002.

[8] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-

aware systems,” Int’l Journal of Ad Hoc and Ubiquitous

Computing, vol.2, no. 4, 2007.

[9] S. Bechhofer, I. Horrocks, and P. F. Patel-Schneider, Tutorial on

OWL, Available from:

http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/.

[10] P. Borst, “Engineering ontologies,” Int’l Journal of Human-

Computer Studies, vol.46, no.2-3, pp.365-406, February 1997,

Available from:

http://doc.utwente.nl/18019/1/Borst97engineering.pdf.

[11] C. Byun, K. Park, J. Yun, and Y. Kim, “Design and

Implementation of the Context-Aware Collaboration Framework

with the XCREAM,” Proc. of Int’l Conference on Smart IT

Applications (SITA 2011), Seoul, Korea, August 2011.

109

[12] S. Chandrasekaran, O. Cooper, A. Deshpande, M.J. Franklin, and

J.M. Hellerstein, W. Hong, S. Madden, V. Raman, F. Reiss, and

M. Shah, “TelegraohCQ: Continuous dataflow processing for an

uncertain world,” CIDR 2003, First Biennial Conf. on

Innovative Data Systems Research, Asilomar, CA, USA, 2003.

[13] J. Chen, D.J. DeWitt, F. Tian, and Y. Wang, “NiagaraCQ: A

Scalable Continuous Query System for Internet Databases,” Proc.

ACM SIGMOD Int’l Conference on Management of data, 2000,

pp.379-390.

[14] A. K. Dey and G. D. Abowd, “Towards a better understanding of

context and context-awareness,” Proc. of the Workshop on the

What, Who, Where, When and How of Context-Awareness, ACM

Press, New York, 2006.

[15] N. Drummond, M. Horridge, and H. Knublauch, “Protégé-OWL

Tutorial,” The 8
th

 International Protégé Conference, Madrid,

July 2005, Available from:

http://protege.stanford.edu/conference/2005/slides/T2_OWLTuto

rialI_Drummond_final.pdf.

[16] T. Eiter, G. Ianni, A. Polleres, R. Schindlauer, and H. Tompits,

“Reasoning with Rules and Ontologies,” Reasoning Web 2006,

2006, pp.93-127, Available from: http://rewerse.net/publications/

download/REWERSE-RP-2006-070.pdf.

110

[17] N. D. Evans, “Middleware is the key to RFID,” RFID Journal,

April 2004, Available from:

http://www.rfidjournal.com/article/view/858/1/0/.

[18] C. Floerkemeie and M. Lampe, “RFID middleware design –

addressing application requirements and RFID constraints,”

Joint sOc-EUSAI conference, 2005, France, pp.219-224.

[19] C. L. Forgy, “Rete: a fast algorithm for the many pattern/many

object pattern match problem,” Artificial Intelligence, 19(1),

September 1982, pp.17-37.

[20] M. R. Genesereth, and R. E. Fikes, Knowledge Interchange

Format, Version 3.0 Reference Manual, Technical Report Logic-

92-1, Computer Science Department, Stanford University, 1992.

[21] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and

A. K. Elmagarmid, “Incremental Evaluation of Sliding-Window

Queries over Data Stream,” IEEE Transactions on Knowledge

and Data Engineering, vol.31, no.1, January 2007, pp.57-72.

[22] T. R. Gruber, “Toward Principles for the Design of Ontologies

Used for Knowledge Sharing,” Int’l Journal of Human-

Computer Studies, vol.43, November 1995, August 23 1995, pp.

907-928, Available from: http://tomgruber.org/writing/onto-

design.pdf.

[23] T. Gruber, A translation approach to portable ontology

specifications, Knowledge Systems Laboratory Technical Report

111

KSL 92-71, Stanford University, CA, USA, 1993, Available from:

http://www.dbis.informatik.hu-

berlin.de/dbisold/lehre/WS0203/SemWeb/lit/KSL-92-17.pdf.

[24] J. Hanson, “Event-driven services in SOA,” JavaWorld, January

2005, Available from: http://www.javaworld.com/javaworld/jw-

01-2005/jw-0131-soa.html.

[25] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo,

“Middleware to Support Sensor Network Applications,” IEEE

Network Magazine Special Issue, January 2004.

[26] I. Horrocks and U. Sattler, Description Logics, Tutorial given by

at ECAI-2002, Lyon, France, July 2002, Available from:

http://www.cs.man.ac.uk/~horrocks/Slides/ecai-handout.pdf.

[27] D. K. Kim, Extension of the XCREAM Framework with

Ontology-based Context-Aware Scheme, Master Thesis, Dept. of

Computer and Information Sciences, Towson University, MD,

USA, 2010.

[28] G. J. Kim, S. J. Kim, N. S. Kim, and C. S. Pyo, “USN Service

and Market Trend,” Journal of KISS, vol.25, no.12, December

2007.

[29] M. S. Kim, Y. J. Lee, and J. H. Park, “USN Middleware

Technology Trend,” Journal of ETRI, vol.22, no.3, June 2007.

[30] Y. B. Kim, C. S. Kim, and J. W. Lee, “A Middleware Platform

Based on Multi-Agents for u-Healthcare Services with Sensor

112

Networks,” Symposium on Applied Computing Proceedings of

the 2008 ACM symposium on Applied computing, 2008.

[31] T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,”

Scientific American, May 2001.

[32] K. S. Leong, M. L. Ng, and D.W. Engels (Auto-ID Labs), EPC

Network Architecture, AUTOIDLABS-WP-SWNET-012, 2005,

Available from: http://autoidlab.eleceng.adelaide.edu.au/static/

EPC%20Network.pdf.

[33] S. Li, S. H. Son, and J. A. Stankovic, “Event Detection Services

Using Data Service Middleware in Distributed Sensor Networks,”

Information Proc. In Sensor Networks, April 2003, LNCS 2634,

pp.502-517.

[34] L. Liu, C. Pu, and W. Tang, “Continual Queries for Internet Scale

Event-Driven Information Delivery,” IEEE Tran. on Knowledge

and Data Engineering, vol.11, no.4, 1999.

[35] T. Liu and M. Martonosi, “Impala: A Middleware System for

Managing Autonomic,” Parallel Sensor Systems, Proc. ACM

SIGPLAN Symp. Principles and Practice of Parallel

Programming, 2003, pp. 107-118.

[36] D. Luckham, The Power of Events: An Introduction to Complex

Event Processing in Distributed Enterprise Systems, Addison-

Wesley Longman Publishing Co., Inc. Boston, MA, USA, 2001.

113

[37] S. R. Madden, M.J. Franklin, and J.M. Hellerstein, “TinyDB: An

Acquisitional Query Processing System for Sensor Networks,”

ACM TODS, vol.30, no.1, 2005, pp.122-173.

[38] P. McCarthy, “Search RDF data with SPARQL,” developWorks

of IBM, May 2005, Available from: http://www.ibm.com/

developerworks/xml/library/j-sparql/.

[39] G. Meditskos and N. Bassiliades, “Combining a DL Reasoner

and a Rule Engine for Improving Entailment-based OWL

Reasoning,” ISWC 2008, 2008, Available from:

http://lpis.csd.auth.gr/publications/med-iswc08.pdf.

[40] J. Moskal and C. Matheus, “Detection of Suspicious Activity

Using Different Rule Engines - Comparison of BaseVISor, Jena

and Jess Rule Engines,” In N. Bassiliades, G. Governatori, A.

Paschke, editors, Rule Representation, Interchange and

Reasoning on the Web, Int’l Symposium, RULEML 2008, FL,

USA, October 2008, Proc. vol.5321 of Lecture Notes in

Computer Science, pp.73-80, Springer, 2008.

[41] I. Motakis and C. Zaniolo, “Temporal aggregation in active

database rRules,” Proc. of Int’l Conference on Management of

Data (SIGMOD), ACM Press, 1997.

[42] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and

W. R. Swartout, “Enabling technology for knowledge sharing,”

114

AI Magazine, 12, 1991, pp.36-56, Available from:

http://tomgruber.org/writing/AIMag12-03-004.pdf.

[43] N. F. Noy, “Semantic Integration: A Survey Of Ontology-Based

Approaches,” ACM SIGMOD Record vol.33, no.4, December

2004, pp.65-70, Available from: http://disi.unitn.it/~p2p/

RelatedWork/Matching/13.natasha-10.pdf

[44] N. F. Noy and S. W. Tu, “Developing Medical Informatics

Ontologies with Protégé,” AMIA (American Medical Informatics

Association) Annual Symposium 2003, 2003, Available from:

http://protege.stanford.edu/amia2003/index.html.

[45] M. Obitko, Introduction to Ontologies and Semantic Web

extracted from Marek Obitko (advisor Vladimir Marik):

Translations between Ontologies in Multi-Agent Systems, Ph.D.

dissertation, Faculty of Electrical Engineering, Czech Technical

University in Prague, 2007. Available from:

http://www.obitko.com/tutorials/ontologies-semantic-

web/introduction.html.

[46] J. H. Paik, H. S. Kim, Y. H. Kim, and S. I. Han, “New

Techonology Trends on Indexing for Moving Objects,” Journal

of KISS, vol.25, no.1, January 2007.

[47] K. Park, C. Byun, J. Yun, Y. Kim, and J. Chang, “Context-Aware

Inference (CAI) Model on Smart Computing Environment,”

http://www.obitko.com/tutorials/ontologies-semantic-web/introduction.html
http://www.obitko.com/tutorials/ontologies-semantic-web/introduction.html

115

Proc. of Int’l Conference on Information Science and

Applications (ICISA 2012), Suwon, Korea, May 2012.

[48] K. Park, J. Yun, C. Byun, Y. Kim, and J. Chang, “The XCREAM

Framework and Collaboration Validity Tests,” Proc. of the 1
st

ACIS/JNU Int’l Conference on Computers, Networks, Systems,

and Industrial Engineering (CNSI 2011), Jeju, Korea, May 2011.

[49] K. Park, J. Yun, C. Byun, Y. Kim, and J. Chang, “The XCREAM:

Collaborative Middleware Framework for RFID/USN-Enabled

Applications,” Proc. of Int’l Conference on Information

Integration and Web-based Applications and Services (iiWAS

2010), Paris, France, November 2010.

[50] K. Park, J. Yun, Y. Kim, and J. Chang, “Design and

Implementation of Scenario-based Collaborative Framework:

XCREAM,” Proc. of Int’l Conference on Information Science

and Applications (ICISA 2010), Seoul, Korea, April 2010.

[51] K. Park, Y. Kim, and J. Chang, “Implementation of Collaborative

Service Framework with the XCREAM Platform,” Proc. of UKC

on Science Technology and Enterpreneurship (UKC 2009),

Raleigh, NC, USA, July 2009.

[52] S. Rizvi, S. R. Jeffery, S. Krishnamurthy, M. J. Franklin, N.

Burkhart, A. Edakkunni, and L. Liang, “Events on the edge,”

Proc. of the 2005 ACM SIGMID Int’l Conference on

Management of data, 2005, pp.885-887.

116

[53] N. Ryan, J. Pascoe, and D. Morse, “Enhanced reality fieldwork:

the context-aware archaeological assistant,” Proc. of the 25
th

Anniversary Computer Applications in Archaeology, 1997,

Available from: http://www.caaconference.org/.

[54] S. Sarma, D.L. Brock, and K.Ashton, The networked physical

world – proposals for engineering the next generation of

computing, commerce & automatic identification, Technical

Report MIT-AUTOID-WH-001, MIT Auto-ID Center, 2000,

Available from: http://www.autoidlabs.org/uploads/media/MIT-

AUTOID-WH-001.pdf.

[55] B. Schilit and M. Theimer, “Disseminating active map

information to mobile hosts,” IEEE Network, vol.8, no.5, 1994,

pp.22-32.

[56] R. W. Schulte, “The Growing Role of Events in Enterprise

Applications,” Gartner AV-20-3900, July 2003, Available from:

http://www.gartner.com/DisplayDocument?doc_cd=116129.

[57] C. Sliwa, “Event-driven architecture poised for wide adoption,”

Computerworld, May 2003, Available from:

http://www.computerworld.com/s/article/81133/Event_driven_ar

chitecture_poised_for_wide_adoption?taxonomyId=063.

[58] J. F. Sowa, “Conceptual Graphs,” Handbook of Knowledge

Representation, 2008, pp.213-237, Available from:

http://www.jfsowa.com/cg/cg_hbook.pdf.

http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-001.pdf
http://www.autoidlabs.org/uploads/media/MIT-AUTOID-WH-001.pdf

117

[59] V. Spiliopoulos, G. A. Vouros, and V. Karkaletsis, “On the

discovery of subsumption relations for the alignment of

ontologies,” Web Semantics: Science, Services and Agents on the

World Wide Web, 2010.

[60] D. Terry, D. Goldberg, D. Nichols, and B. Oki, “Continuous

Queries over Append-Only Databases,” Proc. of the ACM

SIGMOD Int’l Conference on Management of data, 1992,

pp.321-330.

[61] M. Wolska and M. Regneri, “Description Logic in a nutshell,”

Seminar, Resources for Computational Linguists, SS 2007,

Available from: http://www.cse.iitd.ernet.in/~kkb/DL-1.pdf.

[62] Y. Yao and J. E. Gehrke, “The Cougar Approach to In-Network

Query Processing in Sensor Networks,” SIGMD RECORD.

vol.31, no.3, September 2002.

[63] J. Yun, K. Park, C. Byun, Y. Kim, and J. Chang, “Mobile Real-

time Tracking System based on the XCREAM (XLogic

Collaborative RFID/USN-Enabled Adaptive Middleware,” Proc.

of the 9
th

 ACIS Conference on Software Engineering Research,

Management & Applications (SERA 2011), Towson, MD, USA,

August 2011.

[64] D. Zimmer and R. Unland, “On the semantics of complex events

in active database management systems,” Proc. of Int’l

118

Conference on Data Engineering (ICDE), IEEE Computer

Society Press, 1999, pp.392-399.

[65] Conceptual Graphs, A World of Conceptual Graphs, Available

from: http://conceptualgraphs.org/.

[66] EPCglobal, GS1 EPC Tag Data Standard, ver. 1.6, 2011,

Available from: http://www.gs1.org/gsmp/kc/epcglobal/tds/

tds_1_6-RatifiedStd-20110922.pdf.

[67] EPCglobal, The EPCglobal Architecture Framework, ver.1.4,

2010, Available from: http://www.gs1.org/gsmp/kc/epcglobal/

architecture/architecture_1_4-framework-20101215.pdf.

[68] EPCglobal, The Application Level Events (ALE) Specification,

ver.1.1.1, 2009, Available from: http://www.gs1.org/gsmp/kc/

epcglobal/ale/ale_1_1_1-standard-core-20090313.pdf.

[69] GE Company, Semantic Application Design Language (SADL),

Available from: http://sadl.sourceforge.net/.

[70] Apache Jena, Apache Jena, Available from:

http://jena.apache.org/index.html.

[71] Apache Jena, SPARQL Tutorial, Available from:

http://jena.apache.org/tutorials/sparql.html.

[72] The JBoss Drools team, Drools Introduction and General User

Guide, ver.5.5.0.Beta1 Available from:

http://docs.jboss.org/drools/release/5.5.0.Beta1/droolsjbpm-

introduction-docs/pdf/droolsjbpm-introduction-docs.pdf.

119

[73] The JBoss Drools team, Drools Expert User Guide,

ver.5.5.0.Beta1, Available from: http://docs.jboss.org/drools/

release/5.5.0.Beta1/drools-expert-docs/pdf/drools-expert-

docs.pdf.

[74] Jess, the Rule Engine for the JavaTM Platform, Available from:

http://www.jessrules.com/.

[75] National Institute of Standards and Technology (NIST), Special

Publication 800-12: An Introduction to Computer Security: The

NIST Handbook, Available from: http://csrc.nist.gov/publications

/nistpubs/800-12/800-12-html/index.html.

[76] Oracle, Oracle Fusion Middleware, 2011, Available from:

http://docs.oracle.com/cd/E23943_01/core.1111/e10103/intro.ht

m#ASCON110.

[77] The Port Authority of New York and New Jersey, Airport Rules

and Regulations, August 2009, Available from:

http://www.panynj.gov/airports/pdf/Rules_Regs_Revision_8_04

_09.pdf.

[78] Protégé Team (Stanford Center for Biomedical Informatics

Research), Protégé, Available from: http://protege.stanford.edu/.

[79] Protégé Team, User Documentation, Available from:

http://protege.stanford.edu/doc/users.html.

[80] RDF Primer, W3C Recommendation, February 10 2004,

120

Available from: http://www.w3.org/TR/2004/REC-rdf-primer-

20040210/.

[81] Siemens, Siemens Airport – Integrated Solutions, Available from:

http://w3.siemens.com/market-specific/global/en/airports/

integrated_it_solutions/Documents/Integrated_Airport_Solutions

_brochure.pdf.

[82] State of Vermont (Agency of Natural Resources), AIR Pollution

Control Regulations, September 2011, Available from:

http://www.anr.state.vt.us/air/docs/APCR%202011.pdf.

[83] The STREAM Group, “STREAM: The Stanford stream data

manager,” IEEE Data Engineering Bulletin. vol.26, no.1, 2003.

[84] W3C Recommendation, OWL 2 Web Ontology Language Primer,

2009, Available from: http://www.w3.org/TR/owl2-primer/.

[85] W3C Recommendation, RDF Primer, February 2004, Available

from: http://www.w3.org/TR/2004/REC-rdf-primer-20040210/.

[86] W3C Recommendation, RDF Semantics, February 2004,

Available from: http://www.w3.org/TR/2004/REC-rdf-mt-

20040210/.

[87] W3C Recommendation, RDF Vocabulary Description Language

1.0: RDF Schema, February 2004, Available from:

http://www.w3.org/TR/rdf-schema/.

[88] W3C School, Introduction to OWL, Available from:

http://www.w3schools.com/rdf/rdf_owl.asp.

121

CURRICULUM VITAE

CURRICULUM VITAE

NAME: KYUNG EUN PARK

PERMANENT ADDRESS: 716 LEISTER DR. TIMONIUM, MD 21093

PROGRAM OF STUDY: INFORMATION TECHNOLOGY

DEGREE AND DATE TO BE CONFERRED: DOCTOR OF SCIENCE, 2012

Secondary Education: Master of Science in Computer Science

 Seoul National University, Seoul, Republic of Korea, 1992

Collegiate institutions attended Dates Degree Date of Degree

Towson University Aug 2006- Doctor of Science December 2012

Maryland, U.S.A. Dec 2012

Seoul National University Mar 1990- Master of Science February 1992

Republic of Korea Feb 1992

Seoul National University Mar 1986- Bachelor of Science February 1992

Republic of Korea Feb 1990

Major: Information Technology

Research Interest: Multi-Device (RFID/USN) Enabled Middleware Framework,

 Complex Event Processing, Location-Based Services,

 Geographic Information System, Geospatial DBMS,

 Context-Aware System with Rule-Based System and Ontology

122

Professional publications:

[1] K. Park, C. Byun, J. Yun, Y. Kim, and J. Chang, “Context-Aware

Inference (CAI) Model on Smart Computing Environment,” Proc. of

Int’l Conference on Information Science and Applications (ICISA

2012), Suwon, Korea, May 2012.

[2] C. Byun, K. Park, J. Yun, and Y. Kim, “Design and Implementation of

the Context-Aware Collaboration Framework with the XCREAM,”

Proc. of Int’l Conference on Smart IT Applications (SITA 2011), Seoul,

Korea, August 2011.

[3] J. Yun, K. Park, C. Byun, Y. Kim, and J. Chang, “Mobile Real-time

Tracking System based on the XCREAM (XLogic Collaborative

RFID/USN-Enabled Adaptive Middleware,” Proc. of the 9
th

 ACIS

Conference on Software Engineering Research, Management &

Applications (SERA 2011), Towson, MD, USA, August 2011.

[4] K. Park, J. Yun, C. Byun, Y. Kim, and J. Chang, “The XCREAM

Framework and Collaboration Validity Tests,” Proc. of the 1
st

ACIS/JNU Int’l Conference on Computers, Networks, Systems, and

Industrial Engineering (CNSI 2011), Jeju, Korea, May 2011.

[5] K. Park, J. Yun, C. Byun, Y. Kim, and J. Chang, “The XCREAM:

Collaborative Middleware Framework for RFID/USN-Enabled

Applications,” Proc. of Int’l Conference on Information Integration

and Web-based Applications and Services (iiWAS 2010), Paris, France,

November 2010.

[6] K. Park, J. Yun, Y. Kim, and J. Chang, “Design and Implementation

of Scenario-based Collaborative Framework: XCREAM,” Proc. of

Int’l Conference on Information Science and Applications (ICISA

2010), Seoul, Korea, April 2010.

[7] K. Park, Y. Kim, and J. Chang, “Implementation of Collaborative

Service Framework with the XCREAM Platform,” Proc. of UKC on

Science Technology and Enterpreneurship (UKC 2009), Raleigh, NC,

USA, July 2009.

[8] K. Park, Y. Kim, J. Chang, D. Rhee, and J. Lee, “The Prototype of the

Massive Events Streams Service Architecture and its Application,”

Proc. of Int’l Conference on Software Engineering, Artificial

Intelligence, Networking and Parallel/Distributed Computing (SNPD

2008), Thailand, August 2008.

[9] K. Park, Y. Kim, J. Lee, and J. Chang, “Integrated Design of Event

Stream Service System Architecture (ESSSA),” Proc. of Int’l

Conference on E-business(ICE-B 2007), Barcelona, Spain, July 2007.

123

Professional positions held:

1999-2006 Project Manager, Director

Korea Telecom Data, Inc.

Seoul, South Korea

Managed and Developed

LBS Applications of Spatial Database (ZEUS)

1992-1999 Researcher, Software Engineer

Korea Telecom Research Center

Seoul, South Korea

Managed and Developed

Spatial Database (ZEUS) and GIS Applications

Teaching experience:

2007-2012 Lecturer

 Department of Computer and Information Science

 Towson University

 Towson, MD

 Course developed & taught

 Computer and Creativity (COSC 109)

 Assisted

 A Department Faculty

2006 Teaching Assistant

Department of Computer and Information Science

Towson University

Towson, MD

Assisted

 A Department Faculty

Research experience:

2006-2012 Doctoral Research: Collaboration Framework for a

Context-Aware Environment with Multi-Device

Enabled Applications: the XCREAM (XLogic

Collaborative RFID/USN-Enabled Adaptive

Middleware)

124

Department of Computer and Information Science

Towson University, Towson, MD

Advisor: Yanggon Kim Ph.D.

This dissertation proposes collaboration framework

for a context-aware environment with multi-device

enabled applications based on the XCREAM,

including CAI model and its applied context-aware

mobile security option for smart airport environment.

1990-1992 Master’s Research: Kernel Code Analysis tool for

Multiprocessor Operating System (MOS)

Department of Computer Science

Seoul National University, Seoul, Republic of Korea

Advisor: Kern Koh Ph.D.

This research proposes Kernel Code Analysis tool for

Multiprocessor Operating System (MOS) by scanning

the Kernel Code and sorting concurrently processing

part out of sequentially processing part. This research

had been made by using various Unix kernel utilities.

Skills:

 Proficient in the following languages: C, C++, Pascal, and Java

 Highly experienced in Information Management System, Geospatial

Database Management System, and Location Based Services: Structured

Query Language, Extended Geospatial Query Language, Rule Language,

Ontology Languages including RDF and OWL, etc.

 Extensive experience with Windows platform, also familiar with

UNIX environments

 Teaching Multimedia Authoring Software: Flash, Photoshop, Website

development tool, Audacity, etc.

Awards:

 Graduate Student Scholarship Award (2006-2012) – Full-time/Half-time

Graduate Assistant, Towson University, Maryland

 Jang Youngsil Award (1998) for ZEUS Software Development :

KOITA(Korea Industrial Technology Association), Korea

	Fall 2012 Approvla and Release Pages
	DF2012Park

