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Abstract—Learning the meaning of language with respect to
the physical world in which a robot operates is a necessary
step for shared autonomy systems in which natural language
is part of a user-specific, customizable interface. We propose a
learning system in which language is grounded in visual percepts
without pre-defined category constraints by combining CNN-
based visual identification with natural language labels, moving
towards making it possible for people to use language as a high-
level control system for low-level world interactions, allowing
a system to operate on shared visual/linguistic embeddings. We
evaluate the efficacy of this learning by evaluating against a well-
known object dataset, and report preliminary results that outline
the feasibility of pursuing a visual feature approach to domain-
free language understanding.

I. INTRODUCTION

One of the core questions of shared-autonomy systems is
the nature of interfaces and communications between human
and robotic partners. Possible interfaces range from those
which are purely responsive to user intent, through traditional
tablet- or screen-based interfaces, to interfaces which use
natural language dialog or spoken interactions [26]. Humans
have spent years defining and redefining language, our major
interface with one another. This positions natural language as
an intuitive interface for collaborating with robots. However,
although language is well-positioned to support shared auton-
omy in theory, in practice, understanding natural language in
the general sense is very much an open problem.

Nonetheless, many of the tasks that may be of interest
to such a system involve simpler physical tasks, such as
identifying and interacting with objects in the environment.
An additional complexity is that language use is frequently id-
iosyncratic, requiring efficient user-specific learning. For this,
a major relevant area of research is grounded language [18],
in which models of the environment, language semantics,
and sometimes user intent are jointly learned in order to
understand language in the context of a robot’s physical,
sensed environment. People’s language use and preferred level
of control is idiosyncratic, and learning a customized user
model is an important element of user satisfaction [9].

Much of the existing work on grounded language under-
standing learns in well-defined categories, e.g., learning shapes
or colors, or learning to understand action commands in a
constrained context. We explore how language can be used
in interfacing with a robotic agent in learning how users may
naturally refer to possibly unfamiliar objects. We use CNN-
based visual feature understanding paired in a joint-probability

Fig. 1: Examples of object descriptions from Amazon Mechan-
ical Turk workers above RGB point clouds. The table below
gives classifier outputs for selected words.

grounded language model to ground language from user given
descriptions to household objects (see fig. 1) without defining
categories of language that can be learned. Our primary
contribution is relaxing these constraints by using multimodal
deep learning to understand how language refers to objects
in an environment regardless of their category. Preliminary
results over a popular and openly available RGB-D dataset
suggest the effectiveness of this approach.

II. RELATED WORK

A. Shared Autonomy Interfaces

Shared autonomy between a human and a robot often
requires some amount of explicit or implicit communication,
meaning an interface of some kind is required. Possible
approaches range from having responsive “mechanically trans-
parent” [1] interactions, for example using teleimpedance to
take direction from a user [8]; to interfaces where muscle [10]
or brain [13] signals are monitored and used to adjust a robot’s
actions, but users have access to feedback showing their
muscular input; to systems that incorporate direct user input,
for example using a tablet [2] or an interactive dialog [32].

Natural language is particularly well-suited for supporting
shifting levels of abstraction, as may be appropriate for ad-
justable autonomy and mixed-initiative control systems [23].
This is particularly true in physical settings where a per-
son’s understanding of context may improve shared perfor-
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mance [32]. Our work is most similar to that of Scalise
et al. [26], in which non-constrained language is used to
interact with the robot, but differs in that their goal is to give
manipulation instructions in a simulated environment, whereas
the work described here is focused on learning language about
real objects from complex, real-world sensor data.

B. RGB-D Object Recognition and Analysis

Object recognition is a wide-ranging area of research. In
our work we focus on a multimodal combination of RGB
and depth images; in this section we briefly describe the most
related work in this space using RGB-D data. Early methods
of RGB-D object recognition focused on extracting features
for separate categories such as gradient, color, and shape [3].
While current methods deploy advances in deep learning.

Extracting features with hierarchical matching pursuit
(HMP) introduces an unsupervised feature extraction network,
which allows a model to learn high level features through
a layered approach to combining RGB and depth images.
This method was early work in the concept of gaining visual
features that would be descriptive of the entire object itself.

Transfer learning combined with deep learning has been
a major catalyst in the success of computer vision tasks by
introducing transferable layers in vision models. These initial
layers can then specialize to a task in a specific domain. This
concept has been particularly popular due to the large-scale
dataset ImageNet [6] being used to learn generalized concepts
between vision tasks. While the ImageNet dataset [6] has
furthered work in RGB object recognition, the benefits are
yet to be fully explored in the RGB-D space. Particularly, the
concept of a single GPU neural network that can be shared
and trained, CaffeeNet [11], led to even more success in the
space. Eitel et al. [7] introduced a method that combines the
benefits of transfer learned RGB models to both RGB and
depth images for object recognition. In our work, we use this
state-of-the-art model to extract visual features (see III-B for
details).

C. Language in HRI

Language is used to communicate, refer to, and describe
the physical world. The intuitive idea to allow robotic agents
to comprehend and use natural language in their operations is
encapsulated in a multitude of work. Grounded language learn-
ing is the concept of learning the groundings of language to
perception [5]. Grounding language has been an active field in
the intersection of language and vision communities. Projects
such as image caption generation and recognition [14, 24]
and text-to-image synthesis [33] showcase the joint interest
between communities.

When this interest moves into the physical world using
robotic agents, the perceptual input that language can be
grounded to increases. Language can be grounded to manip-
ulation tasks [25, 27], navigation tasks [20, 30], and assistive
robotics [4]. In all theses tasks, there is a need to understand
the referent language (nouns, adjectives, and more) that is
aligned with objects that occupy the physical spaces.

Fig. 2: Our proposed domain-free model using the visual
features from object recognition system [7], creating word-as-
classifier models. This method fuses two CNN architectures
for RGB and depth images into fully connected fusion layers.
We remove the softmax layer from their approach, exposing
rich multimodal features for learning groundings.

Work in learning models for color, shape, object, haptics,
and sound with predefined unique feature channels [22, 19, 31]
have resulted in successful groundings. However, our work
explores using a set of general features to learn groundings
outside of predefined feature channels. While datasets of
images and rich natural language aligned with those images
are increasing, RGB images with depth sensor (RGB-D)
data create a new learning paradigm for grounded language
learning, as well as a need for rich datasets to benchmark
future works on. Sun et al. [29] introduced the first steps
towards our dataset by aligning the sensor data with user given
attributes. Our work uses the same sensor dataset, however,
we use full-sentence natural language rather than single word
attributes in categories.

III. APPROACH

In this section, we introduce the process of obtaining natural
language descriptions paired with RGB-D sensor data through
Amazon Mechanical Turk. We then detail how we modify the
robust RGB-D object identification approach of Eitel et al. [7]
to extract visual features. Finally, we outline how we use a
joint learning objective that combines both visual and language
features to train word-as-classifier models (see fig. 2 for an
overview). This approach allows the system to learn how a
person might refer to objects in the environment at a semantic
level, leaving low-level classification and action details to a
hypothetical robot assistant.

A. Data Collection

We use the well-known UW RGB-D object set [16, 17],
which includes roughly 40,000 RGB-D images of 300 objects
in 51 categories. This dataset includes point clouds as well
as images and masks. We select five images of each object
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using stratified random sampling, giving us a sample of 1,500
RGB-D images with an unfixed collection of angles from each
object. Images were then uploaded to Amazon Mechanical
Turk, where workers gave short descriptions of each object
as if they were speaking to another person. In order to
obtain diverse descriptions, we avoided using language that
would ‘prime’ workers to describe objects in a particular way.
Workers were also encouraged not to describe the picture itself
(such as “the photo is blurry” or “the photo has a red cap”).

This resulted in a total of 8,186 unprocessed description
responses. While some workers provided incomplete sentences
or described the photo rather than the object, the majority
offered rich contextual language about the images. Only
descriptions which clearly did not follow instructions were
removed, reducing the total number of descriptions to 7,455
complete sentence descriptions of 300 objects, giving almost
25 per object. (This number is smaller than expected because
there were some images workers were unable to give a
description for, either because they were too blurry, or too
hard to parse visually out of context.)

B. Visual Features

Our approach to extracting visual features is drawn from the
robust object recognition method of Eitel et al. [7]; however,
in our results, we demonstrate that with minor modifications,
this approach can be used to extract features suitable for
understanding a user’s high-level language in a variety of
categories (see fig. 1).

Broadly, artificial neural networks (ANNs) allow for high
dimensional inputs to be condensed to meaningful represen-
tations of features in the data. Due to the nature of neural
networks, the final layer offers high-level features for the ob-
jects. This is true of Convolutional Neural Networks (CNNs),
especially for extracting useful features in object recognition
tasks [15]. While many, such as the method of Eitel et al. [7],
employ a softmax function to perform classification, removing
the softmax function exposes rich features that can be used for
our grounded language task.

The network consists of two seven layer CNNs, one per
sensor type, that combine into two final fusion layers. The final
layer of the network allows for 51 features to be extracted from
the joint networks of the RGB and depth images. We extract
these features for each of the 1,500 images sampled from
the RGB-D object dataset paired with the natural language
descriptions given from workers on Amazon Mechanical Turk.
Once the visual features and language is paired, we start the
grounded language model learning process.

C. Category-Free Joint Language Learning

We extend the grounded language learning system of Pillai
and Matuszek [22]. The basis of this work is a joint model
combining perception and language models [19] to learn
language groundings. For this model, the groundings are
learned solely from dataset itself. No prior representations
of the objects nor the language is required. In this system,
a word-as-classifier approach is taken, meaning each token

has a single binary classifier trained to predict whether an
object is described by that word. In this infrastructure, “red”-
as-classifier would classify a red apple and a green apple
as positive and negative, while “apple”-as-classifier would
classify both as positive.

While previous work was constrained by the domains of
language that could be learned, such as shape, color, and
object, we seek to use multipurpose visual features from
the method described in III-B to introduce end-user abstrac-
tion. Our system therefore learns from a single source of
features rather than separate domain-specific sets. Another
change is learning by image rather than by object instance.
This preserves visual differences in the object’s orientation
and appearance, so the system has the opportunity to learn
language relevant to only some images. (For example, from
some angles the baseball cap in fig. 1 might look like a
hemisphere, whereas in the image it does not.)

We aggregate all descriptions given by workers to each
image, creating a more exhaustive ‘descriptive document’ for
each image. These descriptive documents are preprocessed to
remove singletons and stop words. Visual features (extracted
per image) are paired with documents aligned with that image.
We consider an instance as a positive training example of the
token if that token occurs more than once in the description
document, and choose negative examples by document seman-
tic vector distance. We then train a logistic regression model
for each token.

IV. PRELIMINARY RESULTS

We train our word-as-classifier models by splitting our
dataset described in III-A into a training set and testing set
using four-fold cross validation. We report the preliminary
results of these tests averaged over 25 runs with random splits
in order to avoid outlier results. The highest-level average
F1 score is 0.689, with recall of 0.609 and precision of
0.903. These values are consistent with previous work on
grounding language, but do not depend on using category-
specific features, and in fact learn the meanings of words in
several categories with high precision (see fig. 3).

The RGB-D dataset follows WordNet [21] in creating
hierarchical structures, such as a potato being a “root veg-
etable” and “vegetable.” While these categories are defined in
WordNet, there are further subcategories that can be learned in
our dataset; for example, users defining some “food cups” as
“yogurt.” While we do not create hierarchical representations,
unlike Sun and Fox [28], our approach does allow for sub-
categories to be defined with the abstraction of user-defined
language groundings. Other examples include “football” and
“soccer,” which classify different objects in the dataset.

To demonstrate the results of our approach, we show some
examples from various domains in fig. 3. The ‘domain’
(category) of each classifier was assigned by examination,
and words were selected to provide representative breadth of
coverage, for both well-performing and weakly performing
classifiers. We examine tokens in our model that exemplify
the potential for the category-free model. Classifiers describing
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Fig. 3: Example tokens from the test set with their given
performance metrics. Domains are assigned by examination.

size, such as “small,” were learned unexpectedly well, a
product of the fixed camera distance from objects in the
dataset. Classifiers for shape words, such as “box,” ‘ball,” and
“tube,” performed well, although this may be partly due to
overfitting to the specific object types in the dataset (tubes of
toothpaste).

Tokens associated with colors and non-object specific lan-
guage were able to be learned, and performance was consistent
with category constrained methods [29, 12]. This finding sheds
light on whether these features are broad enough to be used in
the context of grounded language learning. While the dataset
provided little shape specific language, we see initial findings
to suggest this to be a viable method for extracting rich visual
features to support grounded language learning.

V. CONCLUSION

We present a grounded language learning system suitable
for supporting user-specific, language-based human-robot in-
terfaces. We employ the well-known object recognition system
of Eitel et al. [7] to extract rich visual features for an intuitive,
category-free joint model grounded language learning system,
and introduce a dataset of natural language aligned with
a popular real-world sensor dataset. A series of classifiers
denoted by descriptions are trained and evaluated on a held-out
data set. Our initial results support the theory that category-
free language learning is both feasible and desirable. In
future work, we intend to explore more sophisticated language

models, such as, semantic parsing to further the information
provided from the natural language descriptions. We plan to
use the insights from this work in exploring multimodal object
embeddings in pursuit of furthering the work in category-free
grounded language learning.
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