This work is on a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license, https://creativecommons.org/licenses/by-nc-nd/4.0/.
Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Accepted Manuscript

Investigation of phosphorous doping effect on polymeric carbon dots: Fluorescence, photo stability and environmental impact

Bo Zhi, Miranda J. Gallagher, Benjamin P. Frank, Taeyujuana Y. Lyons, Tian A. Qiu, Joseph Da, Arielle C. Mensch, Robert J. Hamers, Zeev Rosenzweig, D. Howard Fairbrother, Christy L. Haynes

PII: S0008-6223(17)31224-1
DOI: 10.1016/j.carbon.2017.12.004
Reference: CARBON 12632

To appear in: Carbon

Received Date: 9 October 2017
Revised Date: 30 November 2017
Accepted Date: 2 December 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Investigation of phosphorous doping effect on polymeric carbon dots: fluorescence, photo stability and environmental impact

Bo Zhia, Miranda J. Gallagherb, Benjamin P. Frankb, Taeyjuana Y. Lyonsc, Tian A. Qiua, Joseph Dab, Arielle C. Menschd, Robert J. Hamersd, Zeev Rosenzweigc, D. Howard Fairbrotherb, Christy L. Haynesa*

a Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
b Department of Chemistry, The Johns Hopkins University, Baltimore, MD 21218, USA
c Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, MD 21250, USA
d Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA

Abstract:

Carbon dots have arisen as a potential alternative to traditional quantum dots since they fluoresce but are synthesized from sustainably sourced green chemicals. Herein, fluorescent nitrogen-doped polymeric carbon dots (CDs) were synthesized by using citric acid (CA) or malic acid (MA) as carbon precursors and ethylenediamine as the nitrogen precursor. Additionally, phosphoric acid was used as a doping agent for each type of CDs to evaluate the impact of incorporating phosphorus into the nanoparticles. Thus, four kinds of doped CDs (N-doped or N, P co-doped) were obtained and named as CA-CDs, CA-P-CDs, MA-CDs, and MA-P-CDs. Quantum yield and fluorescence lifetime analysis indicate that phosphorus doping of up to \textit{c.a.} 10 wt.% does not induce a remarkable influence in CD photoluminescence. The photostability of the N, P co-doped MACDs

*Corresponding author. Tel: (612) 626-1096. E-mail: chaynes@umn.edu (Dr. Christy Haynes)
(MA-P-CDs), however, was observed to increase compared to the N-doped MACDs under 350 nm UV (UV-B) exposure. Lastly, to assess the impact of this emerging nanoparticle on prokaryotes, the bacterial toxicity of these CDs was tested using *Shewanella oneidensis* MR-1 as a model microorganism. Interestingly, the CDs exhibited no toxicity in most cases, and in fact facilitated bacteria growth. Hence, this work suggests that CDs are potentially eco-friendly fluorescent materials.

1. Introduction

Since the discovery of carbon dots (CDs) during the purification of arc-discharged single-walled carbon nanotubes (SWCNTs) in 2004[1], they have become a carbon nanoallotrope of great interest[2, 3]. Generally, CDs are zero-dimensional carbon nanoparticles of 2 to 10 nm diameter with quasi-spherical morphology. The majority of the carbon within the CDs is sp3-hybridized and usually exists as amorphous carbon, different from the other 0D carbon nanoallotrope, nanodiamonds (NDs), which consist of highly crystalline domains[2-5]. Due to their excellent photoluminescence, stability, low cost, and easy preparation[4, 6-8], CDs have been under intense investigation for their potential applications in sensing[9-14], bioimaging or cell labelling[3, 15-17], drug delivery[16, 17], white light-emitting device[7, 18], and energy conversion[19-21].

A variety of methods have been developed to generate fluorescent CDs in the past decade. Roughly, these synthesis approaches can be classified as either “top-down” or “bottom-up”[4, 22]. Generally, the “top-down” route involves breaking down bulk carbon sources, like graphite[19, 23], carbon fibers[24, 25], or carbon nanotubes[1, 26], into tiny carbon nanoparticles, namely, carbon dots. Available “top-down” synthetic techniques exploit electrochemistry, arc discharge, laser ablation or plasma treatment[27, 28]. Conversely,
the “bottom-up” route refers to the construction of amorphous carbon nanostructures from molecular precursors such as saccharides[29], organic acids[8, 13], or amino acids[30, 31] via combustion methods, hydrothermal/solvothermal treatment, or microwave irradiation[4, 27]. To be more specific, microwave heating-based synthesis capitalizes on internal precursor molecular rotation transitions coupling with external electromagnetic irradiation[32]. Thus, the heating efficiency is not related to the thermal conductivity of the precursors, realizing an immediate on/off switching in heating[32, 33]. Hence, compared to other methods, microwave-assisted thermal treatment conserves both time and energy, and might even avoid undesirable side reactions or facilitate new reaction routes[32-34]. Thus, microwave heating has been broadly used as a promising method to prepare stable and highly photoluminescent CDs[7, 8, 35-39].

Doping heteroatoms into CDs has been a popular concept for potentially improving the performance of carbon nanomaterials[40-42]. A significant number of doped CD studies have been reported, most of them doped with non-metal heteroatoms, such as N[43-45], S[44, 46], B[47-49], or P[49-51]; there are also rare cases of metal atom dopants such as Cu[52], Mg[53] and Gd[54]. In general, doped CDs have exhibited improved optical properties compared to non-doped CDs, such as higher quantum yields and longer fluorescence lifetimes, especially when a functionalization route is used. The chemical identity of the doped heteroatom influences the electron distribution within the CDs, altering the band-gap energy and thus improving the CD photoluminescence[55, 56].

Currently, there is a lack of systematic investigations on the effects of doping on the properties of CDs. To address this issue, a series of polymeric CDs with different levels of doping was synthesized herein to compare the fluorescence properties of these
polymeric CDs, and to elucidate whether doping is an effective strategy for polymeric CD performance improvement. It is important to mention here that there is a range of definitions are used for carbon dots nanomaterials, including carbon quantum dots, graphene quantum dots, and polymer dots. To avoid confusion, the products made in this work will be identified as polymeric CDs because they are generated by carbonizing polymerized intermediates.

CDs have exhibited comparable quantum yields to traditional semiconductor quantum dots (QDs) and they are free of toxic heavy metal ions[2, 4]. Thus, they are assumed to be of low toxicity and may serve as a green alternative to QDs[57-59]. Up to now, most CD research has been heavily focused on their synthesis and applications, while only a few reports have addressed their potential environmental consequences, let alone the comparative impact of modified/doped CDs[60, 61]. To assess their true potential, it is necessary to characterize CD photoluminescence in parallel with a toxicity assessment relevant to the potential release of CDs into the ecosystem -- a specific goal of this study. Microorganisms, located at the bottom of the food web, are ubiquitous[62] and thus likely to first interact with and respond to nanomaterials released into environment.

Shewanella oneidensis MR-1 (S. oneidensis MR-1), first discovered in Lake Oneida, NY[63], is a species of Gram-negative bacteria important in the ecosystem based on their notable ability to reduce metal oxides via dissimilatory reduction under anaerobic conditions[64]. In addition, S. oneidensis MR-1 has been widely applied in nanomaterial toxicity screening, including studies of silver nanoparticles (Ag NPs)[65], gold nanoparticles (Au NPs)[66], and Li-ion battery materials[67]. Thus, S. oneidensis MR-1
has been chosen herein as the model microorganism to evaluate the potential
environmental impact of N- and P-doped polymeric CDs.

In this manuscript, we will demonstrate the synthesis, materials characterization,
photostability tests, and bacterial toxicity screening of nitrogen and phosphorous-doped
polymeric carbon dots. This is the first effort in a larger set of experiments, and future
work will further explore the underlying chemical or physical properties of the polymeric
carbon dots that result in the exciting photoluminescent properties.

Specifically, this work explores the impact of phosphorous doping on nitrogen-doped
polymeric CDs. Based on quantitative analysis, we find that doping phosphorus into the
polymeric CD structure using a phosphorous-containing precursor does not significantly
impact polymeric CD fluorescence behavior, including quantum yield and lifetime. The
phosphorus-doped polymeric CDs, however, do demonstrate enhanced photostability
during UV-B exposure (350nm) compared to undoped polymeric CDs. Interestingly,
comparing the photoluminescence performance of nitrogen-doped polymeric CDs
generated from citric acid, containing three carboxylic acid groups versus the two
carboxylic acid groups in malic acid show significant differences, likely due to their
different crosslinking patterns with ethylenediamine. Furthermore, the bacterial toxicity
results indicate that phosphorous doping did not increase toxic effects on the bacteria but
potentially stimulated bacteria growth in most cases, highlighting the potential of
polymeric CDs as an emerging fluorescent nanomaterial with minimal adverse
environmental effects.
2. Experimental

2.1 Chemicals

Citric acid (CA, ACS reagent, ≥99.5%), DL-malic acid (MA, ReagentPlus®, ≥99%), phosphoric acid (ACS reagent, ≥85% H₃PO₄) and ethylenediamine (ReagentPlus®, ≥99%) were purchased from Sigma Aldrich. Quinine sulfate dihydrate (99+%, ACROS Organics™) was obtained from Fisher Scientific. The Biotech cellulose ester (CE) membrane (MWCO 100-500 D) was obtained from Spectrum Labs. Deionized water was produced by a Millipore Milli-Q system (Billerica, MA), and used through all experiments. All other reagents were of analytical grade and used without further purification. Difco™ LB broth (Miller) and Difco™ agar (granulated) were purchased from Becton, Dickinson, and Company. Dulbecco’s phosphate-buffered saline (DPBS) was purchased from Mediatech, Inc. Sodium chloride (NaCl) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) were purchased from Sigma Aldrich.

2.2 Synthesis of amorphous polymeric carbon dots

The synthesis was adopted from previous reports[8] with minor modifications. To synthesize the CACDs, a 4 M aqueous citric acid stock solution was prepared in advance. 2 mL of this stock solution was transferred into a 100-mL beaker, and then 540 µL of ethylenediamine was added. The reaction was completed within one minute as heat was released and a homogenous solution was formed. The mixture was stirred for 30 min and allowed to cool. Then, the colorless transparent mixture was transferred to a domestic microwave oven and heated under 360 W for 3 minutes. The resultant orange-yellow foamy solid was cooled in a fume hood for 20 minutes before 10 mL of MQ water was added into the beaker. The obtained reddish-brown transparent solution was dialyzed for
24 hours to remove unreacted precursors. Then, rotary evaporation was used to remove most of the water in the solution, leaving behind a brown solid product at the bottom. Further drying was completed in an oven at 40 °C for one day.

To generate varied phosphorus-doped citric acid polymeric carbon dots (the CA-P-CDs series), 2 mL of citric acid stock solution was poured into a beaker, and then, 34 µL of phosphoric acid was added. After mixing for 10 minutes, 540 µL ethylenediamine was added. The subsequent procedure was the same as followed for the CACDs. Thus, CA-P-CDs-1 were obtained. To synthesize CA-P-CDs-2, 3 and 4, phosphoric acid was added in quantities of 68, 136 and 272 µL, respectively. The final products of the CACDs and CA-P-CDs series were all yellow powders with gradually darker yellow color with increasing amount of doped phosphorus (Fig. S1A).

For the synthesis of MACDs and the MA-P-CDs series (phosphorus-doped malic acid polymeric carbon dots), malic acid was used as carbon source instead of citric acid. The synthesis procedure was otherwise the same. All the final products in this series appeared as dark brown powders (Fig. S1B).

2.3 Material characterization

Extensive characterization was performed to learn as much about the chemical and structural characteristics of the CDs as possible UV-vis extinction spectra were obtained using a Mikropack DH-2000 UV-Vis-NIR spectrometer. Fluorescence spectra were measured with a PTI QuantaMaster™ 400. Excitation emission matrices (EEMs) were collected on a Thermo Scientific Lumina fluorescence spectrometer (Waltham, MA USA) with the 3D Scan Module using a 1 cm path length cell, 2.5 nm slit width, and internal correction for the lifetime of the photomultiplier tube with excitation from 200-600 nm (5
nm step size) and resultant emission collected from 300-750 nm (1 nm step size). Inner filter effects were avoided by using a dilute polymeric CD solution with an absorbance of 0.1 at the peak absorbance (c.a. 350 nm). The morphology and size distribution of polymeric CDs were examined using a FEI Tecnai G² F30 transmission electron microscopy (TEM) at 300 kV. The TEM samples were prepared by dropping an aqueous suspension of polymeric CDs onto a 300-mesh gold grid coated with an ultra-thin lacey carbon film. Wide-angle X-ray diffraction (XRD) data were collected by a Bruker-AXS (Siemens) D5005 XRD using Cu Kα as the radiation source (λ = 0.15418 nm), with a step of 0.02° in the range from 10° to 70°. The attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) spectra were recorded with a Nicolet Magna-IR 750 spectrometer. The X-ray photoelectron spectroscopy (XPS) spectra were analyzed by a Surface Science SSX-100 using a monochromatic Al Kα X-ray source (50 eV pass energy, and 0.9 eV energy resolution by the full width at half maximum of Au 4f7/2 peak) and a PHI 5600 XPS (58.7 eV pass energy, 0.125 eV/step, Mg Kα X-rays) and processed with CasaXPS software (Teignmouth, UK). Energy dispersive X-ray (EDAX) was performed on a JEOL 6700F SEM using a 20-kV electron beam using an EDAX Genesis 4000 X-ray analysis system as a detector. AFM (atomic force microscopy) images were collected in tapping mode using a Dimension FastScan AFM (Bruker, Santa Barbara, CA, USA). Silicon nitride cantilevers with nominal spring constants of 18 N m⁻¹ were used for imaging samples in air at room temperature. A Bruker Avance III HD nanobay AX-400 spectrometer equipped with SampleXpress autosampler (Billerica, MA, USA) was used to obtain ¹³C-NMR spectra of suspensions of nanoparticles in D₂O. The
ACD/Spectrus processor (ACD/Labs, Toronto, Ontario, Canada) was used for manual phase correction and peak assignment.

2.4 Photostability testing

A 300-ppm polymeric CD stock solution was made by dissolving 15 mg of polymeric CDs in 50 mL of water. Dilutions to 7.5, 18, and 30 ppm were then made, and a UV-vis extinction spectrum from 250-800 nm was obtained for each sample using a Varian, Inc. Cary® 50 UV-vis spectrometer (Agilent Technologies, Santa Clara, CA USA). Before each UV-vis measurement the quartz cuvette was rinsed with 500 µL of the polymeric CD-containing solution before 2 mL was pipetted in for analysis. Five technical replicates were recorded for each polymeric CD dilution to obtain an average spectrum and to verify that the colloidal suspension remained stable throughout measurement. The linear calibration curve was used to generate a 100-mL polymeric CD-containing solution that exhibited an extinction of 0.1 at the ~345 nm peak. Once this solution was obtained, 6 mL aliquots were placed into either quartz or glass test tubes for photostability measurements. Both the pH and emission spectrum of the polymeric CDs remaining were measured using a Orion™ 9103BNWP SemiMicro Combination Ag/AgCl pH probe (Thermo Scientific, Waltham, MA USA) and Lumina fluorescence spectrometer (Thermo Scientific, Waltham, MA USA), respectively. The polymeric CD-containing solutions in the glass test tubes were exposed in an RPR-100 Photochemical Rayonet Reactor© (SNEUVCo Branford, CT, USA) equipped with sixteen RMR-3500A Black Light Bulbs (>90% emission, 350 nm, 1.76*10^{17} quanta/s as measured with actinometry, *vida infra*). The extinction spectra for each set of polymeric CD-containing solutions were measured after 5, 10, 20, 30, 40, and 60 minutes of irradiation to determine the photostability.
Because photodegradation is possible during the emission-excitation matrix (EEM) experiment, separate replicate samples were used for each irradiation time.

2.5 Quantum yield and lifetime measurement

The quantum yields (QY) of CACDs, the CA-P-CDs series, MACDs, and the MA-P-CDs series were determined based on protocols described in previous reports[68, 69]. The extinction of each CD sample was measured with a PTI QuantaMaster 400 and then diluted to achieve an extinction value of ~0.1 as measured by measurements at 340 nm. Quinine sulfate was dissolved in 0.1 M H$_2$SO$_4$ ($\phi = 0.54$)[69] and used as the standard for the quantum yield measurements (fluorimeter settings: 340 nm excitation, emission range: 350 nm – 700 nm, 1.5 nm slit width). The QY of CDs were calculated by the following equation:

$$Q_x = Q_{STD}(I_x/I_{STD})((1 - 10^{-OD_{STD}})/(1 - 10^{-OD_x}))(\eta_x^2/\eta_{STD}^2)$$

where Q stands for QY, I is the integral value of emission intensity at the excitation maximum, OD means optical density (lower than 0.1 to avoid inner filter effects), and η is the refractive index. The value of the subscript x identifies the polymeric CD sample while STD indicates the standard[69].

Lifetime measurements were performed three times in parallel on the same samples (extinction ~0.1) with a 375-nm laser as the excitation source (Becker&Hickl GmbH BDL 375-SMN Picosecond Diode Laser, operated at 1MHz), slit width of 1 nm for excitation and emission, and detection at the peak wavelength of the sample. Lifetime plots were fitted with multi-exponential decay kinetics:
\begin{equation}
I(t) = \sum_{i=1}^{\infty} \alpha_i \exp\left(-t/\tau_i\right)
\end{equation}

And the amplitude average lifetime (\(\tau_{\text{avg}}\)) of each replicate is given by:

\[\tau_{\text{avg}} = \frac{\sum_{i=1}^{\infty} \alpha_i \tau_i^2}{\sum_{i=1}^{\infty} \alpha_i}\]

where \(\alpha_i\) is the pre-exponential factor, \(\tau_i\) is the lifetime of each decay[69].

2.6 Bacterial culture and polymeric carbon dot exposure

Shewanella oneidensis MR-1 (\(S. oneidensis\) MR-1) stock was a generous gift from the Gralnick Lab at the University of Minnesota. \(S. oneidensis\) MR-1 were stored at -80 °C before being inoculated onto LB agar plates. The plates were incubated at 30 °C until discernible colonies were obtained. About 2-3 colonies were transferred into 10 mL LB broth. The bacterial suspension was incubated in an orbital shaker for 3 to 5 hours and harvested before entering stationary phase, as determined by the optical density at wavelength of 600 nm (OD\(_{600}\)). Bacteria cells were pelleted by centrifugation at 750 × g for 10 minutes, re-suspended in Dulbecco’s phosphate-buffered saline (DPBS) buffer, and dispersed into HEPES buffer (2 mM HEPES and 25 mM NaCl, at pH = 7.4). The bacterial suspension was then diluted to ~0.05 OD\(_{600}\) so that the cell density was ~10\(^7\) cells/mL. The concentration of the polymeric CD working solution was 50 mg/mL. The subsequent nanoparticle exposure was performed by mixing the bacterial suspension with carbon dot suspension (volume ratio was 10:1, thus, the exposure concentration was 5 mg/mL), and incubated for 15 minutes or 1 hour.
2.7 Colony counting assays (drop plate method)

To examine the possible toxic effect of phosphorus-doping into polymeric CDs (that is, comparing N-doped polymeric CDs and N, P co-doped polymeric CDs), an adapted colony counting assay (drop plate methods) was used for the bacterium *S. oneidensis* MR-1[70]. A bacterial suspension of about 10^7 cells/mL (~0.05 OD$_{600}$) was exposed to 5 mg/mL of polymeric CDs, followed by a 10-fold serial dilution to dilute the bacterial suspension to a proper cell density. Aliquots of 10 µL from three dilution folds (DFs) of the exposed bacterial suspension, *i.e.* 10^{-3}, 10^{-4} and 10^{-5}, were dropped onto the surface of LB agar plates, and the agar plates were incubated at 30 °C overnight until observable colonies formed; a representative plate is shown in Fig. S10. Data from the dilution fold of 10^{-4} was used for further analysis as the colonies formed at this dilution fold were countable. Colony counts were transformed into the colony-forming unit density (CFUs/mL), and normalized to the negative control by dividing CFUs of a treated sample by the average CFUs from control groups in the same experimental run. This calculation is done using the following equation:

\[
\text{Cell Density} = \frac{\sum_{i=1}^{n} x_i \text{(CFU)}}{0.01 \text{ (mL)}} / \text{DF},
\]

\[
\text{Normalized CFUs} = \frac{\text{Cell Density}_{TG}}{\text{Average of Cell density}_{NC}}
\]

where NC means negative control, TG means treated group, x_i is the number of colonies counted, n indicates the number of aliquots from the same sample that were dropped onto plates, 0.01 is the volume of each aliquot (0.01 mL), and DF is the dilution fold.
3. Results and discussion

While it is currently not possible to characterize the specific atomic structure of carbon dots, this study includes an extensive array of characterization that reveals many aspects of the polymeric carbon dot structure. TEM was used to reveal the morphology of both CACDs and MACDs, as shown in Fig. 1.

Figure 1. TEM images of (a) CACDs and (b) MACDs (scale bar: 20 nm; inset scale: 10 nm) and particle size distributions of (c) CACDs and (d) MACDs.

Both types of polymeric CDs exhibit a uniform circular shape without significant aggregation. No discernible crystal lattice was visible in either case, suggesting an amorphous nature for these polymeric CDs. Such amorphous carbon character was
further confirmed by the broad peaks around 20° in their XRD patterns (Fig. S2)[71, 72]. There may be a small amount of graphene inside, but any resulting weak diffraction signals are overwhelmed by those from amorphous carbon, so no crystalline carbon was detected via TEM or XRD. In addition, particle size analysis was performed based on CD Feret diameter from TEM images (counting ≥ 500 nanoparticles).[73] Assuming polymeric CD are normally distributed in size, the polymeric CD size peaks were fitted with a normal log function to calculate the average polymeric CD size. For CACDs, the peak diameter was ~7.8 nm, and for MACDs, it was ~ 5.5 nm. Both are smaller than 10 nm, which is the typical size range of CDs[2, 3]. Since TEM is only two-dimensional, AFM was used as well to determine the particle height distribution (z-profile). The height of CACDs and MACDs were ~3.7 nm and ~3.5 nm (Fig. S3), respectively. Both are smaller than their lateral diameter, thus, it is possible that these polymeric CDs are not perfect spheres but rather ellipsoids.
The optical properties of both polymeric CDs were examined, as shown in Fig. 2a, Figure 2. Optical (UV-vis absorbance and fluorescence) spectra of (a) CACDs and (b) MACDs and fluorescence lifetime traces of (c) CACDs and (d) MACDs.

There are two peaks in the UV-vis spectrum of the CACDs with λ_{max} values of ~230 nm and ~350 nm. The first peak can be assigned to a $\pi-\pi^*$ transition (aromatic C=C), and the second one can be assigned to a $n-\pi^*$ transition (C-N or carboxyl)[74]. The fluorescence emission does not shift as the excitation wavelength shifts, remaining at ~460 nm. Unlike most reported polymeric CDs, these CACDs do not demonstrate excitation-dependent emission. The fluorescence lifetime for the CACDs was measured three times in parallel using a 375-nm laser as excitation source, as shown in Fig. 2c. The lifetime trace was fitted with a multi-exponential decay function, to minimize deviation from the exponential fit function of the fluorescence lifetime of the polymeric CDs. The
acceptable reduced Chi-square value ($0.9 < \chi^2 < 1.2$) and the symmetrical distribution of residuals around zero indicate a good fit. Therefore, the overall fluorescence lifetime of CACDs is revealed by the mean value of three replicate results (τ_{avg}), that is, $11.17 \pm 0.65 \text{ ns}$. In contrast, MACDs only showed a weak absorption near 350 nm (Fig. 2b), but interestingly, they exhibited excitation-dependent emission. When the excitation wavelength was adjusted from 320 nm to 400 nm, the peak of the emission spectra blue shifts from ~500 nm and reaches a maximum intensity at ~450 nm with 400 nm excitation, followed by a red shifting emission with decreasing intensity. The fluorescence decay kinetics for MACDs are shown in Fig. 2d. The overall lifetime of MACDs was $4.77 \pm 0.34 \text{ ns}$, shorter than that of CACDs. Furthermore, non-Raman corrected excitation emission matrices (EEM, Fig. S4) reveal information about the excited state transitions of fluorescent molecules. The CACD excitation:emission pairs, visualized in Fig. S4A, were easily identified as ($\lambda_{ex}=250 \text{ nm}; \lambda_{em}=456.8 \text{ nm}$) and ($\lambda_{ex}=350 \text{ nm}; \lambda_{em}=453.9 \text{ nm}$), indicating the typical excitation independence. The MACD excitation:emission pairs in Fig. S4B are not as easily isolated and have been assigned the following excitation:emission pairs: ($\lambda_{ex}=255 \text{ nm}; \lambda_{em}=454.9 \text{ nm}$), ($\lambda_{ex}=340 \text{ nm}; \lambda_{em}=453.9 \text{ nm}$), ($\lambda_{ex}=385 \text{ nm}; \lambda_{em}=468.6 \text{ nm}$) and ($\lambda_{ex}=450 \text{ nm}; \lambda_{em}=514.5 \text{ nm}$), visualizing the excitation-dependent emission. Considering the different numbers and positions of carboxyl groups within citric acid and malic acid molecules, their crosslinking patterns with ethylenediamine should be different during polymerization, and as a result, the final carbonized products, that is, the polymeric CDs, likely possess distinct structures, and thus, behave differently in terms of optical behavior. The structures of these polymeric CDs will be explored by our further theoretical studies.
To delve deeper into the molecular character of these polymeric CDs, FTIR analysis was performed to characterize the functional groups within both polymeric CDs; these spectra are shown in Fig. 3. The FTIR spectra of the two polymeric CDs were similar.

Figure 3. FTIR spectra of (a) citric acid polymeric CDs series, and (b) malic acid polymeric CDs series with a detailed spectral identification of phosphorylated peaks in citric acid polymeric CD series ((c) & (d)), and in malic acid polymeric CD series ((e) & (f)).
The broad peaks at ~3200 cm\(^{-1}\) and ~3000 cm\(^{-1}\) can be assigned to N-H and O-H stretching vibrations, respectively\[75\]. The ~2900 cm\(^{-1}\) peak is the alkyl stretch, the main component of the carbon network. The two IR absorption bands at ~1700 cm\(^{-1}\) and ~1640 cm\(^{-1}\) confirm the presence of carbonyl groups\[76\]. Specifically, the ~1700 cm\(^{-1}\) peak can be attributed to carboxyl carbonyl (-COOH) character, and the ~1640 cm\(^{-1}\) peak to amide carbonyl (-CO-NH) character\[77\]. The ~1400 cm\(^{-1}\) peak confirms a C-N stretch.

Moreover, \(^{13}\)C NMR results provide a qualitative analysis of the carbon hybridization state inside both the CACDs and the MACDs (Fig. S6). The \(^{13}\)C NMR spectra reveal groups of peaks at ~40 ppm, ~70 ppm and ~180 ppm, respectively\[78\]. The ~40 ppm peaks can be assigned to saturated carbon (sp\(^3\)), that is, alkyl groups, R\(_2\)CH\(_2\) and NH\(_2\)RCH\(_2\) groups\[74, 79\]. The ~70 ppm peaks also reveal sp\(^3\) carbon connected to an electron withdrawing O or N atom, such as C-OH and C-N (in these cases, the peaks shift towards low field due to the electronegative effect). The CACDs and CA-P-CDs-4 spectra indicated the presence of two electron-withdrawing functional groups whereas the MACDs have five different electron withdrawing functional groups. An increased number of functional groups indicates the initial hydroxyl group on the malic acid precursor molecule remains intact. The phosphorylated CACDs indicate an incorporation of C=C character into the nanoparticle due to characteristics shifts at 162.40, 154.86 and 148.48 ppm. The last group at ~180 ppm indicates an unsaturated carbon (sp\(^2\)) present within carbonyl groups, like carboxyls (-CO-OH) and amides (-CO-NH) not all carbonyl groups were lost to dehydration of the precursor when crosslinked with ethylenediamine.
XPS analysis of the polymeric CDs (Fig. 4) revealed the presence of carbon, nitrogen and

Figure 4. XPS of C dots: (Left hand side) Comparison of the C(1s) regions for malic and citric acid carbon dots, prepared with and without phosphorous doping. (Right hand side) N(1s), O(1s) and P(2p) regions of phosphorous-doped malic acid based carbon dot (CA-P-CDs-4 and MA-P-CDs-4).
oxygen. For the polymeric CDs prepared in the presence of phosphoric acid, phosphorous was also detected. The C(1s) regions for each polymeric carbon dot could be fit well using the same set of three peaks, consistent with XPS data previously obtained on polymeric CDs[44, 80-85]. The peak positions of these three components are located at 288.5 eV, 286.5 eV, and 285 eV and correspond to O-C=O/O=C-N, C=O/C-N, and C=C/C-C species, respectively. These are the same species detected with IR (Fig. 3). The C(1s) region is lacking a $\pi-\pi^*$ shake-up peak at 292 eV, suggesting the absence of an extended conjugated pi-electron system. The C(1s) spectral envelopes of three of the four polymeric carbon dots (MACDs, CA-P-CDs-4, and MA-P-CDs-4) are similar; the C(1s) envelope of CACDs differs principally probably due to a higher concentration of C=C/C-C species. In previous work, the N(1s) XPS region of the nitrogen-containing polymeric CDs is often clearly asymmetric, indicative of a range of different nitrogen bonding environments[86-88]. In contrast, the N(1s) region of each of the four polymeric CDs analyzed in this study are very similar with a peak profile that can be fit well by a single Gaussian peak centered at ~ 400.7 eV. Although the proximity of peak positions for different nitrogen bonding environments makes an unambiguous assignment difficult[89] the invariance of the N(1s) spectral envelope suggests that phosphorous incorporation does not lead to a significant perturbation in the chemical bonding environments of nitrogen atoms in the carbon dots. The O(1s) regions of each polymeric CD were also similar to one another, and no attempt was made to spectrally deconvolute the O(1s) regions due to the presence of a large number of bonding environments (e.g. O-C=O, C=O, P-O) and the close proximity of the peak positions. For each of the two P-doped polymeric CDs, an additional peak in the P-region was observed with a peak position
(~134 eV) indicative of oxidized phosphorous atoms. Moreover, the level of phosphorous incorporated into the polymeric CDs could be varied by changing the usage of phosphoric acid in the synthesis (see Table S1). Hence, based on the N_{1s}, O_{1s} and P_{2p} XPS profiles, we confirm that the phosphorous doping is successful without inducing any turbulence into the original nitrogen and oxygen chemical environments of polymeric carbon dots. In addition, as XPS only reveals information of polymeric CD surface, EDAX was used to investigate the atom percentage of each element in bulk, as shown in Fig. 5.

Figure 5. EDAX element analysis of citric acid polymeric CD series (left), and malic acid polymeric CD series (right).

Clearly, the phosphorus percentage gradually increased (indicated by the arrows), up to c.a. 10 wt.% for both polymeric carbon dots, if we used more and more phosphoric acid.
Therefore, based on the XPS and EDAX data, we confirmed that the phosphorous doping was successful.

The morphology and diameter of the P-doped CACDS and MACDs were also analyzed by TEM (Fig. S7 and Fig. S8). After doping with phosphorus, both types of N, P co-doped polymeric CDs retained the quasi-spherical morphology in 2D. The average values from the size distributions for the CA-P-CDs with increasing levels of P doping were ~6.5 nm, ~6.9 nm, ~6.3 nm and ~7.1 nm, respectively. For MA-P-CDs, they were ~8.1 nm, ~7.9 nm, ~5.8 nm and ~7.3 nm, respectively. Compared to the particle diameter of the original N-doped polymeric CDs, there was no remarkable difference after adjusting the precursors to incorporate phosphorus into the polymeric CDs.

We attempted to determine the chemical features of N-doped polymeric CDs and N, P-co-doped polymeric CDs using ATR-FTIR (Fig. 3). The incorporation of the phosphorous is indicated by the shift in the 1110 cm\(^{-1}\) C-O-C vibration to a lower wavenumber due to the presence of C-O-P. Furthermore, the phosphoryl (R-O)\(_3\)P=O not present in the citric acid is distinctly present in the phosphorylated samples around 950 cm\(^{-1}\) and 1050 cm\(^{-1}\). In addition, the IR absorption spectra for CA-P-CDs and MA-P-CDs resembled those of CACDs and MACDs, with features attributable to carboxyl, hydroxyl and amine groups. Hence, these N, P co-doped polymeric CDs exhibited high hydrophilicity, like their N-doped counterparts.

An ideal fluorophore should remain photostable for an extended period of time, so it is important to assess how doping polymeric CDs with phosphorous influences photostability. On the bench, under the influence of laboratory lighting, solutions of CDs and phosphorous-doped CDs were found to be stable over the course of at least six days,
based on UV-vis analysis. To assess the effect (if any) of phosphorous doping on the photostability, it was therefore necessary to conduct accelerated photobleaching studies. This was accomplished by subjecting four of the polymeric CDs to intense visible light in a Rayonet reactor (see experimental section). Results from these studies, shown in Fig. 6,

![Figure 6. Photostability of the CACDs, CA-P-CDs-4, MACDs and MA-P-CDs-4.](image)

Photostability was determined by measuring the change in the absorbance (A/A_0) at 350nm as a function of CD exposure to the intense visible light generated in a Rayonet (see experimental section). demonstrate that there was a steady decrease in absorbance over one hour of exposure, which was accompanied by a blue-shift in the peak emission. The pH of the solutions remained above 6 for the entirety of the experiments, ruling out acidic quenching[90]. The absorbance peaks were fit with a cubic baseline and subsequently a Gaussian function as detailed in Tan et al. (Fig. S12)[91]. For the first 40 min, CA-P-CDs-4 exhibited higher, but not statistically different, photostability than the CACDs. The MA-P-CDs-4 demonstrated a statistically significant ~25% increase in photostability
compared to MACDs after 60-minute exposure. Thus Fig. 6 demonstrates that distinct advantages in photostability are gained by doping the MACDs with phosphorous. The overall stability trend with these four samples after one hour was determined to be: MA-P-CDs-4 > MACDs > CACDs ≥ CA-P-CDs-4.

Previous accelerated photobleaching studies of CDs have typically been conducted by measuring changes in the photoluminescence (PL) yield under a wide range of different conditions (e.g. exposure to the white light from a Xe lamp, continuous irradiation at 360nm), where the incident photon flux is not reported.[92-96] Consequently, a direct quantitative comparison of the results from this investigation to previous photobleaching studies of CDs is not possible. However, in general photostability is found to depend on the synthetic route used to prepare the CDs. Specifically, crystalline CDs prepared by a “top-down” approach (e.g. by exfoliating carbon nitride using acid) are extremely photostable even when exposed to intense light sources (e.g. no change in PL after irradiation with a 365nm UV lamp for 12 hours).[94] In contrast, CDs prepared using a “bottom-up” approach (typically hydrothermally or by using microwaves) are more susceptible to photobleaching, an effect ascribed to the presence of a greater number of surface defects.[93, 96] Results from the present study are therefore in qualitative agreement with this general trend.

The high QY of the CACDs was in concurrence with literature values[6, 8, 46]. After doping with different levels of phosphorous, the QY of doped CACDs was maintained around 40% (Table S2). Specifically, the QY is 40.98% for CA-P-CDs-1, 39.29% for CA-P-CDs-2, 35.56% for CA-P-CDs-3, and 44.23% for CA-P-CDs-4. The citric acid polymeric CDs are found to be much more efficient at conversion of absorbed photons
with 340 nm laser excitation than the malic acid polymeric CDs. The most prominent
excitation, however, occurs at 385 nm for the MACDs. The MACDs were found to have
a quantum yield closer to that of tryptophan (~14%) [69]. The QY of MACD series
remained c.a. 10% after P-doping (Table S2), that is, 15.56% for MA-P-CDs-1, 11.58%
for MA-P-CDs-2, 10.19% for MA-P-CDs-3, and 11.99% for MA-P-CDs-4. The MACD
series may have lower quantum yield due to the multiple pathways for relaxation shown
in the EEM in Fig. S4B and D. The fluorescence lifetimes, τ, of citric acid polymeric
CDs is about two times longer than those of malic acid polymeric CDs (Table S2). The
lifetimes have decreased after doping phosphorus into CACDs, but there was no such an
effect for P-doped MACDs (Fig. S9).

With luminescence and photostability properties of the new polymeric CDs looking
promising, nanoparticle toxicity was considered since one proposed advantage of
polymeric CDs over traditional QDs lies in their likely biocompatibility. Fig. 7 describes
the toxicity results of polymeric CDs towards the model bacterium, S. oneidensis MR-1,
as measured by a colony counting assay (drop plate method).

Figure 7. Colony counting assay results of citric acid polymeric CDs after (a) 15-min exposure and (b) 1-hour exposure, and results of malic acid polymeric CDs after (c) 15-min exposure and (d) 1-hour exposure (Error bars indicate standard deviation, and for simplicity, only the positive half of each error bar is shown).

Statistical analysis was performed using one-way ANOVA, followed by post-hoc Tukey’s multiple comparisons tests (GraphPad Prism software, La Jolla, CA). All values plotted are the mean ± standard error of mean, and statistical significance is indicated using asterisks (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). The results show that,
in most cases, neither N-doped polymeric CDs nor N, P co-doped polymeric CDs exhibit a toxic effect; on the contrary, the bacteria formed more colonies than the negative control (untreated) samples in some cases. This increased colony formation suggests that *S. oneidensis* MR-1 can potentially use polymeric CDs as their carbon nutrient source. In fact, it is known that *S. oneidensis* MR-1 performs a standard tricarboxylic acid (TCA) cycle for carbon metabolism under aerobic growth\[97\] wherein citric acid and malate anion play a role. However, neither genomic prediction nor experimental evidence have previously demonstrated that this bacterium can utilize citric acid or malic acid as a carbon source\[98\]. It is possible that other components in the polymeric CDs, such as phosphorus or unknown by-products from the synthesis, promote bacterial colony formation. It is worth noting that the MA-P-CDs-4 (malic acid carbon dots doped with the highest amount of phosphorus) showed extremely high bacterial toxicity, eradicating almost the whole bacterial population. Recall from Fig. 6, doping the malic acid samples with phosphorous gained an advantage in photostability which may not be favorable when compared to the toxic response seen in the *S. oneidensis* MR-1 over one-hour exposure. It is worth noting, however, that the threshold to toxicity is quite high at 5000 mg/L in a concentrated (300 µL) of solution. This high of a concentration would be too bright for a detector in a confocal scanning laser microscopy and would be an impractical working solution concentration for bio-imaging. It is important to note that the need for something to be illuminated over an hour in a microscope may be unnecessary. Notwithstanding, the gains in photostability and lower quantum yield demonstrate phosphorous doping of malic acid might not be worth the acute toxicity exhibited by *S. oneidensis* MR-1. Future studies on metabolomics could provide insight into the stress
imposed upon this organism by the high concentration of particles. Other model organisms would also give a well-rounded picture of acute toxicity. Finally, it may be important to look at the photodegraded polymeric carbon dots to assess if the photoproducts are, in and of themselves, toxic. It was initially suspected that such toxicity was a result of light-induced polymeric CD degradation, since the exposure was done under lab light, and the toxicity was only apparent after 1-hour exposure; thus, another two sets of experiments were set up to investigate this possibility. Results showed that lab light was not the mechanism responsible for the high toxicity of MA-P-CDs-4 (Fig. S11). The source of this repeatable high toxicity after 1-hour exposure is the subject of ongoing investigation. In general, most of the polymeric CDs were not at all toxic towards the S. oneidensis MR-1 even at high doses (5 mg/mL), showing that polymeric CDs are quite benign. Thus, the non-toxic polymeric CDs are used for our further bio-imaging and bio-sending studies.

4. Conclusion

Polymeric CDs display reproducible, highly marketable luminescence properties that are influenced by chemical composition. In this work, citric acid and malic acid were used as carbon sources to generate N-doped polymeric CDs (using ethylenediamine as the nitrogen source). Furthermore, various amounts of phosphorus were introduced into these polymeric CDs, resulting in N, P-co-doped polymeric CDs. These doped polymeric CDs were great candidates to systematically and quantitatively analyze the impact of phosphorus doping on emission properties, photostability, and toxicity; the results reveal that there is no remarkable influence after doping with phosphorus in terms of quantum yield or lifetime. The starting material with three carboxylic acid groups was found to be
a better performing polymeric carbon dot with higher quantum yield and longer
florescent lifetime compared to the starting material with two carboxylic acid groups. By
contrast, the N, P-co-doped malic acid polymeric CDs may show an advantage over N, P-
co-doped citric acid polymeric CDs and N-doped polymeric CDs in terms of
photostability under 350 nm UV exposure. Any advantages accrued in photostability are
diminished by the toxicity results. Lastly, to assess the possibility that luminescent CDs
may be a viable replacement for toxic heavy metal-based quantum dots in a variety of
applications, the bacterial toxicity of these doped polymeric CDs was evaluated
using Shewanella oneidensis MR-1 as a model microorganism. The polymeric CDs
exhibited no inhibition in bacterial colony formation in most cases, and in some cases,
even facilitated bacterial growth, making polymeric CDs a potentially eco-friendly
fluorescent material with a wide range of potential applications.

Acknowledgement

This work was supported by the National Science Foundation Center for Chemical
Innovation Program Grant No. CHE-1503408 under the Center for Sustainable
Nanotechnology. Parts of this work, including XPS and TEM characterization, were
carried out in the Characterization Facility, University of Minnesota, which receives
partial support from the MRSEC program. We would like to thank the Materials
Characterization Facility at Johns Hopkins University Whiting School of Engineering for
use of their facilities.

Appendix A. Supplementary data

Supplementary data related to this article can be found at

http://doi.org/10.1016/j.carbonxxxxxxx
References

