Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
DAHID: Domain Adaptive Host-based Intrusion Detection

Oluwagbemiga Ajayi
University of Maryland Baltimore County
Baltimore, Maryland 21250
Email: dk60890@umbc.edu

Aryya Gangopadhyay
University of Maryland Baltimore County
Baltimore, Maryland 21250
Email: gangopad@umbc.edu

Abstract—Cybersecurity is becoming increasingly important with the explosion of attack surfaces as more cyber-physical systems are being deployed. It is impractical to create models with acceptable performance for every single computing infrastructure and the various attack scenarios due to the cost of collecting labeled data and training models. Hence it is important to be able to develop models that can take advantage of knowledge available in an attack source domain to improve performance in a target domain with little domain specific data.

In this work we proposed Domain Adaptive Host-based Intrusion Detection DAHID; an approach for detecting attacks in multiple domains for cybersecurity. Specifically, we implemented a deep learning model which utilizes a substantially smaller amount of target domain data for host-based intrusion detection.

In our experiments, we used two datasets from Australian Defense Force Academy; ADFA-WD as the source domain and ADFA-WD:SAA as the target domain datasets. We recorded a significant improvement in Area Under Curve AUC from 83% to 91%, when we fine-tuned a deep learning model trained on ADFA-WD with as little as 20% of ADFA-WD:SAA. Our result shows transfer learning can help to alleviate the need of huge domain specific dataset in building host-based intrusion detection models.

I. INTRODUCTION

According to a research report prepared by Cybersecurity Ventures [19], the annual cost of cybercrime damages as of 2015 was $3 trillion. This report also predicted that the annual cost would double by 2021. In [6], statistics of losses due to cyber attack incidents within the last decade was reported where incidents claiming $1 Million or more in loss increased from 21 in 2009 to 105 in 2019. This shows that not only has rate of attacks increased but they also cost more. Some of the recent attacks affecting many people include the Yahoo hack of 2013 which has been recalculated to have impacted 3 billion user accounts, and Equifax breach of 2017 that affected over 145 million customers [19]. Very recently, the SolarWind Hack was reported [3]. It was an unusual hack that affected US Government departments such as Homeland Security and Treasury and Commerce. Evaluation of the full impact of this attack is still on going.

There have been some improvements over the years in the area of intrusion prevention and detection, but the cybersecurity problems have become even more important as newly introduced network devices such as Internet of Things, come with increased attack surfaces [4]. This situation brings rise to zero day attacks that existing system may find hard to detect.

Attacks can be either insider or outsider attacks. Firewall has been instrumental in preventing outsider attacks but has no effect on insider attacks [18]. To mitigate insider attacks, both Intrusion Prevention Systems (IPS) and Intrusion Detection Systems (IDS) are useful. According to [17], “An IDS is a type of security tool that monitors network traffic and scans the system for suspicious activities and alerts the system or network administrator”. IPS on the other hand is described as a system that can autonomously block attacks before they occur [24]. IDS are mainly of two types: Host-based Intrusion Detection Systems (HIDS) which monitors individual hosts and alerts the user in the event of suspicious activities and Network Intrusion Detection Systems (NIDS) which stands at network points to identify intrusions in the network traffic [17], [13], [8], [25] are early works that tried to define the types of HIDS. [25] identified Audit data OS-level HIDS and Audit data Application-level HIDS. Audit data OS-level HIDS relates to system calls, file system modifications and user logons. Recent works including [1], [16], [11] are system calls based.

Traditional Machine Learning approaches have been used extensively in automating the intrusive behavior and attack detection process including Artificial Neural Network ANN, Decision Tree DT, and Support Vector Machine SVM [17], [13], [15], but these algorithms require good feature engineering in order to achieve good performance and they don’t benefit much when data increases beyond a certain point. Deep Learning techniques are able to address the problems with traditional machine learning algorithms as they are well known for automatic feature extraction and capability to cope and in fact, benefit immensely from large scale data in terms of performance [14], [2].

However, both traditional machine learning and deep learning algorithms rely heavily on an assumption that training data (source domain) and test data (target domain) not only belong to the same feature space, but also share the same distribution [10]. This assumption hardly holds for many real-life problems. It is also important to have sufficient training data in order to achieve good performance, especially with deep learning models. These constraints very often lead to poor performance of machine learning algorithms in solving...
such problems. Hence there is a need to create some sort of
greement between source domain and target domain data such
that learning in source can be useful for training in target.
Transfer learning can help in this situation.

Transfer learning is an approach that attempts to improve
the performance of a target domain model by transferring
the knowledge gained from a different but related source
domain model in such a way as to reduce the dependence
on a large quantity of target domain data in building target
domain model. Transfer learning can be grouped into two main
categories: homogeneous and heterogeneous transfer learning
[7]. Homogeneous transfer learning handles situations where
the domains are of the same feature space but only differ in
marginal distribution. Heterogeneous transfer learning on the
other hand handles situations where the domains have different
feature spaces. Apart from having different set of features
making up the features spaces of domains, the number of
features could also be different.

Our goal in this work is to explore the possibilities of
building better performing models for detecting attacks in a
target domain (usually a low resource domain) using help from
a source domain (usually a high resource domain). Our focus
here is on Host-based Intrusion Detection Systems HIDS. The
rest of the paper is organized as follows: in Section 2 we
discuss the related work in this area. Section 3 describes our
methodology. In Section 4 we present the experimental results
and lastly in section 5 we draw our conclusions.

II. RELATED WORK

This section presents the existing work in the area of
intrusion detection using transfer learning approach. More
work has been done for Network Intrusion Detection systems
so we will discuss some of these works in NIDS scenarios of
homogeneous features (section II-A) and heterogeneous fea-
tures (section II-B). As there are presently no work for domain
adaptive HIDS, we would also discuss current achievements
in HIDS from machine learning standpoint in II-C

A. Domain Adaptive NIDS with Homogeneous Features

Some of the works found in this area have taken the
approach of converting NIDS dataset into image and treating
the problem as an image classification one using Convolutional
Neural Networks CNN. Xu et al. [28] in their work used
a source domain KDD Cup 99 dataset and a target domain
"corrected" KDD Cup 99 dataset (which has 17 intrusion
types not found in the source dataset) for their experiment.
As the two datasets used in their experiment have the same
set of features and only differ in the types of intrusion, this
is clearly an homogeneous features scenario with source task
different than target task: \(\mathcal{Y}_S \neq \mathcal{Y}_T \). In their method, they
started with preprocessing where the goal was to convert the
119 features into a 11 X 11 pixels grayscale image. For the
training using the source dataset, 150,000 samples was set
aside while each of validation and test got 10,000 samples
each. This was fed into CNN model as they evaluated different
values of hyperparameters to get the optimal. Their result
recorded 97.9% accuracy outperforming other methods like
SVM, DT, K-nearest Neighbor KNN and Long Short-term
Memory LSTM.

Adaptation to the target domain was done by fine-tuning the
source model using data from the target domain. Their result
shows that test performance on target domain data improved
after fine-tuning especially when larger potion of the test
domain data was used in evaluation. The limitation of this
work however lies in their choice of benchmark dataset - KDD
99 which has been criticized by [9] among others, for it’s
age, highly skewed target, pattern redundancy, and irrelevant
features among other issues. It would be interesting to see how
this method performs on a dataset like NSL-KDD which has
been created specifically to address problems with KDD Cup
99 dataset.

Another work by Gangopadhyay et al. [10] took a similar
approach. In their work, image-based representation of the
feature set was done on CICIDS2017 dataset from Canadian
Institute for Cybersecurity [21]; mimicking 50 X 5 X 3 RGB
image. Portscan attack type was taken as the source domain
data while each of the other four attack represents a target
domain data. Source data was used to train a model by feeding
it into a four-layered CNN architecture using A batch size
of 32, Stochastic Gradient Descent SGD optimizer and 100
epochs. It was then tested with 50% validation split achieving
over 95% accuracy and a loss around 0.3. To transfer the
learning from source domain to target domain, the model
was re-used on other types of attack with minimal additional
learning by adding a dense layer with 32 units. This resulted
in validation accuracies of 100% for both DDoS and Infiltration
attacks and about 95% for Botnet and Web attacks.

In contrast to [28], a more recent dataset with attacks
relevant to our time has been used by [10]. The work however
revealed little details on their method for the choice of
hyperparameters.

B. Domain Adaptive NIDS with Heterogeneous Features

The problem of transfer learning becomes more complicated
with the heterogeneous features scenario as there is a need
to unify the feature space of the source and target. Wu et
al. [27] in their work, applied CNN to heterogeneous feature
scenario of network intrusion detection by concatenating CNN
source (base) model and CNN target model which then adds
a fully-connected layer as the output. Their experiment is based
on source or base dataset, UNSW-NB15 of Australian Centre
for Cyber Security (ACCS) [20] and NSL-KDD dataset of
Canadian Institute for Cybersecurity [23]. These two datasets
have different set of features so clearly this is an heterogeneous
feature scenario. The set of attacks are also not the same
between source and target domain data. A dedicated NSL-
KDD test dataset (KDDTest+ and KDDTest-21) were used in
evaluation which has 17 attacks not present in the train dataset.
To unite the feature space of source and target domain, this
work did a preprocessing that resulted in each instance in the
two datasets becoming a vector of 113 values. They claimed to
have combined the data fields of the UNSW-NB15 and NSL-KDD datasets.

Their result shows that the method recorded an accuracy of 87.30% on the KDDTest+ dataset versus 81.94% on the KDDTest-21 dataset. This is an improvement over the ordinary ConvNet without transfer learning where they recorded an accuracy of 84% on KDDTest+ dataset versus 59.92% on KDDTest-21 dataset.

C. HIDS Literature

Based on literature search, we could not find any work that has attempted domain adaptation in HIDS, neither in homogeneous nor heterogeneous scenario. It is however important to note the recent improvements recorded in HIDS with non-transfer learning approaches. [26] in their experiment on ADFA-WD dataset compared models of deep neural network DNN with SVM. Their result showed that 5 layered DNN with keras embedding recorded an accuracy of 83%, outperforming SVM with TFIDF which recorded an accuracy of 80.1%. One clear drawback of [26] is with their choice of accuracy as performance metric for ADFA-WD which is an imbalanced dataset.

[29] in their work compared performance of SVM and random forest in building a host-based intrusion detection system. For experiment they used ADFA-WD and ADFA-WD:SAA datasets. Their result shows that for both ADFA-WD and ADFA-WD:SAA, Random Forest recorded 82% detection rate outperforming SVM Sigmoid kernel at 71% and Radial Basis Function RBF kernel at 68%. Performance of these models can be improved with a domain adaptive approach.

In this work we investigated the possibility of building a better performing model in one domain of Host Based Intrusion Detection System HIDS by leveraging on the learning from a different but similar domain. We made the following contributions:

- Development of a new domain adaptive approach for Host Based Intrusion Detection.
- Mitigating need of large domain-specific data in building intrusion detection models with good performance for a low resource host domain.
- Alleviating the pains of zero-day attacks against host infrastructures.

III. METHODOLOGY

In this paper, we have assumed that our type of transfer learning problem is homogeneous (both source domain D_S and target domain D_T of HIDS have the same set of features). We have also assumed that both domains are labeled. The machine learning task in this work is that of classification of Host sequential process trace as either benign or attacks. Figure 1 presents the general process flow of DAHID.

System calls-based HIDS datasets being sequence of tokens have been approached in other works in a Natural Language Processing NLP fashion [26]. We have also followed the NLP approach but in a transfer learning way stepping through the process as laid out in Figure 1. This process presents 4 activities: Pre-processing, Network architecture, Evaluation and Fine tuning. We have in this work used the process to address the homogeneous features scenario of domain adaptive HIDS but this process can also work for the heterogeneous features scenario.

A. Pre-processing

Preprocessing involved converting system calls into tokens, feature extraction and sequence padding. We considered Host-based Intrusion Detection using ADFA-WD and ADFA-WD:SAA datasets generated at the next generation cyber range infrastructure of the Australian Centre of Cyber Security (ACCS) in the University of New South Wale (UNSW) at Australian Defense Force Academy(ADFA), Canberra [12].

Both ADFA-WD and ADFA-WD:SAA contain traces of syscalls from Windows XP SP2 system with ADFA-WD acknowledging “Windows-based vulnerability-oriented zero-day attacks” while ADFA-WD:SAA is designed to test the effectiveness of HIDS against “Windows-based stealth attacks”. These datasets contain nine core DLL calls (ntdll.dll, kernel32.dll, user32.dll, comctl32.dll, ws2_32.dll, mswsock.dll, msvcr64.dll, msvcpp.dll, and ntoskrnl.dll) [12].

Algorithm 1: Tokenize

| Input: list of syscall’s trace files $Trace_files1$ |
| Input: dictionary of syscall-integer pair DLL_dic |
| Result: Tokenized trace files $Trace_files2$ |

1. for file $\in Trace_files1$ do
2. for line $\in file$ do
3. for syscall, integer $\in DLL_dic.items()$ do
4. Write syscall with integer in line;
5. end
6. end
7. end
8. end

Fig. 1. General Flow of Domain Adaptation Method
To tokenize these, a dictionary that maps each of the DLL to integers was created. Algorithm 1 presents steps for conversion of system calls into token. In order to represent the data in a form acceptable to the modeling algorithm, feature extraction will be needed. To keep things simple we are going to use n-gram setting n = 1.

There are 4 dataset files folder, see the breakdown in Table I

<table>
<thead>
<tr>
<th>ADFA-WD</th>
<th>Trace File Count</th>
<th>Max Length</th>
<th>Median of Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>355</td>
<td>1670685</td>
<td>4208</td>
</tr>
<tr>
<td>Validation</td>
<td>1827</td>
<td>3212884</td>
<td>6834.0</td>
</tr>
<tr>
<td>Attack</td>
<td>5542</td>
<td>225973</td>
<td>1840.0</td>
</tr>
</tbody>
</table>

| ADFA-WD:SAA | Attack | 862 | 200064 | 2032.5 |

With the median length of both attack datasets at about 2000, we’re going to zero pad trace files with length less than 2000 and cut down to 2000 trace files with greater length. This is to ensure our trace files are of the same length. Training and Validation are combined and taken to be the negative (benign cases) while Attacks are positive.

From Table I we can see that there are 5542 attack instances in ADFA-WD while ADFA-WD-SAA has only 862 attack instances. Clearly, ADFA-WD is our high resource domain and so we are going to make it our source domain and ADFA-WD:SAA our target domain.

B. Network Architecture

In Figure 1, Input layer accepts D_S while choice of hidden layers is based on result of hyperparameter tuning. Choice of word embedding is based on whether we are solving a homogeneous or heterogeneous transfer learning problem: monolingual word embedding if homogeneous and bilingual word embedding if heterogeneous. Choice of output layer is based on whether the problem is binary or multi-class: sigmoid activation if binary and softmax if multi-class.

The appropriate deep learning architecture for sequence data is Recurrent Neural Network (RNN) but there are different variants of RNN. LSTMs are type of Recurrent Neural Network (RNN) architecture of deep learning with capabilities of learning long-term dependencies. Generally, all RNN models are designed to handle time or sequence dependence such as language, stock prices etc. While models such as CNN are feed-forward neural networks, LSTM has a feedback connection. In place of neural network layers, LSTM network presents LSTM cell blocks comprising of input gate, forge gate and output gate as components. Figure 2 is the LSTM Architecture Cell Visual Representation as presented in [22].

With our deep learning network set up we can build and evaluate a D_S model.

C. Evaluation

We then evaluate the model on D_T (this is expected to suffer performance degradation as evaluation is on a foreign domain). Lastly we use increasing portions of D_T to fine tune the D_S model as we evaluate using D_T.

The most common performance metric is the Accuracy which estimates the ratio of correctly classified instances to the entire sample size.

$$\text{Accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

TP = True Positive, TN = True Negative, FP = False Positive and FN = False Negative.

However, accuracy only serves as a good metric for samples that contains balanced classes. One of the metrics that can help when we have class imbalance problem is Area Under Curve AUC of Receiver Operating Characteristics (ROC) curve [5].

$$AUC = \int_{0}^{1} \frac{TP}{TP + FN} d\frac{FP}{TN + FP}$$

D. Fine-tuning

Fine-tuning could be done by either freezing some hidden layers or not. Freezing helps in reducing the training time and allows the model to concentrate on layers that capture the differences between the two domains. The only advantage of not freezing any layer is that no assumption is being made hence every layer that could benefit from fine-tuning no matter how small will be available.

<table>
<thead>
<tr>
<th>ADFA-WD</th>
<th>Trace File Count</th>
<th>Max Length</th>
<th>Median of Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>37% (2053)</td>
<td>92% (2008)</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>62% (3995)</td>
<td>8% (174)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADFA-WD:SAA</th>
<th>Attack</th>
<th>84% (725)</th>
<th>33% (721)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>10% (137)</td>
<td>67% (1465)</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. LSTM Architecture Cell Visual Representation [22]
IV. EXPERIMENTAL RESULT

A. Data
As we have disproportionate number of records of negative and positive examples, to guard against the problem of class imbalance in our training samples we used resampling to create Training and Test samples as seen in Table II

B. Deep Learning Architecture
The network as seen in figure 2 accepts 3 input items: \(h_{t-1} \) (output from the previous LSTM cell), \(X_t \) (input at the present time) and \(C_{t-1} \) (memory from the previous LSTM cell). While it returns 2 output items: \(C_t \) (memory of the present LSTM cell) and \(h_t \) (output from the present LSTM cell).

With choice of deep learning architecture made, using manual tuning method we have selected the following hyperparameter values:
- Embedding dimension: 128
- Sequence Maximum Length: 2000
- number of LSTM layers: 3
- number of units: First 2 hidden layers (128 units), last one (64 units)
- dropout: 0.2
- batch size: 10
- Number of Epochs: 100

Figure 3 presents the network architecture.

The model was evaluated using the test sample of source domain ADFA-WD dataset. To see the impact of performance degradation across domain, evaluation using the test sample of target domain ADFA-WD:SAA dataset was carried out. See below the performance of the source domain model in Table III

![Network Architecture](image)

Fig. 3. Network Architecture

In the first step of our experiment, a model was trained using the train sample of source domain ADFA-WD dataset, with a validation split of 0.2. See the plots of accuracy and loss of the model as epoch increased in Figure 4.

![Accuracy/Loss Plot](image)

Fig. 4. Accuracy/Loss Plot

Looking at the target test performance in III, we can see the drop in AUC from 91.8% to 83.1% (because of the class imbalance, accuracy cannot be a reliable performance metric).

In the second step of our experiment, we attempted to fine-tune the model (without freezing any layer) created using ADFA-WD with some portion of ADFA-WD:SAA. We would like to see if performance of target test improves. See below the performance as the amount of target train sample used in fine-tuning increased.

![Amount of Data Used in Fine-tuning Vs Performance Plot](image)

Fig. 5. Amount of Data Used in Fine-tuning Vs Performance Plot
V. CONCLUSION

In this paper we have demonstrated a new approach for domain adaptation for deep learning in cybersecurity specifically, homogeneous feature scenario of Host-based IDS. While transfer learning has been applied to many applications including a few in cybersecurity domain the need remains critical because of lack of availability of data, let alone data with labels.

We ran experiments on source ADFA-WD and target ADFA-WD:SAA and the results show that it is possible to develop transfer learning models in detecting different types of cyber-attacks with little fine-tuning on the target domain. In the future we will explore the possibilities of success in heterogeneous feature scenario of Host-based IDS. Lastly, we would be investigating how useful our findings would be for attack detection in IoT security.

ACKNOWLEDGMENT

This research is partially supported by NSF grant number 1923982, “HDR DSC: Collaborative Research: Creating and Integrating Data Science Corps to Improve the Quality of Life in Urban Areas”.

REFERENCES

