Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Cyclic Sparsely Connected Architectures for Compact Deep Convolutional Neural Networks

Morteza Hosseini†, Nitheesh Kumar Manjunath†, Bharat Prakash†, Arnab Mazumder†, Vandana Chandrareddy†, Houman Homayoun§, and Tinoosh Mohsenin†

†Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA
§Department of Electrical and Computer Engineering, University of California, Davis, CA, USA

Abstract—In deep convolutional neural networks (DCNNs), model size and computation complexity are two important factors governing throughput and energy efficiency when deployed to hardware for inference. Recent works on compact DCNNs as well as pruning methods are effective, yet with drawbacks. For instance, more than half the size of all MobileNet models lies in their last two layers, mainly because compact separable convolution (CONV) layers are not applicable to their last fully-connected (FC) layers. Also, in pruning methods the compression is gained at the expense of irregularity in the DCNN architecture, which necessitates additional indexing memory to address non-zero weights, thereby increasing memory footprint, decomp ression delays, and energy consumption. In this paper, we propose cyclic sparsely connected (CSC) architectures, with memory/computation complexity of \(O(N \log N) \) where \(N \) is the number of nodes/channels given a DCNN layer, that, contrary to compact depthwise separable layers, can be used as an overlay for both FC and CONV layers of \(O(N^2) \). Also, contrary to pruning methods, CSC architectures are structurally sparse and require no indexing due to their cyclic nature. We show that both standard convolution and depthwise convolution layers are special cases of the CSC layers and whose mathematical function, along with FC layers, can be unified into one single formulation, and whose hardware implementation can be carried out under one arithmetic logic component. We examine the efficacy of the CSC architectures for compression of LeNet, AlexNet, and MobileNet DCNNs with precision ranging from 2 to 32 bits. More specifically, we surge upon the compact 8-bit quantized 0.5 MobileNet V1 and show that by compressing its last two layers with CSC architectures, the model is compressed by \(\sim 1.5\times \) with a size of only 873 KB and little accuracy loss. Lastly, we design a configurable hardware that implements all types of DCNN layers including FC, CONV, depthwise, CSC-FC, and CSC-CONV indistinguishably within a unified pipeline. We implement the hardware on a tiny Xilinx FPGA for total on-chip processing of the compressed MobileNet that, compared to the related work, has the highest Inference/J while utilizing the smallest FPGA.

Keywords- Compressed DCNNs, Cyclic Sparsely Connected Architectures, Neural Network Accelerator, ASIC, FPGA

I. INTRODUCTION

Machine learning has reached to a point where it can surpass human-level accuracy in tasks such as speech recognition [1], [2] and computer vision [3]. In most recent systems, many of these tasks are implemented using artificial neural networks (ANNs) that are basically non-linear mathematical functions, inspired by biological neural networks, which take in an input data (e.g. an RGB image) and calculate an output result (e.g. an evaluated object in an image). Generally, ANNs encompass a wide range of types including deep neural networks (DNNs)\(^1\), deep convolutional neural networks (DCNNs), recurrent neural networks, and their combinations and variations.

DNNs were originally introduced as universal approximators made with non-linear multilayer feedforward networks [4]. DCNNs are a variation of DNNs that employ convolution/correlation functions at their core to identify temporal/spatial correlations within the input data. DCNNs are made of a few layers formed in a directed acyclic graph (DAG) [5]. Typically, the layers are of type convolution (CONV), fully-connected (FC), non-linear activation function, batch-normalization and max-pool. Computation in a DCNN is attributed to an extensive amount of multiply-accumulate (MAC) operations, and the model size is attributed to the number of parameters, both of which are commonly dominated by CONV and FC layers. Modern DCNNs trained on elaborate datasets suffer from large model size and high computation that makes their deployment to resource-bound hardware platforms such as embedded or assistive devices challenging. Therefore, many research efforts are taken to explore compressing techniques that reduce the computation and the model size while maintaining accuracy, aiming for DCNN optimal architecture exploration and efficient deployment to resource-constrained platforms ranging from general-purpose processing devices [1][3] to application-specific integrated circuits (ASICs) [6][7][8][9] and FPGAs [10][11][12][13][14].

In this paper, we review the state of the art compressing methods for DCNNs, and under the category of compact network design, we propose cyclic sparsely connected (CSC) architectures as a factorized overlay for DCNN layers that, compared to standard DCNN layers, can potentially reduce both computation and size of a layer from \(O(N^2) \) down to \(O(N \log N) \) where \(N \) is the number of channels/nodes given a layer. The CSC architectures are composed of a few structurally sparse layers cascaded, which result in full connectivity between the input and output nodes of the cascaded layers. We formulate CSC architectures for both their combination and their operation when being used as a DCNN layer, and evaluate their compression and their impact on accuracy. Furthermore, we show that both standard CONV layers as well as depthwise separable CONV layers [3] can be considered as special cases of CSC layers. Lastly, We design a hardware to implement DCNNs from a CSC perspective and show that the hardware can effectively implement CSC DCNNs as well as standard DCNNs and depthwise separable DCNNs. The main contributions of this paper include:

- Propose two types of CSC architectures with reduced
computational complexity and two schemes for CSC-CONV layers as substitutes for FC and CONV layers.

- Train LeNet300-100, AlexNet, & MobileNet-224 and -192 using CSC architectures, with compression of 19×, 7.3×, and 1.5× respectively as compared to their baselines within a margin of 1.5% accuracy loss.
- Propose a method of double compression by adopting CSC architectures in tandem with extreme quantization.
- Propose a scalable hardware, configured with 192 MAC units and 8-bit dataflow, implemented on a tiny Artix-7 FPGA that takes total advantage of on-chip block RAMs (BRAMs) to deploy the compressed 8-bit 0.5 MobileNet-192 VI for inference.

The rest of this paper is organized in the following sections: Section II underlines the motivations underlying our proposed method. Section III overviews the related works. Section IV introduces and formulates CSC architectures from their foundation to their application. In Section V, CSC architectures are formulated in terms of computation when being adopted by either FC or CONV layers for which two schemes are proposed. In Section VI the schemes are applied to popular DCNNs and are compared against the related compressing methods. Section VII proposes a hardware accelerator that implements DCNNs with or without compression with CSC architectures. Section VIII compares the characteristics of the hardware implementation to the state of the art. Finally, Section IX presents concluding remarks.

II. MOTIVATION
A. Pruning vs. Structured Sparsity
Despite their effectiveness, fine-grained pruning methods result in the irregularity of the pattern of non-zero weights in the pruned model that necessitates an additional indexing. Thus, their compressed model has more parameters than the sheer amount of non-zero weights, and their implementation is deteriorated by the model decompression. As an example, our experiments on the NVIDIA TX2 GPU at clock rate 1.3 GHz indicates that a matrix-vector multiplication using a matrix of size 16384-by-16384 can be implemented by the NVIDIA CuBLAS library with performance ~11.4 GOPS, whereas the implementation of the same matrix with 95% zero values compressed with CSR (compressed sparse row) storage format [16] can be executed using the CuSPARSE library with performance ~3.9 GOPS that merely operates over the 5% of non-zero values. Despite the fact that CuSPARSE can implement the latter problem 6.8× faster than the CuBLAS, its advantage is gained by the existence of 20× less number of operations, yet its degraded performance is caused by the decompressing algorithm applied to the matrix compressed by CSR format. In structured sparsity, on the other hand, indexing non-zero values is eliminated and the implementation can be handled as high-performance as dense matrices. Fig. 1 reflects this motivation by illustrating the computation complexity of a LeNet-300-100 DNN compressed with either pruning or structurally sparse method used in this work.

B. Low bitwidth Neural Networks
When quantization and pruning methods are used in tandem, unlike the DCNN weights and activations, the extra indexing memory imposed by the pruning method is not quantizable, and therefore the extra indexing memory might be intolerable in resource-bound platforms that employ low bitwidth such as binary [22] or ternary [23] weight neural networks. Pruning such neural networks can result in a larger model size as compared to their un-compressed models. For instance, if a ternary weight 16384-by-16384 matrix with 90% zero values is compressed with a COO (coordinate) format [16], it requires 97 MB of storage (dedicating 1 and 28 bits to the non-zero value and its index respectively) whereas its uncompressed model requires 67 MB (dedicating 2 bits per matrix weight). Thus, our second motivation is to develop and employ structurally compact models that require no indexing for low precision neural networks. Fig. 2 plots the memory vs. the number of operations for the same DNN with 4 of its compressed variants, highlighting the significant model size compression gained by combining structured sparsity and extreme quantization.

III. RELATED WORK
General compressing methods for DCNNs include:

1) Quantization: Although quantization methods don’t reduce the number of operations, they can reduce the DCNN model and the computation cost by altering floating-point to fixed-point operations that use simple circuitry in hardware. DoReFaNet [24] and QKeras [25] are frameworks that allow quantizing both weights and feature maps (fmaps) to any
arbitrary level. The Google TensorFlow lite (TFlite) allows quantizing DCNNs to 8-bit TFlite models with negligible accuracy drop, preparing them for deployment to the efficient fixed-point pipeline of general purpose CPUs.

2) Pruning: Pruning methods [15][26] effectively reduce the number of non-zero parameters and consequently the number of MAC operations by identifying and removing weak weights in the DCNN and fine-tuning the strong weights. This method is also referred to as fine-grained pruning, the main drawback of which is the irregular pattern of non-zero weights in the DCNN that necessitate a compressing format such as COO, and a decompression algorithm. Coarse-grained (a.k.a. structured) pruning methods [27][28][29][30], on the other hand, prune DCNNs more aggressively on structured levels such as vector, kernel, filter, group, or layer basis. Coarse-grained pruning methods can minimize the extra storage imposed by indexing as opposed to fine-grained methods, and the groups of non-zero entries can together, rather individually, be located with single indicators, thus minimizing indexing.

3) Compact Models: Contrary to pruning methods that follow a train-prune routine, compact models can be considered as a prune-train routine in which the model is forced to be trained on an already-sparsified basis. In Fig. 3 a few popular compact models from the literature are illustrated with their equivalent graphs. Every input node from a graph represents a 2D channel, and each edge is weighted with a 2D kernel, the connection of which corresponds to a 2D convolution operation. Every output node is a 2D channel that is resulted by summing over all of its connecting kernels operated on their connected inputs. Below each graph, the connectivity matrices from left to right, represent the topology of the graph from right to left. Compact models such as Low-Rank Expansion [20], MobileNet [3], ShuffleNet [18], SqueezeNet [19], PermDNN [21], PermCNN [9], and Butterfly Transform [17], as illustrated in Fig. 3 introduce alternate pre-sparsified layers with a common intuition: in all of them, each model proposes a pre-defined factorization that can be equated to a standard DCNN layer. It is their factorization form that allows compact representation and reduced operations. In other words, if a standard layer in a DCNN could be factorized into sparse layers, then the factorized model could result in a smaller representation with less computation. Luckily, training DCNNs doesn’t result in a unique solution. Therefore, one can define a sparse factorized basis in advance, and on which, enforce the DCNN to be trained. In MobileNet as an example, it is shown that standard 2D convolution layers can be replaced with a depthwise and a pointwise convolution layers that jointly together constitutes a separable layer, the characteristics of which is similar to the standard CONV layer, yet with approximately K^2 times less parameters and less computation if K-by-K kernels have high number of channels [3].

IV. CYCLIC SPARSE CONNECTIONS

We first introduce and formulate CSC architectures from a graph theory perspective. Then in Section V, we use these architectures for compact DCNN design. Furthermore, in Section VII we take advantage of CSC architectures in design of a high-bandwidth router in our DCNN accelerator hardware. The novel routing network can be categorized as a high bandwidth communication network for parallel system interconnections.
A. Fully-Connected Layer’s Graph

B. An L-layer DAG with params L, N, C and F

C. A Heterogeneous Cyclic Sparsely Connected DAG

D. A Homogeneous Cyclic Sparsely Connected (CSC I) DAG

E. A Homogeneous Cyclic Sparsely Connected (CSC II) DAG

Fig. 4. Exploring an architecture that approximates a weighted dense layer into factorization of weighted sparse layers. A) a fully-connected graph with size N, B) the problem statement highlighting a DAG with L layers, N nodes per layer, equally-fanned out layers, and equally connected I/O nodes with C paths, a few solutions of which can be: C) a heterogeneous CSC graph that has differently fanned-out layers, D) a homogeneous CSCII graph where $C = 1$, and E) a homogeneous CSCII graph where #layers (L) is 2. For all of the DAGs, bi-adjacency matrices at the bottom of the figure highlight connectivity of the nodes, the product of which reveals #paths for all I/O nodes. Generator polynomials underline formation of each graph.

Throughout this work we use italic lower case letter x to represent generator polynomials (e.g. $p(x) = 1 + x + x^2$), italic capital letters (e.g. N) for integer values, bold upper case letters for matrices (e.g. W) and vectors (e.g. X), and calligraphic uppercase letters for matrix of matrices to represent tensors (e.g. \mathbb{F}). We use italic lower case letters in brackets for the elements of a matrix or a vector (e.g. $W[i, j]$ or $X[j]$) and parenthesis for matrix elements of a tensor (e.g. $\mathbb{F}[i, n]$). Thus, the parameters of a 3D tensor such as a feature map data or a 4D tensor such as a filter set can be represented with ensemble of brackets and parenthesis (e.g. $\mathbb{X}[h, w, i]$ or $\mathbb{F}[h, n, i, j]$).

A. Problem Statement and Formulation

Concluded from the related works [3][17][18][19][20][21] and more specifically inspired by the structures of Butterfly networks in fast Fourier transform [31], we observe that in their graphs, the degree (number of connected edges) of every node/channel within the same layer are equal and there exists an equal number of paths connecting each Input node to every Output node. The objective of this Section is hence to formulate a directed acyclic graph composed of a few layers where all Input nodes are connected via an equal number of paths to all Output nodes of the graph. The graph is composed of: an Input layer, $L-1$ layers in between referred to as factorized layers, and an Output layer, each layer of size N. We denote the first (Input) and the last (Output) layers by capitalizing their first letters. We call it a homogeneous graph if all nodes in the graph are equally fanned-out and equally fanned-in with hyper-parameter F, or a heterogeneous graph if nodes at layer l are equally fanned-out with individual hyper-parameter F_l. The total number of edges E in this graph can be counted as follows:

$$E = N \sum_{l=0}^{L-1} F_l.$$ \hspace{1cm} (1)

To build upon our problem statement, we define a connectivity metric C that defines the number of paths that connect each arbitrary Input node to every arbitrary Output node from the graph. Fig. 4-A, B, C, D, and E show a fully-connected graph, a DAG and its parameters intended to approximate a weighted dense layer into factorization of weighted sparse layers, a heterogeneous graph, a homogeneous graph with $C = 1$, and a homogeneous graph with $C = 2$ respectively. Thus, for a heterogeneous graph:

$$\prod_{l=0}^{L-1} F_l = NC. \hspace{1cm} (2)$$

As a result, in homogeneous graphs $E = NFL$ and $F^L = NC$. The objective of homogeneity is to provide a basis where every arbitrary node in the graph is equally exploited, every arbitrary pair of nodes from Input and Output layers are equally connected, the information flux through the factorized layers is fairly equal, and the rank of the transforming weighted matrix can remain full. Given $F_l = F$ for all layers, combining Eqsns. (1) and (2) a logarithmic relationship between number of edges and size of layers is obtained for a homogeneous graph as follows:

$$E_{\text{homo.}} = NFL \log_f (NC), \hspace{1cm} (3)$$

that reflects the compression it provides as compared to a fully-connected graph with N^2 synapses. As an example, given $F = 2$ and $C = 1$, Eqsns. (2) and (3) infer that $L = \log N$ and $E = 2 NC \log N$ which is the case in radix-2 butterfly networks for fast Fourier transform (FFT) [31]. As a comparison, the graph in the Fig. 3-(C), with the leftmost layer excluded, represents a radix-2 ($F = 2$) butterfly network for an 8-point discrete FFT ($N = 8$). The graph has 3 layers ($= \log_8 8$), and 48 synapses ($= 2 \times 8 \log_8 8$), and clearly shows one and only one path ($C = 1$) between arbitrary pairs of nodes from its Input/Output layers.

1) Bi-Adjacency Matrices:

For every layer in the graph we define a bi-adjacency matrix A as the connectivity matrix whose height and width is equal to the input and output size of the layer respectively and whose elements $A(i, j)$ indicate the number of edges that connect the input node i to the output node j. Therefore, NF out of N^2 elements of the bi-adjacency matrix of every factorized layer in our problem statement are 1 and the rest are 0.

2) Input/Output Adjustment:

To replace a fully-connected graph that has Input size N_i and Output size N_o with a homogeneous graph that has a different
its bottom if consecutive rows of the bi-adjacency matrix and add them to $\log N$. For the Output layer to be adjusted to an output of size N_o, we manipulate the columns of the last bi-adjacency matrix similarly. By doing so, the connectivity between the adjusted Input and Output layers still remains C. For a homogeneous graph with parameters N, F, L, C, and adjusted I/O sizes of N_i and N_o respectively, the number of edges are:

$$E_{adj} = NF(L - 2) + N_iF + N_oF \quad (4)$$

B. Solution to the Problem Statement

There is no unique solution for graphs that meet the problem statement. We show that circulant matrices generated from generator polynomials as in cyclic error correcting codes give a set of solutions for the bi-adjacency matrices of the layers which satisfy all the requisites in our problem statement. From here on, we call these graphs cyclic sparsely connected (CSCI) architectures. Suppose the bi-adjacency matrix A_l ($0 \leq l \leq L - 1$) of every factorized layer l in our CSC graph has a generator polynomial $p_l(x)$ that has F terms which generates a cyclic bi-adjacency matrix of block length N. It can be shown that the product of the L bi-adjacency matrices attributed to the L layers is a matrix A_T where $A_T(i, j)$ represents the number of paths between the Input node i and Output node j of the CSC graph. In the problem statement, the connectivity should be equal to C for all arbitrary pairs of Input and Output nodes, and thus should $A_T = CJ$ where J is an N-by-N all-one matrix. The all-C matrix A_T can be attributed to another generator polynomial $p_l(x) = C \sum_{i=0}^{N-1} x^i$. The generator polynomial constructs a cyclic matrix as follows: the first row of the matrix corresponds to the coefficients of the polynomial—represented as big-endian in this paper—and then, every next row is a cyclic right shift of its previous row. The cyclic bi-adjacency matrices in this paper are not ideals as in ideal cyclic codes, and might have non-distinctive rows. We provide two different factorization sets of $p_l(x)$:

1) CSCI: Connectivity Equal to One:

If $C = 1$ and F, L and N are such that $N = F^L$, then $p_l(x) = \sum_{i=0}^{N-1} x^i$ can be factorized as follows:

$$\begin{align*}
 p_l(x) &= \sum_{i=0}^{F-1} x^{D_l,i}, \quad D_l = F^l.
\end{align*} \quad (5)$$

By assigning $p_l(x)$ as the generator polynomial of factorized layer l, the CSC layers of the graph are completely defined. D_l is the dilation parameter that indicates the distance between elements of value 1 in the first row of the bi-adjacency matrix of layer l. It also represents the dilation between the fanned-out edges in its corresponding layer. For small values of F (e.g., 2 or 3), and consequently more number of layers (e.g. $\log_2 N$ or $\log_3 N$), the least number of synapses is resulted, but at the expense of elongating the graph that, by itself, will increase the memory communication during hardware implementation. Fig. 4-D shows a CSCI graph with 3 layers, and generator polynomial $p_l(x) = \sum_{i=0}^{2^{-1}} x^{2j}$ for the layer l. We evaluate LeNet-300-100 on MNIST by replacing FC layers with CSCI.

2) CSCII: Layers Equal to Two:

If $L = 2$ and F, C and N are integers to satisfy $NC = F^2$, then $p_l(x) = C \sum_{i=0}^{N^2-1} x^{i}$ can be factorized as follows:

$$\begin{align*}
 C \sum_{i=0}^{N^2-1} x^j &= p_l(x) p_i(x) \mod (x^N - 1)

 p_l(x) &= \sum_{i=0}^{F^2-1} x^{D_l,i}, \quad D_0 = 1 \quad (6)

 p_i(x) &= \sum_{i=0}^{F^2-1} x^{D_l,i}, \quad D_1 = x^F.
\end{align*}$$

By assigning $p_l(x)$ and $p_i(x)$ to the first and second layers of the graph respectively, the CSCII graph is defined. In CSCII graphs, $E = 2N \sqrt{NC}$ that declares compression given $C < \frac{N}{4}$ and a computation of $O(N \sqrt{N})$. Fig. 4-E shows a CSCII graph with $C = 2$, and generator polynomial $p_l(x) = \sum_{j=0}^{x^2} x^{j}$ for the layer l. In Section V, we will evaluate replacing FC and CONV layers AlexNet and MobileNet with CSCII architectures.

For both CSCI and CSCII, the bi-adjacency matrix of a layer with size N, fan-out F, and a dilation D_l is inferred as:

$$A_l(i, j) = \begin{cases} 1 & \text{if } (i - j + kD_l) \mod N = 0, \forall k = 0, 1, \ldots (F - 1) \\ 0 & \text{otherwise.} \end{cases} \quad (7)$$

V. CSC ARCHITECTURES IN DCNNs

For simplicity, we ignore the term bias in all equations in this Section, assume that convolution operations are of same size, and the number of nodes/channels in I/O of the FC/CONV are all equal to N. As a result, vectors/matrices/tensors in this Section are $Y \in \mathbb{R}^N$, $W \in \mathbb{R}^{N \times N}$, $X \in \mathbb{R}^N$, $\forall Y \in \mathbb{R}^{W \times H \times N}$, $\forall F \in \mathbb{R}^{W_F \times H_F \times N_N}$, and $\forall X \in \mathbb{R}^{W_x \times H_x \times N}$, where W_y, W_F, and W_x as well as H_y, H_F, and H_x represent width and height in channels of tensors Y, F, and X respectively. If layers are not equally sized, we adjust their I/O according to the note in Subsection IV-A-2.

A. Fully-Connected Layers

A standard FC layer is representable with a dense weight matrix W whose operation on an input vector X is equivalent to a matrix-vector multiplication that generates a vector Y, s.t.:

$$Y[i] = (WX)[i] = \sum_{j=0}^{N-1} W[i, j]X[j], \quad \text{(8)}$$

which is a computation of $O(N^2)$. If W is factorizable into L matrices, or correspondingly, if a cascade of L CSC layers with linear activations and with parameters N and F are weighted to equate a factorizable fully-connected layer, then the equivalent $W_T = \prod_{l=0}^{L-1} W_l$. Because of associative property of matrix-matrix multiplication, the computation of $W_T X$ can start from the rightmost matrix-vector multiplication and propagate to the leftmost matrix. As such, every individual operation between layer l with W_l and input X_l results in:

$$Y_l[i] = \sum_{j=0}^{F-1} W_l[i, (i + jD_l) \mod N]X_l[(i + jD_l) \mod N] \quad \text{(9)}$$

that inherently skips the zero values in W_l by taking only the non-zero values that are dilated D_l elements apart. Thus,
Baseline CONV2D Layer	CSC CONV Layers (Scheme-1)	CSC CONV Layers (Scheme-2)
![Image](image_url)

The number of parameters of \(\mathbb{F} \) is \(W_{H}H_{F}N^{2} \) and the computation of \(\mathbb{F} \) is of \(O(W_{H}H_{F}W_{H}H_{F}N^{2}) \) and of \(O(W_{H}H_{F}N^{2}) \) for a standard and a pointwise \((W_{F} = H_{F} = 1) \) CONV2D respectively. If a CONV layer is trained on a CSC layer, then, \(\mathcal{Y}_{i}(j) = \sum_{j=0}^{F-1} \mathbb{F}(i,(i+jD)\mod N) \cdot \mathbb{X}(j) \), that performs zero-skipping by computing over only non-zero channels in \(\mathbb{F} \) that are dilated by \(D \) channels. Thus, the number of parameters are \(W_{H}H_{F}N^{2} \) and the computation is reduced to \(O(W_{H}H_{F}W_{H}H_{F}N^{2}) \) for a single \(\mathbb{F} \) to be executed. Given \(L \) homogeneous CSC layers with size \(N \), fan-out \(F \), and connectivity \(C \) that on every synapse of which 1-by-1 kernels are laid, the computation of \(\mathbb{F} \) is \(\mathcal{Y} = \mathbb{F}_{0} \ast \mathbb{F}_{1} \ast \ldots \mathbb{F}_{L-1} \ast \mathbb{X} \) is of \(O(W_{H}H_{F}N^{2}NFlog_{N}(NC)) \). Finally, \(\mathbb{F} \) can be rearranged in its compressed format \(\mathbb{F}_{c} \), where \(\mathbb{F}_{c}(i,j) = \mathbb{F}(i,(i+jD_{c})\mod N) \), and the computation of the output \(\mathcal{Y}_{c} \) can be reformulated as \(\mathcal{Y}(i,j) = \sum_{j=0}^{F-1} \mathcal{Y}(i,(i+jD_{c})\mod N) \), plugging which in Eqn. (11) results in a CSC CONV layer operation, with argument \(D_{c} \) as dilation, between a compressed 4D filter tensor \(\mathbb{F} \) of shape \(W_{F}-by-H_{F}-by-F \) and a 3D input tensor \(\mathbb{X} \) of shape \(W_{X}-by-H_{X}-by-N \) as follows:

\[
\mathcal{Y}_{c}(i,j) = (\mathbb{F}_{c}(i,j))_{\{i+jD_{c}\mod N\}} = \sum_{j=0}^{F-1} \sum_{h=0}^{H_{F}-1} \mathbb{F}(i,(i+jD_{c})\mod N) \cdot \mathbb{X}(i,j) \cdot (i+jD_{c}) \mod N, \quad (12)
\]

(11)

![Image](image_url)

Fig. 5. Two schemes for CONV layers: in Scheme-1, \(K \)-by-\(K \) kernels are laid on the first layer of the CSC architecture, and 1-by-1 kernels for the rest of the layers. In Scheme-2, \(K \)-by-1 and 1-by-\(K \) kernels are laid on the first two layers of the CSC architectures, and 1-by-1 kernels for the rest.

![Image](image_url)

Fig. 6. A naive pseudo code snippet to implement one CSC-CONV layer using a channel-first format for the three tensors \(\mathbb{X}, \mathbb{F}, \) and \(\mathcal{Y} \).

the computation is of \(O(NF) \) for one single \(\mathbb{W}, \mathbb{X} \), and of \(O(NFlog_{N}(NC)) \) for \(\mathbb{W} \cdot \mathbb{X} = (\prod_{i=0}^{F-1} \mathbb{W}) \cdot \mathbb{X} \) which corresponds to cascade of \(L \) homogeneous weighted CSC layers with connectivity \(C \) and fan-out \(F \) operating on input vector \(\mathbb{X} \). If \(\mathbb{W} \) is rearranged in its compressed format \(\mathbb{W}_{c} \in \mathbb{R}^{N \times F} \), which is an \(N \)-by-\(F \) matrix that contains only \(NF \) non-zero entries of \(\mathbb{W} \), where \(\mathbb{W}_{c}(i,j) = \mathbb{W}(i,(i+jD_{c})\mod N) \), then, Eqn. (9) can be altered as:

\[
\mathcal{Y}_{c}(j) = \sum_{j=0}^{F-1} \mathbb{W}_{c}(i,j) \cdot \mathbb{X}(i+(i+jD_{c})\mod N),
\]

(10)

to which, similar to Eqn. (10), we refer as a cyclic channel dilated 2D convolution for a CSC-CONV layer. A pseudo code to implement the Eqn. (12) is illustrated in Fig. 6. For \(F = N \) and \(D = 1 \), the Eqn. (12) converts to a standard 2D convolution as in Eqn. (11). For \(F = 1 \) and \(D = 0 \) they convert into a depthwise convolution, highlighting the application span of convolution layers from the perspective of cyclic channel dilated 2D convolution.

We define two schemes for CSC layers factorized on CSC architecture as depicted in Fig. 5. In Scheme-1, the \(K \)-by-\(K \) kernels are assigned to the first layer of the CSC architecture, and 1-by-1 kernels for the rest of the layers. In Scheme-2, \(K \)-by-1 and 1-by-\(K \) kernels are designated to the first and the second layers respectively, and 1-by-1 kernels for the rest of the layers of the CSC architectures.

C. Bottom-Up Training

The DCNN model with FC/CONV layers is trained first and a reference accuracy \(\lambda_{FC/CONV} \) is obtained. Then, the FC/CONV is replaced with an adjusted CSC-FC/CONV (refer to Subsection IV-A-2), starting from the most compressed CSC architecture and directed toward the compression reduction. Technically, Eqn. (3) indicates that the highest compression for homogeneous CSC architectures is achieved given \(C = 1 \) and \(F = e \) where \(e \) is the Napier’s constant (≈ 2.718). With no strict definition, however, we consider the most compressed CSC architecture is given by small values for \(F \) (e.g. 2, 3, and 4) if adopting a CSC1 architecture, and clearly by \(C = 1 \) if adopting a CSC2 architecture. The experiments begin by
targeting the bulky layers of a DCNN. In each experiment, if the accuracy λ_{csc} is less than $\lambda_{\text{fc/conv}}$, the procedure is terminated, and the CSC model is accepted. If no CSC layer replacement satisfies the accuracy loss, the original layer is restored. The criteria ϵ is chosen to be 2% in all experiments of this paper. While we don’t particularly promote either of CSCI or CSCII over another, we observe that CSC architectures provide the most compression for a shallow network like LeNet, and CSCII architectures provide the most accuracy stability for deeper networks such as AlexNet and MobileNet.

D. Similar Works

PermDNN: Deng et. al [21] proposed PermDNN which is an approach to customizing sparse weight matrices with a diagonalization scheme. In one glance, the CSC layers in this work look similar to the permuted diagonal matrices in [21]. However, in PermDNN, a weight matrix is chunked into many smaller diagonalized matrices and the connectivity of consecutive layers is not defined as a tweakable parameter as in CSC layers. On the other hand, a CSC layer uses one continuous diagonalized (cyclic) weight matrix per layer, the cascade of a few of which guarantees the full connectivity between alternate layers.

CirCNN: In CirCNN [32], a weight matrix is partitioned into K-by-K sub-matrices each of which, due to their circulant structure, can be defined with only K weights, thus compressing the model by K times. The convolution operation of the block-circulant matrices can be efficiently performed using FFT, element-wise matrix multiplication, and inverse FFT operations. With all the complexity reduction advantages of the CirCNN, it has two drawbacks: 1) the computation needs to be carried out in the realm of complex numbers, and 2) the method can not be used in tandem with extreme quantization, as the precision of the quantized weight matrices do not propagate in their transformation into Fourier domain.

VI. Experiments and Results

We used CSC architectures to evaluate their compression impact for popular DCNNs including LeNet-300-100 [5], AlexNet [33], and MobileNet [3] on benchmarking datasets MNIST and ImageNet. To follow the bottom-up training procedure, for each experiment, one of the two CSC architectures and one of the two proposed CSC-CONV Schemes from Section V is adopted and only one CSC hyper-param is tweaked per experiment. We use the AlexNet to show the generalization of our method for compressing all of its CONV and FC layers and for comparison against similar compressing methods. However, for LeNet and MobileNet we only tackle those layers whose compression has an overall impact on either the size or the computation of the model. These layers include the first two and the last two layers of LeNet300100 and MobileNet respectively.

1) AlexNet: For AlexNet, all CONV and FC layers were replaced with CSCII architectures using the Scheme-1 for CONV layers as depicted in Fig. 5. The baseline architecture and the compressed model are elaborated in detail in Table I with max-pool layers omitted. Table I also translates the original AlexNet in terms of CSC layers where the 2^{nd}, 3^{rd} and 4^{th} CONV layers are diluted for dispatching to two separate GPUs. The number of parameters in every layer of the two models is $W_FH_FN_FF_F$ and the number of operations is $2W_FH_WH_FH_WF_S / S^2 + 2(W_F - W_S)(H_F - H_W + S)W_FH_FN_FF_S / S^2$ for layers with same and valid size operations respectively. The stride S is 4 for the layer Conv1 _1 and is 1 for others. The layers Conv1 _1 and FC6 _1 are of valid size and the rest are of the same size operations. For the compressed AlexNet, the connectivity of most of the CSCII layers is 16, and the model is exactly equivalent to an original AlexNet with different weights, but with factorizable layers each conforming to two sparse layers in accordance to CSCII-Scheme-1. Table II compares our compressed AlexNet with related compressing methods, indicating that the structurally sparse CSC architectures can compress all CONV and FC layers of the AlexNet on par with pruning methods.

2) LeNet-300-100: For LeNet-300-100, which is a 3-layer DNN, we replaced the first two FC layers, that are the most memory- and compute-intensive layers, with CSCI architectures. Figs 2-A and 2-C show the baseline model and the compressed model of the LeNet-300-100 DNN. Because $F_L = NC$ should hold for all homogeneous CSC architectures according to Eqn. (2), and since adopting a CSCI architecture already narrows one of the 4 hyper-parameters, i.e. $C = 1$, here, the bottom-up training method means increasing any of F, L or N s.t. $F_L = N$ holds. For simplicity in our exploration we took $F = 2$ (which is close to Napier’s constant), and

TABLE I

<table>
<thead>
<tr>
<th>AlexNet</th>
<th>Original</th>
<th>Compressed by CSC Scheme-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer</td>
<td>Input Shape</td>
<td>Filter Shape</td>
</tr>
<tr>
<td>Conv1 _1</td>
<td>$W_S / \sqrt{2}$</td>
<td>L</td>
</tr>
<tr>
<td>Conv2 _2</td>
<td>$W_S / \sqrt{2}$</td>
<td>L</td>
</tr>
<tr>
<td>Conv3 _3</td>
<td>$W_S / \sqrt{2}$</td>
<td>L</td>
</tr>
<tr>
<td>Conv4 _4</td>
<td>$W_S / \sqrt{2}$</td>
<td>L</td>
</tr>
</tbody>
</table>

TABLE II

<table>
<thead>
<tr>
<th>Layer</th>
<th>Param</th>
<th>Pruning</th>
<th>Structured</th>
<th>Compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONV1</td>
<td>35K</td>
<td>84%</td>
<td>84%</td>
<td>100%</td>
</tr>
<tr>
<td>CONV2</td>
<td>30K7</td>
<td>84%</td>
<td>84%</td>
<td>100%</td>
</tr>
<tr>
<td>CONV3</td>
<td>88K5</td>
<td>35%</td>
<td>35%</td>
<td>100%</td>
</tr>
<tr>
<td>CONV4</td>
<td>66K4</td>
<td>37%</td>
<td>37%</td>
<td>100%</td>
</tr>
<tr>
<td>CONV5</td>
<td>44K3</td>
<td>37%</td>
<td>37%</td>
<td>100%</td>
</tr>
<tr>
<td>FC6</td>
<td>38M</td>
<td>9%</td>
<td>9%</td>
<td>100%</td>
</tr>
<tr>
<td>FC7</td>
<td>17M</td>
<td>9%</td>
<td>9%</td>
<td>100%</td>
</tr>
<tr>
<td>FC8</td>
<td>4M</td>
<td>25%</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>Total</td>
<td>61M</td>
<td>11%</td>
<td>11%</td>
<td>100%</td>
</tr>
<tr>
<td>PLOPs</td>
<td>1.3B</td>
<td>30%</td>
<td>30%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Top-1 Acc. | 57.1% | 57.1% | 57.1% |
Top-5 Acc. | 80.2% | 80.2% | 80.2% |

Accepted in IEEE Transactions on Very Large Scale Integration (VLSI) Systems (2021)
TABLE III

<table>
<thead>
<tr>
<th>LeNet-300-100 with 32-bit floating-point model as the baseline, its ternarized, and their CSCI compressed models, compared to a related work.</th>
<th>Config 1</th>
<th>Config 2</th>
<th>Config 3</th>
<th>Config 4</th>
<th>Config 5</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer Sparsity</td>
<td>Total #Ops</td>
<td>Full-Precision Model Size</td>
<td>Ternary Model Size</td>
<td>(Compression)</td>
<td>Baseline</td>
<td>Compressed w/ CSCI</td>
</tr>
<tr>
<td>LeNet-300-100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(MNIST)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>235K</td>
<td>30K</td>
<td>1K</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>100%-100%-100%</td>
<td>267K</td>
<td>534</td>
<td>98.4</td>
<td>1065 KB (1%)</td>
<td></td>
</tr>
<tr>
<td>Compressed w/ CSCI</td>
<td>4%-13%-100%</td>
<td>14K</td>
<td>28</td>
<td>98.2</td>
<td>53 KB (19%)</td>
<td></td>
</tr>
<tr>
<td>Fine-grained Pruning [15]</td>
<td>8%-9%-26%</td>
<td>22K</td>
<td>44</td>
<td>98.4</td>
<td>88 KB (12%)</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 7. Impact of the bottom-top method of replacing FC with CSC layers on the accuracy of LeNet-300-100 trained with full and ternary-precision weights. In each config., FC1 and FC2 are replaced with two CSCI graphs, CSCI1 and CSCI2, and the last layer remains FC. For config. 1, CSC layers are one-node factorized layers. For config. i (i > 1) CSCI1 has parameters $C_1 = 1$, $F_1 = 2$, $L_1 = i + 1$, $N_1 = 2^{i+1}$, and CSCI2 has parameters $C_2 = 1$, $F_2 = 2$, $L_2 = i$, $N_2 = 2^i$. In total, each config. (i > 1) has $E_T = 2((i-8) + 3968)$ parameters.

FIG. 8. This plot shows the number of parameters (~ model size) vs. top-1 ImageNet accuracy of 8-bit quantized DCNNs including 0.5, 0.75, and 1.0 MobileNetV1-224 (blue circle markers), and 0.5, 0.75, and 1.0 MobileNetV1-192 (red circle markers) and their CSC compressed counterparts (triangle markers). The CSC compressed counterparts are resulted by compressing the last two layers of every original MobileNet using CSCI architectures.

increased the L (thus $N = 2^L$) in every incremental experiment until the accuracy loss of less than 2% was met. Table III summarizes the compressed 32-bit and model and compares it with the baseline and a related pruned model.

In another set of experiments, we altered the MNIST dataset to a thresholded MNIST dataset in which the 28-by-28 grayscale pixels from the original MNIST were converted to ternary values, i.e. -1, 0, and +1. Then, we further compressed the LeNet-300-100 by ternarizing its weights and using the fine-tune the last two layers, i.e. a pointwise CONV, and an FC layer. We initially attempted to compress all layers of the MobileNets to ultimately find out that only its two last bulky layers have the potential to be further compressed with little accuracy loss using our method. In this experiment, we replaced the last two layers of MobileNets-224 and -192 with CSCI architectures and determined $C = 16$ for each CSCI architectures. To facilitate our experiments, we used pre-trained 8-bit TFlite models and used transfer-learning to fine-tune the last two CSCI architectures. Fig. 8 plots the number of parameters vs. the ImageNet top-1 accuracy in the 8-bit quantized models of 0.5, 0.75, and 1.0 MobileNetV1-224 (blue circle markers), and -192 (red circle markers), and their CSC compressed counterparts (triangle markers). The compressed CSC-MobileNet-224 and CSC-MobileNet-192 have above AlexNet-level accuracy and are small enough (873 KB) to be storable on a mobile device.

Table IV summarizes the compressed 2-bit models. Fig. 7 shows the bottom-up training procedure by tweaking the parameter L for each CSCI architectures for the first two layers of the DNN. In Section VII, we will implement the ternarized DNNs to further shed light on the advantages gained by ternarization and structured sparsity.

3) MobileNet: MobileNets are compact models already, and the depthwise/pointwise layers are special cases of heterogeneous CSC architectures: all depthwise layers in MobileNets can be processed given $F = 1$ and $D = 0$ and all pointwise layers can be processed given $F = N$ and $D = 1$ with reference to Eqn. (12). Nevertheless, in all of MobileNets’ variations, more than 50% of the model size falls under the last two layers, i.e. a pointwise CONV, and an FC layer. We initially attempted to compress all layers of the MobileNets to ultimately find out that only its two last bulky layers have the potential to be further compressed with little accuracy loss using our method. In this experiment, we replaced the last two layers of MobileNets-224 and -192 with CSCII architectures and determined $C = 16$ for each CSCI architectures. To facilitate our experiments, we used pre-trained 8-bit TFlite models and used transfer-learning to fine-tune the last two CSCI architectures. Table IV summaries the experiment for 0.5 MobileNet: the compressed quantized model of 0.5 MobileNet is 6x and 1.5x smaller than its float-32 and 8-bit baselines. In Section VII we will implement the compressed 8-bit 0.5 CSC-
MobileNet-192 on a tiny Xilinx Artix-7 FPGA to elucidate the benefits gained by full on-chip processing of a further-compressed DCNN.

VII. ACCELERATOR ARCHITECTURE AND IMPLEMENTATION

Motivated by works of Han et al. [36][37] and Zhang et al. [1] that emphasize the importance of compressing DCNNs to implement near SRAM processing, we pursue designing hardware for FPGAs that is independent of a DRAM, and that integrates all the processing components along with sufficient on-chip SRAM memory that stores the whole DCNN model and its intermediate feature map during every inference. The peak performance in a well-engineered accelerator with PE processing engines and $\#MAC_{perPE}$ multiply-accumulate units per PE with a clock rate $freq$ can potentially approach $2 \times \#PE \times \#MAC_{perPE} \times freq$. According to the roofline model, this performance is achievable if the memory bandwidth is high enough to minimize stalls and to continuously feed the computing components in PEs with required data/operands. All our hardware configurations in this Section were implemented on Xilinx Artix-7 FPGAs and all power and latency analyses were measured using the Xilinx Vivado Design Suite.

A. Ternarized LeNet-300-100 for Thresholded MNIST

To further illuminate the importance of structured sparsity for extremely quantized networks, in this Section, we first evaluate the ternarized baseline LeNet-300-100 on two hardware designs: (A) a hardware that implements the ternarized DNN with no compression scheme, and (B) a hardware that implements the DNN using coordinate (COO) format. We then compare the two implementations with a third hardware (C) that implements the DNN compressed with CSC architectures. The three designs are implemented with one processing engine, have one input memory that is large enough to store one 28-by-28 thresholded MNIST image of size 196 B, an output memory to accommodate the largest fmap of size 75 B, and one (or two) memory units to store the DNN models adapted to the three ternarized LeNet DNNs as in Table IV. Fig. 9-A depicts the block diagram of the CSC matrix-vector multiplication processor which implements the Eqn. (8) with ternary values for the baseline ternarized LeNet, where the three weight matrices from the three layers of the DNN of size 66.7 KB are stored using row-major order in 32 36Kb BRAMs constituting the weight memory. Fig. 9-B implements the same DNN but using a COO format for only the 5% non-zero values within the ternarized model. This design incorporates a weight memory that holds 1-bit data values (+1 and -1) and an Index memory that store a 19 bit index per non-zero value, 10 and 9 bits of which are column and row pointers of the non-zero weights in the pruned layer respectively, thus requiring an extra $\sim 14K \times 19$-bit index memory which is instantiated by 9 36Kb BRAMs. The column-pointers address the Input memory, while the row-pointers address the Output memory.

Fig. 9-C depicts the block diagram of the CSC matrix-vector multiplication processor which implements the Eqn. (10) for weight matrices of the CSC-FC layers of the DNN that are stored in memory in accordance to their compressed format \hat{W} in a row-major order. The schematic is adapted to accommodate the LeNet300100 with CSC layers that has a model size ~ 14 KB (Config 7) and that requires only 1 BRAM to be instantiated. The Address Generator Unit generates the indexes for the weight matrix and the input data using two counters with reference to Eqn. (10), and is updated with the parameters and the starting address (Layer Offset) of the layer-under-process. The address counter counts from 0 to $N_i - 1$ only once, while the recursive counter counts from 0 to $F - 1$ recursively until the layer is processed thoroughly. A state machine updates the Address Generator with the layer's parameters, controls the conditions of tiled/truncated layers, and swaps the Input and Output memory units alternately.

Implemented on one of the smallest Xilinx Artix-7 FPGAs, the performance of all three designs with only one MAC unit at clock rate 100 MHz is 200 MOPS. Thus with reference to Table IV, having the highest computation, the first design takes the longest classification latency per inference. The second and the third design have relatively the same number of operations, thus having an equal execution time of 140 us. However, due to having more memory usage and more energy-consuming communication, the pruned DNN implementation
B. CSC Compressed MobileNet for ImageNet

In Section V, we showed that DCNN’s major layers including standard FC, standard CONV, depthwise separable CONV, as well as CSC-FC and CSC-CONV layers are all special cases of CSC layers, and can be recognized solely by their weights in compressed formats (W̃ or ̂W) and hyper-parameters N (and Nf and N0 if adjusted), F, D, W F and HF, and their computation are all governed by Eqn. (12). The computation in Eqn. (12) with a pseudo code illustrated in Fig. 6 for a CSC-CONV can be highly optimized using various computation tiling schemes for any parallel computing machine. Our proposed hardware for the compressed MobileNet is depicted in Fig. 10 and described in Verilog HDL. It computes DCNNs with or without CSC layers is configurable with number of PEs, number of MAC units per PE, and the data-flow bitwidth matching the quantization level of a DCNN model. The hardware comprises three main blocks, including an array of PEs that perform MAC operations and accommodate a DCNN weight model partitioned in active memory units, a partitioned input memory that stores intermediate input feature map (IFMAP) data, and a CSC-based router that links and maximizes the bandwidth between array of PEs and array of sub-banks in the IFMAP memory. Each PE also incorporates another SRAM memory that stores output feature map (OFMAP) data in partitions, that exchange its temporary data with the IFMAP memory to drive a next layer in the DCNN. For simplicity, the state machine and pipelines that perform batch-normalization, max-pool, quantization, and non-linear activations are not shown. We configure this hardware to be implemented on a resource-bound tiny FPGA and to deploy the 0.5 CSC-MobileNet-192 for full on-chip processing. The computation tiling scheme of the hardware to implement DCNN layers governed by Eqn. (12) will be further elaborated in the following Subsections.

1) Quantization:

We follow the quantization scheme of the TensorFlow lite set of tools to effectively reflect their underlying computation on to the fixed-point pipelines of our hardware. In a nutshell, in 8-bit quantized TFlite models, both the weight tensor F and the input fmap X are in 8-bit precision and the convolution operation between the two operand tensors followed by a quantizing ReLU should result in another tensor Y that has 8-bit values. In order to do so, for a given layer with 8-bit quantized weights F and all possible 8-bit quantized values of X that are resulted from the dataset, an 8-bit offset scalar α and a 32-bit scaling factor scalar β are calculated and fine-tuned based on the min/max values of X during the training. Taking both scalars into account, the operation F * X as in Eqns. (9) through (12) is converted into β(F − α) * X, the most significant 8 bits of rounded entries of which determine the quantized Y.

2) Tiling Scheme:

For the computation of convolution operations as in Eqns. (11) and (12), there exists at least three different parallel computation schemes, namely input channel tiling, output channel tiling, and image patch tiling. Fig. 11 shows the three schemes illustrating 4 processing engines that parallel compute the standard 2D convolution between a 4-channel fmap, and 4 sets of filters. In our work, the fmap data is stored using an image-to-column format where each column from the 2D channel of a fmap is folded and stored in one or multiple entries of a partitioned fmap memory. The kernels are stored in the partitioned weight memory using a row-major order for both 3x3 and 1x1 kernels. The array of PEs adopt an output channel tiling scheme in accordance to Fig. 11-A, i.e. each PE concurrently performs a 2D convolution between one channel from the input fmap, that is accessible through the CSC-based router, and one individual filter channel that is stored in the partitioned weight memory of the PE. Meanwhile, each PE incorporates multiple MAC units that adopt an image patch tiling scheme, in accordance to Fig. 11-C, to parallel compute a single 2D convolution by partitioning a fetched 2D channel along its rows into number of MAC units to tile the computation. Upon fetching each entry from a partitioned fmap memory, one or a fraction of a fmap column goes through the pipeline of the MAC units to be individually multiplied with one common weight value fetched from the partitioned weight memory and accumulated in different accumulators. Tiling the input image in that regards has no overhead for 1x1 kernels, but has little timing overhead for 3x3 kernels that constitute less than 5% of the total computation in the compressed MobileNet. To handle the 3x3 kernels for an image patch tiling scheme, the tiled partitions of the fmap channels have overlapping data from the marginal rows at which the fmap channel is tiled. The state machine
The roofline model is used to capture the speed-up limitations of a hardware and varies for different workloads and implementation styles. We use a naive model based on our workload 0.5 CSC-MobileNet-192 and our implementation style; which is multiple MAC units per PE adopting image channel tiling, and array of PEs adopting output channel tiling. We tweak the parameters #PE and #MAC per PE to explore the maximum capacitance of our design and to pick a configuration that assures no hardware resource redundancy. Fig. 12-A shows that by increasing the number of PEs, the performance speeds up linearly until number of PEs approaches an amount of 64, which indicates that in the workload 0.5 CSC-MobileNet, the majority of the computation is over layers that have more than 64 channels. Similarly, Fig. 12-B shows that by increasing the #MAC per PE until meeting an amount of 12, the performance speeds up almost linearly, which is because in the workload 0.5 MobileNet-192 the majority of the computation is over layers that have fmap channels of size more than 12-by-12 that can perfectly be tiled into 12 patches along their rows and be handled using 12 MAC units. Having assumed that the hardware memory is unlimited in both Figs. 12-A and 12-B, the maximum speedup approaches to 96× and 13× respectively. Since we are seeking an energy-efficient design, rather a maximum achievable performance, we select 16 PEs and 12 MACs per PE because they are both on the linear region of their roofline models that guarantees avoidance of under-loading the computation pipeline, and as close to the ridge point as possible, where the performance is maximum using minimum hardware resource utilization. Another reason to prefer 16 PE over 32 or 64 PEs is that each partitioned input memory should be large enough to store one of the three channels of the input RGB image which is of size 37 KB (=192×192×3) for the first layer, and should also be able to accommodate the partitioned largest fmap of the MobileNet-192 which is of size 590 KB (=96×96×64B). Taking 590 KB for the total size of the input fmap memory and partitioning it into 16×3072 B in accordance to 16 PEs meets the implementation requisites for deployment of the compressed 0.5 CSC-MobileNet-192. Consequently, given the choice of 12 MAC units per PE, each partitioned input memory has a width 12×8 bits and a depth 3072 that is instantiated using 8.5×36KB BRAMs.

4) High Bandwidth Router Adopting Cyclic Architectures: The DCNN’s compressed parameters \hat{F} given a layer and its input feature map \hat{x} are partitioned and evenly distributed between #PE weight memory sub-banks and #PE input fmap memory sub-banks respectively, i.e. given a layer with N nodes/channels fed by an N-channel input fmap, the $W_H H F$ parameters of \hat{F} and the $W_H H N F$ of fmap are equally partitioned and stored in #PE weight memory sub-banks and #PE input fmap sub-banks respectively on a channel-major order. Each of the processing engines are designed to compute $\frac{1}{\#PE}$ of the total computation attributed to the layer and should have a direct access to one and only one partitioned weight memory at all times, and be provided with access to each and every #PE memory sub-banks at different computation cycles. To effectively tile the computation for the layer and link the individual input fmap memory sub-banks with the processing engines, we designed a router that adopts a cyclic architecture that essentially implements the modulo operator existing in Eqn. (12). The cyclic router is composed of switches that are controlled by a state machine driven with the layer’s hyper-parameters to provide a one-to-one cyclic link between ifmap sub-banks and MAC units from the PEs. Fig. 13 reflects our idea of tiled computation by illustrating operation between an 8-by-8 CSC-FC matrix ($N = 8, F = 4, D = 2$) and a vector of size 8, using a hardware configured with four 2-word input sub-banks, 4 PEs (with 1 MAC unit), four 8-word weight and four 2-word output sub-banks. The total computation for this examples is equal to 32 MAC operations which is carried out in 8 clock cycles using a router with switches that takes advantage of the cyclic structure and instantly link the computing resources to required data. Using a total 4 MAC units to perform 32 MAC operations in 8 clock cycles indicate that the design meets the maximum achievable performance. Lastly, 2 more clock cycles are spent to write the 8-word output fmap back to the four input sub-banks. To generalize the illustration example of Fig. 13, consider each of the values stored in the input fmap sub-banks is a 2D channel from an input fmap. Thus, with a scheme similar to the Figure and with reference to the Eqn. (12), all types of DCNN layers including FC, CONV, depthwise, CSC-FC, and CSC-CONV are indistinguishably implementable within the same pipeline, all with performance $2 \times \#PE \times \#MAC per PE \times freq$. For our design with 16 PEs and 16 ifmap sub-banks, we adopted a CSC structure for the router with parameters $L = 2$ stages, $N = 16$ switches per stage, and $F = 4$ degree of switches, that provides an internal bandwidth 19.2 GB/s and performance 38.4 GOPs at clock rate 100MHz.

5) Hardware Implementation: The hardware configuration for the compressed model was

![roofline](image)
implemented on the Artix 7A200T FPGA from the AC701 evaluation board at clock rate 100 MHz using the Xilinx Vivado Design Suite. The measurements of power, latency, and consequently the energy per inference of the workloads come from simulation using corresponding test-benches that provide precise toggle rate as well as timing of the implementation on the FPGA. The 7A200T FPGA has 1.6 MB of BRAMs and 0.4 MB of distributed LUT RAMs that suffice the total on-chip SRAM requested for implementing the hardware configuration that accommodates the compressed MobileNet, whereas the uncompressed MobileNet requiring hardware with 2.4 MB memory can not fully fit in the on-chip memory of the FPGA.

The hardware for the compressed MobileNet has been configured as per Fig. 10 with 16 PEs and 12 MACs per PE, with the minimum required on-chip SRAM to implement the 8-bit 0.5 CSC-MobileNet-192 for full on-chip processing. The size and total computation of the DCNN model according to Table V are 873 KB and 210 Million operations respectively. Partitioning the model weights of the 0.5 CSC-MobileNet-192 (of size 873 KB) into 16, results in configuring each partitioned weight memory to have width 8 bits and depth 57344 that would be instantiated using 14×36kB BRAMs. A fraction of 3.5% of this memory space is used for storing quantization offset, scaling parameters and DCNN hyper-parameters. The size of each input image is 111 KB (=192×192×3), and the largest feature map is 590 KB (=96×96×64) that is storable in 16 partitioned fmap sub-banks each with size 37 KB (8.5 BRAMs). The largest fmap generates an output feature map of 295 KB (=48×48×128). Equivalently, the output fmap memory should be large enough to store the output fmap of size 295 KB (=96×96×32B) from the layer of the 0.5 CSC-MobileNet-192 which is fed by the largest input fmap. As a result, each partitioned output fmap memory has a width 12×8 bits and a depth 1536 which will be instantiated using 4.5×36kB BRAMs. Summing up all the memory requirements for the implementation, the FPGA should provide approximately 432 BRAMs. This amount is 18% more than the available resource (364 BRAMs) of our selected Xilinx FPGA. The extra memory requirement is then instantiated using the sufficient LUT RAMs of the FPGA that are of size 0.4 MB. Table VII lists the configuration of the hardware that requires approximately 2 MB on-chip memory to implement ImageNet with top-5 classification accuracy of 81.1%. Table VIII (last column) show the resource utilization break down for the implementation on the 7A200T FPGA.

With 192 MAC units operating at 100 MHz, the peak performance of the accelerator reaches 38.4 GOPS, and the power dissipation of the FPGA is approximately 1.4 W, thereby yielding an energy efficiency 27 GOPJ. Fig. 15 shows the power dissipation breakdown per FPGA’s resources, and the resource utilization for the hardware with 16 PEs and 12 MAC units per PE on the evaluation board, highlighting the full utilization of the BRAMs, and dynamic power dissipation of 90%. Fig. 14 plots the number of computation and communication cycles per layer implementation of the 0.5 CSC-MobileNet-192 as workload. With reference to Fig. 13, the computation cycles of a DCNN’s layer correspond to the phase in which the MAC units in hardware perform the MAC operations of the layer, and the communication cycles of the layer correspond to the write-back phase in which the processed output fmap are relocated to the input fmap memory to start computation of the next layer of the DCNN.

VIII. Comparison

Table VIII summarizes the FPGA implementation results of our compressed MobileNet for the classification of the
TABLE VIII
COMPARISON WITH RELATED FPGA WORKS FOR ImageNet CLASSIFICATION

<table>
<thead>
<tr>
<th>Related Work</th>
<th>0.5 MobileNet-224</th>
<th>0.5 MobileNet-192</th>
<th>ResNet-18</th>
<th>AlexNet</th>
<th>DiracDeltaNet</th>
<th>ResNet-18</th>
<th>AlexNet</th>
<th>DofEFaNet/PF</th>
<th>MobileNet</th>
<th>1.0 MobileNet-224</th>
<th>AlexNet</th>
<th>This work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Name</td>
<td>0.5 MobileNet-224</td>
<td>0.5 MobileNet-192</td>
<td>ResNet-18</td>
<td>AlexNet</td>
<td>DiracDeltaNet</td>
<td>ResNet-18</td>
<td>AlexNet</td>
<td>DofEFaNet/PF</td>
<td>MobileNet</td>
<td>1.0 MobileNet-224</td>
<td>AlexNet</td>
<td>This work</td>
</tr>
<tr>
<td>Method</td>
<td>Compact (Baseline)</td>
<td>Compact Model</td>
<td>Ternarized</td>
<td>Pruned</td>
<td>Hybrid Quantization</td>
<td>Shallow Network</td>
<td>Redundancy-Reduced</td>
<td>Structurally Sparse</td>
<td>CSC for the Last 2 layers</td>
<td>0.5 MobileNet-192</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision (W/A)</td>
<td>16/16</td>
<td>4/4</td>
<td>2.2</td>
<td>16/16</td>
<td>1/2</td>
<td>4/4</td>
<td>8/4</td>
<td>16/16</td>
<td>8/8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top-1 Acc.</td>
<td>63.3</td>
<td>68.8</td>
<td>56.5</td>
<td>57.1</td>
<td>50.3</td>
<td>-</td>
<td>64.6</td>
<td>57.3</td>
<td>58.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Top-5 Acc.</td>
<td>84.9</td>
<td>88.1</td>
<td>80.2</td>
<td>100%</td>
<td>91.0</td>
<td>41%</td>
<td>73%</td>
<td>38%</td>
<td>0%</td>
<td>20% 40% 60% 80% 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device</td>
<td>ZED-105</td>
<td>ZDE-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td>ZED-105</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td>109 (12%)</td>
<td>360 (10%)</td>
<td>202 (92%)</td>
<td>1144 (45%)</td>
<td>-</td>
<td>403 (16%)</td>
<td>1452 (58%)</td>
<td>1352 (36%)</td>
<td>215 (29%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUT</td>
<td>9K (41%)</td>
<td>52K (73%)</td>
<td>38K (71%)</td>
<td>552K (92%)</td>
<td>-</td>
<td>30K (14%)</td>
<td>38K (51%)</td>
<td>36K (100%)</td>
<td>36K (100%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAM</td>
<td>110 (20%)</td>
<td>159 (74%)</td>
<td>97 (69%)</td>
<td>912 (48%)</td>
<td>432 (100%)</td>
<td>142 (16%)</td>
<td>1729 (95%)</td>
<td>1452 (58%)</td>
<td>364 (100%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Memory</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock (MHz)</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>200</td>
<td>220</td>
<td>-</td>
<td>150</td>
<td>200</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In/sec (FPS)</td>
<td>1.4</td>
<td>41.1</td>
<td>20.5</td>
<td>446</td>
<td>200</td>
<td>75</td>
<td>127.4</td>
<td>987</td>
<td>141</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inference/J</td>
<td>0.6</td>
<td>7.5</td>
<td>7.9</td>
<td>18.9</td>
<td>19.6</td>
<td>22.1</td>
<td>-</td>
<td>64.1</td>
<td>97.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 14. The number of computation and communication cycles per layer implementation of the 0.5 CSC-MobileNet-192 as a workload, over the hardware with 16 PEs and 12 MAC units per PE.

Fig. 15. Implementation results of the hardware with 16 PEs and 12 MAC units per PE on the Xilinx Artix 7A200T FPGA from the AC701 evaluation board. A: Power breakdown, and B: Resource Utilization

ImageNet dataset and compares it with related FPGA implementations that are tabulated from left to right of the Table in an efficiency (Inference/J) ascending order. While the DCNN models differ in their architectures, they all adopt some sort of a redundancy-reduction technique in tandem with various quantization schemes, and they all seek the same task, i.e. ImageNet classification with a top-1 accuracy ranging between 50% to 70%. Compared to the baseline MobileNet implementation in the work of Liao et. al [13], our implementation has 4.6% less accuracy, but gains ~1.5x, 100x, and 150x in terms of power, FPS and efficiency at clock rate 100 MHz. Also, in comparison to the works of Lu et. al [40] and Zhu et. al [12] that adopt an AlexNet model sparsified to 10.80% and 11.03% using fine-grained and coarse-grained pruning methods respectively, our implementation has the same level of accuracy, yet more than 7x less power dissipation and more than 1.8x more energy efficiency.

While most of the related work in Table VIII use heterogeneous computing platforms that employ FPGAs along with DRAMs and/or CPUs, our implementation is a minimal design that relies solely on the FPGA resources to implement a compact MobileNet and to enjoy efficiency advantages. In fact, the MobileNet in our work was compressed to the extent that a fully on-chip processing method on a small FPGA would be justified. This implementation style is also practiced in the work of Su et. al [42] for a redundancy-reduced MobileNet, thereby allowing their implementation to benefit from the high bandwidth of FPGA on-chip BRAMs, and to gain a performance on par with ours (127 FPS vs 141 FPS). Similar works that deploy MobileNets to large FPGAs for full on-chip processing with the aim of gaining high throughput include works of [43], [44], and [45] that report throughput of 1131, 3109, and 5157 FPS on Intel Stratix FPGAs. However, the power consumption and the efficiency metrics in these works are not of concern, hence not reported. While this implementation style is not always practical when large DCNN models are targeted for small FPGAs, it is worth emphasizing that the main reason of the efficiency outperformance in our implementation is the usage of a small DCNN that fits for full on-chip processing in a tiny FPGA (Artix-7) which is significantly smaller and an order of magnitude as less power dissipating as most of the FPGAs used in the related work discussed in this paper.

IX. CONCLUSION

To address the general issues with pruning methods and compact model architectures, we introduced cyclic sparsely connected (CSC) architectures with a memory/computation complexity of $O(N \log N)$ that can be used as an overlay for both FC and CONV layers of $O(N^2)$, where N is the number of nodes/chanels given a layer. CSC architectures can effectively compress both traditional FC and CONV layers in tandem with extreme quantization and can be implemented using a hardware-friendly style. Furthermore, both standard convolution and depthwise convolution layers conform to special cases of the CSC layers where the mathematical functions related to these layers can be merged into a single formulation and implemented indistinguishably under one arithmetic logic component. The effectiveness of the CSC architecture is examined for compression of popular 2-bit
to 32-bit DCNNs. As a result, we showed that using the CSC architecture, the AlexNet can be compressed on par with pruning method. We also managed to further compress MobileNets up to $\sim 1.5\times$ by replacing their last two layers with appropriate CSC layers. The compressed 0.5 CSC-MobileNet-192 can be easily deployed to low power Artix-7 FPGA for full on-chip processing due to the small memory requirement. Compared to state of the art, our implementations is more than 1.5x less power consuming while more than 1.8x superior in terms of energy-efficiency for the ImageNet classification when directed for FPGAs.

References

[10] A. Mirzaeian, M. Moghaddam, and A. Sasan, “Efficient sparse convolu-

