Access to this work was provided by the University of Maryland, Baltimore County (UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and telling us what having access to this work means to you and why it’s important to you. Thank you.
Study of the calibration method using the stars measured by the EUSO-TA telescope

Z. Plebaniak, M. Przybyła, D. Barghini, M. Bertaina, F. Bisconti, M. Casolino, D. Gardiol, R. Lipiec, L. W. Piotrowski, K. Shinozaki and J. Szabelski on behalf of the JEM-EUSO Collaboration
(a complete list of authors can be found at the end of the proceedings)

Dipartimento di Fisica, Università di Torino, Italy
Instituto Nazionale di FisicaNucleare - Sezione di Torino, Italy
National Centre for Nuclear Research, Łódź, Poland
RIKEN, Wako, Japan
Instituto Nazionale di Fisica Nucleare - Sezione di Roma Tor Vergata, Italy
Università degli Studi di Roma Tor Vergata - Dipartimento di Fisica, Roma, Italy
Instituto Nazionale di Astrofisica - Osservatorio Astrofisico di Torino, Italy
Łódź University of Technology, Łódź, Poland
Faculty of Physics, University of Warsaw, Poland
E-mail: zp@zpk.u.lodz.pl, mp@zpk.u.lodz.pl

EUSO-TA is a ground-based experiment, placed at Black Rock Mesa of the Telescope Array site as a part of the JEM-EUSO (Joint Experiment Missions for the Extreme Universe Space Observatory) program. The UV fluorescence imaging telescope with a field of view of about 10.6° x 10.6° consisting of 2304 pixels (36 Multi-Anode Photomultipliers, 64 pixels each) works with 2.5-microsecond time resolution. An experimental setup with two Fresnel lenses allows for measurements of Ultra High Energy Cosmic Rays in parallel with the TA experiment as well as the other sources like flashes of lightning, artificial signals from UV calibration lasers, meteors and stars. Stars increase counts on pixels while crossing the field of view as the point-like sources. In this work, we discuss the method for calibration of EUSO fluorescence detectors based on signals from stars registered by the EUSO-TA experiment during several campaigns. As the star position is known, the analysis of signals gives an opportunity to determine the pointing accuracy of the detector. This can be applied to space-borne or balloon-borne EUSO missions. We describe in details the method of the analysis which provides information about detector parameters like the shape of the point spread function and is the way to perform absolute calibration of EUSO cameras.

37th International Cosmic Ray Conference (ICRC 2021)
July 12th – 23rd, 2021
Online – Berlin, Germany
1. Introduction

EUSO-TA which is a part of the JEM-EUSO (Joint Experiment Missions - Extreme Universe Space Observatory) scientific program is a ground-based experiment located in Black Rock Mesa, the Telescope Array [1] (TA) experiment site. Experiment is designed to observe an Ultra High Energy Cosmic Rays (UHECR) simultaneously with TA. The detector is based on one Photo Detection Module (PDM) - the main unit of all EUSO experiments. PDM consists of an array of 3x3 Elementary Cells (ECs), each EC consists of 2x2 Hamamatsu R11265-M64 Multi-Anode Photomultipliers (MAPMT). The total number of pixels on focal surface is 2304. Each EC has separate High Voltage Power Supply system [2]. Readout system is based on SPACIROC-1 ASIC [3]. Applied optical system consist of two PMMA Fresnel lenses [4] with effective area \(\sim 0.92 \, m^2 \) allows for observations of the night sky in wide, 10.6° field of view.

Since installation in 2013 several measurement sessions with TA have been conducted. During measurements artificial and non artificial sources of UV signal including UHECR, meteors, stars and calibration lasers have been observed. More detailed description of these observations and of the detector configuration can be found in [6]. Analysis of the taken data and its comparison with TA gives us great possibility to test and improve EUSO technology - what is one of the main objectives of the EUSO-TA experiment.

Absolute calibration of EUSO detectors is an important step necessary to understand registered signal. EUSO-TA fluorescence detector is sensitive to the UV light from stars. Photometry of stars is a standard method commonly used for calibration of optical telescopes. In this work we present
procedure and results of absolute calibration of EUSO-TA detector based on observed UV signals from stars.

2. The EUSO-TA detector

The EUSO-TA fluorescence detector is located in front of TA-FD station at Black Rock Mesa site (1400m a.s.l.). Elevation of the optical axis can be set manually in the range between 0 and 30 degrees with respect to the horizon. Focal surface containing the matrix of 48x48 pixels consists of the 64-channel MAPMTs with \(\sim 75\% \) collection efficiency and quantum efficiency with maximum reaching 35\% at \(\sim 350 \) nm. Single pixels are squares with a size of 2.88 mm corresponding to 0.2° x 0.2° field of view. The nominal wavelength range for UHECR observations is 290 - 400 nm however signals from stars can be observed up to 600 nm due to transmittance of applied BG3 filter. The photon collection efficiency of the EUSO-TA taking into account the surface reflection, PMMA absorption and other loss factors indicates wavelength-dependence with average value \(\sim 40\% \) for 0° of the incident angle [4]. Measured PSF for 0° gives around 80\% of signal from point-like source in 3x3 pixels. This value is decreasing with the distance from optical axis.

![Figure 2: Known parameters of EUSO-TA detector. Blue, red and green lines represents wavelength-dependent parameters of EUSO-TA detector while violet line is related to total apparatus effect including PMT collection efficiency and ASIC inefficiency due to pileup depends on light intensity.](image)

SPACIROC1 front-end ASIC allows for work in single photon counting mode with 30ns of double pulse resolution. Counts are sampled in 2.5 \(\mu s \) gate time units (GTUs) with 0.2 \(\mu s \) dead time.

Relation between registered \(PE_R \) and generated \(PE_G \) number of photo-electrons can be ex-
pressed in the following way [7]:

\[PE_R = PE_G \cdot \exp \left(-\frac{PE_G \cdot \tau}{T_{acq}} \right) \quad (1) \]

where:
\(\tau \) - double pulse resolution
\(T_{acq} \) - acquisition time of single frame (GTU - dead time)

EUSO-TA detector can work with external trigger or can be self-triggered with 1Hz trigger rate. While receiving trigger, 128 GTU frames (one packet) is saved, i.e. 64 frames before trigger, and 64 after. An average trigger rate for work with TA is around 2Hz so stars are in almost the same position on focal surface between neighbouring packets.

3. Atmospheric attenuation and predicted star signal

To perform absolute calibration we need to know the parameters of the signal reaching EUSO detector. In case of star, intensity of the signal depends on its spectrum and path in the atmosphere due to the Rayleigh and Mie scattering as well as the ozone absorption. For calculations we used the Pickles stellar spectral flux library [8]. Spectra in the database are related to specific spectral types of stars therefore must be re-normalized for each case during analysis. Atmospheric transmittance has been calculated using libRadTran package [9] applying atmospheric parameters corresponding to the desert conditions where EUSO-TA detector is placed. An accurate representation of atmospheric conditions during measurements is difficult task due to variability of aerosols. For calculations we assumed average values of visibility.

![Figure 3: Comparison of photons spectrum for HIP102589 star with related Planck distribution at the top of the atmosphere (left) and atmospheric transmittance for observations at 10° and 20° of elevation, calculated with libRadTran.](image)

Expected signal \(N_{exp} \) for fixed observation angle can be simply described by following formula:

\[N_{exp} = C_{abs} \int_0^\infty T_{atm}(\lambda)\Phi_{top}(\lambda)P_{det}(\lambda) d\lambda \quad (2) \]
EUSO-TA calibration

Z. Plebaniak

where:
\(T_{atm}(\lambda) \) - atmospheric transmittance
\(\Phi_{top}(\lambda) \) - star light flux at the top of the atmosphere
\(P_{det}(\lambda) \) - known detector parameters
\(C_{abs} \) - wavelength independent absolute calibration constant

4. The data analysis

Data analysis has been performed using dedicated GUI browser prepared in ROOT framework [10]. The main panel is presented in Fig. 4. We work on counts summarized over the packets. Because of different response of individual pixels in the first step we use the equalization algorithm [11]. This allows to fit the tracks of stars with \(M_B < 5.5^m \). Pixels excluded by the algorithm due to malfunctioning or nonlinear response are marked as a black squares. To determine stars in field of view we use the HIPPARCOS catalogue [12]. Positions of few stars are displayed in canvas (1). Then, the light-curve representing the counts in entire PMT (2) is analyzed to find the range for fitting the track (3). In the next step we analyze the lighcurve for 3x3 pixels area around the pixel which star is going through (4). In this way we can determine background and signal region and extract the information about number of counts and its discrepancy. All the process is manual and user have to take the decision if accuracy of the signal is good enough to classify it as an useful result or not. This allow e.g. to exclude signals registered together with planes or lightnings in field of view.

Figure 4: The main panel of ROOT-based software dedicated for analysis of signals from stars in EUSO-TA data.
4.1 Results

Following the procedure described above we analyzed signals from about 100 stars in the data taken by EUSO-TA in the years 2015 and 2016. Some stars had to be removed from analysis because of their variability or being in the binary systems. At the end, we get the list of several stars which can be treated as a point-like calibration sources for EUSO detectors. Taking into account all of them, we determined the calibration constant in Eq. 2 as $C_{abs} = 0.86$. Table 1 contains the comparison of calculated expected and measured signal for several stars with different spectral types. In the Fig. 5 we present an example of the comparison of predicted and measured number of photo-electrons for three stars in wide range of elevation angle. An agreement at various angles confirms that atmospheric extinction model has been used correctly. Assuming that obtained calibration constant should be taken into account as a detector parameter, we calculated the total detector efficiency for registration of point-like signal in 3x3 pixels area as 3.48, 5.81 and 5.60% for 300, 365 and 400 nm respectively.

<table>
<thead>
<tr>
<th>HIP</th>
<th>M_g</th>
<th>Spectral Type</th>
<th>Angle</th>
<th>Measured N_{ph}/GTU</th>
<th>Expected N_{ph}/GTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>102488</td>
<td>2.44</td>
<td>K0III</td>
<td>12.31</td>
<td>5.93±0.99</td>
<td>6.06</td>
</tr>
<tr>
<td>102589</td>
<td>4.54</td>
<td>B5V</td>
<td>14.73</td>
<td>2.96±0.85</td>
<td>3.21</td>
</tr>
<tr>
<td>100453</td>
<td>2.23</td>
<td>F8I</td>
<td>14.55</td>
<td>11.40±1.58</td>
<td>11.89</td>
</tr>
<tr>
<td>50801</td>
<td>3.05</td>
<td>M0III</td>
<td>23.00</td>
<td>2.91±0.57</td>
<td>3.13</td>
</tr>
<tr>
<td>93194</td>
<td>3.25</td>
<td>B9III</td>
<td>11.71</td>
<td>8.20±1.40</td>
<td>7.97</td>
</tr>
<tr>
<td>81833</td>
<td>3.50</td>
<td>G7III</td>
<td>15.37</td>
<td>2.82±0.46</td>
<td>2.52</td>
</tr>
<tr>
<td>93903</td>
<td>5.25</td>
<td>B6IV</td>
<td>15.93</td>
<td>1.57±0.37</td>
<td>1.67</td>
</tr>
<tr>
<td>109410</td>
<td>4.29</td>
<td>F5III</td>
<td>13.51</td>
<td>2.26±0.63</td>
<td>2.42</td>
</tr>
<tr>
<td>76041</td>
<td>4.98</td>
<td>A2V</td>
<td>14.79</td>
<td>2.15±0.70</td>
<td>1.82</td>
</tr>
<tr>
<td>4436</td>
<td>3.87</td>
<td>A6V</td>
<td>16.33</td>
<td>5.02±0.84</td>
<td>4.86</td>
</tr>
</tbody>
</table>

Table 1: Results comparison for several measured stars with various spectral types.

5. Conclusions

Based on EUSO-TA data we have developed the procedure dedicated for data analysis of point-like sources, resulting absolute calibration of EUSO detector. In the paper results of analysis of signals generated by stars have been presented. For this case, we applied the model of atmospheric transmission to calculate expected signal and determine calibration constant of EUSO-TA detector. The same procedure can be used for calibration of others EUSO detectors during on-ground tests as well as during measurements from stratospheric balloons or in space. Scanning of the focal surface by signals induced by stars gives also an opportunity to monitor the conditions of individual pixels and optical system during observations of ultra high energy cosmic rays.
Acknowledgments: This work was partially supported by Basic Science Interdisciplinary Research Projects of RIKEN and JSPS KAKENHI Grant (JP17H02905, JP16H02426 and JP16H16737), by the Italian Ministry of Foreign Affairs and International Cooperation, by the Italian Space Agency through the ASI INFN agreement n. 2017-8-H.0 and contracts n. 2016-1-U.0 and n. 2021-8-H.0, by ASI INAF agreement n.2017-14-H.O, by NASA award 11-APRA-0058 in the USA, by the Deutsches Zentrum für Luft- und Raumfahrt, by the French space agency CNES, the Helmholtz Alliance for Astroparticle Physics funded by the Initiative and Networking Fund of the Helmholtz Association (Germany), by Slovak Academy of Sciences MVTS JEMEUSO as well as VEGA grant agency project 2/0132/17, by National Science Centre in Poland grant no 2017/27/B/ST9/02162, by Mexican funding agencies PAPIIT-UNAM, CONACyT and the Mexican Space Agency (AEM). Russian team is supported by ROSCOSMOS, “KLYPVE” is included into the Long-term program of Experiments on board the Russian Segment of the ISS. Sweden is funded by the Olle Engkvist Byggmästare Foundation.
References

Full Authors list: The JEM-EUSO Collaboration

Centre for Development of Advanced Technologies (CDTA), Algiers, Algeria

Dep. Astronomy, Centre Res. Astronomy, Astrophysics and Geophysics (CRAAG), Algiers, Algeria

LPR at Dept. of Physics, Faculty of Sciences, University Badji Mokhtar, Annaba, Algeria

Lab. of Math. and Sub-Atomic Phys. (LPMPS), Univ. Constantine I, Constantine, Algeria

Department of Physics, Faculty of Sciences, University of M'sila, M'sila, Algeria

Research Unit on Optics and Photonics, UROP-CDTA, Sétif, Algeria

Telecom Lab., Faculty of Technology, University Abou Bekr Belkaid, Tlemcen, Algeria

St. Kliment Ohridski University of Sofia, Bulgaria

Joint Laboratory of Optics, Faculty of Science, Palacký University, Olomouc, Czech Republic

Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic

Omega, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France

Université de Paris, CNRS, AstroParticule et Cosmologie, F-75013 Paris, France

IRAP, Université de Toulouse, CNRS, Toulouse, France

ECAP, University of Erlangen-Nuremberg, Germany

Karlsruhe Institute of Technology (KIT), Germany

Experimental Physics Institute, Kepler Center, University of Tübingen, Germany

Institute for Astronomy and Astrophysics, Kepler Center, University of Tübingen, Germany

Technical University of Munich, Munich, Germany

Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Italy

Università degli Studi di Bari Aldo Moro and INFN - Sezione di Bari, Italy

Dipartimento di Fisica e Astronomia "Ettore Majorana", Università di Catania, Italy

Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Italy

Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Italy

Istituto Nazionale di Fisica Nucleare - Sezione di Napoli, Italy

Università di Napoli Federico II - Dipartimento di Fisica "Ettore Pancini", Italy

INAF - Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo, Italy

Istituto Nazionale di Fisica Nucleare - Sezione di Roma Tor Vergata, Italy

Università di Roma Tor Vergata - Dipartimento di Fisica, Roma, Italy

Istituto Nazionale di Fisica Nucleare - Sezione di Torino, Italy

Dipartimento di Fisica, Università di Torino, Italy

Osservatorio Astrofisico di Torino, Istituto Nazionale di Astrofisica, Italy

Uninettuno University, Rome, Italy

Chiba University, Chiba, Japan

National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan

Kindai University, Higashi-Osaka, Japan

Kanazawa University, Kanazawa, Japan

Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Japan
EUSO-TA calibration

Z. Plebaniak

Konan University, Kobe, Japan
Kyoto University, Kyoto, Japan
Shinshu University, Nagano, Japan
National Astronomical Observatory, Mitaka, Japan
Nagoya University, Nagoya, Japan
Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan
Graduate School of Science, Osaka City University, Japan
Institute of Space and Astronautical Science/JAXA, Sagamihara, Japan
Saitama University, Saitama, Japan
Hokkaido University, Sapporo, Japan
Osaka Electro-Communication University, Neyagawa, Japan
Nihon University Chiyoda, Tokyo, Japan
University of Tokyo, Tokyo, Japan
High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
RIKEN, Wako, Japan
Korea Astronomy and Space Science Institute (KASI), Daejeon, Republic of Korea
Sungkyunkwan University, Seoul, Republic of Korea
Universidad Nacional Autónoma de México (UNAM), Mexico
Universidad Michoacana de San Nicolas de Hidalgo (UMSNH), Morelia, Mexico
Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
Universidad Autónoma de Chiapas (UNACH), Chiapas, Mexico
Centro Mesoamericano de Física Teórica (MCTP), Mexico
National Centre for Nuclear Research, Lodz, Poland
Faculty of Physics, University of Warsaw, Poland
Institute of Space Science ISS, Magurele, Romania
Joint Institute for Nuclear Research, Dubna, Russia
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Russia
Space Regatta Consortium, Korolev, Russia
Institute of Experimental Physics, Kosice, Slovakia
Technical University Kosice (TUKE), Kosice, Slovakia
Universidad de León (ULE), León, Spain
Instituto Nacional de Técnica Aeroespacial (INTA), Madrid, Spain
Universidad de Alcalá (UAH), Madrid, Spain
Universidad Politécnica de Madrid (UPM), Madrid, Spain
Instituto de Astrofísica de Canarias (IAC), Tenerife, Spain
KTH Royal Institute of Technology, Stockholm, Sweden
Swiss Center for Electronics and Microtechnology (CSEM), Neuchâtel, Switzerland
ISDC Data Centre for Astrophysics, Versoix, Switzerland
Institute for Atmospheric and Climate Science, ETH Zürich, Switzerland
Space Science Laboratory, University of California, Berkeley, CA, USA
University of Chicago, IL, USA
Colorado School of Mines, Golden, CO, USA
University of Alabama in Huntsville, Huntsville, AL; USA
Lehman College, City University of New York (CUNY), NY, USA

NASA Marshall Space Flight Center, Huntsville, AL, USA

University of Utah, Salt Lake City, UT, USA

Georgia Institute of Technology, USA

University of Iowa, Iowa City, IA, USA

NASA Goddard Space Flight Center, Greenbelt, MD, USA

Center for Space Science & Technology, University of Maryland, Baltimore County, Baltimore, MD, USA

Department of Astronomy, University of Maryland, College Park, MD, USA

Fairfield University, Fairfield, CT, USA