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Educational data mining focuses on exploring increasingly large-scale data from 

educational settings, such as Learning Management Systems (LMS), and developing 

computational methods to understand students' behaviors and learning settings better. 

There has been a multitude of research dedicated to studying the student learning process, 

leading to multiple commonly cited frameworks and theories that characterize students' 

learning behaviors. However, the most recent focus of interest argued that developing 

efficient models with actionable suggestions that help understand student learning 

behaviors and contribute to their academic outcomes is needed. Existing studies 

investigated various individual, emotional, and social factors related to student learning 

behaviors by analyzing fine-grained data samples collected by LMS at the student level but 

fail to incorporate the dynamics of learning behaviors and fail to examine the whole image 

of the student learning lives. For instance, most research in student learning behavior 

focuses on specific courses and related academic performance but did not consider that 

students always take multiple courses simultaneously. Therefore, the implications and 



knowledge from the static understanding of students' learning behavior in an isolated 

specific course may be limited to generate actionable strategies to help students. This 

dissertation was motivated to explore large-scale data, especially for examining the 

learning behavior's dynamics and developing student-centric models. The resulting 

knowledge has been recognized by publications in top-level international conferences in 

educational data mining and artificial intelligence in education. 

The first research attempt of my research introduced a new computational method 

based on psychological theories in affect dynamics to track dynamic student behaviors and 

developed a novel explanation method based on Local Interpretable Model-Agnostic 

Explanations (LIME). The second research attempt focused on developing computational 

models at the student level to predict their academic performance based on LMS data at 

the University of Maryland, Baltimore County. The findings from this work showed that 

student login volume and their prior performance significantly impact student performance. 

Additionally, this research focused on exploring causal relationships between student LMS 

behaviors and their academic performance. The causal analysis strengthened our findings 

in computational modeling by showing a significant cause-and-effect relationship between 

student login behaviors and their academic performance. The conclusions from this work 

will empower intervention techniques that improve student emotion regulation capabilities. 

The student-centric models developed in this study reported the positive impact of student 

login behaviors on their academic performance. This understanding will enable LMS 

developers and school administrators to design and develop interactive systems that deliver 

course content effectively.  
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1 Chapter 1: Introduction 
 

Researchers in education must identify and measure the factors that influence student 

motivation and engagement while learning to understand productive learning behaviors. 

Studies in psychology categorized these factors into four major categories: individual, 

school-related, family-related, and social [1][2][3][4]. The individual factors of a student 

are defined based on their skills and characteristics. These skills focus on student self-

regulation, self-efficacy, and emotion regulation capabilities during learning, whereas their 

characteristics are related to beliefs, values of education, ethnic identity, and orientation. 

While students' skills directly influence their cognitive abilities, their characteristics 

influence their perception of learning [5]. The second category that influences student 

learning is based on school-related factors. This category consists of factors that are 

experienced in a school environment, such as institutional practices, teacher support, and 

student academic achievement [6]. The third category focuses on family-related factors 

that include student family background, family obligations, and family support [2]. The 

final category related to social factors includes social and cultural constructs of students 

like peer support, neighborhood situation, and discrimination in the societal context [3].  

Existing research in educational data mining investigates the factors mentioned 

above by modeling large-scale data captured by digital learning environments. Student 

individual factors were analyzed by developing models that predict patterns related to 

emotion, self-regulation, and efficacy. These models combine fine-grained student 

interaction data captured by LMS at different levels (e.g., course level and assignment level) 

with self-assessments and field observations [7][24]. Similarly, the influence of social and 
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family-related factors on student learning behaviors are being studied by integrating 

student demographic data (e.g., gender, income level, locality, and family factors) with 

their outcomes captured by LMS [8][9]. While all these categories impact student learning 

behaviors, this current study focuses on profiling and modeling student's academic 

emotions, learning behaviors, and self-regulation strategies based on time characteristics 

to support student academic achievement. It is essential to understand the role of emotions 

and learning strategies in an academic setting to develop these student profiles. Emotions 

are ubiquitous in an educational environment [10]. For example, when students study 

learning material, they may enjoy learning or getting bored or frustrated. This emotional 

change is because of never-ending obstacles or experience a flow of positive emotions that 

makes them forget the time based on their learning goals and content present in the material. 

Furthermore, these emotions will affect student motivation, effort, and learning strategies 

like time management [11].  

Empirical findings show that students experience a wide variety of emotions while 

attending class, doing assignments, and taking exams and tests [12][13]. A study conducted 

by Pekrun and colleagues on emotions experienced by students at universities found that 

anxiety, boredom, frustration, anger, enjoyment, and concentration are frequently 

encountered in an academic setting [53]. Until recently, the emotions mentioned above 

were understudied except for test anxiety [14][15]. In the past decade, however, there has 

been a growing literature on academic emotions' impact on student learning, achievement, 

health, and personality development. These studies focused on the way to model and profile 

student academic emotions to develop emotional intelligence strategies that support 

student's academic achievement [16][17][18]. However, these studies also encounter 
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challenges in validating the developed models as they are primarily dependent on student 

self-assessments prone to self-selection bias and biased memories. 

To resolve the challenges mentioned above, research in educational data mining 

and learning analytics focused on developing quantitative affect detection from LMS data 

to model student emotional behaviors while learning [19][24]. The current affect detection 

methods are both sensor-based and sensor-free. The sensor-based affect detection methods 

deploy physical sensors like video cameras, posture detection systems, and eye trackers in 

student learning environments [19][20][21]. These systems will then capture student 

physical attributes like gaze, head movements, and posture while interacting with their 

learning material. This data collected by sensors is then used to model their affect states in 

conjunction with learning tasks. However, these systems suffer from high cost, scalability, 

and privacy issues. To avoid these issues, research in educational data mining focused on 

sensor-free affect detection systems.  

Sensor-free affect detection systems use data captured by digital learning 

environments and quantitative field observations to develop models that predict student's 

affective or emotional states while learning [24]. Baker, Rodrigo, and Ocumpaugh 

developed a quantitative field observation method called Baker Rodrigo Ocumpaugh 

Monitoring Protocol (BROMP). The BROMP protocol observes students during their 

interaction with digital learning environments and codes their affective states such as 

concentration, confusion, boredom, and frustration [66]. Later studies developed novel 

affect detection methods by appending the affect labels from BROMP with student 

interaction, knowledge, and timing data captured by digital learning environments 

[22][24][72]. These studies use advanced machine learning models to develop automated 
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sensor-free affect detection systems. While these studies developed better detection models, 

their performance is still above chance and lacks explanations about the impact of student 

affect on student outcomes. One primary reason for this is the development of models based 

on individual affect states instead of dynamics. Studies in psychology argue that modeling 

students' affect dynamics and chronometry is vital to understanding the impact of learning 

emotions [130][131]. This current study develops high-performing sensor-free affect 

detection methods by profiling student affect from fine-grained data captured by digital 

learning environments in conjunction with quantitative field observations. The methods 

proposed in this current study also develop a novel model explanation method that helps 

understand the impact of affect, knowledge, and interaction features captured by digital 

learning environments and student affect states on student outcomes. 

While academic emotions significantly influence student learning behavior, 

research in education and psychology argues that students' learning models should 

incorporate socioenvironmental and self-regulation strategies [23][25]. According to 

Winne and Jamieson-Noel [219], students manage their learning process by setting goals, 

defining tasks, and choosing strategies required to achieve these goals. Hence, the capacity 

of a student to plan and schedule time effectively is an essential part of self-regulation that 

contributes to student academic success.  For example, students who organize their study 

time better perform well and get better grades, whereas students that exhibit procrastination 

behavior have below-average grades in their academic careers.  Studies also inform that 

time management skills are linked to academic motivation contributing to student success 

[220][221]. While it is evident that managing time is an essential aspect of student learning, 

it is not yet understood what kind of time management strategies students use while 
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learning. Existing studies focus on studying time management strategies based on self-

assessment questionnaires linked to student motivation. A survey by Britton and Tesser 

[220] developed a time management questionnaire that focuses on student schedules and 

their learning goals. 

Similarly, Macan et al. [222] developed another questionnaire to study stress-

coping theory based on time management. While these studies provide valuable insights 

about time management and student learning, it is hard to validate and study them in real-

time.  The current study profiles student learning behaviors and time characteristics based 

on their login patterns, course content access, and time spent on different learning tasks 

scheduled at the student level. This study develops student-centric models based on login 

behavior data captured by LMS to predict student academic performance. 

In addition to login related features, the chronotypes of a student influence their learning 

outcomes. A recent study focused on identifying the relationship between the social 

learning environment, chronotypes, and student engagement found a positive correlation 

[26][27]. These studies also informed that students' choice of learning environment and 

time of learning depends on their social and economic aspects. For example, a student 

coming from low-income households works during the school year and continues their 

education. Due to the limited availability of time and tight work schedules, students who 

work and study during the academic year choose informal learning environments and times 

compared to full-time students living on campus. However, there is little empirical 

evidence on the role of informal learning places like online environments on student 

engagement and success. Therefore, the proposed study will include a chronotype analysis 

based on student demographics to understand the LMS access times and correlate with the 
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student performance to understand the impact of learning environment on student 

engagement. 

By profiling and modeling factors that support students' learning process, this dissertation 

aims to provide broader impacts in the research of student affect and learning strategies 

that lead to actionable insights into these constructs. 

1.1 Research Questions 

This study is divided into three parts, with each part focusing on one research question. 

The three research questions are listed below. 

• Can the profiles of students’ affect (e.g., transitions among the affective states) be 

predicted based on user interactions recorded by digital learning environments that 

support understanding of student’s affect dynamics in learning? 

• Can the patterns be extracted and prioritized from student interaction profiles for 

predicting student learning and career outcomes? This question also focuses on 

understanding the impact of affective dimensions on student outcomes such as 

career choices using explainable AI. 

• How the mechanisms of self-regulation strategies, such as time characteristics and 

learning behaviors, influencing student motivation and learning process, are 

encoded in the data recorded by the learning management systems? We used the 

Blackboard system data at a minority-serving institute as a concrete example. 

1.2 Research Objective & Impacts 

This research aims to arrive at a richer understanding of how the students' learning 

process can be predicted and tracked by using their interactions with digital learning 
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environments. This study primarily focuses on affective dimensions and environmental 

constructs that impact student learning abilities. While existing research has examined the 

high-level emotional impacts on student learning [28][29][30][31], studies on deep 

academic emotions have not garnered a significant amount of attention. The overarching 

objective of this dissertation is a contribution to the development of novel affect detection 

methods and provide insights into the influence of affective dimensions and various 

environmental constructs on student learning outcomes.  

This research will assist in developing computational models that predict student 

emotional behaviors that help educational systems to develop methods that help students 

achieve their academic and career goals. As the implementation of information systems 

that capture vast amounts of data is increasing daily in educational settings, this research 

will provide directions to analyze and infer in real-time with a proper context. These 

systems will also help deliver interventions in real-time that helps students manage their 

self-learning capability and support them to be lifelong learners. 

This digital learning-based empowerment tool to students’ self-regulated learning by 

improving their persistence could significantly impact students’ cognitive engagement, 

thereby changing students as lifelong learners and increasing the efficacy of higher 

education. This study will help understand the student's ability of self-regulated learning 

to keep up with the explosive growth of knowledge and skills in their career and to retool 

into a new career after their previous one runs its course. Besides, this study will provide 

an additional dimension of the science of learning, specifically, the fundamental 

understanding of human learning behavior, measured by the learning systems, such as the 

contextual factors (e.g., emotions, engagement, social events) related to self-regulation. 
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This understanding will help us revisit previous knowledge in learning based on self-

reported measures and improve the reproducibility of research in teaching and learning. 

1.3 Contributions 

The overarching objective of this dissertation is a contribution to the development of 

efficient data-driven models from LMS that profile student learning behaviors based on 

individual and socio-environmental constructs. Recent studies in education identified that 

student emotional behaviors significantly impact their learning constructs like motivation 

and self-regulation. Through the development of novel computational modeling techniques 

that help track student affect while learning, this proposed study helps facilitators develop 

intervention techniques that guide student emotions in a way that leads to their academic 

success. The scalable approach to explore the emotional lives of students could have a 

significant impact on the understanding of contextual and dynamic processes of learning 

behavior that contribute to their learning outcomes. 

The previous studies in education and computer science focused on developing 

models that predict student outcomes from digital learning environments failed to explain 

the underlying reasons and impact of different dimensions on such outcomes. This study 

develops a novel model explanation method that helps researchers understand the 

importance of different dimensions extracted from digital learning environments in 

predicting student outcomes. This understanding of the role of multiple dimensions in 

student outcomes will help educational facilitators take steps that focus on improving 

student engagement and validating them based on domain experts' inputs. 

Finally, this work tries to profile students based on their self-regulation strategies 

like time management to understand the learning tactics used by students to improve their 
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academic performance. When combined with demographics and learning environments, 

these strategies will provide a richer understanding of the impact of various constructs on 

student learning practices. The research results from this study will provide a strong 

foundation for adopting these methods in the broader population. 

1.4 Dissertation Outline 

Chapter 1:  

In this chapter, a background of the problem space is provided and details about the specific 

problem areas this dissertation addresses. The research objective and the broader impacts 

of this research are discussed in section 1.1. Finally, the three major research questions 

focused on in this dissertation are listed in section 1.2. 

Chapter 2:  

Chapter 2 reviews the areas of research related to the problems defined in this dissertation. 

This section mainly focuses on research related to the student learning process and relevant 

learning theories. This chapter also covers current digital learning environments, the 

affective dimensions of student learning, learning analytics, and relationships. 

Chapter 3:  

Chapters 3 in this study focuses on novel affect dynamics methods that help capture 

student's affect transitions from digital learning environments. This chapter will discuss the 

importance of finding affect transitions and their ability to help improve the student 

learning process. 

Chapter 4: 
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Chapters 4 details a novel method to predict student outcomes by modeling their 

interactions and affect dimensions. It also details a novel method of understanding 

predictions given by machine learning models using concepts from explainable AI. 

Chapter 5:  

Chapters 5 in this study focuses on developing student-centric models to predict their end 

of term GPA based on login variables captured by Learning Management Systems data. 

This chapter also discusses the importance of different login variables on student academic 

performance and explores their variations based on student demographics. 

Chapter 6: 

The final chapter in this study focuses on studying student time characteristics based on 

their login information on LMS system. This chapter also explores causal relationships 

between student login behaviors, chronotypes and academic performance. 
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2 Chapter 2:  Related Work 
 

Over the past decades, theories and research findings from educational psychology, 

learning theory, student development, curriculum design, and instructional design have 

been developed and examined across various aspects: behavior, brain, physiology, and 

psychology. Numerous researchers have investigated the relations between these theories 

and research findings to develop a unified theoretical framework and actionable 

intervention strategies. However, these methodologies needed to handle the network and 

systems approaches for existing models and theories are open issues educational data 

mining domain. 

2.1 Learning Theories 

A recent review related to the learning process, issues of intelligence thinking, 

curriculum design, and human development listed 111 theories from 1924 to 2010. The 

authors of this study discussed several theories regarding the principles of learning and 

practical instructional strategies and provided a unified explanation of the phenomenon of 

learning [32]. The learner-centered explanation emphasized the learner's effort to make 

meaning of an external world, inner self, and the relation between the two. Specifically, an 

individual's value orientation, perceived needs, cognitive capabilities, intrinsic motivation, 

and flow of emotions trigger, drive and direct their meaning-making processes and efforts 

[32].  

The multi-faceted learning process has been investigated across various aspects:  

cognitive, motivational, instructional, and institutional. Most recently, researchers argued 

that more attention should be paid to the affective process of learning because of the non-
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trivial impacts of emotions on learning [33][34][35][36]. Despite strong evidence for the 

positive effects of positive emotions, no clear rules such as positive emotions foster and 

negative emotions deter learning, as mentioned in this study. The results from multiple 

studies are sometimes equivocal because of the limited temporal understanding of the 

emotions measured using a self-reported questionnaire. Exploring a high-resolution 

assessment of emotional episodes "at the moment" would enhance our understanding of 

the association between emotions and learning. Another critical theory regarding student's 

lives developed by Lazarus pertains to stress and coping [37][38][39]. Specifically, the 

stress induced by the underlying barriers and obstacles might be more intense and 

detrimental from students performing at a low level. 

2.2 Digital Learning Environment 

With advances in information technology, current learning environments such as the 

learning management system [40][41][42][43][44], intelligent tutoring systems, and 

Massive Open Online Courses (MOOC) [45][46][47] has attracted much attention from 

researchers, institutions, and stakeholders. However, researchers argue that these systems 

are not the solution to every problem in education. Specifically, EDUCAUSE in 2015 

envisioned the Next Generation Digital Learning Environment (NGDLE) to improve our 

society through education [48]. The five themes of the NGDLE include interoperability 

and integration, analytics, personalization, collaboration, advising and learning assessment, 

and accessibility and universal design. 

Current research on the learning environment is expanding, multidisciplinary in 

nature, and embodies the five themes mentioned in NGDLE. Most of the research attempts 

to leverage artificial intelligence for generating smart components of the learning 
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environment to achieve these five themes [49][50][51]. While most of the researchers focus 

on NGDLE, a most recent literature review revealed that there is currently a less 

comprehensive understanding of the theme of personalization, such as learner psychology 

[52]. Understanding the learning mechanism and student learning behavior through 

educational data mining from multimodal, multiscale, and heterogeneous data captured 

within the learning environment remains an understudied issue but could achieve 

personalization for students. 

2.3 Psychological Connections to Learning Theories 

Pekrun defines a complex, markedly symmetrical taxonomy of emotions, including 

achievement emotions, epistemic emotions, and social emotions [53][54]. The ongoing 

validation of an instrument has parallelled the development of academic emotion theory, 

the Achievement Emotions Questionnaire (AEQ), which has generated variants for use in 

different age groups, subject areas, and languages in addition to the original English. The 

multiple axes and domains posited by academic emotion theory allow for fine-grained 

classification of the vast vocabulary of emotion words relating to schoolwork that may be 

heard by a practicing school counselor or educational psychologist. A counselor aims to 

understand a learner’s natural language, not to spend time splitting hairs to fit the learner’s 

self-expression into a scientifically verifiable taxonomy. A most recent study reviewed 

affective computing in educational research and reported that most affective computing 

studies on learning adopted the AEQ instrument. 

Lazarus and his colleagues have developed the stress and coping theory over many years 

[37][38][39][55]. Within his conceptual framework, stress is defined as a relationship 

between the person and the environment that the person appraises as relevant to his or her 
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well-being and in which the person’s resources are taxed or exceeded. Mainly, this 

definition of stress accurately reflects the situation the underrepresented students 

encountered [56][57][58][59][60][61]. Numerous researches have reported that minority 

students had a higher tendency to experience stress than their counterparts, and the 

perceived stress profoundly impair the relationship between the students and the 

environment, which impair their STEM persistence [62][63][64]. Therefore, according to 

the theory of stress and coping, examining the underrepresented group's stress status and 

coping strategies would generate a deeper understanding of the students’ learning behavior, 

thus developing effective intervention programs. 

Social Cognitive Career Theory (SCCT) develops a conceptual model for 

implementing factor analysis to understand the barriers and obstacles to the 

underrepresented group [56][65]. Specifically, it proposes that self-efficacy beliefs are 

formed via four types of information: performance accomplishments (e.g., personal 

mastery experiences or past successes), vicarious learning (e.g., observing the explicit 

behaviors of others, such as role models), social persuasion (e.g., verbal encouragement), 

and affective/emotional arousal experienced while completing a task (e.g., low anxiety, 

relaxed state) [56]. Notably, the theory considers several pathways through which 

individual differences (e.g., gender, race, and personality) affect the academic and career 

development process.  

These educational theories provide insights regarding the link between the 

emotional aspects of student life and the learning outcomes. However, the context and 

dynamics of the conceptual link are not well understood yet. Therefore, new investment in 

improving the resolution of emotion episodes and monitoring the context of emotions is 
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needed for future research. The insights derived from the context and dynamics of the 

emotional lives of the students are likely to significantly impact the scientific progress in 

exploring the relationship between emotion and learning, thus providing more in-depth 

practice guidelines for intervention programs for students. 

2.4 Affective Dimensions of Learning 

Scholars in educational psychology reviewed the positive and negative impacts of 

affective states on student cognitive processes [66][67]. These studies state that positive 

affect like concentration impacts cognitive processes and improves their learning 

capabilities, while negative affect states will hinder these abilities [66]. The four most 

significant affect states that impact individual student learning includes engaged 

concentration, confusion, boredom, and frustration. Studies focusing on understanding the 

various implications of student's affect states observed during their middle school years 

found correlations with major selection in college, career choice, and performance  

[68][69]. Educational technologies like ITS, MOOC courses that can capture student 

interactions and knowledge levels, when combined with human quantitative field 

observations (BROMP), reinforced predictive models in affect state detection [70]. 

The increased interest in leveraging affective computing to assess the student's 

affective states has generated many successful approaches to building accurate affect 

detectors. Affect detectors solely rely on the learning data captured by the computer-based 

learning systems, named “Sensor-free affect detectors” [71]. Sensor-free affect detectors 

have been investigated for many years, and the models learned from previous studies have 

been verified and validated in the diverse dataset [71][72]. Currently, the best sensor-free 

affect detector that depends on extracting knowledge states from student interaction with 
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ITS using Deep learning methods has demonstrated better than random chance 

performance to detect engaged student concentration, confusion, frustration, and boredom 

solely from student's log data [71]. The datasets used in these studies include the cognitive 

tutor dataset and the ASSISTments dataset. The detectors (predictive models) built from 

these datasets helped various researchers study the influences of students' affective states 

on various aspects. 

Meanwhile, much effort, such as data cleaning for missing skills and wrong 

answers, new training models leveraging the deep learning techniques, have been invested 

in increasing the accuracy of sensor-free affect detectors and eventually using them to drive 

intervention. However, little has been reported to develop affect detectors leveraging 

existing psychological theory regarding affect dynamics. For instance, researchers in affect 

styles have demonstrated that the temporal features of affect (e.g., affect change) include 

richer information than affective states and expose the individual progress ineffective 

regulation. This study incorporates the affect concepts from psychology for building 

computational models to develop a better affect tracking system. 

2.5 Learning Analytics Research 

LMS systems have the ability to capture large data streams related to user interactions 

through which administrators and instructors can develop methods to improve the learning 

experience. The collection, analysis, and reporting of data about learning activities on web-

enabled learning platforms to assess student academic progress, performance prediction, 

and potential issues that need attention is the central proposition of emerging fields like 

learning analytics and educational data mining [73][74]. Outcomes derived from learning 

analytics aim to gain insights about student learning behaviors, real-time information about 
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institutional practices, and support designing personalized courses in CMS. Although there 

are huge data stores in universities and colleges that can be used to make data-driven 

decisions to support optimal use of both pedagogical and economic resources, there has 

been the minimal application of this data in higher education [75]. 

An LMS system records student interaction details related to logins, number of 

posts written on discussion threads, time spent on lecture materials, total downloads, etc., 

in their log files. These logs can be analyzed to generate reports that help teachers to 

observe student progress at a granular level. Once there are enough student records 

collected in LMS, they can be used to develop computational models to predict future 

student performances. Multiple works in EDM and LA studied the relation between the 

usage of LMS and student academic achievements. Vengroff and Bourbeau's [76] study 

showed evidence that providing additional material in LMS benefited students at the 

undergraduate level. They also conclude that students who used LMS regularly did better 

in exams than their peers who have minimal interactions. In their research, Dutt and Ismail 

[77] observed that tracking resources students interact with on LMS supports developing 

new strategies that make learning easier and enhance learner progress. Their work also 

focused on analyzing thresholds related to student interaction features like self-assessment 

tests, time spent on exercises, discussion forums, and performance outcomes. Another 

study by Lust et al. [78] explored the usage variations in different tools used by students 

on LMS, such as time on web-link,  time on web-lectures, time on a quiz, time on feedback, 

postings on discussion board, and messages read. The results from this study heavily 

contributed to the development of adaptive and innovative recommendation systems. In 

their work, Hung and Zhang [79] also found patterns based on six indices that represent 
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student effort: Frequency of accessing the course material, number of LMS logins, total 

interactions in discussion threads, number of synchronous discussions, number of posts 

read, and final grades in a course. 

While exploring a link between student online activity on LMS and their grades, 

Dawson et al. [75] observed a significant difference in the number of online sessions 

accessed, total time spent, and the number of posts in discussion forums between high and 

low performing students. Another study by Damainov et al. [80] developed a multinomial 

logistic regression model based on time spent in LMS. This study found a significant 

relationship between student time spent and grades, especially in students who attained 

lower grades between D and B. Instead of using time spent online, other works focused on 

the frequency of course material access within LMS. A study by Baugher et al. [81] found 

that regularity in student hits is a reliable predictor of student performance compared to the 

total number of hits. In their study, Chancery and Haque analyzed student interaction logs 

of 112 undergraduate students. They found students with low LMS access rates obtained 

lower grades than their peers with higher access rates. This study was complemented by 

Biktimirovan and Klassen [82] that reported a strong relationship between student hit 

consistency and success. Their study counted access to various LMS activities and found 

that homework solution access is the only strong predictor of student performance. 

However, these studies are primarily descriptive rather than predictive. 

Online teaching strategies are primarily dependent on instruction design as each 

mode of interaction - student/instructor, student/student, and student/content- has a positive 

impact on student progress. A study by Coldwell et al. [83] focused on the relationship 

between student participation in a fully online course and their final grades. They found a 
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positive relationship between student participation and final grade. Dawson et al. [75] 

examined the impact of various LMS tools and found a highly positive correlation between 

discussion forum activity and student success. They observed more than 80% of 

interactions occurred in the discussion forum, which is the primary interaction tool in LMS. 

Another study by Greenland [84] found that asynchronous communication is the primary 

form of all online course interactions. Nandi et al. [85] found an increasing number of posts 

in discussion forums close to assignment and exam deadlines. They also found a high 

correlation between exam scores and online class participation throughout the semester, 

especially in high-achieving students. 

All the studies discussed above adopted log files from LMS systems to extract 

unbiased details from activity and performance to identify a relationship between 

independent interaction variables and student grades. Most of the discussed studies are 

based on univariate analysis focusing on a single variable or a set of highly impactful 

variables of a single course or similar courses on student outcomes. However, student 

performance is a highly complex area in education to measure or understand, especially 

across various on-campus courses in a university setting. Most of the authors discussed 

above noted the need for more in-depth works to investigate student performance across 

courses and based on multiple variables. These studies also lack an explanation about 

variables used in their studies to track student performance. It is evident that the authors 

selected LMS variables based on their belief that these variables are highly correlated with 

student scores. 

Factors that influence student academic performance have been the focus of 

researchers in LA and EDM domains for many years. It remains an active area of education 



20 
 

research, indicating the complex problem in measuring and modeling learner processes, 

especially in tertiary education. Positive learning characteristics have a significant positive 

impact on learner engagement improvement in multiple ways.  The dispositional language 

specifies learning as a combination of self-regulation, learning inclinations, motivation, 

behavioral patterns, interactions, and cognitive ability. In their study, Shum et al. [86]  

proposed a combination of self-reported data gathered in surveys with student interaction 

data generated by LMS to study individual student performance, learning processes, and 

group interactions. These social analytics depend primarily on student self-reported data to 

develop toolkits that support a specific learning type, especially in courses with high 

diversity [87]. However, our study focuses on objective identification of student success 

based on data that LMS captures. We will also identify the crucial variables from predictive 

model output for various student groups based on their diverse backgrounds (race, gender, 

and student status). 

Even though there is a common agreement about the purpose of learning analytics, 

there are still several varying opinions on what data needs to be collected and analyzed to 

improve teaching and learning processes. A study by Agudo-Peregrina et al. [88] argued 

that it is highly complex to identify the net contribution of various interactions to the 

learning processes. Their findings show that peer interaction between students has a lower 

influence than student-teacher interaction, which contradicts earlier studies that showed 

high importance for student peer interactions. A survey by Dominquez et al. [89] utilized 

multiple variables like LMS logins, time stamps, and content access flags captured in a 

biology course to predict student grades at the end of course completion. The results show 

that the algorithm predictive accuracy is at 50% in subsequent semesters. Lerche and Keil's 
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[90] recent study utilized Moodle log data from 369 students enrolled in three online 

courses across three semesters to predict their scores at the end of the term for each course. 

Their regression results related to predicting student scores in a course at the end of the 

semester varied from 0.17 to 0.6 for all three courses. This broad range of performance 

across courses is due to varying content variables in each course based on the course 

structures. Studying the difference in instructional design, variables in extracted data, 

statistical inferences, predictive modeling used, interpreting model outcomes and pattern 

observations, etc., might explain the inconsistencies in results shown in earlier studies. 

Data captured by LMS systems became prominent in LA and EDM circles as they 

capture student interactions in non-intrusive and ready-to-use settings. Several studies were 

discussed earlier in this research that utilized the LMS data to develop models that track 

student progress. However, it is still challenging to build highly accurate models that 

predict student learning outcomes across courses and understand the impact of different 

variables captured by LMS. Another significant gap in earlier research is their inability to 

predict student performance across courses in a given semester. One primary issue in 

predicting student performance across a semester is to find methods that aggregate student 

LMS variables across courses. This research shows methods to address the research gap 

found in earlier studies. 

In this study, we approach the problem of tracking student achievement by 

developing student-centric models that build on aggregated LMS interaction variables 

collected across a semester irrespective of student year and course. One unique aspect of 

our work is related to the study of model performance on longitudinal student data. We 

develop models that predict student end-of-term GPA based on four cumulative periods in 
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a semester. This work also focuses on explaining the impact of different aggregated LMS 

variables on various student groups categorized based on performance, race, gender, and 

student type. The importance of features is explained by adopting correlation statistics for 

univariate importance, a regression model for interaction effect, and LIME for model-based 

yet model agnostic explanations. 

2.6 Chronotypes & Causal Relationships 

Humans have a 24-hour internal clock running in the background that determines 

when to sleep and when to be productive. These 24-hour cycles are referred to as circadian 

rhythms. The behavioral manifestation of these circadian rhythms is termed chronotype 

[91][92]. Understanding an individual's chronotype helps identify their routine and 

provides insights about their highly active and productive time. Earlier research argues that 

circadian rhythms differ between individuals as a group of clock genes conditions them 

[93]. Nonetheless, these are not fixed and can vary during an individual's lifetime. 

Students have to schedule their daily activities based on their predetermined 

schedules by taking social constraints like class schedules and outside work hours. General 

clock time preferences are more likely to match natural chronotypes when students are 

given more flexibility in organizing their schedules. Differences between a person's natural 

chronotypes and schedules influenced by social constraints cause a phenomenon referred 

to as social jetlag [94][95]. This social jetlag leads to an accumulation of sleep debt that 

causes tiredness and a decline in cognitive abilities throughout the workweek. Prior 

research suggested that individuals with a match in chronotypes and schedules during 

workweek don't show a change on weekends [96][97]. This observation is in contrast with 

individuals whose weekday routine varies from natural routines. As activity and sleep are 
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both indicators of natural chronotypes, an observation of individuals on weekends might 

give accurate insights into their natural habits defined by circadian rhythms. 

Earlier studies primarily focused on two significant chronotypes in humans: 

Morning and Evening. These studies showed that these two chronotypes are based on an 

individual's age and gender and vary across an individual lifetime. The insights from earlier 

work showed that children are predisposed towards morningness, but a delay of phase 

preference can be observed when they reach adolescence [98][99]. This shift reaches a 

maximum of eveningness at the age of 20. Multiple studies also observed that most 

individuals return to morningness again at the age of 50 [100][101]. Gender-based 

chronotype studies contradicted a lot in identifying variations in morning and eveningness 

as some studies showed women to have a greater tendency towards morningness compared 

to men. A meta-analysis showed that the significance between morningness and females is 

very weak [102]. In addition to these two demographics, other researches focus on different 

variables like productivity, mood, temperament, caffeine consumption, avocational interest, 

and internal temperatures. 

Recent studies observed a new type of chronotype referred to as intermediate 

[103][104]. A study performed by Putilov et al. [105] in 2019 argued about four 

chronotypes based on time differences in alertness and sleepiness: morning, afternoon, 

napper, and evening. Most of these studies adopt different self-reported questionnaires that 

are developed to analyze an individual's daily preferences. Initially, most of these measures 

treated chronotypes as unidimensional: Diurnal Type Scale (DTS) and Circadian 

Composite scale (CCS) [106][107]. But, psychometric studies questioned this 

unidimensional approach to morning-eveningness [108][109]. Recent studies came up with 
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a multidimensional approach that treated chronotypes as independent dimensions. As most 

of the chronotype measurement methods are self-reported surveys, biases like social 

desirability, recall period, sampling approach, and selective recall are hard to eliminate. 

Our work explores the activity patterns of students based on login times captured by the 

LMS to mitigate this issue. We employ clustering techniques to identify and classify 

students based on their similar activity patterns. 

Research in psychology documented the effects of time of day on complex simple 

and complex cognitive functions that are based on an individual's chronotype [110][111]. 

An early study by Roberts and Kyllonen [112] showed that individuals who were active 

during the evenings did well on the measures of memory, cognitive ability, and processing 

speeds even though these cognitive tasks are performed during the morning time. In 

addition to this, this study also reported a high correlation between individuals working 

memory which is a proxy of general intelligence, and morningness and eveningness [111]. 

However, other researchers reported that the relationship between cognitive ability and 

chronotype is much more variegated. For example, a study by Killgore and Killgore [113] 

reported a significant correlation between eveningness and verbal cognitive ability but not 

between eveningness and math ability. 

Further analysis showed that the latter finding is only observed in female 

participants. A similar study by Song and Stough [114] showed a significant eveningness 

effect on a spatial subtest of Multidimensional Aptitude Battery IQ and not on any other 

subtests. Most of the research in this domain is still inconsistent on which aspects of 

cognitive abilities do chronotypes impact. 
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Inspired by earlier studies that reported significant relations between cognitive 

ability and chronotypes, researchers in education focused on studying the relationship 

between academic performance and chronotypes. They mainly focused on student grade 

point averages and other measures extracted from their academic achievement indicators 

[115][116][117]. Most of the studies in this area reported that student academic 

achievement is strongly and inversely related to their eveningness, whereas morningness 

is positively associated with their achievement. These patterns are similar in students at the 

high school level and students at the university level. A study by Precckel and Roberts [118] 

showed a significant negative correlation between academic achievement and eveningness. 

This study was conducted on 270 German secondary students where teachers assigned 

grades averaged over German, Math, English, and Physics. These results seem to be 

consistent even after introducing controls for gender and intelligence. 

A recent study focused on university students that utilized three classification scales 

(Morning, Evening, and Neither) found that morningness students showed much better 

performance on both theoretical and practical examples compared to students belonging to 

other chronotypes [119]. This study also showed that students belonging to neither evening 

nor morning chronotypes performed lower than their counterparts. Additionally, this study 

also observed that students who belong to eveningness did worse on practical examinations 

than morningness and students belonging to neither class. One interesting find in this study 

is related to the performance of eveningness students on theoretical exams. This study 

infers that the higher intelligence expressed by eveningness students compensated for their 

disadvantage on the theoretical exam but not on practical exams. However, it is still 

necessary to study the impact of an age-based shift in chronotypes with student's academic 
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performance. This is based on the insights provided by earlier studies that reported 

individuals chronotype shift from morningness to eveningness by the time they reach their 

20's. In addition to this, it is also necessary to study the impact of chronotypes on student-

centric models that analyze comprehensive student data in a semester or academic year 

instead of course-specific analysis. This understanding will support the development of 

interventions that are effective and promise overall student success. Our work will utilize 

student clusters extracted from their hourly login patterns to develop and assess models 

that predict student performances. 

The primary objective of educational research is to develop interventions that 

promote student academic achievement. Earlier studies in learning analytics and 

educational data mining focused on developing models that predict student achievements 

early on in their academic program to support the development of these interventions. 

However, most of these studies focused on course-level predictions and analysis, making 

it harder to develop interventions at the student level. Another gap observed in prior 

research is the lack of causal understanding related to features that causes a shift in student 

academic performance. Causal inferences promote the development of impactful 

intervention techniques that positively impact student academic performance. 

Traditional research utilizes randomized control trials to discover causal knowledge. 

However, these are time-consuming, expensive, and sometimes unethical and impractical 

to implement with real-world students. Studying causal relationships from student 

interaction with LMS systems allows us to explore a vast amount of noninvasive data 

collected by these systems. This method will provide a search for answers beyond common 

correlations. Yet, this type of analysis is not common in learning analytics and educational 
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data mining domains. For example, a study by Fanscali [120] investigated the role of 

carelessness in analyzing the counterintuitive relationship between students' learning 

outcomes and their affective states related to confusion and boredom. This study utilized 

observational data from the algebra cognitive tutor platform. An earlier study by Fanscali 

[121] on a similar dataset showed a relationship between student's affective states, gaming 

the system, prior knowledge, and their learning outcomes. This study utilized a causal 

framework termed causal discovery with the model. In their research, Koedinger et al. [122] 

analyzed interaction data captured by the online learning environment. This study reported 

causal interaction between active student engagement and their learning outcomes. Inspired 

by this work, a recent study by Chen et al. [123] developed a causal discovery framework 

that utilized TETRAD [124], a causal discovery and inference toolkit. Our work adopts the 

framework proposed by Chen et al. [123] to study causal relationships between student 

login behaviors captured by LMS and learning outcomes. 
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3 Chapter 3: Affective Dimensions of Learning based on Digital 

Learning Environments 

 

Understanding student learning behaviors is of the prime importance of educational 

research. However, many complex factors influence learning processes, but one collective 

impact of all these factors is on human affect that influences learning and degree of 

motivation. This chapter discusses the current state of human affect detection in education, 

our proposed affect change model, and its implications. This study adopts a dataset from 

ASSISTments online learning platform consisting of student interaction data, and ground 

truth labels for affect states coded by BROMP certified coders to develop and validate the 

affect change model. We show that the proposed affect change model combined with the 

adoption of machine learning algorithms will support the development of a ubiquitous 

learning system that tracks the student learning process in context of contributing factors 

and provides interventions when needed. 

3.1 Introduction 

The increase in the use of intelligent educational technologies such as learner 

management systems that collects a vast amount of student interaction data enabled 

researchers to develop new applications that empower student learning abilities. The 

development of a sensing system that tracks student learning poses unique opportunities 

and challenges. One such challenge is developing an automated system that tracks human 

affect that impacts learning during their system interactions. The affective process has a 

substantial influence on the learning processes in students, including attention, 
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significantly modulating the selectivity of attention as well as motivating learning action 

and behavior.  

BROMP has explored these affective processes and identified four fundamental 

affect states related to attention; concentration, confusion, boredom, and frustration [125]. 

Based on the protocol, computational models for detecting these affect states based on 

student interactions with computer systems became prominent in recent years. Studies 

focusing on the development of affect state detectors based on human-computer interaction 

and physiological sensors showed some promising results [71][126][127]. However, 

studies in psychology argue about relevant emotional theories that can assist in the 

prediction of student affect states from their system interaction [128][129]. Therefore, this 

work revisits previous computational efforts and datasets and then explores novel 

computational models focusing on the characteristics of affect dynamics. 

Affect dynamics and affect chronometry are the two areas that focus on temporal 

changes in affect states. Affective dynamics support the understanding of frequent affect 

state transitions over time. D'Mello and Graesser modeled the impact of these temporal 

changes in students during complex learning tasks [130]. This study shows that a student 

from engaged concentration state transitions to confusion by experiencing cognitive 

disequilibrium when facing anomalies, contradictions, obstacles, and any other impasses. 

Restoration of equilibrium helps them get back to concentration and avoids their transition 

into the frustration that changes to boredom with time.  

Affective chronometry is a part of affect dynamics that focuses on individual affect 

transition over time [131]. This mainly deals with response latency that focuses on the time 

it takes for an emotion to reach its peak from the onset and recovery time is when the 



30 
 

emotion dissipates [130]. From the study on the half-life of cognitive affect states that 

focuses on the recovery time of emotions of students, it is evident that the decay rates for 

affect states like concentration, boredom, and confusion were lower compared to 

frustration and delight [132]. The increasing interest in understanding affect dynamics and 

affect chronometry from Quantitative field observations like BROMP and sensory data 

poses new sets of challenges and limitations [125]. 

The increased interest in leveraging affective computing to assess the students’ 

affective states has generated many successful approaches to building accurate affect 

detectors. Specifically, along with the broad spreading of ubiquitous computing systems 

such as mobile phones and wearables, the physical and physiological sensors provide a 

window into the relationship between everyday behavior and affective states [133][134]. 

Although these sensors are getting popular, the affect detectors that rely on these sensors 

still have challenges in scalability, especially for those students who cannot afford mobile 

phones and wearables. The situation might cause limited education benefits for the students 

from low-income families. Therefore, affect detectors that solely rely on the learning data 

captured by the computer-based learning systems may be more feasible to deploy in scale 

to provide equal educational benefits for those students in the classroom. 

Sensor-free affect detectors have been investigated for many years, and the models 

learned from previous studies have been verified and validated in the diverse dataset 

[72][135]. Currently, the best sensor-free affect detector has demonstrated better 

performance than a chance to detect student engaged concentration, confusion, frustration, 

and boredom solely from students’ log data. The datasets used in these studies include the 

cognitive tutor dataset and the ASSISTments dataset [72]. The detectors built from these 
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datasets helped various researchers to study the influences of students’ affective states on 

multiple aspects. Meanwhile, much attention has been put on increasing the accuracy of 

sensor-free affect detectors and eventually using them to drive intervention, such as data 

cleaning for missing skills and wrong answers [72], new training models leveraging the 

deep learning techniques [71]. However, little has been reported to develop affect detectors 

leveraging existing psychological theory [132][136][137]. For instance, researchers in 

affect styles have demonstrated that the temporal features of affect (e.g., affect change) 

include richer information than affective states and expose the individual progress in 

affective regulation. 

3.2 Our Work 

In this study, we proposed an affect-change detection model built based on the 

concepts involved in affect dynamics and chronometry [138]. This work seeks to apply 

these existing psychological discoveries to develop better affect detectors solely based on 

the learning data captured by the learning system. Previous psychological studies 

developed models to study the temporal features of the transitions between two types of 

affective states; positive and negative [136]. Our work adjusts the model to fit the four 

types of affective states; engaged concentration, frustration, confusion, and boredom, 

including six types of transitions.  

In this study, we explore the application of this model to detect affective states using 

data collected in the context of the ASSISTments online learning platform. After statistical 

analysis of the dataset, we focus on four types of transitions, (concentration - concentration), 

(concentration - frustration), (concentration - boredom), and (concentration- confusion), 

which is equivalent to previous affect detectors [72]. 
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Deep learning models are still being investigated in the education domain for 

prediction of student affect states but were extensively adopted to extract student 

knowledge states [71]. Inspired by these capabilities of deep learning to extract features 

from data and provide efficient classification, we adopt deep Convolution Neural Networks 

(CNN) and variations of Recurrent Neural Networks such as Long short-term memory 

(LSTM) and Gradient Recurrent Unit (GRU) to classify student affect state changes. In 

this work, we train and test conventional machine learning models and deep learning 

models to detect student affect state transition based on their interactors with the online 

learning platform. 

3.3 ASSISTment Dataset Analysis 

In this study, we adopt a dataset consisting of student interaction data with 

ASSISTment online learning platform and affect states coded by BROMP certified coders. 

ASSISTments is an online math tutoring platform developed and maintained by Heffernan 

and a group of graduate and undergraduate students at Worcester Polytechnic Institute. 

Ken Koedinger from Carnegie Mellon University is a collaborator on this project and is 

credited with this development. This platform helps students increase their learning ability 

and gives immediate feedback employing interventions so that teachers can assess the 

progress of students [71][139]. MIT highly recognizes this platform as one of the best 

computer-assisted intervention platforms that help students in learning math based on 

reviewing more than 100 institutions [140]. 

3.3.1 BROMP for Data Collection 

BROMP Protocol was first used in 2004 by Baker to record appropriate behaviors 

in an educational setting, and later affective states were added by Rodrigo et al. to this 
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protocol in 2007 [141][142]. Trained and certified human coders utilized BROMP to 

collect the affect states used in this study [125]. They capture the affect states by observing 

students during their engagement with the ASSISTments platform. The student affect states 

are respectively coded into five categories in the ways of a round-robin fashion for every 

20-second interval for each student comprised of confusion, engaged concentration, 

boredom, frustration, and impossible/other to code and cover the whole class 

[71][125][126]. For every observation, it is necessary to record time stamps and identify 

missing labels. Temporal features are considered while reorganizing this data, which will 

be discussed more in the following sections of this study [138]. For an in-depth 

understanding of BROMP coding, readers can refer to the BROMP training manual [125]. 

The dataset used in the research consists of 756 students from different 

demographic regions like rural, suburban, and urban. There is a total of 7663 successful 

field observations so that each student is observed at least ten times on an average [71][125]. 

A total of 204 feature vectors are collected after cleaning the data, including the response 

labels. These features mostly contain system usage time, usage of hints, scaffolding, and 

many other features to capture student’s low-level interactions with the learning platform 

[138]. 

3.3.2 Data Imbalance 

Previous studies on this dataset have mentioned some concerns with the imbalance 

issues in this dataset and proposed useful resampling methods to solve these issues [71][72]. 

These resampling methods are not detailed, and most of them did not explicitly discuss the 

imbalance issue. This non-uniformity of the data set will lead to class imbalance issues in 

machine learning and further biases in the classification process. Statistical observations 
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from the dataset show that approximately 80% of the states identified in the data set are 

engaged concentration and the remaining 20% of the dataset consists of boredom (12%), 

confusion (4%), and frustration (4%). One primary reason for more concentration labels in 

the dataset is justified by earlier studies that discussed student interest in working with the 

ASSISTments platform [71]. One other reason can be the faster decay of affect states such 

as frustration and confusion compared to concentration and boredom that might not be 

captured by BROMP coders [136]. 

Due to the persistent imbalance issues in this dataset, the machine learning models 

might overfit during the training with more bias towards higher sampled classes like 

engaged concentration [143]. Resampling methods are developed by previous studies using 

up or down sampling the minorities and majorities in data, assuming that the hidden 

features are extracted from data with interpolation techniques in these methods. These 

techniques are hard to verify during model training and testing because the effects of 

traditional interpolation techniques are difficult to understand or validate [144][145]. 

This prospective study conducts a statistical analysis to identify the transitions 

among these four affective states, as shown in Table 3.1. 70% of students working on this 

platform always concentrated without transition to any other state during field observations.  

There are no students that are always frustrated in the dataset, and this can be related to an 

earlier study that shows frustration as a transient state with a faster decay.  Less than 1% 

of students have transitions between confusion and frustration. The major transition of 

states is between concentration to boredom at 17%, followed by concentration to confusion 

and concentration to frustration, as shown in Figure 3.1. The transition between minor 
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states boredom to confusion and confusion to frustration accounts for less than 3 % of the 

total transitions in the dataset. It is coded as weaker transitions, as shown in Figure 3.2. 

 

Figure 3.1: Affect transitions of a student during learning over time 
 

From the statistical analysis of this dataset, we find two implications, and the first 

one is to simplify the models into four major transitions (Always Concentrated), 

(Concentration <> Confusion), (Concentration <> Bored), (Concentration <> Frustration). 
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The second one is to downsample the students who are always concentrated to solve class 

imbalance issue that reduces the influence of clips without transitions in affect for a reliable 

feature distribution [138][146]. 

 

Figure 3.2: The affect state change model with the transition between different affect 
states 

 
 Table 3.1: The students who did/not experienced affect changes 

 

Affect Change Number of students Percentage of 
students 

Always Concentrated 511 67.60 % 

Always Bored 7 0.93% 

Always Confusion 1 0.13% 

Always Frustration 0 0% 
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Concentration ˂˃ 
Confusion 58 7.67 % 

Concentration ˂˃ Bored 126 16.66 % 

Concentration ˂˃ 
Frustration 53 7.01 % 

Bored ˂˃ Confusion 15 1.98% 

Confusion ˂˃ Frustration 7 0.93% 

 

3.4 Methodology 

In this study, the first step is to reorganize the labels into 2 and 3 clip structures. A 

correlation-based feature selection algorithm is applied to extract essential features that 

support predicting affect state transitions [147]. These extracted features were then used to 

train and test six conventional machine learning algorithms (Decision Tree (DT), Random 

Forest (RF), Logistic Regression (LR), Neural Nets (NN), SVM and AutoMLP (AMLP)) 

and four deep learning algorithms like (Recurrent Neural Network, LSTM, GRU, and 

CNN). For training these algorithms, we adopt RapidMiner for conventional machine 

learning algorithms and keras for deep learning algorithms. 

3.4.1 Reorganize and Relabel the Dataset 

The proposed approach reorganizes and relabels data samples based on the affect 

change model mentioned in the above sections. The 2-clip and 3-clip datasets are organized 

based on the affect dynamics concept discussed in the above sections are shown in Figure 

3.3. This student has 11 samples/clips labeled by BROMP coders. These samples were then 

reorganized into 3 clip and 2 clip datasets, as shown in Figure 3.3. We observed a single 

transition in data based on the affect chronometry concept that focuses on transition in 

affect state. We reorganized labels in the form of 2-clip data samples that consists of a 
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subject affect transition from one state to the other. The 3-clip data organization is based 

on affect dynamics that focuses on the affect cycle, which considers concentration as the 

initial phase and then transitions to another affect like confusion and ends at the 

concentration. 

 

 
Figure 3.3: Illustration of the organizing and labeling process of 2-clip (Left) and 3-clip 

(Right) datasets. 
 

Once the datasets are reorganized based on the affect change model, the 2-clip 

dataset consists of 408 features (204*2), and the 3-clip dataset will have 612 features 



39 
 

(204*3). The dimensions of these datasets were reduced based on an average function that 

averages similar columns in 2- clip and 3- clip data that reduces the final dimensions to 

204 features. The primary reason for not utilizing dimensionality reduction techniques like 

PCA or ICA is the difficulty in understanding the role of each feature on the predictions as 

principal components are formed based on all the features in data [148]. 

3.4.2 Feature Selection and Model Training 

This study adopts a feature selection technique based on correlation, ID-ness, and 

stability [147].  Pearson correlation between attribute and target label is calculated. ID-ness 

and stability are reciprocals that define the unique and constant nature of a given attribute. 

An attribute with higher ID-ness indicates the column values are distinct and lower ID-ness 

indicates similar values. Feature selection takes place based on a set cutoff for these values, 

a feature with a correlation higher than 0.01 percent, ID-ness less than 85%, and stability 

less than 90% are selected. The dataset adopted in this study is free of missing values, so 

this measure is ignored in feature selection. 

This study adopts the RapidMiner data science platform to train and test 

conventional machine learning algorithms and keras in python for deep learning algorithms 

[149]. A five-fold cross-validation method is used to split data at the student level to train 

and test all samples present in data and extract reliable performance metrics that can be 

generalized over the data. This approach creates a binomial classification problem by 

dividing the affect change model dataset into four datasets with a major class (always 

concentrated) and a major to minor class transition. 

Training a neural network in smaller batches and updating the weights of a network 

at the end of each training cycle is a common practice. The model is updated by Adam 
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optimizer at the end of each training cycle. The affect change model mainly focuses on the 

time series nature of data. Still, the temporal nature of data is inconsistent as the BROMP 

coders are not continuously labeling a student. CNN focuses on piece-by-piece information 

of an image that it tries to learn from the training data and compare with the testing data. 

These networks are least concerned with the time-series nature of the data compared to 

RNN, whose dependency is mainly on the temporal characteristics of the dataset [150]. 

The inconsistency in this data might hinder the performance of Recurrent neural networks. 

Model training in neural networks happens in a multitude of epochs where the 

network is training multiple times to extract as much information as possible. This multiple 

training also leads to the overfitting of a network that performs poorly on unseen data. To 

reduce this issue, we adopt a variable epoch method that focuses on the performance on 

hold out data after each training epoch to see if there is any improvement in the model 

performance. The network stops training when it sees no improvement in the performance 

on hold out dataset. Average cross-entropy is the selected performance metric calculated 

after 15 epochs to see if there is an improvement in the training performance. The model 

training stops when a higher value of this metric is found compared to the previous value. 

Sixty epochs seem to be the best number over all the models. 

3.5 Results 

This study considers three performance metrics, Area under the ROC curve (AUC), 

Cohen's kappa, and root mean square error (RMSE), to evaluate the developed models. 

This study considers a trade-off between all the three performance metrics to decide on a 

better algorithm. The algorithm that performed better in detecting the 2-clip affect changes 

is shown in Figure 3.4. Support vector machines outperformed other algorithms in 
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detecting affect state changes from concentration to boredom vs. all other transitions and 

always concentration vs. all other transitions. Affect transition from concentration to 

frustration and confusion is detected very well by single layered feedforward neural 

networks with kappa values of 0.296 and 0.31. SimpleRNN performed better compared to 

LSTM in detecting all transitions except concentration to boredom. 

 

 
Figure 3.4: Prediction performance of different statistical models on 2-Clip affect change 

dataset 
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Figure 3.5: Prediction performance of different statistical models on 3-Clip affect change 
dataset 

The 3-clip affect transition data performance results are shown in Figure 3.5. Neural 

networks and AutoMLP performed better for datasets with frustration and Boredom, 

whereas random forest performed better in detecting always concentration. Tables related 

to Figure 3.4 and Figure 3.5 are available in Table A. 1, Table A. 2, Table A. 3, Table A. 

4, Table B. 1, Table B. 2, Table B. 3 and Table B. 4 listed under Appendix A and Appendix 

B. 

3.6 Discussion 

Although affect change has been a well-studied topic in psychological studies, this 

domain knowledge has not been given enough attention in education [151][152]. Although 

affective states have attracted much attention recently in developing an intelligent tutoring 

system, the bridge between the domain knowledge and the objective data captured by the 

learning system has not been established well [71]. This work attempts to develop an affect-

change model to build the relationship between the domain knowledge and the learning 
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dataset previously studied using traditional feature engineering and machine learning 

algorithms. 

3.6.1 Findings 

From the study, we find that the performance of detectors with conventional 

machine learning algorithms is better than the deep learning algorithms. The AUC values 

are higher for conventional machine learning algorithms when detecting affect state 

changes. The kappa values are higher for traditional algorithms except for state change 

detection of concentration to frustration, where the kappa values are higher for deep 

learning during 2-clip analyses. The two algorithms perform very well during the 2-clip 

analysis of state change from concentration to boredom. The best models of conventional 

machine learning outperform deep learning to affect state change detection with high AUC 

and kappa values.  

Most detectors are accurately concerned with changes from data that is an average 

of a feature of a different state. We only present the best algorithm that acquiring the 

highest AUC and kappa in 6 conventional algorithms trained and tested by us. It also 

concludes that algorithms in deep learning perform well with different changes in the 

selection of parameters. This trade-off should be considered during the selection of a model 

for detecting different affect state changes. From the results, we can see an improved 

performance in the deep learning model during 2-clip affect change detection from 

concentration to boredom. Besides, we also observe that the confidence levels of every 

algorithm are higher than the threshold of 50% in the research. 

In comparing the two approaches, the key advantages of the conventional machine 

learning algorithms are high interpretability and their performance is better than deep 
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learning models. However, the deep learning algorithms with higher kappa values perform 

better in contrast to previous studies of affect detection [71][72][126]. Deep learning 

algorithms perform better with vast amounts of data that is hard to collect with human 

observation coding like BROMP. To facilitate the advantage of dealing well with time-

series data, deep learning could be employed to analyze the data acquired from sensors 

which can be enormous. One of the disadvantages of the deep learning algorithm is that 

they are highly sophisticated when compared to conventional algorithms, and it is difficult 

to analyze and interpret the model parameters 

The performance of the affect change model was better than previous work in affect 

state detection, as shown in Table 3.2 [71][72][126]. The comparisons in Table 3.2 are 

made between the best detectors in each model with high AUC and Kappa values. 

Meanwhile, the performance of the detectors is more balanced than previous methods. For 

instance, the performance of each detector in state change is better than all the previous 

three studies [71][72][126] and detectors based on deep learning demonstrate unexpected 

performance such as AUC is higher as 0.72, but kappa is 0.09 [71]. Overall, our affect-

change detectors perform consistently to all of the affect changes. 
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Table 3.2: Comparison of Affect State Vs. Affect Change model performance 
 

Affect State Vs Change Model AUC Kappa Study 

 

 

Engaged Concentration 

SVM 0.837 0.479 Our Study (State Change) 

Feature 0.743 0.423 Wang et al., 2015 

LSTM 0.80 0.34 Botelho et al., 2017 

Logistic 

Regression 

0.624 0.139 Jiang et al., 2018 

Confusion 

Neural Net 0.783 0.310 Our Study (State Change) 

Feature 0.625 0.148 Wang et al., 2015 

LSTM 0.72 0.09 Botelho et al., 2017 

Logistic 

Regression 

0.568 0.091 Jiang et al., 2018 

Boredom 

SVM 0.838 0.585 Our Study (State Change) 

Feature 0.671 0.260 Wang et al., 2015 

LSTM 0.80 0.28 Botelho et al., 2017 

Logistic 

Regression 

0.682 0.278 Jiang et al., 2018 

Frustration Neural Net 0.739 0.296 Our Study (State Change) 
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Feature 0.602 0.157 Wang et al., 2015 

LSTM 0.76 0.15 Botelho et al., 2017 

Logistic 

Regression 

0.634 0.056 Jiang et al., 2018 

 

Furthermore, our models such as neural nets and SVM have fewer parameters than 

deep learning methods but achieve reliable performance in detecting all affect changes. 

The detectors trained by the reorganized dataset obtain better AUC and kappa than past 

results reported on the condition of the same dataset. The improved performance is 

consistent with our hypothesis that the affect changes contain richer information than single 

affect states. Furthermore, our detectors perform much reliable in detecting all the affect 

changes with higher AUC and higher kappa. This reliable performance points out that the 

affect-change detector may be the solution for research and practice in sensor-free affect 

detection, eventually guiding to realize affective tutoring system applied to drive affect-

sensitive intervention. 

3.6.2 Challenges 

From the findings mentioned above, we also encounter multiple challenges in this study. 

(i) Scalability: The current system uses BROMP methodology that involved a human 

coder to code student affect states that reduce scalability. 

(ii) Missing Data: As the coding of student affect states happens in a round-robin 

fashion, there is a lot of unlabeled temporal data. 
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(iii) Integration: Current systems in the domain don’t integrate data well as there is no 

direct link between the human coder and the learning management system.  

To address these challenges, we consider working on a ubiquitous sensing and 

learning system that integrates learner management systems and predictive modeling to 

track and improve student learning abilities.  

These emotions can be captured at any time without human coding and also reduces 

missing data. With the availability of high-speed internet, data from the sensors and learner 

management systems can be integrated efficiently into the cloud platform. These cloud 

platforms are also compatible to run complex algorithms on the data as they provide 

scalable resources. 

Our proposed affect change model deals with transitions in human affect, and these 

transitions will reflect individuals’ physiological measures [133]. Current mobile and 

wearable technologies have the capabilities to detect transitions and boundaries that can be 

segmented in real-time [153]. There are also change point detection methods that support 

detecting changes in physiological measures and are successfully implemented in activity 

recognition systems [153]. The detection of changes in affect helps build a wearable-based 

system that can notify or deliver interventions to users with fewer interruptions and reduced 

cognitive load. 

This chapter has discussed a research study involving students in middle school 

mathematics who experienced a web-based system that aims to provide immediate 

feedback to the many students in the classroom and at home every day [71]. The proposed 

affect change model proves to be efficient and helps support the development of 
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intervention strategies that improve student learning. This model also leads to developing 

a Ubiquitous learning system that tracks student affects with minimal human intervention 

and mitigates the challenges in the current system. 
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4 Chapter 4: Student Outcome Detection & Factor Analysis from 

Digital Learning Environments 

 

Exploring predictors concerning whether a student will enroll in a STEM major has 

been investigated for understanding and further facilitating the processes that lead students 

to become interested in and equip them for STEM careers. Existing research focuses on 

isolated aspects of the student's interactions with the online learning system, such as student 

knowledge and affect states. However, these factors could be optimally selected and 

combined to improve the prediction performance of student career choice models as they 

influence one another. This chapter proposes a voting-machine approach to predict 

individual student career selection based on knowledge, affect states, and clickstream data 

recorded during their interaction with the ASSISTment learning platform. The features 

were evaluated and selected based on correlation, ID-ness, Stability, and Missing Values. 

The selected list consisting of high and medium quality features was then used to train and 

test different machine learning algorithms. The trained models will follow the voting-

machine mechanism to determine the predicted l-bels and their confidence. The results 

showed that Gradient Boosted Tree and KNN predict student career choice on both training 

and testing datasets with better performance compared to existing models. This proposed 

method helps in the early identification of student career selection and supports the 

development of intervention strategies that encourage them to choose STEM fields. 
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4.1 Introduction 

Understanding the processes that lead students to become interested in and equip 

them for STEM careers is a critical step in developing better programs to prepare students 

to enroll in STEM programs. Therefore, with recent advances in the development of online 

learning platforms like MOOC and intelligent tutoring systems (ITS) that enable 

researchers in education to study various factors that influence the prediction of career 

selection [70][154], multiple models were developed in this domain to understand the 

reasons for whether or not a student is interested in STEM fields [155]. These digital 

learning systems are designed to capture data regarding the students’ interaction with the 

system or software, such as click-stream records and learning outcomes. Then through the 

development of the experimental protocol and theoretical models, the data patterns could 

be classified and identified to link with meanings within educational theories, such as self-

regulated learning behavior and the affective processes. One significant finding from past 

research is the capability of student knowledge states in mathematics during their middle 

school years have a considerable influence on their choice of future career 

[69][156][157][158]. However, this finding does not consider much about the affective 

process of the learning behavior, which has been proved as a critical competency of student 

learning.  

Researchers argued that the integrative perspective regarding the student knowledge 

and their affect states inferred from the clickstream records [159] should empower the 

performance in predicting whether a student will enroll in a STEM course. Specifically, 

previous studies show evidence that student emotional state will influence their behavior 

state, impacting cognition while learning [64][160]. These affect states of the student will 
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also control their interaction with ITS and MOOC systems [161]. Regarding the interplay 

between academic emotion and student engagement, Pekrun & Linnenbrink-Garcia 

suggest that student engagement impacts the relationship between learning and emotions 

[160][162]. These studies also show different emotions can act as either inhibitors or 

propellers for student engagement in learning [64][160][162]. These changes in students' 

engagement during their learning process will hinder their progress in learning and impact 

their decision-making.  

Previous studies worked on predicting a student's career choice by extracting their 

knowledge state from multiple ITS data samples and incorporating all the information into 

a structured feature integrating knowledge states [70][156]. These features only consider 

the average student affect states rather than individual affect states data [70]. In contrast, 

our work considers every interaction of the student with the platform. It uses them as 

samples for prediction, which enables us to capture rich information available in all the 

samples, including knowledge states, affect states, and other clickstream features. These 

samples are then used in the prediction and evaluation of different machine learning models.  

This chapter proposes a voting-machine-based mechanism to predict individual 

student choice through optimal feature selection that incorporates features from knowledge 

states, affect states, and other clickstream features. The feature selection technique 

considers Correlation, ID-ness, Stability, and Missing Values of every at-tribute 

[149][163][164]. These features are then used for training and testing different machine 

learning algorithms. All the predicted labels for each student were used to develop a voting 

machine mechanism to calculate individual student STEM and Non-STEM prediction 

confidence. This confidence was used to extract various performance metrics of algorithms. 
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The highly supporting and contradicting features for each sample dataset were also 

identified based on neighboring attribute weights that utilize correlation as an identification 

factor. The local linear relation between attributes is highly influential in predicting the 

non-linear global relationship [165][166]. Analysis of features supporting and 

contradicting predictions related to STEM, Non-STEM classes facilitates understanding 

the importance of each feature on individual class prediction. 

4.2 Data 

ASSISTments is a web-based mathematics tutoring system designed for middle 

school students and actively maintained by Worcester Polytechnic Institute. This software 

records all student interaction that is useful in modeling their knowledge and detecting their 

engagement. Bayesian Knowledge Tracing (BKT) algorithm was applied to the data to 

model each student’s knowledge. This algorithm provides students knowledge based on 

their previous responses to questions related to the same skill set. BKT assesses the 

knowledge state of a student at every attempt they made [167]. Affect states of students 

and their disengaged behaviors such as concentration, boredom, confusion, frustration, off 

task, and gaming was estimated by proven detectors [69][156] using the interaction data 

captured by the ASSISTments platform. The design of these affect state detector changes 

for schools located in urban and rural areas [156]. 

Student behavioral data captured from ASSISTments online learning platform 

during academic years 2004-2005 to 2006-2007 was made available during Educational 

Data Mining (EDM) Competition in 2017. This data consists of knowledge, affect state, 

and system interaction information related to 1709 students [156]. In this study, only 591 

students were considered as they were labeled as STEM or Non-STEM. From the analysis, 
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we observe that there are 316974 samples of interaction data related to these 591 students, 

of which 125 students enrolled in STEM careers and the remaining 466 students enrolled 

in Non-STEM careers. The distribution of samples in this dataset is shown below in Table 

4.1. We did not apply any downsampling methods on this dataset as these types of class 

imbalances need to be dealt with in the real world. 

Student profile data consists of System usage, Number of actions, affect states, 

disengaged behaviors, and abilities [70].  

• Affect states & Disengaged behavior: Clickstream records were used to derive four 

affect states (Concentration, Confusion, Boredom, and Frustration) [127]. We 

utilize the rescaled value of affect states provided in each student sample. We did 

not incorporate the average affect state data as we work with individual samples of 

students. 

Table 4.1: ASSISTments data distribution statistics 
Career  

Enrolled 

Students Samples Distribution 
(%) 

Average 

STEM 125 64719 20.4 518 

Non-STEM 466 252255 79.6 541 

 

4.3 Methodology 

We divided this study into four phases. The first phase deals with feature selection. 

These features are optimally selected by incorporating domain knowledge and multiple 

statistical parameters. Once relevant features were chosen, we then used the EDM 

Competition's dataset to train and test various machine learning algorithms with 5-fold 
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cross-validation. We then apply the model from cross-validation on the testing set provided 

by the EDM Competition. We then evaluate the performance of these algorithms and 

choose the best one for explaining predictions. As the cross-validation trains and predicts 

the output for every sample in the dataset, these predictions were used to calculate the 

confidence for individual student prediction. Figure 4.1 below shows each step in the 

analysis. The ASSISTments platform collects this data during student interaction. Student 

interaction data is utilized by the feature selection technique to select appropriate features 

for prediction, which are fed into predictive models. The proposed voting machine 

mechanism uses the model predictions to calculate the confidence of each class and provide 

a predicted label. 

 

 

Figure 4.1: The above process pipeline represents various steps in predicting individual 
student career choice. Icons by Freepik, Baianat, Trevor Dsouza, Noura Mbarki & Dave 

Gandy from www.flaticon.com. Licensed by Creative Commons BY 3.0 
 

4.3.1 Feature Selection 

This study applies feature selection based on three significant measures related to 

data in the attribute. We consider attribute correlation, ID-ness, Stability, and Missing 

values, but the measure of the missing value was ignored as the data consists of very few 

missing values [147][165]. We also removed some attributes based on their similar 

characteristics with other columns. For example, in the dataset, we observed two 
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confidences for affect states original and rescaled. From this, we select the attributes related 

to rescaled confidence. The selected attributes are also labeled based on their impact. We 

apply this feature selection technique adopted from the RapidMiner data science platform 

[149] to choose a subset of features that are useful for prediction.  

Correlation is the amount of similarity between the current attribute and the target 

column that needs to be predicted. ID-ness is the uniqueness of values present in the 

attribute. For example, it merely suggests if the column is an identity column based on the 

values. This ID-ness is only applied to columns that have positive integers. The stability 

measure indicates the percentage of identical values present in the column. As discussed 

above, we removed missing values statistics from the analysis as we observed that there 

are no missing values present in the selected attributes. 

The attributes are divided into three classes high (H), medium (M), and low impact, 

based on the measures mentioned above. These attributes are shown in Table C. 1, Table 

C. 2 and Table C. 3 listed under Appendix C. The high impact attributes are the ones with 

medium correlation, low id-ness, low stability, and no missing values [147][164]. The 

attributes that are classified as medium impact are based on the correlation. Attributes with 

less than 0.01% and greater than 50% correlation are set in this category. The low impact 

attributes are categorized based on stability, missing values, and ID-ness. Attributes with 

more than 70% missing values, ID column, and more than 90% stability are classified in 

this category. In this study, we removed attributes that are classified into low impact as 

these are trivial in prediction. We considered 40 attributes that belong to medium and high 

impact categories for predictions. 
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4.3.2 Model Training and Testing 

This study trained and tested different machine learning algorithms to compare their 

performances on the RapidMiner data science platform [163]. This platform was 

recognized as a leader in Gartner Magic Quadrant for data science and machine learning 

for six straight years [168].  We adopt a 5-fold cross-validation method in which every 

sample was used for both training and testing. We selected seven predictive algorithms for 

this study, of which four are related to traditional machine learning, and three corresponds 

to neural networks. Gradient Boosted Tree (GBT), K-Nearest Neighbor (K-NN), Decision 

Tree (DT), Random Forest (RF), Neural Net (NN), Deep Learning (DL), AutoMLP, and 

Logistic Regression (LR) were evaluated on this select-ed feature. We used default 

configurations for all algorithms, but for GBT, we increased maximal tree depth to 20, and 

for deep learning, we applied two fully connected layers with 256 neurons each. These are 

the best performing configurations from our analysis. We compare the model performances 

based on AUC, Accuracy, Kappa, Root Mean Square Error (RMSE), and linear 

aggregation of AUC and RMSE values. 

4.3.2.1 Models & Hyperparameters 

• Gradient Boosted Tree: A gradient boosted tree algorithm is a sequential learning 

algorithm in which a subsequent tree learns from the weak predictors of a 

previously built tree. The tree adopted in this study has a maximum of 20 trees, a 

maximal tree depth of 20, and a learning rate of 0.1. 

• Random Forest: A random forest is an algorithm that works based on the ensemble 

learning principle. This algorithm can combine different models developed based 
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on the bagging method. We obtained optimal settings for this algorithm with a 

maximum of 100 trees and a maximum depth of 10 per tree. 

• Logistic Regression: Logistic regression method is for classification problems as it 

predicts the probability of each class and classifies based on the probability values. 

We adopt the standard settings for this model. 

• AutoMLP: A multilayer perceptron is a feed-forward neural network that consists 

of multiple hidden layers in training a neural network. The AutoMLP algorithm can 

set the optimal learning rate and hidden layers during training. This algorithm 

works on stochastic optimization and genetic algorithms. This algorithm trains 

small ensemble methods in parallel with different hyperparameter settings like 

hidden units and learning rate, which are validated to find the best setting. 

• Deep Neural Network: A deep neural network is an algorithm that can work with 

different activation layers, learning rates, and optimizers. This study adopts a four-

layer (input, hidden_1, hidden_2, and output) fully connected deep learning 

network with 250 hidden units in each layer. We set the learning rate at 1.0E-5 and 

use the rectifier activation function. The regularization parameters were auto-

adjusted based on the training performance of the algorithm. 

4.3.3 Voting Machine based Classification 

One issue dealing with multiple samples per student is to converge to a single 

predicted label. In this study, we propose a voting machine-based mechanism [169] that 

converges to a single predicted label per student based on the confidence of each class. To 

calculate the confidence of each class per student, we count the number of samples that 

were predicted as STEM and Non-STEM. The confidence value per class was then 



58 
 

calculated by taking the ratio of predicted STEM labels to total samples per student and 

predicted Non-STEM labels to total samples per student. The predicted label is then 

assigned based on the class with the highest confidence value. Once the predicted labels 

were assigned to all students based on the mechanism mentioned above, the performance 

metrics of each algorithm were generated by comparing the predicted label and the actual 

label of all students. This mechanism is followed to calculate performance metrics for both 

training and testing datasets. 

4.3.4 Predictor Explanation 

The purpose of this study is to understand the factors that influence STEM and 

Non-STEM predictions. For this purpose, we utilize a novel prediction explanation method 

based on the Locally Interpretable Model explanation (LIME) [170] to find attributes that 

support and contradict predictions. This method creates neighboring data points for each 

sample in a dataset and calculates local correlation values to identify the weights of each 

attribute.  The predictors that support and contradict are classified based on the local 

correlations and weights calculated for each attribute for every sample. The words 

"supporting" and "contradicting" refer only to the predicted value, which might be an 

accurate or inaccurate prediction. The linear relationship between attribute and prediction 

locally is highly influential; even the attributes are nonlinear globally. This method is 

developed in conjunction with RapidMiner software and discussed below. 

LIME explains each prediction made by a complex model by training a surrogate 

model locally. In this way, LIME tests the predictions based on variations in data. This 

process is done by generating new data samples around the observation by permutations. 

The complex model that needs to be understood is used to make predictions. Once the 
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predictions are made, LIME trains the linear surrogate model and weights the samples of 

interest. The model explains the predictions locally, which might not be good globally.  

               𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑥𝑥) = arg 𝑚𝑚𝑚𝑚𝑚𝑚
𝑔𝑔 ∈ 𝐺𝐺  𝐿𝐿(𝑓𝑓,𝑔𝑔,𝜋𝜋𝑥𝑥) +  𝛿𝛿(𝑔𝑔)                           1             

 

The explanation of local model x is based on the minimization of a loss function L 

that depends on the proximity of complex model predictions while the complexity of the 

model is low. The G in the above equation 1 represents all possible explanations and 

represents the proximity of around observations that are considered for an explanation. The 

complexity is based on the number of features that the linear model needs to use. The user 

can set this complexity parameter. One major issue with using LIME methods is they are 

computationally expensive and also time-consuming as they need to train a new linear 

model for every observation.  

To reduce this time complexity and maintain the same level of explanations, the 

one proposed method in this work is to use correlations instead of training local linear 

models. In this idea, once the black box model makes predictions on the permuted data, the 

correlations between the features and prediction labels are obtained, and weights are 

calculated. This correlation approach is a simple yet powerful idea to improve the speed 

with similar performance. The above equation 1 is modified to reduce time complexity, as 

shown in below equation 2. In this equation, 'p' is the prediction, and Xi is the feature that 

needs to be correlated with prediction. 

                       𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 (𝑝𝑝) = ∀𝑖𝑖 ∈ 𝐺𝐺(Corr(𝑋𝑋𝑖𝑖 ,𝑃𝑃))                                        2 
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All attribute weights are calculated for each observation to understand their impact. 

These weights will help us understand whether an attribute supported or contradicted 

prediction. The positive weights correspond to a supporting attribute, and the negative 

weight corresponds to a contradicting attribute. As the attribute importance is given to each 

feature based on the weighted correlation, it is useful to calculate the weights of an attribute 

over all the predictions to observe their performance globally. To find their global 

performances, here is the proposed pseudo code. The below pseudo-code is developed to 

take the tradeoff between supporting and contradicting attributes. To find the global 

importance of an attribute, we add the weights of each prediction if that attribute supported 

the correct prediction or it contradicted an incorrect prediction. The assumption is that an 

attribute that contradicts an incorrect prediction is a good one. In this way, the proposed 

method calculates the global importance of all attributes and helps understand attributes 

that highly supported the algorithm predictions and contradicted algorithm predictions. 

for all rows to be explained do 
        {calculate supporting / contradicting values with LIME for the row 
         for all those values do 
            {if prediction is correct:  
                 {if value is positive (supporting): 
                       add the value to the weight of the column 
                   else: 

 do nothing 
                   end if 
      else (Wrong prediction): 
                if value is negative (contradicting): 
                          add the absolute value to the weight of the column 
                   else: 
                          do nothing 
                   end if 
               end if 
            end for 
end for 
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4.4 Results 

The training data set is used in 5-fold cross-validation for training and testing 

predictive models. The predicted labels for all the samples in the dataset were extracted for 

confidence calculation and individual student label prediction. The primary performance 

metrics considered in this comparison were AUC, Kappa, RMSE, and linear aggregation 

of AUC and RMSE ((1-RMSE) + AUC). We observed that Gradient Boosted Tree 

performs better with 0.99 AUC and 0.994 kappa compared to all other algorithms. We also 

find that the KNN algorithm performs better with an AUC of 0.619 and kappa values of 

0.32.  

Table 4.2: The training set 5-fold cross-validation performance metrics based on feature 
selection and voting machine mechanism. 

Algorithm AUC 
Accuracy 

(%) 
Kappa RMSE 

AUC+(1-

RMSE) 

Gradient 

Boosted 

Tree 

0.995 99.78 0.994 0.0462 1.9488 

K-NN (5) 0.619 80.94 0.32 0.436 1.183 

Decision 

Tree 
0.508 75.37 0.025 0.496 1.012 

Random  

Forest 
0.5 74.94 0 0.5005 0.9995 

Deep 

Learning 
0.592 40.68 0.1081 0.772 0.82 

AutoMLP 0.5 74.94 0 0.500 1 

Logistic 

Regression 
0.5 74.94 0 0.5005 0.9995 

Yeung et 

al. [70] 
1.00 - - 0.039 1.961 
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Table 4.2 shows seven machine learning algorithm performances on individual 

student label prediction once their confidences were calculated and labels were predicted. 

The metrics of the best-performing model on training data set in our study and previous 

work [70] were similar with a slight margin. 

Table 4.3: Comparing test set performance metrics on trained models based on the voting 
machine mechanism 

 

Algorithm AUC Accuracy 
(%) 

Kappa RMSE AUC+(1-
RMSE) 

Gradient 
Boosted 

Tree 

0.834 81.97 0.619 0.424 1.41 

K-NN (5) 0.812 87.79 0.692 0.349 1.463 
Decision 

Tree 
0.5 67.44 0 0.570 0.93 

Random  
Forest 

0.5 67.44 0 0.570 0.93 

Deep 
Learning 

0.572 44.76 -0.329 0.743 0.829 

AutoMLP 0.5 67.44 0 0.570 0.93 
Logistic 

Regression 
0.5 67.44 0 0.570 0.93 

Yeung et 
al. [70] 

0.694 - - 0.414 1.280 

 

We applied the models trained in a 5-fold cross-validation on the test dataset to 

observe the model test performance. We find that GBT and KNN algorithms performed 

better than other algorithms with 0.834 and 0.812 AUC, 0.619, and 0.692 kappa values. 

Neural network algorithms failed to distinguish both careers, and one more exciting find is 

the negative kappa value of deep learning as it shows a sharp disagreement in predictions. 

The performance of the seven machine learning algorithms on the test set related to 

individual student label prediction was captured in Table 4.3 below. The GBT and KNN 
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models performed better on test data compared to a previous study [70]. The linear 

aggregation of AUC and RMSE ((AUC+(1-RMSE)) was used as the primary measure for 

comparison. 

4.4.1 Individual Student Confidence for STEM and Non-STEM 

From the above comparison, we observed that the GBT and KNN algorithm 

performs better in predicting student career choice from optimal feature selection. The 

predicted and actual labels are extracted, and the percentage of samples that were classified 

accurately for each student was calculated. These confidence values of GBT and KNN for 

both training and testing datasets related to optimal feature selection were shown in Figure 

4.2.  

 

Figure 4.2: Individual student prediction confidence for Gradient Boosting Tree 
predictions 

 

From the top left subplot related to GBT model training set performance, we 

observe that the model can predict each student with confidence closer to 1 for both STEM 

and Non-STEM careers except for some outliers. The top right subplot related to GBT 
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confidence on test data shows that the model can predict better for the test dataset. The 

bottom subplots belong to the KNN algorithm predictions on training and testing data. 

KNN is a lazy learner algorithm that does not learn any model from training but memorizes 

the training set and utilizes the ‘k’ value to identify nearest neighbors and assign classes 

based on the majority. By comparing the bottom left and right subplots in Figure 4.2, the 

confidence of KNN in predicting the test dataset is higher than the training dataset. This is 

related to good sample distribution for KNN in the test data and the performance 

fluctuations in the cross-validation folds of training data. 

4.4.2 Explain Predictions 

The main focus of this study is to understand the predictions made by the adopted 

machine learning algorithms. For this purpose, we extract all the supporting and 

contradicting attributes and present the top six in Table 4.4 and Table 4.5 for both accurate 

and inaccurate predictions. These supporting and contradicting algorithms were classified 

based on the local Pearson correlation values obtained by calculating the correlation 

between the attribute and prediction. One should be careful in interpreting support and 

contradict predictors. For instance, a supporting predictor for a sample with the accurate 

prediction (Actual Label = Predicted Label) means that this predictor acted positively on 

predicting the actual label. In contrast, a supporting predictor for inaccurate prediction 

(Actual Label ≠ Predicted Label) implies that this predictor performed negatively for this 

prediction. This explanation is similar to contradicting predictors, where the contradicting 

predictor negatively affects accurate predictions and positive effect on inaccurate 

predictions. 
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Table 4.4: Supporting and Contradicting predictors related to GBT model 
 

Accurate Prediction Inaccurate Prediction 

Supporting Contradicting Supporting Contradicting 

NumActions sumRight RES_GAMING NumActions 

timeGreater10SecAndNe
xtActionRight 

totalFrAttempte
d 

totalFrAttempted timeTaken 

original sumTimePerSki
ll 

frPast8WrongCount sumTimePerSk
ill 

frPast5HelpRequest frPast8WrongC
ount 

hintCount sumRight 

correct totalFrSkillOpp
ortunities 

totalFrSkillOpportuniti
es 

totalFrPastWro
ngCount 

manywrong RES_GAMING totalTimeByPercentCo
rrectForskill 

Ln 

 

 

Table 4.5: Supporting and Contradicting predictors related to Deep Learning model  
 

Accurate Prediction Inaccurate Prediction 

Supporting Contradicting Supporting Contradictin
g 

totalTimeByPercentC
orrectForskill 

NumActions NumActions timeTaken 

timeTaken totalFrAttempted totalFrAttempted sumRight 

endsWithScaffolding attemptCount frPast8WrongCount hintCount 

sumRight totalFrSkillOpportunit
ies 

frTotalSkillOpportunit
iesScaffolding 

endsWithSc
affolding 

correct frPast8WrongCount attemptCount hint 

sumTimePerSkill frTotalSkillOpportunit
iesScaffolding 

totalFrSkillOpportunit
ies 

frPast5Help
Request 
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4.5 Discussion 

Since previous studies focused on extracting knowledge states for each student based 

on their attempted skills to predict career choice, our focus in this study is to propose a new 

method that incorporates optimal feature selection on raw data. These features include 

knowledge and affect states from clickstream records prediction. This process enabled us 

to extract richer information that can help identify future student career selection. The test 

set performance metrics for the GBT model in this study shows higher AUC and Kappa 

compared to the previous research that incorporated DKT+ algorithm to extract knowledge 

states and used them with the combination of the student profile for career prediction [70]. 

4.5.1 Findings 

From this study, we observed that the performance of the Gradient Boosted Tree 

algorithm is superior compared to other algorithms. We use AUC and kappa values of both 

cross-validation and test set to compare model performance. Even the deep learning 

algorithms and complex neural networks did not perform well in prediction. This 

phenomenon is due to the capability of GBT to build multiple trees and learn sequentially 

from previous mistakes during the previous step. The ability of GBT to deal with new data 

which neural networks fail is one major factor in this result. Also, GBT has a strong 

regularization function [171][172] compared to neural networks. The ability of GBT to 

produce more robust predictive models from weak predictors is one main reason for their 

excellent performance [173]. 

From the results, we also observe that KNN performed well compared to other 

complex algorithms. One observation from KNN performance on Cross-validation and 

testing sets is its ability to predict test set with higher accuracy. We analyzed the reason for 
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low training performance and found that in cross-validation folds, the performances 

fluctuated between folds, which is why lower training performance. Therefore, it is 

noteworthy that the generalizability of KNN is limited. The top 5 attributes that have a 

strong influence on predictions of GBT and the impact of affect states were shown in Table 

4.6. The GBT consists of 20 attributes, of which three attributes were related to affect states.  

From the ranking mentioned in Table 4.6, student's affect states, knowledge traces, 

and clickstream records were studied extensively to understand their impact on model 

predictions. We observe that the "NumActions" have a high impact on overall accurate 

predictions of GBT but adversely affect the Deep Learning algorithm. This might be due 

to the differences in the statistical background of algorithms and their regularizations 

functions. Now in the case of accurate STEM prediction made by the GBT model, attempts 

and clickstream records support the prediction whereas affect state boredom and 

disengaged behavior off-task acts negatively on accurate STEM predictions.  

Affect state confusion has a high positive influence in predicting Non-STEM class, 

and disengaged behavior gaming also supports an accurate prediction of this class. Affects 

states impact on deep learning algorithm seems to be negligible as most of the predictions 

depend on knowledge states and clickstream records. Gaming the system has a negative 

impact on STEM career prediction and overall predictions. A previous study by San Pedro 

et al. also found this relationship between gaming the system and Non-Stem students 

during their major selection [163]. One reason for the pattern mentioned above might be 

related to students turning from boredom to off-task, which negatively impacts STEM 

choice [127]. 
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Table 4.6: GBT variable importance and ranking for model evaluated on optimal features 
 

Ranking Attribute Relative  
Importance 

Scaled 
Importance 

Percentage 

1 NumActions 201489.2 1 89.7 

2 sumRight 5085.8.0 0.025 2.2 

3 totalFrAttempted 4067.5 0.02 1.8 

4 Ln 2244.0 0.01 1 

5 hintTotal 1257.0 0.006 0.5 

13 RES_Confused 49.8 0.0002 0.02 

16 RES_Frustrated 23.4 0.0001 0.01 

17 RES_Bored 21.9 0.0001 0.009 

19 Correct 12.14 0.00005 0.005 

 

To check the impact of “NumActions” we also looked at the variable importance 

of GBT in its absence which is presented in Table 4.7. Comparing both Table 4.6 and Table 

4.7, we observe that “NumActions” dominates the predictions in its presence. This finding 

implicates that although the average number of actions (e.g., each action means a learning 

process of a question) does not reflect the students' STEM choice in the future [70], the 

individual number of actions influences each student's STEM choice. It means the more 

the student learns in the mathematical software, the higher the chance the student will 

choose the STEM career. In this scenario, the boredom of students influences prediction. 
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Table 4.7: GBT variable importance and ranking for model evaluated in the absence of 
NumActions attributed 

 

Ranking Attribute 
Relative 

Importance 

Scaled 

Importance 
Percentage 

1 totalFrAttempted 15917 1 10.7 

2 sumRight 15486.8 0.972 10.6 

3 Skill_ID 12447.2 0.78 8.6 

4 totalFrTimeOnSkill 10821.2 0.70 7.1 

5 Ln 8132.3 0.51 6.4 

16 RES_Bored 273.0 0.02 2 

19 Correct 122.2 0.01 0.8 

 

Previous studies suggested a high correlation between carelessness and STEM 

students [69][174]. In this study, the impact of the Average carelessness attribute available 

in this dataset is investigated to check the model performance based on its presence and 

absence. With the inclusion of average carelessness, the performance metrics of the GBT 

model increased. From the predictor explanation, we observe that Average carelessness 

has a high impact on accurate STEM predictions. This predictor importance is in line with 

previous studies that proved the importance of carelessness in the case of students opting 

for STEM fields [147][161][163]. One limitation of this study is related to the use of 

clickstream data, which depends on multiple factors like time spent on the system, the 

number of questions answered, which may vary when considering different sets of students 

that work on the platform during different periods. Another limitation is the generalizability 
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of this study, as the dataset analyzed is from a single platform (ASSISTments), and the 

predictor relevance is model-specific. Our future work focuses on developing feature 

selection techniques based on the useful predictors and developing models that efficiently 

and effectively predict their choice based on their middle school year data. Confusion state 

has more impact compared to all other affect states. 

4.6 Contribution 

This study sought to explore the significance of different features, including 

knowledge states, affect states, and other clickstream features provided by the 

ASSISTments platform, to predict the individual student's career choice. The developed 

voting machine mechanism and optimal feature selection techniques demonstrated better 

prediction performance. The importance of features selected for the best performing 

algorithm is also analyzed to demonstrate their significance in the prediction models. This 

study also aims to work with real-world data problems like imbalanced data sets and high 

correlation attributes. Furthermore, the algorithms based on gradient boosting performs 

better compared to highly complex neural networks.   

However, a significant limitation of the study concerns the mode of the voting 

machine and the relatively small sample size. The voting machine relies on the trained 

models based on the samples of students' interaction with the learning system. Therefore, 

the underlying probabilistic distributions of the samples will significantly influence the 

performance of the trained models and the voting machines, especially under the imbalance 

situation. For example, the results of KNN, which heavily depends on the probabilistic 

distributions of the samples, demonstrated better performance in testing data than training 

data. Moreover, our work has been validated in mathematical software, ASSISTment, with 
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a sample size of around 500 students, which has potential limitation to be generalized for 

other science knowledge software.  

Our future work will include 1) further develop integrative models to investigating 

the significance of affective process in learning behavior, 2) transferring the models in 

other population studies and educational software, such as Blackboard System that has 

collected plenty of interaction data at the University of Maryland, Baltimore County, 3) 

exploring interdisciplinary collaboration with other research groups with the ultimate goal 

of achieving confident models to deliver the affect-sensitive intervention. 
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5 Chapter 5: Student-Centered Modeling 
 

With the increasing adoption of Learning Management Systems (LMS) in colleges and 

universities, research in exploring the interaction data captured by these systems is 

promising in developing a better learning environment and improving teaching practice. 

Most of these research efforts focused on course-level variables to predict student 

performance in specific courses. However, these research findings for individual courses 

are limited to develop beneficial pedagogical interventions at the student level because 

students often have multiple courses simultaneously. This paper argues that student-centric 

models will provide systematic insights into students’ learning behavior to develop 

effective teaching practice. This study analyzed 1651 undergraduate student's data 

collected in Fall 2019 from computer science and information systems departments at a US 

university that actively uses Blackboard as an LMS. The experimental results demonstrated 

the prediction performance of student-centric models and explained the influence of 

various predictors related to login volumes, login regularity, login chronotypes, and 

demographics on predictive models.  Our findings show that student prior performance and 

normalized student login volume across courses significantly impact student performance 

models. We also observe that regularity in student logins significantly influences low-

performing students and students from minority races. Based on these findings, the 

implications were discussed to develop potential teaching practices for these students. 
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5.1 Introduction 

Teaching and learning changed a lot in recent years with the increasing adoption of 

new computer-based teaching and learning technologies in educational institutions 

worldwide. As education and learning technology evolves with time, leveraging 

technological advances to improve teaching practice and student learning will be a 

prominent research area. The most common technologies used by instructors to deliver 

course content include Learning Management System (LMS), Course Management 

Systems (CMS), and Learning Content Management Systems (LCMS) [175]. Even though 

these systems seem to be synonymous, they have their specific use in the education domain. 

LMS tools focus on communication, collaboration, content delivery, and assessment, 

whereas LCMS is similar to LMS with fewer administrative functions. CMS, on the other 

hand, will focus on the enrollment and performance of students. Of these three systems, 

LMS is the one that is best suitable for delivering learning strategies to students and is the 

primary focus of this study.  

LMS systems provide a unique opportunity to administrators and researchers to 

evaluate student data related to time spent on an activity, access times and day, grades, 

interactions, and many other useful student learning variables. The data logs collected by 

LMS systems are analyzed with scientific techniques published in the Educational Data 

Mining (EDM) domain. In their study, Romero and Ventura [176] described that current 

EDM methods rely on clustering and pattern recognition techniques to categorize students 

into various groups based on their interaction patterns. Categorization of students using 

clustering and pattern recognition supports instructors in making changes for a set of 

students. Teaching practices that impact the entire classroom can be evaluated using 
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predictive analytics that tracks student learning and achievement from the vast amount of 

interaction data collected by LMS.  

Existing research in Learning Analytics (LA) and EDM focused on developing 

highly accurate predictive models that can estimate student learning outcomes related to 

assignment scores, course grades, and drop-out probability [177][178]. These course-based 

predictive models provide early warning to student counselors or instructors associated 

with a specific course [179][180]. Even with considerable success in this area, many of the 

student performance prediction models have several shortcomings. One significant issue 

with course-based models is the bias introduced by teaching style and the type of course 

(descriptive, programming, mathematical, etc.). This bias impacts these models' scalability 

across different courses and makes it difficult to understand the student-level factors on 

their achievement. For example, if a student enrolls in five courses, developing models to 

study students’ progress in these five courses independently is not realistic and gives 

different insights based on varying features and performances. Therefore, these modeling 

efforts are limited to reduce different biases introduced by the instructor and the diverse 

amount of content made available in LMS. 

Course-level predictions are suitable for supporting instructor-level decision-

making. However, suppose intervention is on student-level behaviors such as study habits 

or self-regulation skills. In that case, it is beneficial to look at student-centered indicators 

so that interventions may be more targeted and cost-effective [181][182]. Developing 

student-centric models that analyze student LMS interactions across courses in a 

college/university setting will help address course-specific models. This study is the first 

step in developing models that supports the identification of student-level indicators. 
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For colleges that have a high penetration of LMS, LMS activity may give a holistic 

indicator of students' engagement level (behavior engagement specifically). We ask the 

question to what extent those holistic indicators predict student term Grade Point Average 

(GPA) performance in the future. We specifically focus on student login-related features 

to explore this as they can be generalized across courses and act as proxy variables for time 

management [184][185]. It is also challenging to aggregate other features like discussions, 

readings, and assessments across courses compared to access-related LMS variables. This 

study's data is drawn from Blackboard Learn, a commercial LMS software available for 

colleges and universities to deliver course content and assessments through internet-

enabled computer systems. 

Most importantly, the data is drawn from all computer science and information 

systems students at a large public university in the US during the Fall 2019 semester. In 

addition to student interactions from LMS, we also access demographic and prior student 

performance data from the university's student administration system to build and interpret 

downstream predictive models. The university's Institutional Review Board (IRB) 

approved this study, and all the student-specific demographic and personal information are 

anonymized by following General Data Protection Regulation (GDPR) standards. 

In this work, we focus on model predictions and explanations to understand student 

learning behaviors. First, we apply new methods to process student interaction data 

collected across different courses enrolled in a semester to build student-centric 

performance models based on machine learning principles. Secondly, we utilize a novel 

approach in local model explanations, correlation, and regression to understand the impact 

of various features captured by LMS on student performance. One primary reason for using 
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Locally Interpretable Model Explanations (LIME) is its ability to explain the relationship 

between predictor variables and predictions, especially the input variable's impact on the 

outcome. On the other hand, statistical correlation analysis will provide the relation 

between input predictors and the observed target variable. Correlation analysis does not 

consider the interaction effect between input variables. We also use a linear regression 

model to study the output variable's feature importance based on the model coefficients. 

5.2 Data & Feature Set 

5.2.1 Dataset 

For this study, we chose undergraduate student data captured by LMS in Fall 2019 

from a large public university in the United States.  These students were part of either 

Information Systems (IS) or Computer Science (CS) departments. The students from these 

departments were chosen as the instruction format and courses are closely aligned in both 

of them.  The Blackboard system is predominantly used as an LMS to deliver course 

material, assessment, and grading. The student demographic data captured by a standalone 

Student Information System (SIS) is used to categorize students based on different 

demographic variables. A total of 1651 students were enrolled in these two departments in 

the Fall 2019 semester. Based on student distribution, we categorized students into three 

ethnicities: White, Asian, and Minority. This study also researches student performance 

based on their admit types, such as four-year regular student or transfer student. The 

demographics of student data are provided in Table 5.1. IRB approved this study, and 

sensitive student data was de-identified based on GDPR standards. 

 

 



77 
 

Table 5.1: Student demographics 
  

Demographic Student Count 

Total Students (N) 1651 

No of unique courses 440 

No of unique course instructor combinations 638 

Male : Female 1302 (79%) : 369 (21%) 

White : Asian : Minority 630 (38%) : 495 (30%) : 526 (32%) 

4 – Year : Transfer 976 (59%) : 675 (41%) 

Full Time : Part Time 1446 (88%) : 205 (12%) 

IS : CS 934 (57%) : 717 (43%) 

1st Yr : 2nd Yr : 3rd Yr : 4th Yr 
115 (7%) : 329 (20%) : 515 (31%) : 

692 (42%) 

<= 3 : 4-5 : >5 (Courses enrolled) 298 (18%) : 1035 (63%) : 318 (19%) 

 

5.2.2 Feature Extraction 

We explored various LMS features related to student logins, content accesses, time 

spent, discussion posts, assignment submissions, and time intervals based on earlier 

literature. While exploring these features, we identified that only three features could be 

commonly extracted from different courses: Student Login Counts, Time intervals & prior 

performance. 

One of the significant challenges while building a student-centric model on LMS 

data is to extract aggregated features that are least biased. As Blackboard's content is 
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dependent on instructor and course, it is crucial to mitigate the variations caused by these 

factors on aggregate student variables. This work employs multiple statistical measures to 

reduce these issues. The details are explained in the below sub-sections. 

5.2.2.1 Normalized Login Volume 

Earlier studies identified that student performance prediction is strongly dependent 

on the volume of student logins. One challenge with counting the student logins in 

Blackboard is its inability to find which course they accessed during each login. Also, 

calculating the total login count introduces a hidden bias as courses with more content on 

Blackboard prompt students to login more often than other courses with less content and 

flexible deadlines. To mitigate this issue, our work followed the below steps to extract 

student login features. 

1. Extract all courses enrolled by all students in IS and CS. 

2. Count the total number of logins for all students irrespective of their 

department in these extracted courses. 

3. Calculate the Z-scores of student logins in each course. The reason 

for doing this is to mitigate the bias introduced by variations in the absolute count 

of logins, as course logins vary a lot between students. Z-scores provide a value 

that helps understand if student logins are higher or less than average logins in a 

specific course. 

4. Once the z-scores are calculated for all courses. We extract a vector 

of login z-scores for each student based on their enrolled courses. 
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5. As predictive models do not take vectors of variable length as input, 

this work extracts seven significant statistics from the login vector: mean, median, 

minimum, maximum, standard deviation, skewness, and kurtosis. 

5.2.2.2 Login Regularity 

Apart from student login volumes, the regularity between logins also provides 

valuable insights into student achievement as regularity is related to self-regulation 

capabilities. In this work, we utilize an entropy-based method to extract features that define 

student login regularity in each course. In information theory, entropy is used to define 

uncertainty or randomness [186]. Entropy measure will explain if student's logins are 

regular (less random) or irregular (more random). Based on this concept, if the entropy 

value is high, then a student has an irregular login pattern, and if the entropy value is low, 

the student has a regular login pattern. The steps to calculate student regularity features are 

given below. 

1. Extract all course accesses with timestamps for every student in IS and CS. 

2. Calculate the difference between timestamps. This difference will give a 

vector of time intervals for each course enrolled by a student. 

3. Calculate entropy using the KL estimator with the k-nearest neighbor 

method proposed by Kozachenko and Leonenko [186]. KL estimator uses k-nearest 

neighbor distances to compute the entropy of distributions. The reason for adopting 

this method instead of Shannon entropy is based on the time interval vector's 

continuous characteristic [187]. 
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4. Once the entropies are calculated, we get a vector of entropies for each 

student based on the number of enrolled courses. We then calculate the seven 

statistics similar to student logins: mean, median, minimum, maximum, standard 

deviation, skewness, and kurtosis. 

5.2.2.3 Login Chronotypes 

Studies in chronobiology and chronopsychology showed variation in different 

individual active periods at different times of the day [188][189]. These studies classify an 

individual into either morning type or evening type based on their high activity time. For 

example, if an individual is highly active in the morning compared to the evening, they are 

considered morning type and vice versa. Inspired by this work in human psychology, this 

work divides a day into four-time bands T1 (12 AM to 6 AM), T2 (6 AM to 12 PM), T3 

(12 PM to 6 PM), and T4 (6 PM to 12 AM) and extract student logins based on these four 

time bands. In addition to this, this work also extracts the logins on weekdays and weekends 

to study their influence on student performance. 

1. Count the number of logins during each time band and on weekdays and 

weekends for each course. 

2. Calculate the mean of the login count vector for each time band and 

weekday/weekend. 

3. Normalize the login count with the number of courses enrolled by an 

individual student. This normalization will mitigate the bias introduced by the 

number of courses enrolled across the student cohort. 
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This work also utilizes the demographic and prior performance measured by GPA features 

captured by the SIS system. The prior GPA is a proxy variable for a student's pre-existing 

characteristics like IQ, motivation, prior knowledge, and metacognitive skills. These 

features were listed in below Table 5.2. 

Table 5.2: Student demographic features 
 

Demographic Values 

Start GPA (Prior Performance) 
Cumulative GPA available till the 

start of the semester 

Gender Male & Female 

Ethnicity White, Asian & Minority 

Student Year 
Freshman, Sophomore, Junior & 

Senior 

Admit Type Regular & Transfer 

Enrollment Type Full time & Part time 

Student Age Continuous variable 

 

5.3 Methodology 

The methodology section detailed the predictive modeling approach to predict 

student end-of-term GPA in fall 2019. In addition to this, we also describe the correlation-

based LIME method to explain the features that contribute to model predictions. The 

workflow of developing student-centric models is depicted in Figure 5.1. 

5.3.1 Predictive Modeling 

This work studied five of the most common regression models for comparison 

purposes. The selected models include Generalized Linear Model (GLM), Decision Tree 

(DT), Support Vector Regressor (SVR), Random Forest (RF), and Gradient Boosted 
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Regressor (GBR). As model hyperparameter influences their predictive performance, we 

utilized a grid search mechanism to select multiple parameters to predict with high 

accuracy. We also adopted a feature selection method based on a multi-objective 

evolutionary algorithm in addition to a hyperparameter search. This feature selection 

algorithm evaluates each feature set based on Pareto-optimal that balances model 

complexity and accuracy. The details of models and hyperparameter search criteria are 

discussed below. 

 

Figure 5.1: Student-centric Model Workflow 
 

Generalized Linear Model: GLM is an extension of traditional linear models that fits input 

data by maximizing the log-likelihood. The regularization parameter is set so that the 

hyperparameter search space looks for an alpha value that fits between ridge and lasso 

regression. An alpha value of 1 represents lasso regression, and an alpha value of 0 
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represents ridge regression. This study searched for the best alpha value using a grid search 

between 0 and 1 in increments of 0.1. 

Decision Tree: The decision tree algorithm is a collection of linked nodes intended to 

estimate the numerical target variable. Each node in the tree represents a rule used to split 

an attribute value. The node uses a least-squares criterion to minimize the squared distance 

between the average value in a node compared to the actual value. The hyperparameter 

search space for this algorithm evaluates both maximal depth and pruning. The maximal 

depth value varies between 1 and 100 in increments of 10. Pruning will make the DT 

algorithm use multiple criteria like minimal gain, minimal leaf size, and pruning 

alternatives to decide the stopping criterion. 

Support Vector Machines: The SVM used in this study is built based on Stefan Reupping’s 

mySVM [190]. This algorithm will construct a set of hyperplanes in a high-dimensional 

space for regression tasks. A good hyperplane is decided based on the functional margin. 

The hyperparameter search space focused on both dot and radial kernel functions with a C 

(SVM complexity) value range between 10 and 200.  The kernel gamma function is set for 

a radial kernel with a range of 0.005 and 5 with three logarithmic increments. 

Random Forest: A RF model builds an ensemble of decision trees on bootstrapped datasets. 

The splitting criteria are similar to a decision tree. The regression outcome is the average 

of the observed train data GPA present at that end node. We only tuned the number of trees 

hyperparameter to reduce the time complexity of the execution. The number of tree 

searches varied between 10 and 1000 trees in 10 linear steps. 
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Gradient Boosted Tree: The GBT model builds multiple regression trees in a sequence by 

employing boosting method. By sequentially applying weak learners on incrementally 

changed data, the algorithm builds a series of decision trees that produce and ensemble 

weak regression models. As GBT is a non-linear model, we search hyperparameters related 

to the number of trees, learning rate, and maximal depth. The number of tree values varies 

between 1 and 1000 in five quadratic increments. The learning rate varies between 0.001 

and 0.01 in five logarithmic increments, and the maximal depth parameter varies between 

3 and 15 in three logarithmic increments. 

5.3.2 LIME Explanation 

The concept of Locally Interpretable Model Explanations (LIME) was introduced 

to explain the predictions made by black-box models that deal with classification problems.  

LIME explains each prediction made by a complex model by training a surrogate model 

locally [170]. However, this earlier methodology is not scalable to deal with categorical 

variables, tabular data, and regression problems. In this work, we adopt the correlation-

based LIME method available in RapidMiner to explain machine learning models' 

predictions [191][192][193].  

1. Perturb data in the neighborhood of each sample in the dataset. The number 

of simulated samples can be user-defined. A higher number of simulated samples will 

provide higher accuracy of explanations but at the cost of more run times. 

2. Make predictions using the ML model for all the simulated samples around 

each original sample in the dataset. 
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3. Calculate the correlation between each feature in the dataset and the target 

variable. 

4. The features that have a positive correlation are considered supporting 

features, and features with negative correlation with predicted outputs are referred to as 

contradicting features. 

As LIME provides a feature importance value for each feature at each sample, we 

aggregate the importance value for all samples to build global importance for each variable. 

The significant advantage of this method compared to traditional global importance 

methods is its flexibility. As model global importance’s are calculated across all samples 

in the data, the LIME based feature importance can be calculated for subsets of data. This 

flexibility allows users to understand each feature's role for different sets of populations 

present in a dataset. 

In addition to applying the LIME methodology, this work also studies univariate 

and multivariate feature importance on student performances by applying correlation and 

linear regression methods. The student dataset used in this study is divided into multiple 

subsets containing different student groups based on various demographics. A correlation 

value is calculated between input features and student end-of-term GPA. This value 

provides us with an intuition about the impact of multiple features on student performances 

related to different demographics. As correlation only provides independent variable 

importance on student performance, we also adopt a linear regression model to explore the 

variation of feature importance based on coefficient values. Applying a linear regression 

model will also consider the interaction effect between input features to fit the outcome 

variable. 
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5.4 Results 

This results section is divided into three subsections based on the three research 

questions we are focusing on in this study. The first subsection will detail various predictive 

models' performance on longitudinal student interaction data collected during the fall 2019 

semester. The second subsection will detail the importance of student logins and regularity 

on performance predictions based on LIME methodology. The final subsection will discuss 

the importance of input features based on correlation and regression methods. 

 

Figure 5.2: Compare performances of GBT model on different longitudinal datasets 
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5.4.1 How different student-centric machine learning models perform in predicting 
student end-of-term GPA? 
 

The five machine learning models adopted in this study were evaluated using a five-

fold cross-validation method. In this method, the student data is divided into five equal 

folds at a student level. Four of the five folds are used for model training in every iteration, 

and one fold is used for model testing. The machine learning models are evaluated based 

on two performance metrics: R squared (R^2) and Root Mean Squared Error (RMSE). The 

output performance metrics are the average of five test fold performances. 

Table 5.3: Student features from start to end of the first month 
 

Model R^2 RMSE 

All Students Except Freshman All Students Except Freshman 

GLM 0.213 0.249 0.657 0.633 

DT 0.266 0.270 0.638 0.633 

SVM 0.216 0.324 0.666 0.607 

RF 0.332 0.353 0.607 0.588 

GBT 0.338 0.362 0.602 0.581 

 

This study divided a semester into four parts to understand the impact of 

longitudinal interaction data across the semester on predictive model performances. This 

analysis will support the amount of data needed to balance predictive performance and 

early detection for interventions. The performance metrics evaluated on these four 

cumulative datasets will help understand the amount of student data needed to make 
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accurate predictions. Table 5.3, Table 5.4, Table 5.5, and Table 5.6 present the machine 

learning models' results evaluated on four cumulative datasets. While differentiating 

student performance based on multiple longitudinal datasets, we also study algorithms' 

performance without Freshman student data. This differentiation is to study the impact of 

missing start GPA feature values for first-year students as most of the full-time regular 

students in US universities start in the Fall semester. 

Table 5.4: Student features from start to middle of the semester 

Model 
R^2 RMSE 

All Students Except Freshman All Students Except Freshman 

GLM 0.257 0.266 0.67 0.628 

DT 0.263 0.295 0.67 0.618 

SVM 0.195 0.315 0.705 0.609 

RF 0.360 0.352 0.621 0.591 

GBT 0.362 0.361 0.622 0.586 

 
Table 5.5: Student features from start to end of third month 

Model 
R^2 RMSE 

All Students Except Freshman All Students Except Freshman 

GLM 0.25 0.266 0.644 0.626 

DT 0.255 0.255 0.658 0.650 

SVM 0.335 0.344 0.612 0.597 

RF 0.371 0.386 0.589 0.575 

GBT 0.374 0.386 0.588 0.572 
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Table 5.6: Student features from start to end of semester 

Model 
R^2 RMSE 

All Students Except Freshman All Students Except Freshman 

GLM 0.251 0.269 0.644 0.625 

DT 0.246 0.274 0.657 0.641 

SVM 0.320 0.289 0.616 0.627 

RF 0.387 0.410 0.585 0.564 

GBT 0.400 0.406 0.575 0.562 

 

From the above tables, we observe that the GBT model performed better than the 

other four models based on the tradeoff between R squared and RMSE values. We also 

observe that there is no significant difference in student end-of-term GPA prediction with 

and without freshman details. This might be due to less sample size (7%) related to the 

freshman cohort. From Figure 5.2, it is also evident that there is a gradual increase in the 

performance of the GBT model as we add data to predictive models as the semester 

progresses. Even though there is an increase in performance if we add all data captured 

during the semester, it doesn’t help much for real-world interventions as activities that 

effects student performances will be completed by the end of the semester. Based on this 

understanding, we focus on data captured until the middle of the semester for feature 

importance study. 

We also validated the best performing model (GBT) developed on Fall 2019 middle 

of semester data by testing them on Spring 2019 and Fall 2018 student data related to IS 

and CS domains. The results in Table 5.7 shows that student-centric models are extendable 
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across different semesters. Additionally, this work tested the model transferability by 

validating them on student data from other departments in the Fall 2019 semester. From 

Table 5.8, we can observe that the test performance of the model developed on IS and CS 

student data showed similar performance metrics on students enrolled in four other 

departments. 

Table 5.7: Validating the extendability of models developed on Fall 2019 student data to 
different terms 

Term R^2 RMSE 
Student Count (IS 

& CS) 

Fall 2019 (Main 

Model) 
0.362 0.622 1559 

Spring 2019 0.370 0.683 1545 

Fall 2018 0.360 0.722 1486 

 

Table 5.8: Validating the transferability of models developed on IS & CS student data to 
other departments 

Department Degree R^2 RMSE Student Count 

IS & CS (Main 

Model) 
BS 0.362 0.622 1559 

Biological 

Science 
BS 0.381 0.675 491 

Bio Chemica & 

Molecular 

Biology 

BS 0.381 0.737 226 

Mechanical 

Engineering 
BS 0.385 0.657 391 

Psychology BS 0.317 0.849 215 
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5.4.2 How do student login and time interval patterns across courses influence student 

learning outcomes? 

To answer research question 2, we adopted a stepwise feature addition study that 

inputs features by adding one by one into the model and evaluates the performance based 

on R square and RMSE values. This study is performed on student data collected until the 

middle of the semester as models developed during this stage will help identify student-

level indicators and give enough time to deploy interventions that improve student 

performance. We first start with inputting student Start GPA (Cumulative GPA till the start 

of Fall 2019 semester) as start GPA showed a high correlation with end-of-term GPA based 

on our preliminary analysis. We then add normalized login volumes, login regularity, and 

login chronotypes in a step-by-step method. Figure 5.3 shows the R squared performance 

metric of student-centric models with different input variables. 

 

 

Figure 5.3: Compare performances of GBT model on different input feature sets 
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From Figure 5.3, we observe that student's start GPA with normalized student login 

volumes across courses adds more predictive power to machine learning models. This 

observation is also supported by earlier studies [194][195] that showed the importance of 

student login counts on student course grades and score predictions. Another observation 

is related to the importance of adding student self-regulation capability based on login 

regularity measured using entropy statistics. Based on Figure 5.3, we observe that adding 

login regularity features with student login features and start GPA adds slightly more 

predictive power compared to the model with only login regularity and start GPA features. 

In addition to these observations, we also observed that login counts based on login 

chronotypes with start GPA did not add much predictive power to machine learning models. 

We also imply that student aggregated login volumes might be adding the same information 

as login chronotypes from these results. 

 

Figure 5.4: LIME importance’s for different student groups divided based on GPA, 
ethnicity, admit type and gender. 
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5.4.3 Is there a significant variability in feature importance for students coming from 
diverse demographics? 

One limitation of using the earlier mentioned model-based feature importance study 

is its inability to explain each feature's importance on different student cohorts. To address 

this issue and understand the importance of login volumes and regularity features on 

different student groups, we adopt three approaches: one based on LIME, the second based 

on correlation analysis, and the third based on linear regression. 

5.4.3.1 LIME based Importance’s 

LIME-based approach extract feature importance at the local level also called local 

fidelity. By applying the LIME method explained in the methodology section, we extract 

feature importance’s for different student groups categorized based on their demographics. 

From Figure 5.4, we can observe that cumulative student GPA at the start of the semester 

is an important feature to predict student end-of-term GPA. Student login volumes are the 

second important feature set for model predictions on different student demographics. This 

study's focus is also on student self-regulation capability measured by the regularity of 

logins (entropy). We observe that for students with GPA values less than 2, the regularity 

of the logins feature played a key role compared to a student with a higher GPA. This 

observation also holds for students from minority ethnicity. One implication from these 

observations Is that introducing teaching practices that guide LMS use and time 

management will significantly impact students with low GPA and a minority race. Start 

GPA played a slightly less significant role in transfer students than regular students as 

transfer students join in different years. Their cumulative GPA might not be available at 

the start of the semester, similar to freshman. 
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Even though there is a huge imbalance in the number of male and female students 

present in the dataset, we do not observe any significant difference in feature importance 

between these two genders. One limitation of the LIME method is related to global 

importance. The importance’s showed by LIME at the local level do not necessarily 

correspond to global importance’s. Based on this limitation, we can infer which feature is 

essential for different students' groups but not quantify them as the importance’s calculated 

in this study are the aggregate of importance’s provided by LIME for each student. 

5.4.3.2 Correlation-based Feature Importance’s 

As earlier feature importance methods showed a significant impact of login volumes 

and login regularity measured by entropy statistic to predict student performance, we adopt 

Pearson correlation statistic to infer this relationship for different student groups. To do 

this, we create subsets of student data based on different groups: student GPA, gender, 

ethnicity, and admit type. 

From Figure 5.5, we observe that the student logins count and regularity in logins are 

highly significant for a student with a GPA lower than 2. We can also observe that as the 

entropy increases, the GPA reduces. This observation holds true as regularity in student 

logins represents their self-regulation capabilities. Earlier research showed that students 

with good self-regulation capabilities perform better in class [196][197]. For other student 

groups divided based on gender and admit type, there is no significant variation in the 

importance of logins and entropy on student performances. 

Even though the absolute values of correlation observed in Figure 5.5 are not very 

strong, the comparison between different groups helps understand which features are 

significant for students from different demographics. In addition to this, we also observe a 
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similar pattern in LIME-based importance’s discussed in earlier sections. We can infer that 

LIME based method also scales well for global feature importance in this study. 

 

Figure 5.5: Correlation values for different student groups divided based on GPA, 
ethnicity, admit type and gender. 

 

5.4.3.3 Regression Modeling for Feature Importance 

One significant limitation of earlier methods is their inability to capture interaction 

effects as feature importance might change in the presence of other features. To study the 

interaction effects, we apply a linear regression model on different categories of student 

login data collected till the middle of the semester. These student categories were divided 

based on GPA, gender, admit type, and ethnicity of students. Even though linear regression 

models are applied on all features discussed in earlier sections, we only report the 
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coefficients of median login volume and mean login regularity in Table 5.9, as these 

variables are the focus of this study. From Table 5.9, we observe that login volume and 

login regularity features follow similar directions for students with lower GPAs and 

students from minority ethnic backgrounds as observed in the LIME and correlation-based 

analysis. There are some discrepancies in other observations as there is no statistical 

significance (high p values) for coefficients in these cases. Another reason for focusing on 

a student from these two groups is their higher attrition rates found in earlier studies 

[198][199]. Studying these groups closely will help develop targeted interventions in the 

future. 

Table 5.9: Regression coefficients (Significance marked with *) 
 

Student 

Demographic 
Student Groups 

Median Logins 

Coefficient 

Mean Login 

Regularity 

Coefficient 

GPA 

GPA <= 2 0.171* -0.398* 

GPA >2 & <= 3 -0.013 0.200 

GPA >3 0.065 -0.002 

Gender 
Male 0.135 0.130 

Female -0.021 -0.157 

Admit Type 
Regular 0.399 -0.004 

Transfer 0.611 0.191 

Ethnicity 

White 0.204 -0.029 

Asian -0.085 0.201 

Minority Race 0.201* -0.153* 
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5.5 Discussion  

There is a growing interest in building models that capture student behavioral 

patterns while using LMS systems to predict their performance. Earlier research showed 

that building efficient models based on LMS data to predict student performances is not a 

simple task as multiple learning and demographic factors impact student learning processes. 

Although earlier research in EDM and LA tried to address different issues related to student 

performance tracking, there is still a gap in developing models that accurately predict 

overall student performance and explain underlying factors that improve their academic 

performance. As a step in this direction, this study presents a student-centric modeling 

approach based on aggregated LMS features to predict and explain the reasons behind 

varying student performances. This context is both relevant and timely given the increase 

of LMS adoption and a need for efficient and interpretable model development. 

5.5.1 Key Contributions 

One primary contribution in this study is the development of student-centric models 

on aggregated student LMS login data that are least biased towards the diverse course 

contents and instructor teaching styles. Using the feature extraction methods developed in 

this study, we were able to build an efficient GBT model that can predict student end-of-

term GPA with an average R squared of 0.37 across the semester. Furthermore, models 

built at different durations of a semester showed only a slight improvement in predictive 

performance after crossing a specific duration (middle of the semester). This observation 

helps develop models in the middle of the semester to estimate student performance 

accurately. 
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In addition to developing student-centric models, this study also focused on 

understanding the impact of various LMS features on student performances. Earlier studies 

in this domain primarily focused on the volume of logins. This work also studied the impact 

of login regularity measured by entropy statistics on student performance by implementing 

LIME explanation, correlation, and linear regression methods. From our interpretation 

studies, we observed that students who login regularly into the LMS system have a positive 

relationship with performance improvement. The model explanation outcomes on this data 

also showed a positive relationship between increase in student login volumes and GPA. 

Even though this observation is accurate across all students, it has a slightly higher 

importance in students from minority races and student with GPA lower than 2 based on 

the data analyzed. However, we should be careful in coming to solid conclusions based on 

these outcomes. LMS data is only a snapshot of student learning activity, and many outside 

factors might influence this. This specific observation prompts us as researchers to look 

beyond LMS data and collect qualitative data from students related to external factors like 

economic condition, neighborhood situation and technology availability to understand 

what impacts their logins. 

We also found no significant difference in the impact of LMS features on Male and 

Female students. This observation is valid as LMS features used in this study are captured 

objectively rather than subjectively. This observation also holds for regular and transfer 

students. 

Our study also extracted student interaction features based on chronobiology and 

chrono psychology concepts to understand if there is a student performance variation based 

on different chronotypes. From the results, we observed no significant difference in 
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performance. The impact of these features is negligible in the presence of aggregated 

student login volume. 

5.5.2 Applications & Limitations 

Student performance tracking is a complex process as it depends on multiple 

dimensions and facets. Developing student-centric models to predict student performance 

models helps student counselors and educational administrators design student-level 

interventions that attract students' attention. Also, developing predictive models that 

estimate students' overall performance in the middle of the semester will make them aware 

of their predicted end-of-term performance. These predictions might act as an external 

intervention to improve their performance in the remaining part of the semester. By 

understanding the difference in LMS features on students from different demographics, 

researchers and administrators can build more personalized instructional methods suitable 

for diverse student cohorts. 

There were also some limitations in this study. The predictive performance 

achieved by using aggregate features across different courses enrolled by students is 

moderate at best. It would be more helpful to explore ways to improve the performance of 

these models. One possibility is to add other features that target independent content access 

durations, mid-semester assessments, and other external factors. One major challenge that 

needs to be addressed in our future studies is to find an effective method to aggregate 

content level features across different courses enrolled by a student. The dataset used in 

this study is extracted in a single semester and students from two closely related 

departments.  
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To conclude, we built student-centric models to predict student performances that 

support the development of student-level interventions. We then use the LIME 

explanations to study LMS features' importance on student performance prediction. Finally, 

we study the univariate and multivariate feature importance’s using correlation and 

regression methods and assess them with the feature importance’s extracted in the LIME 

method. 
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6 Chapter 6: Chronotypes, Login Behaviors and Academic 

Achievement: A Causal Analysis of Their Relationships 

 

Understanding causal relationships between variables help identify the variable that 

causes a change in another variable. Identifying this relationship is essential to study 

intervention effects that determine the impact of external force on the possible outcome. In 

this work, we focus on learning the causal relationships between student learning behaviors 

encoded in their login data captured by Learning Management Systems (LMS) and their 

performance outcome at the end of the semester. Additionally, this work also identifies 

student behaviors based on different chronotypes characterized from their login activity. 

The study data is collected from 1688 undergraduate students enrolled in Information 

Systems and Computer Science departments at a public research US university in the Fall 

2019 semester. This study's findings showed a significant causal relationship between 

student login volume on the LMS system, prior performance, and their end-of-term GPA. 

In addition to this, we found that the impact of student chronotypes on academic 

performance discussed in earlier course base studies doesn't scale well to student-level 

models. 

6.1 Introduction 

Understanding student learning behaviors is a complex process as it is affected by 

a multitude of factors like self-regulation, instructional design, and social environment [1]. 

However, it is not efficient to study all the influencing factors as some factors are not 

feasible to intervene compared to others. Some have a higher impact on the performance 
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at an individual level than others. Earlier research in education identified self-regulation as 

a highly impactful and intervenable factor [200][201]. Self-regulation, in general terms, is 

defined as one's ability to control behavior, thoughts, and emotions to achieve their goal. 

In learning, self-regulation assists students in managing their behaviors, thoughts, and 

emotions to drive their learning experiences successfully. 

Studying student self-regulation capabilities is an arduous task as it involves 

multidimensional and complex factors like planning, goal setting, time management, and 

self-monitoring. Many of these factors are hard to quantify without student self-reports or 

other psychometric evaluations, and these reports are prone to biases like social desirability 

and reference bias [202][203]. To mitigate these biases, researchers in education focused 

on extracting data from computer-based systems like Learning Management Systems 

(LMS) as they are used to deliver course content and have the capability to capture student 

interaction and assessment behaviors non-invasively [87][204]. Student interaction data 

with LMS proved to be a valuable resource in identifying learning strategies and track 

patterns among students that strongly support their academic performance. LMS systems 

also enabled researchers to study time management strategies, a component of self-

regulation adopted by students [183][205]. In contradiction to traditional time management 

studies that utilize self-reported questionnaires, student time management strategies are 

analyzed based on login and submission patterns in LMS systems. 

Earlier studies focused on the relationship between self-regulation and student 

performance through LMS systems used student interaction features as proxy variables for 

self-regulation [7][206]. These studies showed a significant correlation between student 

login patterns and their academic performance. However, it is still challenging to design 
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interventions as correlations do not necessarily mean a meaningful cause and effect 

between student login behaviors and academic performance. In addition to this, very few 

studies focused on the relationship between time management strategies identified in LMS 

systems with the biological nature of human functionality. Therefore, these earlier 

modeling efforts are limited to predicting student performance as a function of their login 

patterns and fell short of identifying and recommending helpful strategies that support 

student self-regulation components like time management that improves student academic 

improvement. 

In the context of student learning in engineering and computing research, multiple 

studies focus on student self-regulation and time management strategies. These studies 

focus on student behaviors related to their time compliance with assignments, including 

procrastination behaviors and ways to support the earliness of student work 

[207][208][209]. These earlier studies showed that early starters have better learning 

outcomes, but there is little emphasis on what times these students work during a day and 

how these learning time patterns affect their performance. To address the research gap 

discussed earlier, we explore the below two research questions. 

RQ１ How do different student learning times (chronotypes) impact their academic 

performance? 

RQ２ Is there a causal relationship between student login behaviors, chronotypes, and 

their academic performance? 
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This work focuses on studying login time patterns, also referred to as student 

chronotypes, to understand the relation between student learning times and their impact on 

performance outcomes. In addition to this, we also study the causal relationships between 

student learning behaviors encoded in LMS login variables and their performance 

outcomes. To perform this study, we extract hourly student login volume data and perform 

clustering to observed if any visible patterns exist among students. We then utilize these 

cluster outcomes to develop predictive models to study the impact of student chronotype 

on their performance. Secondly, we adopt student login variables from an earlier study and 

combine them with student chronotypes to understand causal relationships between student 

behaviors and their performance outcomes. One primary reason for studying causal 

relationships is to understand if there is a direct cause-and-effect relationship between login 

variables and student performance. This understanding will support the development of 

intervention techniques that enhance learning and support student academic achievements. 

6.2 Data & Features 

In line with our previous studies, we capture student interaction data from the 

blackboard LMS system during the Fall 2019 Semester. These are on-campus students who 

enrolled in undergraduate level Computer Science and Information Systems majors. The 

student demographic data is accessed from the Student Information Systems (SIS) and used 

to classify students based on demographics. We adopt similar features from our previous 

study [210], focusing on student demographics and normalized login variables. In addition 

to this, to study the student chronotypes, we extract hourly student login volume data till 

the middle of the semester. These hourly login volumes per student are then used to 

calculate the hourly percentage of logins at the student level. This calculation of 
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percentages is to normalize login volume that varies between different students based on 

the course they were enrolled in and the varying content on the blackboard for each course. 

The detailed features adopted in this study are given in Table 6.1 below. 

Table 6.1: Features adopted to study chronotypes and causal relationships. 

 

Feature Description 

Demographics 

Age, Gender, Student Year, Type of 

Admit, Full time/Part time, Student 

Ethnicity 

Enrolled Courses 
The total number of courses enrolled by 

student in Fall 2019 

Student Start GPA 
The cumulative GPA of student till the 

start of Fall 2019 Semester 

Normalized Login Volume 

Statistics related to login z scores of 

students per each enrolled course: Mean, 

Median, Standard Deviation, Minimum 

Score, Maximum Score, Skewness, and 

Kurtosis 

Student Regularity in Logins 

Statistics from KL Entropy of student 

login intervals per each enrolled course: 

Mean, Median, Standard Deviation, 

Minimum Score, Maximum Score, 

Skewness, and Kurtosis 

Weekday & Weekend volumes Login counts on weekdays and weekends 

Hourly Login Volume Percentage 

Count cumulative login volumes per hour 

and normalize them by calculating the 

percentage of logins per hour. 
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Hourly Time spent 

Count the aggregate time spent per 60 

minutes every hour till the middle of the 

semester and then calculate the 

percentages by normalizing across 24-

hour bands in a day. 

 

6.3 Methodology 

The methodology section of this study is divided into two subsections. In the first 

subsection, the focus is on studying the chronotypes of students present in the dataset and 

the impact of these chronotypes on student academic performance. This chronotype 

analysis pipeline is detailed in Figure 6.1. The second subsection focuses on methodology 

to study the causal relationships between student login behaviors, chronotypes, and 

academic performance outcomes. 

6.3.1 Chronotype Analysis 

This work adopts a clustering-based method to study chronotypes in students. In 

order to achieve this, we extract the count of student's logins into blackboard systems every 

hour in a 24 hour day. These hourly counts were then aggregated till the middle of the 

semester for each student, and then a percentage of logins for every hour based on total 

logins per student are calculated. To understand the chronotype patterns encoded in student 

interactions, we utilize the hourly student login volume data to develop cluster models that 

segregate students based on their varying login patterns. In this work, we adopt the X-

means clustering algorithm developed by Pelleg and Moore [211]. 

X-means algorithm utilizes heuristics to determine the appropriate number of 

centroids needed to cluster the data. The algorithm requires the minimum and the 



107 
 

maximum number of centroid values. This algorithm starts clustering with the minimum 

number of centroids and then iteratively exploits if using more centroids makes sense 

according to the data. Whether a cluster needs to be divided into two sub-clusters is 

determined by the Bayesian Information Criterion, The algorithm also balances the tradeoff 

between model complexity and precision.  

Using X-means over k-means is based on its ability to scale for computationally 

intensive tasks and accommodate a range of centroid values rather than a fixed, 

predetermined value needed by k-means. This algorithm is also helpful in avoiding local 

minima. Another critical input required by the X-means algorithm is related to the choice 

of distance calculation algorithm. In this work, we adopt Dynamic Time Warping (DTW) 

for distance calculation.  

This study adopted DTW for distance calculation in the X-means algorithm based 

on its ability to analyze the time component in hourly student login volume data. 

Traditional Euclidean distance takes pair of data points and compares them with each other, 

whereas DTW calculates the distance between all data points to enable a one-to-many 

match [212][213]. Euclidean distance also assumes that the time series are of equal length 

and calculated distance between corresponding points. This method of corresponding 

distances doesn’t consider shapeshifts in time series data. On the other hand, DTW 

accommodates shapeshifts by calculating a matrix of distances between different points in 

time across signals. This is shown in Figure 6.2. From this figure, we can observe that 

Euclidean connects point to point, but DTW calculates point to point and also points where 

there is a shift in signal shape. This assumption introduces errors if the data points have 

shifted between each other. Based on the strengths of DTW over Euclidean distance, we 
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cluster the hourly student login volume percentage using X-mean with DTW as its distance 

calculation algorithm. 

 

 

Figure 6.1: Analysis pipeline to study student chronotypes and their impact on student 
academic performance 

 

 

Figure 6.2: Euclidean distance calculation Vs DTW distance calculation 
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6.3.2 The Impact of Chronotypes and Login Behaviors on Academic Achievement 

Our previous study [210] developed predictive models to study the impact of login 

variables on student academic performances. In line with our previous work, we adopt 

predictive modeling techniques to study the effects of chronotypes on student performances. 

To do this, we use the cluster outcomes of student chronotypes and add them as input 

features detailed in Table 6.1 to predict end-of-term GPA. The selected models include 

Decision Tree (DT), Generalized Linear Model (GLM), Random Forest (RF), Support 

Vector Regressor (SVR), and Gradient Boosted Regressor (GBR). We use the same 

hyperparameter settings from our previous work as listed in Table 6.2. The modeling 

pipeline, in this case as well utilized the multi-objective evolutionary algorithm to select 

appropriate features. 

Table 6.2: Hyperparameter search space to study the impact of student chronotypes on 
performance prediction 

 

Model Hyperparameters 

GLM 
Regularization set with an alpha value 

between 0 (Ridge) and 1 (Lasso) 

DT 
Maximal depth between 1 and 100 in 

increments of 10. Pruning is set 

SVR 

Dot and Kernel function with a C 

(Complexity) value between 10 and 200. 

Kernel gamma for radial between 0.005 

and 5 

RF 
Number of Trees between 10 and 1000 (10 

linear steps) 

GBR 
The number of trees between 1 and 1000 

(5 quadratic increments). Learning rate 
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between 0.001 and 0.01 (5 logarithmic 

increments). Maximal depth between 3 and 

15 (3 logarithmic increments). 

 

6.3.3 Causal Relationship between Student Login Behaviors, Chronotypes, and 

Academic Performance 

One of the primary objectives of this study is to understand any causal relationships 

between student login behaviors and their performance outcomes. This understanding will 

support the development of efficient and effective intervention techniques that positively 

impact student academic performance. To do this, we adopt the processing pipeline shown 

in the below Figure 6.3. 

The process shown in Figure 6.3 takes three inputs: student login variables, 

demographics, and chronotype clusters. In login variables, we specifically focus on 

normalized student login volume, regularity of student logins, and weekday/weekend 

logins described in Table 6.1. As these features are a group of independent statistics (mean, 

median, standard deviation, minimum, maximum, skewness, and kurtosis) grouped into 

sets based on their relevance, we input them to Sparse Multiple Canonical Correlation 

Analysis (CCA) algorithm. This algorithm will help learn sparse representation for each 

feature group by maximizing the correlation among these feature sets with multiple 

features [214]. This CCA approach results in a composite variable for each feature group. 

These are represented by a linear combination of small feature sets and are used as inputs 

for causal structural discovery and inference.  
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Student demographics are used in two ways. In the first method, we feed these 

demographics directly to the causal discovery model to study their relationships with 

student performances. In the second method, we use this demographic information to 

separate students based on their demographics and explore their causal relationships. 

Finally, we use chronotype clusters to study the causal relationship between chronotypes 

and student performance. 

 

Figure 6.3: Analysis pipeline to study causal relationships between student learning 
behaviors, chronotypes and performance 

 

6.3.4 Sparse Multiple Canonical Correlation Analysis & TETRAD 

This work's causal discovery and inference are performed using a software suite 

named TETRAD [124]. TETRAD was developed 20 years ago as a drag and drop suite of 

procedures to explore causal relationships in the input dataset. This suite can take 

continuous, categorical, mixed, covariance, and correlations as input for causal discovery. 

This suite consists of multiple proven algorithms that are selected based on the type of data 

that is inputted for causal discovery. This work adopts two algorithms: Greedy Fast Causal 

Inference (GFCI) and PC algorithm [215][216]. These algorithms were selected based on 
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their ability to accept prior knowledge that is useful to control the directionality of causal 

relations. 

The GFCI algorithm only works with continuous variables and can output Partial 

Ancestral Graphs (PAG).  These PAG's are causal networks that include hidden confounder 

variables. The working of this algorithm is based on the combination of two algorithms 

named FGES and FCI [217]. The FGES algorithm takes input sample data and background 

knowledge to score using a greedy search mechanism and applies it to a larger sample, and 

selects the Causal Bayesian Network (CBN) with a higher score. On the other hand, FCI is 

a constraint-based algorithm with similar functionality to FGES. In addition to this, it 

entails the set of conditional independence relations that will be satisfied at population-

level data. FCI algorithm has two phases names as adjacency phase and orientation phase. 

The adjacency phase starts with an undirected graph and performs a sequence of 

conditional independence tests to filter edges between two adjacent variables that are 

independent. As the output of the adjacency phase is an undirected graph, the directionality 

between adjacent sets is provided by the orientation phase. In the orientation phase, the 

stored conditional settings used to remove the adjacencies to reduce edges are used to 

determine directionality. GFCI algorithm uses FGES to improve both adjacency and 

orientation phased of FCI by providing a more accurate initial graph for causal network 

development. The GFCI algorithm in this work is only used to study the causal relationship 

between login variables and student performance, as this algorithm doesn't accept 

demographic variables due to their categorical nature. 

GFCI is a robust causal inference algorithm for continuous datasets. However, it is 

unable to handle categorical variables like student demographics. We adopt a PC algorithm 
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to explore causal relationships with both categorical and continuous variables to mitigate 

this issue. PC algorithms utilized a pattern search method that assumes the underlying 

structures in data are acyclic. This algorithm also assumes that no two variables have the 

same latent variable. The only drawback of the PC search algorithm is its inability to show 

confounding relations in its data. The earlier GFCI algorithm mitigates this issue. This is 

also one of the primary reasons to adopt two algorithms in this study instead of one for 

causal structure discovery and inference. Once the selection of causal algorithms is made, 

we move to structure input data that the TETRAD can access. 

The login variables explored in this study can be grouped into multiple sets of 

features with meaningful roles, as shown in Table 6.1. However, it is not feasible to input 

a group of variables to represent a single role in TETRAD. This work generates a composite 

variable from the group of features for every feature subsets using Sparse Multiple 

Canonical Correlation Analysis (mCCA) [214] to mitigate this issue. The traditional CCA 

method takes two matrices as inputs to generate a linear combination of variables in each 

feature set with a high correlation between the two feature sets. This is similar to the way 

Principal Component Analysis (PCA) works, but on multiple datasets at a time. In addition 

to this, CCA also maximizes the correlation between datasets while generating composite 

variables. Sparse CCA is an extension to traditional CCA, where sparsity constraints are 

imposed. This makes it more compact and yields a more interpretable representation of the 

data. This study adopts the mCCA function from the PMA package in R. The standardized 

student login variables were inputted to the mCCA algorithm. A grid search is performed 

to select the model with the best total correlation and compactness. This model is used to 

outputs weights for each feature and then generate composite variables for each feature set. 
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These composite variables are finally inputted to GFCI or PC variant algorithm to perform 

causal structural discovery and inference. 

6.4 Results 

The results section is separated into two subsections to address the two research 

questions discussed in this study. The first subsection reports the clustering results related 

to student chronotype analysis. The second subsection reports the results obtained by 

analyzing causal relationships between student login variables, chronotypes, and 

performance outcomes. 

6.4.1 How do different student learning times (chronotypes) impact their academic 
performance? 

We cluster the student hourly login percentages using X-means with DTW distance 

calculation to study different chronotypes. The results of the clustering algorithm are 

shown in Figure 6.4. For this Figure 6.4, we can observe that the X-means algorithm found 

three clusters to be optimal for the input data. The x-axis in Figure 6.4 shows the hours in 

a day based on the 24-hour clock. It starts with H1 representing 12 AM to 1 AM and ends 

with H24 describing 11 PM to 12 AM with 1-hour incremental time bands. The y-axis in 

Figure 6.4 represents cluster centroids for each corresponding time band and cluster. 
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Figure 6.4: Clustering outcome of normalized hourly login volume data to study student 
chronotypes 

 

From cluster 0, we can observe that students' login percentages slowly start to 

increase from the morning at 8 AM (H9) and reaches a peak between 12 AM and 1 AM 

(H1). We can classify these students as most active in the evening with peak activity at 

night. There are a total of 239 students clustered into this group. Cluster 1 in Figure 6.4 

starts to see an activity increase from 8 AM and reaches a peak activity at 2 PM and 4 PM 

and suddenly drops till 7 PM in the evening and gradually stabilizes there till 11 PM and 

then dips during the nighttime. There is a total of 560 students in cluster 1 that are assigned 

to this pattern. In final cluster 2, consisting of 889 students, the pattern is similar to cluster 

1, but it doesn't stabilize at 7 PM. The dip in activity of these students continues with very 

few of them active at night. Based on the patterns found in these three clusters, we can 

classify cluster 0 as "Afternoon to Night," cluster 1 as "Afternoon to Evening," and cluster 
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2 as "Active Afternoon." Even though these three clusters have some similarities in the 

afternoon login patterns, where most are active, we can also see a peak in the evening 

between 7 PM and 8 PM. This specific time slot is interesting as the variations in cluster 

patterns started in the evening except for this particular time band. To understand any 

relationship between student demographics and chronotype clusters, we adopt the chi-

square significant test and record the p-values that are listed in Table 6.3. From Table 6.3, 

we can observe a meaningful relationship between student ethnicity and chronotypes. 

Another significant relation is found between student enrollment type (full-time or part-

time) and their chronotypes. This can be related to the varying course loads and a difference 

in the nonacademic workload of part-time students compared to full-time students. Finally, 

as a student progresses through their undergraduate years, we can see a shift in chronotypes. 

Now that we understand different student chronotypes based on their login 

behaviors, the next step is to understand the importance of these chronotypes on student 

performance outcomes. To do this, we adopt a predictive modeling approach. In this 

approach, we use the student chronotype clusters as an input variable in addition to student 

login variables listed in Table 6.1. The improvements in prediction performance are 

decided by comparing the outcomes in this study with our earlier analysis [210] that is 

performed on the same students without chronotype variables. As mentioned in the 

methodology section, we adopt five machine learning models and perform cross-validation 

to evaluate these models based on R square and Root Mean Square Error (RMSE) values. 

Table 6.4 below shows the performance of predictive models with student chronotypes and 

login variables to predict the end of term GPA. The hyperparameters listed in Table 6.2 for 

these models are similar to our earlier study. From the results in Table 6.4, we can observe 
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that the addition of the student chronotypes variable didn't have an impact on model 

performances. 

Table 6.3: Student Demographics and their corresponding p-values based on chi-square 
test with Chronotype Clusters 

 

Demographic P-value 

Gender 0.0571 

Ethnicity 0.0001 

Full Time or Part Time 0.007 

Regular or Transfer 0.384 

Student Year 0.018 

GPA Bands 0.855 

 

Table 6.4: Performance evaluation of predictive models based on R squared and RMSE 
values 

 

Model R Squared RMSE 

LR 0.259 0.733 

DT 0.242 0.743 

SVM 0.196 0.773 

RF 0.363 0.683 

GBT 0.360 0.680 

Best Model [49] 0.362 0.622 

 

6.4.2 Is there a causal relationship between student login behaviors, chronotypes, and 

their academic performance? 

The second part of this study explores the causal relationships between student 

login variables, chronotypes, and performance outcomes. In this analysis, we first focus on 
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identifying the relationship between all variables in this study. To do this, we apply a PC 

Variant algorithm in TETRAD that can handle both categorical and continuous variables. 

The composite variable input for the PC algorithm is calculated based on mCCA. In 

addition to the input mCCA composite features, we also input the knowledge component 

to control the directionality of cause and effect. In this case, we add Demographic variables 

as a cause as they cannot be varied. The login variables are both cause and effect. These 

variables act as a cause for end-of-term GPA but can be affected by student demographics. 

The feature weights related to mCCA are listed in Table D. 1. The causal relationships 

between variables are shown in Figure 6.5. From Figure 6.5, we can observe that the 

student academic performance has a direct cause and effect relationship with Normalized 

login volume and student prior performance. Our chronotype analysis showed a significant 

relationship between student chronotypes, student enrollment type (part-time or full-time), 

and student year. Other demographics like gender and type of admit stand independent 

from login variables or performance. This observation is also shown in the causal analysis, 

where we can see that their enrollment type and student year influence chronotypes. In 

addition to this, student regularity of logins affects chronotype clusters. Even though there 

are other causal relationships between different student variables, they are not directly 

impacting the performance. All the relationships displayed in Figure 6.5 are significant as 

we set a p-value cutoff at 0.05. 

One of the significant drawbacks of the PC variant algorithm is the lack of 

confounder identification. To identify if the causal relations are more robust or if there is a 

presence of any confounder, we employ the GFCI algorithm in TETRAD. Additionally, 

we also explore the causal relationships by dividing student data into subsets based on their 
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different demographic features. The interpretation of causal connectors related to GFCI is 

given in Table 6.5 below. 

 

 

Figure 6.5: Causal relationship exploration between student demographics, login 
behaviors and chronotypes using PC Variant Algorithm. 
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Table 6.5: Graph connector type descriptions 

Connector Type Description 
A             B A is a cause of B.  

It may be direct or indirect cause 
A             B Either A is a cause of B or there is an 

unmeasured confounder of A and B 
A             B  There is definitely an unmeasured 

confounder of A and B 
A             B There is a direct relationship between A 

and B (no confounders) 
A                B This can be any of the above cases or a 

combination of them. A relation exists but 
not clear on directionality of directness. 

 

 

Figure 6.6: Causal relationship between Student login variables and their academic 
performance using GFCI algorithm 

 
Figure 6.6 shows the output of the GFCI algorithm related to continuous student 

login variables. We can prove a direct relationship between student normalized login 

volume and their academic performance from this Figure 6.6. The relationship between 
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student prior performance (Cumulative GPA till the start of the semester) and the current 

end of term GPA observed in PC variant analysis shown in Figure 6.5 also exists in GFCI 

output. The relationship between student prior performance (Cumulative GPA till the start 

of the semester) and the current end of term GPA observed in PC variant analysis shown 

in Figure 6.5 also exists in GFCI output. But it is not clear if this is a direct relationship if 

there might be an unmeasured confounder between these two. Consistent relations 

identified by PC Variant and GFCI methods are found between student login regularity & 

student login volume, student hourly login volume & regularity, and Weekend/WeekDay 

login volumes & login volumes as well as regularity. Even though multiple other 

relationships are common in both PC Variant analysis and GFCI for different variables, we 

can see no direct relationships that impact student performance except login volume and 

prior performance. 

Figure 6.6 doesn’t fully specify causal relationships as there are some relationships 

with confounding factors. In addition to this, the GFCI causal graph in Figure 6.6 only 

shows the directionality of relationships but no quantifiable outcomes. The causal graph 

shown in Figure 6.6 is used to generate a Directed Acyclic Graph (DAG) based on domain 

knowledge. This DAG is used as an input to estimate linear Gaussian Structural Equation 

Models (SEM). We then calculate the model's goodness of fit and coefficients to study if 

the causal relationship between the features is as expected based on domain knowledge. 

For example, for the pair of variables prior performance and End of Term GPA, we believe 

that there is a direct relationship between these two as prior performance can only be a 

cause but not an effect. For other variables with confounding measures, we can expect any 

directionality of cause and effect relationship as they all are relevant and drawn from the 
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similar statistic. This is the reason we assign a double-headed arrow to other relationships 

with confounding factors. 

 

Figure 6.7: DAG derived from GFCI causal graph. Numerical values on directed arrows 
represent coefficients, and the values bidirectional arrows represent covariance reported 

by SEM. 
 

Figure 6.7 represents DAG derived from the causal graph in Figure 6.6. The values 

indicated on arrows represent coefficients if it is a unidirectional arrow and covariance if 

it is a bidirectional arrow. From this DAG, we can observe that Login volume causes End 

of term GPA and if the login volume increases, student GPA increases as the coefficient 

value (0.19) is positive. A similar relationship can be observed between student prior 

performance and current term end GPA. The model’s goodness of fit reveals a significant 

relationship between all the edges as all of their p values are close to 0 and less than 0.05. 
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From Figure 6.7, we can confirm that the causal relationships observed in the GFCI 

algorithm are sensible. 

 

(a) 

 

(b) 

 

(c) 
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(d) 

Figure 6.8: (a) Causal relationships based on gender-specific dataset (b) Causal 
relationships based on student ethnicity (c) Causal relationships based on student 

enrollment type (Full-time/Part-time) (d) Causal relationships based on student GPA 
 

In the next step, we divide the data into subsets based on gender, race, and GPA to 

study causal relationships based on these demographics. We also reduce the number of 

variables based on the knowledge gained from overall causal relationships in PC Variant 

and GFCI approaches. The gender based feature weights related to mCCA are mentioned 

in tables Table D. 2 and Table D. 3. We also reduce the number of variables based on the 

knowledge gained from overall causal relationships. From Figure 6.8 (a), we can observe 

that there is no direct relationship between login variables and performance for different 

gender and race classifications. One difference between Male and Female gender is the 

impact of student prior performance on student login regularity.  

There is a relationship between student regularity and their performance for Males, 

but for females, this does not exist. From Figure 6.8 (b), we do not see any significant 

difference in relationships between students from Majority races and students from 

Minority races. The mCCA feature weights related to ethnicity based datasets are shown 

in Table D. 4 and Table D. 5.  One interesting observation is the causal relationship between 
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login volume and performance for minority race students, which we observed in our earlier 

work [210] with predictive analytics as well. The relationship between prior performance 

and regularity exists in full-time students but not part-time students, as shown in Figure 6.8 

(c). The corresponding mCCA weights for Full time and Part time students are shown in 

Table D. 6 and Table D. 7.  There is a significant and direct relationship between login 

variables and student performance for students with varying bands of GPA (< 2 Low GPA 

& >3 High GPA), as shown in Figure 6.8 (d). The mCCA weights based on GPA are shown 

in Table D. 8 and Table D. 9. Even though there are no clear relationships without 

confounders based on gender and race, it is still valuable to learn that a relationship exists 

between student logins and their performance. 

6.5 Discussion 

With the increasing adoption of LMS systems in colleges and universities, there is 

growing interest in understanding student learning behaviors based on their interaction with 

these systems. Studies in Learning Analytics and Educational Data Mining focused on 

developing models that predict student performance based on their interaction data 

captured by these systems. The primary objective of most of these models is to predict 

student performance in the early stages of their academic career and develop intervention 

techniques that positively impact their academic performance. It is essential to study the 

relationship between student interaction variables and their performances to design these 

interventions efficiently. One of the most common methods is to explore relationships 

based on statistical significance tests. However, these tests don't specify the cause-and-

effect relationship between student variables.  
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Causal inference and discovery methods were developed to mitigate this issue. We 

employ causal modeling methods to study the relationships between student login variables 

captured by LMS data and their academic performance as a step in this direction. In 

addition to this, we also study the impact of chronotypes explored in the biological field 

that related to human productivity. In addition to this, we also study the effect of 

chronotypes explored in the biological domain associated with human productivity on 

student academic performance. 

Earlier studies showed that student self-regulation features encoded in LMS log data 

could be explored to develop effective interventions. From the analysis in this study, we 

observed that student login volume directly impacts student academic performance. The 

causal relationships revealed that student volume is also influenced by student self-

regulation variables like student regularity in logins. This is an important find as this shows 

that triggering an intervention that increases student logins or their login regularity might 

improve their overall academic performance. The demographics-based study also showed 

the impact of logins is significant on students from different backgrounds. The 

relationships between self-regulation variables and performance are stronger in students at 

different GPA levels. These findings confirm that studies at the student level reveal 

valuable insights that are transferable for different demographics and can act as strong 

inputs for effective intervention development. 

6.5.1 Key Contributions 

One of the primary contributions of this study is the identification of student 

chronotypes based on their interaction variables. Earlier studies discussed the chronotype 

patterns in individuals and their impact on productivity [100][117][118]. These studies 
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showed that individuals at younger ages are highly active in the morning, but this shifts to 

evening as they reach adolescence. The clustering methodology employed in this study 

showed a similar pattern where students in an undergraduate university showed high 

activity during the afternoon to evening hours. Prior studies also showed that these 

chronotypes have statistically significant relationships with academic achievement. 

However, these studies are primarily performed on a single domain or course [218]. Our 

analysis explicitly targets students as a single entity and aggregates their activity across all 

enrolled courses.  

The statistical findings in our work showed significant relationships between 

student demographics and chronotypes but not between chronotypes and their performance. 

In addition to this, we also performed a predictive modeling methodology to study if these 

chronotypes contribute to student performance prediction. The findings from this analysis 

revealed that student performance prediction stayed similar with and without the 

chronotype variables. These observations align with some earlier studies [117][218] that 

contradicted the finds of relationships between chronotypes and performance. Overall, 

research on the relationship between student performance and chronotypes needs more 

investigation as the findings between different studies are inconsistent. 

In addition to studying student chronotypes, we also analyzed the causal 

relationships between student login variables, chronotypes, and performances. The 

findings from this analysis showed that student login volume and prior performance have 

a direct cause-and-effect relationship with academic performance. This finding validated 

our earlier work [49] that showed student login variables played a significant role in 

predicting the end of term GPA. Further analysis of causal relationships based on 
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demographics revealed that login variables related to low-performance students also 

showed a conclusive effect on student performance. This finding also validates our earlier 

work related to student-centric models that emphasized the contribution of logins on low 

GPA student performance prediction. Even though our earlier study showed a significant 

impact of logins on GPA prediction based on ethnicity, the causal analysis didn't reveal 

any conclusive results. The findings showed that there is a cause-and-effect relationship, 

but it might be due to confounding factors. 

There are also some significant limitations in this study. The data captured by LMS 

is only a snapshot of activity in students’ day-to-day lives. Student performance factors can 

be influenced by many other external factors like study environment, family background, 

and student perception towards a course. The login-based chronotypes discussed in this 

study are only a part of time management. Students' time management can be observed 

from multiple other factors like assignment submissions, time spent on course contents, 

and exploring time lag between lecture delivery and student reading content access. 

Another limitation is related to the dataset. This aggregate-level dataset only captures the 

student login information but not content-level information. Content level information is 

much more fine-grained and provides much more insights into what a student might be 

working on when they are logging into the system. One significant challenge with content-

level information is their diversity based on course and instructor style. This will make it 

hard to extract student-level aggregated features. 

To conclude, the causal analysis in this study strengthened our earlier findings that 

showed significant relationships between student login variables and their performance. 

The conclusions of this study are valuable to Educational Data Mining and Learning 
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Analytics domains as they support the design and development of interventions techniques 

based on LMS variables to improve student performance. As the data in this study is 

collected till the middle of the semester, the development and deployment of interventions 

at this stage provides valuable time to students for improvement and contribute to their 

academic achievement. 
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7 Chapter 7: Conclusion & Future Work 
 

This research explored student learning behaviors based on academic emotions and 

self-regulation characteristics like regularity and chronotypes. The findings from this work 

are detailed below. 

1. Academic Emotions: Tracking student academic emotions help researchers to 

develop methods that support emotional interventions that benefit student learning. 

As part of this work, we proposed a novel method to track student academic 

emotions based on changes rather than specific states. These computational models 

developed as part of this study to predict academic emotions from LMS systems 

proved efficient compared to earlier works. 

2. Academic Emotions & Student Outcomes: One of the critical aspects of this 

research is to study if the developed models support student outcomes. We adopted 

computational models and developed a voting machine system to predict student 

career choices to explore this. The experimental results of the proposed models 

showed higher performance compared to earlier research published in this domain. 

In addition to this, we also explore the relationship between student interaction data 

captured by intelligent tutoring systems and emotions with student outcomes. We 

developed a novel explanation method based on concepts in explainable AI. This 

method showed that positive academic emotions like concentration supported 

academic outcomes and academic emotions like boredom and frustration 

negatively impacted student outcomes. 

3. Student-Centered Modeling: The second part of this work focused on modeling 

students based on their interactions with LMS. As part of this work, we developed 
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models that utilize aggregate level student LMS login data to predict their overall 

academic performance. This is a novel approach compared to existing research that 

focused on course-level interaction data, supporting more efficient intervention 

designs. Moreover, we observed a strong relationship between student activity of 

the LMS system with their academic performance. The demographic-based studies 

revealed a strong correlation between student login volume and their outcome for 

students with low GPA and students from minority races respectively. The insights 

provided by this work prompt new questions to investigate the reasons behind the 

impact of login volumes on a student with a lower GPA and students from a 

minority race as the login data from LMS is a snapshot of student activity and can 

be influenced by many other external factors like economic conditions, system 

design, and technology availability. In addition to this, the findings from this work 

also support promoting LMS usage by instructors as it helps predict student 

performance early in the semester. 

4. Chronotypes and Causality: Student self-regulation strategies have a significant 

impact on their learning outcomes. As part of this work, we explored a segment of 

self-regulation that focuses on time characteristics referred to as chronotypes. 

Student hourly login data is captured from the LMS system to develop clustering 

models that show some common time patterns among students. The outcomes 

demonstrated that most of the students are highly active during the evening. This 

finding is in line with earlier studies in chronobiology that reported human 

chronotypes to shift from morningness to eveningness by the age of 20. Even 

though earlier course-specific studies showed some relation between student 
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chronotypes and academic performance, our predictive analytics study finds no 

impact of student chronotypes on performance. In addition to this chronotype study, 

we also explored the causal relationships between student LMS login behaviors and 

their academic performance as understanding this will improve intervention 

designs. We observed a strong causal relationship between student login volume 

and academic performance from our experiments. We also observed a direct 

relationship between student's prior performance and their current performance. 

The causal relationships observed in this study support the development of 

intervention methods that helps modulate student logins to improve their 

performance. These intervention methods can be developed at a system level to be 

effective irrespective of the student cohort. One such example is currently 

implemented at UMBC. The blackboard at UMBC displays the number of logins 

and compares them with the average logins in that class. However, it is still 

important to educate students on the importance of the login indicators that 

contribute to their academic performance. Additional qualitative work is also 

needed to study what factors influence students to log in frequently or less so that 

the development of interventions can be much more efficient. 

Even though the findings from this research are important and valuable to learning 

analytics and the education domain, there is much room for improvement that can be 

explored in future studies. Some directions for future work in this area are detailed below. 

1. Emotion-specific interventions: The primary purpose of most predictive models is 

to develop intervention techniques that improve current results. Even though our 

study and prior studies in academic emotions showed the solid predictive power of 
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computational models in affect detection, it is still unclear how these predictions 

can be used to design efficient interventions. One important direction is to study 

how the student interaction with LMS systems can explain these academic emotions. 

This understanding will help develop targeted interventions to modulate or amplify 

specific emotions that support academic outcomes or learning behavior. In addition 

to this, it is also important to integrate more concepts from psychology with 

educational data mining to develop sustainable and explainable models. 

2. Content Level Analysis: One of the essential aspects of student-centric modeling is 

to generate aggregate-level student interaction features across all courses. Our 

research is the first step to aggregate student login-related features across all 

courses a student enrolled. However, our work didn't utilize any content-level 

features. Content level features give a deeper understanding of student behaviors 

based on the material they access and spend time on. One challenge is to aggregate 

content level features as they vary from one course to another based on instructor 

style and course type. More research in this direction is needed to define aggregate 

content level features to improve student-centric models' prediction performance 

and generate more insights at an individual level. 

3. Ubiquitous Learning System: Most research in learning analytics and educational 

data mining focuses on understanding student learning behaviors to support their 

development and help them on the way to become lifelong learners. It is essential 

to focus on developing ubiquitous learning systems that consider different factors 

related to student learning like emotions, behaviors, learning patterns, and skills to 

deliver content efficiently and effectively. These systems should have the 
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capabilities to predict factors that influence student learning in real-time and 

provide personalized interventions to reach their academic goals.  
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Appendix C 
 

Table C. 1: Attributes with high impact on predictions 

Attribute Correlation 
(%) 

ID-
ness 
(%) 

Stability 
(%) 

Category  

NumActions 0.39 0.15 0.84 H 
timeTaken 0.03 NA 3.62 H 

correct 0.18 0 59.59 H 
original 0.15 0 71.26 H 

hint 0.26 0 70.05 H 
hintCount 0.29 0.01 55.54 H 
hintTotal 0.31 0.01 49.13 H 

attemptCount 0.11 0.02 48.73 H 
frPast5HelpRequest 0.15 0 31.17 H 
frPast8HelpRequest 0.13 0 29.82 H 

past8BottomOut 0.07 0 86.56 H 
totalFrPastWrongCount 0.01 0.02 33.11 H 

timeSinceSkill 0.03 4.36 71.02 H 
totalFrAttempted 0.01 0.36 0.46 H 

totalFrSkillOpportunities 0.03 0.06 13.39 H 
endsWithScaffolding 0.08 0 61.64 H 

frTotalSkillOpportunitiesScaffolding 0.09 0.03 34.45 H 
frIsHelpRequestScaffolding 0.14 0 64.65 H 

sumRight 0.04 0.27 0.56 H 
timeGreater10SecAndNextActionRight 0.34 0 75.53 H 

sumTimePerSkill 0.02 NA 0.21 H 
totalTimeByPercentCorrectForskill 0.14 NA 14.1 H 

manywrong 0.54 0 66.33 H 
RES_GAMING 0.19 NA 15.48 H 

Ln-1 0.57 NA 0.52 H 
Ln 0.67 NA 0.5 H 
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Table C. 2: Attributes with Medium impact on predictions 

Attribute Correlation 
(%) 

ID-
ness 
(%) 

Stability 
(%) 

Category  

skill_ID 0 0.03 8.3 M 
scaffold 0 0 60.74 M 

frIsHelpRequest 0 0 72.54 M 
totalFrPercentPastWrong 0 NA 37.78 M 

frPast5WrongCount 0 0 47.3 M 
frPast8WrongCount 0 0 41.74 M 
totalFrTimeOnSkill 0 1.29 14 M 

totalFrSkillOpportunitiesByScaffolding 0.01 NA 44.48 M 
sumTimePerSkill 0 NA 44.48 M 

RES_BORED 0 NA 67.59 M 
RES_CONFUSED 0 NA 80.44 M 

RES_FRUSTRATED 0 NA 59.46 M 
RES_OFFTASK 0.01 NA 58.09 M 

 
Table C. 3: Attributes with Low impact on predictions 

Attribute Correlation 
(%) 

ID-ness 
(%) 

Stability 
(%) 

Category  

bottomHint 0.04 0 94.54 L 
stlHintUsed 0 0 99.65 L 

frWorkingInSchool 0 0 97.2 L 
responseIsFillln 0.02 0 97.9 L 

responseIsChosen ? 0 100 L 
endsWithAutoScaffolding 0.01 0 99.45 L 

frTimeTakenOnScaffolding 0 NA 28.77 L 
timeGreater5Secprev2Wrong 0.01 0 95.55 L 

helpAccessUnder2Sec 0.06 0 95.19 L 
consecutiveErrorsInRow 0 0.02 92.63 L 

Prev5count 0 0 99.09 L 
timeOver80 0.03 0 91.02 L 

RES_CONCENTRATING 0 NA 4.45 L 
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Appendix D 
 

Table D. 1: Composite variables with associated original features and weights estimated 
by mCCA for all students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Max Volume 0.36 

Median Volume 0.93 

Login Regularity (Entropy) 
Mean Entropy -0.36 

Median Entropy -0.93 

Hourly Login Volumes 
H1 to H9 < 0.18 

H10 to H24 0.24 

Hourly Time Spent 

H1 to H8 0.14 to 0.17 

H9 to H21 0.21 to 0.26 

H22 to H24 0.19 

Weekday/Weekend Login Volumes 
WeekDay 0.99 

WeekEnd 0.1 

 

Table D. 2: Composite variables with associated original features and weights estimated 
by mCCA for MALE students 

Composite Variable Feature Name Weights 

Normalized Login Volume 

Min Volume -0.3 
Max Volume -0.52 
Mean Volume -0.54 

Median Volume -0.55 
Standard Deviation Volume -0.2 

Login Regularity (Entropy) 

Min Entropy 0.41 
Max Entropy 0.43 
Mean Entropy 0.57 

Median Entropy 0.57 
Standard Deviation Entropy 0.06 

Skewness Entropy -0.02 
Kurtosis Entropy 0.002 
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Table D. 3: Composite variables with associated original features and weights estimated 
by mCCA for FEMALE students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Mean 0.11 

Median 0.99 

Login Regularity (Entropy) 
Mean -0.99 

Median -0.11 

 

Table D. 4: Composite variables with associated original features and weights estimated 
by mCCA for Majority Race (White & Asian) students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Mean -0.11 

Median -0.99 

Login Regularity (Entropy) 
Mean 0.99 

Median 0.11 

 

Table D. 5: Composite variables with associated original features and weights estimated 
by mCCA for Minority Race students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Mean 0.11 

Median 0.99 

Login Regularity (Entropy) 
Mean -0.11 

Median -0.99 
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Table D. 6: Composite variables with associated original features and weights estimated 
by mCCA for Full-time students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Mean -0.56 

Median -0.59 

 Min -0.13 

 Max -0.53 

 Std -0.07 

Login Regularity (Entropy) 
Mean 0.62 

Median 0.62 

 Min 0.30 

 Max 0.37 

 

Table D. 7: Composite variables with associated original features and weights estimated 
by mCCA for Part-time students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Max -0.99 

Median -0.11 

Login Regularity (Entropy) 
Mean 0.99 

Median 0.11 

 

Table D. 8: Composite variables with associated original features and weights estimated 
by mCCA for Low GPA (<2) students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Mean 0.11 

Median 0.99 

Login Regularity (Entropy) 
Mean -0.11 

Median -0.99 
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Table D. 9: Composite variables with associated original features and weights estimated 
by mCCA for High GPA (>=3) students 

Composite Variable Feature Name Weights 

Normalized Login Volume 
Mean -0.36 

Median -0.93 

Login Regularity (Entropy) 
Mean 0.93 

Median 0.36 
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