
DOI:

https://doi.org/10.1007/s10586-022-03821-x

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://doi.org/10.1007/s10586-022-03821-x
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

Mitigating Voltage Fingerprint Spoofing Attacks on
the Controller Area Network Bus

Wassila Lalouani
Department of Computer and Information Science

Towson University
Towson, Maryland, USA
wlalouani@towson.edu

Yi Dang, and Mohamed Younis
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, Maryland, USA

{dangyi1, younis}@umbc.edu

Abstract— The Controller Area Network (CAN) bus suffers
security vulnerabilities that allow message spoofing and
masquerading Electronic Control Units (ECUs). A popular
provision for mitigating these vulnerabilities is through the use of
machine learning (ML) to derive ECU fingerprints based on the
physical properties of bus signals. Particularly, voltage-based
intrusion detection systems associate the message transmitter with
its voltage fingerprint to detect conflicting logical ECU identifiers
in the presence of cyberattacks. However, the signal
characteristics depend on the operating conditions and hence the
fingerprints need to be adapted overtime by online training of the
underlying ML model. An adversary may exploit such a
shortcoming to superimpose training data based on its own
transmissions and thus bypass the protection mechanism. Such an
attack not only allows device impersonation but also leads to
rejecting transmissions of a legitimate ECU. This paper proposes
an effective approach to thwart these attack scenarios. Our
approach introduces unpredictably-scheduled transmissions
involving one or multiple ECUs to confuse the adversary and
ensure the generation of a legitimate fingerprinting dataset for
online training. We validate the robustness of our approach using
data collected from a real vehicle and show that it outperforms a
prominent competing scheme by over 30% in terms of identifying
malicious ECUs when the attacker could overwrite 50% of the
retraining transmissions.
Keywords—Cyber physical systems, CAN bus, security,
fingerprinting, device authentication, impersonation attack.

I. INTRODUCTION
A cyber-physical system (CPS) reflects the realization of a

control system using a networked set of modules that operate in
a distributed manner. The CAN bus is commonly used for
interconnecting ECUs within a CPS. In particular, the CAN bus
is the de facto standard for the automotive industry, where
ECUs represent embedded automotive systems like engine
control, anti-lock braking, traction control, etc. [1]-[3]. Inter-
ECU communication over the CAN bus allows coordinated
operation that directly impacts on-road safety, maintainability,
and fuel consumption. In fact, with the increased adaptation of
autonomous vehicles, the criticality of the CAN bus becomes
even more prominent given the disengagement of drivers when
making decisions. Not surprisingly, such criticality elevates the
importance of protecting the CAN bus against cyberattacks.

The security analysis of the CAN bus has revealed that it is
vulnerable to ECU impersonation and message spoofing attacks

[4]-[13]. The broadcast nature of the CAN communication
protocol, and the lack of strong authentication and data integrity
mechanism prevent the detection of these serious attacks. An
attacker can masquerade an ECU and transmit malicious data
or control information that may lead a CPS to take inappropriate
decisions causing serious consequences. Although a CAN
frame can be encrypted to ensure authentication and integrity
using message authentication codes (MACs) or digital
signatures, this imposes excessive computational overhead and
is not suited for the resource-constrained embedded CPS
modules. The most prominent defense strategy exploits the
physical characteristics of the ECU signals to define a unique
device fingerprint that serves as a means for identity verification
[14][15]. Machine learning techniques are often used for
devising the fingerprints based on collected measurements
during system operation. Popular fingerprinting methodologies
include clock variation, signal voltage, and message traffic
based features [16]-[21]. The fingerprints are then used by
intrusion detection systems (IDS) to classify legitimate and
malicious transmissions. Voltage-based schemes are deemed to
be the most robust IDS for CAN buses [18]-[20].

Although device fingerprinting enables frame-level ECU
authentication and is lightweight in terms of computational
overhead, it has been shown that the adversary may associate
its own fingerprint with legitimate ECUs [22][23]. While
voltage-based fingerprints can be defined offline before the
system deployment, the signal characteristics are found to vary
based on environmental conditions, e.g., changes in
temperature, and hence the fingerprint needs to be adjusted
through online training of the underlying machine learning
model [24]. The online training period allows the attacker to
interfere with the measurement collection and gradually
transforms the fingerprint to a version that reflects such an
attacker rather than the legitimate ECU. The attacker takes
advantage of the predictability (periodicity) of the ECU
transmissions, which is typical for real-time control systems.
The impersonation attack can be launched to delegitimize the
messages transmitted by a victim ECU or just masquerading
such an ECU to inject faulty data. It has been shown in [18][20],
that existing voltage-based IDS fail to mitigate such
impersonation attacks.

To overcome the aforementioned shortcoming, this paper
promotes a novel approach for Mitigating Attempts to Spoof

voltage-based fingerprints (MAS). The basic idea of MAS is to
expose the attacker by introducing: (i) unpredictably scheduled
transmissions, and (ii) unconventional fingerprints by
triggering simultaneous transmissions of more than one ECU.
The objective is to generate a clean online fingerprinting dataset
based on individual and combined transmissions of multiple
ECUs. By provisioning for transmissions that an attacker
cannot predict their senders, MAS enables the collection of
uncorrupted measurements that can be used for online training.
The combined transmissions are meant to confuse the adversary
about which ECU is supposed to transmit and also allows the
detection of interference attempts based on the increased
voltage level. MAS not only can detect fingerprint poisoning
(hijacking) attacks, but also can flag suspicious message
headers without dropping legitimate data frames. Our main
contributions are summarized as follows:
• We point out a new attack on the CAN bus where a

malicious ECU can interfere with the frame header to
change the voltage fingerprint and cause the rejection of
messages of legitimate nodes.

• We propose MAS, a novel mechanism for detecting and
mitigating malicious attempts to impersonate or blacklist
legitimate CAN nodes by falsifying their voltage
fingerprints.

• We validate the effectiveness of our MAS mechanism using
a dataset collected from ten automotive-grade ECUs.

The reminder of the paper is organized as follows. The next
section discusses the related work. Section III discusses the
system and problem models. Section IV presents our approach.
Section V reports the validation results. Finally, the paper is
concluded in section VI.

II. RELATED WORK
The CAN-Bus has been widely utilized in automotive systems,
domestic appliances, and medical devices. A CAN-Bus
message does not have origin and destination addresses; instead
it reflects a broadcast so that each ECU can send and receive
packets to/from the bus. This communication technique
increases the network elasticity which means that if a new ECU
is to be added to the network, it will be configured easily and
does not require any changes to the network infrastructure and
other nodes. However, the simplicity and agility of a CAN-Bus
also increases the risk of intrusion [25]. To address this
problem, quite a few IDS have been developed to protect the
security of the CAN-Bus network. The underlying principle of
these IDS is to characterize the normal operation involving legit
nodes. By using such a characterization as a fingerprint
malicious behavior could be detected [26]-[32].

Existing IDS techniques for the CAN-Bus vary in terms of
the features that are used for fingerprint generation, and can
generally be classified as (i) Entropy-based IDS (EIDS), (ii)
Clock-based IDS (CIDS), and Voltage-based IDS (VIDS).
EIDS an information theoretic based anomaly detection
approach. An example of EIDS is the work of Müter and Asaj
[16] where the data recorded from the in-vehicle network during
normal operation is used to calculate the Shannon entropy.
Deviations from such a baseline entropy are flagged as potential

intrusions. Hence, EIDS is a system-wide assessment
methodology and does not identify the malicious nodes given
the broadcast nature of the CAN-bus [35]. On the other hand,
CIDS defines fingerprints based on the clock that usually exists
in all digital systems. Specifically, the uniqueness of the clock
skew and clock offset of a given ECU is exploited to identify
the source of a CAN-Bus transmission [17]. Cho and Shin [2],
and Young et al. [26] proposed methods that leverage the
periodic behavior of CAN-Bus messages to fingerprint each
ECU in the network. Messaging rate is used by Koyama et al.
[30] to detect malicious traffic, and by Longari et al. [31] to
thwart attacks that opt to disconnect an ECU from the bus by
interfering with its transmission (and hence enable spoofing
attacks). In [32] anomalies are detected based on deviation from
a pre-specified timing behavior, while Bi et al. [33] consider
both the data and time characteristics of bus frames to classify
abnormal ECU activities. Despite being superior to EIDS in
terms of ability to fingerprint the individual ECUs, CIDS is not
suitable when ECU’s transmission pattern cannot be
characterized.

Like CIDS, VIDS relies on device-level fingerprinting.
Material and design imperfections of an ECU make the voltage
on the bus exhibit some unique features for each transmitter.
VIDS has higher accuracy and is easier to apply than EIDS and
CIDS. Hence, quite a few VIDS-based techniques have been
developed, such as Viden [18], voltageIDS [20], and Scission
[21]. All these techniques extract features of the ECU’s voltage
and then apply machine learning to define a model that serves
as a fingerprint. The extracted features vary. Viden focuses on
the control frames to learn voltage features of target ECU. It
excludes the ACK phase of each data frame. Scission opts to
reduce the sampling rate and the considered features by using
rising edges, falling edges and time between consecutive
dominant voltages (logic zero). Since the voltage profile
changes with the environment and operating conditions (e.g.,
temperature and supply voltage), the machine learning model
must get updated and retrained periodically. VIDS is effective
against a single-actor based denial of service or spoofing attacks
that opt to force the victim into the bus-off mode [34].

Some work has also considered attacks that defeat VIDS.
SIMPLE [22] applies a poisoning attack which could fool VIDS
that uses multi-frame training data by injecting messages
without raising suspicion. The attack targets the retraining data
of a legit ECU, where malicious messages are injected in a
gradually increasing frequency in order to transform the
fingerprint of such a legit ECU to that of the attacker node. Such
an attack is referred to as hill-climbing. SIMPLE also offers a
method to overcome such a stealthy attack by extracting
features from data frames. DUET [23] is another attack model,
which makes the attacker transmit messages with target ECU
simultaneously, so that it can poison the training data of the
fingerprint model. The underlying assumption for SIMPLE and
DUET is that the attacker can predict when a victim node will
transmit. MAS overcomes these poisoning attacks by
introducing unpredictability not only at the level of the
individual transmitters but also on their multiplicity. While
RAID also tries to introduce unpredictability to counter DUET,

it does so by randomly changing the message ID [23]. In
addition to being hard to provision, RAID also changes the bus
access priority and hence risks the timeliness properties of the
CPS. To the best of our knowledge, MAS is the only
countermeasure for training data poisoning of VIDS that not
only detects the attack but also identifies the attacker node.

III. SYSTEM MODEL AND PRELIMINARIES

A. Background
The CAN-Bus is a multi-master event-triggered system, where
a message can be transmitted by a node without the need of a
predefined schedule. There are four frame types, namely, data,
remote, overload, and error [16]. Error and overload frames are
for dealing with errors on the CAN-Bus. A remote frame is used
to request data from a specific ECU. The data frame is the most
commonly used and carries the data from a transmitter to a
receiver. Fig. 1 shows the CAN-Bus data frame structure. A
data frame consists of the following bit fields: (i) start of frame
(SOF), which reflects one dominant bit (logic zero), (i) an
arbitration field which consists of 12 bits, (iii) a control field
which has 6 bits, (iv) a data field that ranges from 0 to 64 bytes,
(v) Cyclic Redundancy Check (CRC) for error detection, (vi)
ACK field (2 bits), and (vii) an end of frame (7 bits). The RTR
bit, within the arbitration field, defines whether this frame is a
data frame or a remote frame. The data field can be in the length
of zero (remote frame) to eight bytes and the control field
specifies the length of the data frame.

The CAN-Bus standard employs a simple arbitration
procedure to prevent any two ECUs from concurrently
transmitting their message frames on the bus. Each message is
assigned an identifier, which is utilized to define its priority.
The lower the identifier value is the higher priority a message
has. Thus, the ECU which has a lower ID will access the bus
while other contending nodes will terminate their transmission
and wait for the bus to be free. The ID comparison is conducted
bit-by-bit. To transmit a message, an ECU first synchronizes
with the SOF field. For the ID field, each ECU sends an ID bit

and then reads it back from the bus. If an ECU, ξi, reads a
dominant bit (zero value) after it transmits a recessive bit (value
of one), it concludes that a higher priority ECU is trying to
access the bus. In such a case, ξi loses the arbitration and stops
transmitting; otherwise, ξi continues to transmit the message.

All nodes on a CAN-bus will send ACK when they receive
a data message, regardless of the intended recipient of the
message. If any node transmits ‘0’ as an ACK, the bus will show
‘0’, and consequently the sender concludes successful delivery
and does not retransmit. Every ECU has two error counters:
Transmit Error Counter (TEC) and Receive Error Counter
(REC). When an error is experienced during transmission, the
sender’s TEC is increased by 8, and the REC of other nodes on
the bus (receivers) are increased by 1. When an error is detected
by a receiver, its REC grows by 8. When the message is
correctly transmitted, both TEC and REC of the sender and
receiver nodes are decremented by 1. A node’s state is defined
by its TEC and REC. There are three states in CAN-Bus: error
active, error passive, and bus off. In the latter, the node cannot
transmit/receive any frames and is disconnected from the bus.

B. System and Adversary Models
We assume a CPS that consists of multiple ECUs
interconnected through a CAN-Bus. To support authentication
of the source of a message transmission on the bus, a voltage-
based IDS is employed. The IDS is in essence network-based
where the bus traffic is monitored at the physical-layer and the
fingerprints of ECUs are validated using machine learning. The
IDS can be applied by a certain ECU or by all ECUs. The latter
scenario is captured in Fig. 2, where each ECU, ξi, maintains a
machine learning model that references the voltage profile of
each other ECU, ξs, when ξs transmits on the bus. Given the
real-time control aspect of a CPS, the system realizes a closed
loop where sensor data is periodically collected, processed and
acted upon within certain time constraints. Hence, the bus
access profile of an ECU is periodic where at the system design
time each ECU is allocated sufficient bandwidth (access time).

SO
F ID

11 bits RT
R

ID
E r0

DLC
4 bits

Data
0 - 64 bits

CRC
15 bits

CR
C

De
l

AC
K

AC
K

D
el EOF

7 bits

Arbitration Control Data CRC ACK

Fig. 1: The structure of a data frame in CAN-Bus, figure redrawn based on [36].

Fig. 2. The assumed CAN-Bus based CPS architecture.

Voltage-based
Fingerprinting

ECU
(m)

….Voltage-based
Fingerprinting

ECU
(4)

Voltage-based
Fingerprinting

ECU
(1)

Voltage-based
Fingerprinting

ECU
(3)

Voltage-based
Fingerprinting

ECU
(2)

CAN Bus

To ensure system stability, the bus capacity usually exceeds the
collective demand of all ECUs. MAS exploits such property in
mitigating cyberattacks, as explained in Section V.

To attack the considered CPS, an adversary opts to
destabilize the system by injecting false data, depriving the
ECUs from getting data, or disrupting the coordination among
the ECUs. To achieve these goals, the adversary strives to
implant malicious ECUs that can be exploited in launching
attacks. For that one of two approaches could be pursued [37].
The first is to install malicious ECUs on the CAN-Bus or
change the firmware of existing ECUs; such a scenario could be
feasible by getting physical access to the system, e.g., when an
electrical vehicle is being serviced at a repair shop. The second
scenario reflects remote access to the CPS, where a legit ECU
is hacked and loaded with a software to implement the desired
attacks [38]. In essence, the adversary will exploit the interface
of a CPS to access ECUs, e.g., through Vehicle-to-Vehicle or
Vehicle-to-Infrastructure communications. The adversary is
assumed to be aware of the voltage fingerprinting based IDS
employed by the CPS.

IV. VOLTAGE FINGERPRINT FALSIFICATION ATTACKS
Variations in the signal voltage are found to be distinct among
the CAN-Bus transceivers and hence can serve as physical-
layer based fingerprints to distinguish among the connected
devices. The features capturing the statistical and physical
characteristics of signals are employed by the IDS to determine
any impersonation or falsification in data packets. Such a
fingerprinting mechanism is deemed to be very robust. Yet, a
recent study by Bhatia et al. [23] has pointed out the
vulnerability of voltage-based IDS to impersonation attacks, as
summarized below. We also point out an additional voltage
fingerprint falsification attack that is geared for blacklisting
legit nodes. MAS tackles both attacks as detailed in Section V.

A. ECU Impersonation Attack
The voltage profile of an ECU usually varies due to electronics
aging and changes in the ambient conditions, e.g., temperature.
Therefore, it is necessary to retrain the machine learning model

to update the ECU fingerprint and avoid false positive and false
negative classifications by the IDS. Such retaining is conducted
while the system is in operation and constitutes a vulnerability.
Basically, poisoned data could be injected by corrupting the
voltage measurements, if an attacker can determine the
retraining time. DUET [23] constitutes a realization of such
poisoning scenario involving a pair of malicious ECUs; through
coordinated actions the malicious ECU pair can get the IDS to
use wrong voltage measurements for updating the fingerprint of
a victim node. The key condition for the attack to succeed is the
ability of the adversary to predict: (i) when a victim ECU
transmits, and (2) when retraining takes place. The former is
facilitated by the periodic nature of real-time tasks where an
ECU transmits at a constant rate. The retraining time can vary
from one CPS to another and hence it is application dependent.
For example, in a vehicle retraining could be conducted after
startup or when the engine temperature reaches a certain level.
The main idea of the attack is to get a malicious ECU to
simultaneously transmit along with the victim, causing the
observed voltage on the bus to deviate from that when only the
victim ECU transmits.

Fig. 3(a) shows the attack steps where one of the malicious
ECU acts as a helper by sending a message with a preceded ID
in order to force the victim to wait. Such a step is meant to allow
the second malicious ECU (threat actor) to synchronize its
transmission with the victim, realizing that jitters could be
experienced and the exact time for a victim transmission could
slightly vary from one period to another. The actor will then
transmit along with the victim and hence the voltage will reflect
two rather than one transmission. By using the voltage of the
combined transmission for training, the fingerprint of the victim
will be transformed to a one that reflects “victim & actor”. The
threat actor needs to be in the passive error state so that its
transmission reflects an error frame which does not interfere
with the victim’s transmission from a bus control point of view,
i.e., will not cause the victim ECU to back off. Such an error
passive state can be initially reached by a simultaneous
transmission by the helper and actor; subsequent return to such
a state would be a byproduct of the actor’s transmission with

(a) (b)

Fig. 3. Illustrating the DUET attack on the voltage-based IDS [23], where (a) shows poisoning the fingerprint of the victim ECU, and (b)
illustrates how the victim is impersonated after its fingerprint is poisoned (hijacked).

Preceded ID

Victim ID

Preceded ID Victim ID

Victim ID

Attack
Helper

Threat
Actor

Victim
ECU

CAN
Bus

Passive
error state

Bit Error

Voltage-based fingerprint
for Victim & Actor

Preceded ID

Victim ID

Preceded ID Victim ID

Victim IDAttack
Helper

Threat
Actor

CAN
Bus

Passive
error state

Bit Error

Voltage-based fingerprint
for Actor & Helper

Victim
ECU

the victim. Fig. 3(b) shows a consensual effect of the fingerprint
poisoning where the malicious ECU pair impersonates the
victim by simultaneously transmitting data frames, relying on
the fact that the IDS cannot differentiate between the
fingerprints of “victim & actor” and “actor & helper”.

B. ECU Isolation Attack
In addition to the possible victim node impersonation discussed
above, here we point out a simpler and serious attack scenario.
The idea is that the malicious ECU pair will apply the steps in
Fig. 3(a) during normal operation and not just during retraining
time. The main goal of the attack is to blacklist the victim node,
where a simultaneous transmission by a malicious ECU causes
the exhibited fingerprint to mismatch what the IDS expects. By
flagging the fingerprint mismatch the IDS will classify the data
frame as suspicious and cause the victim node to be ignored.
Such an attack scenario can be quite damaging to the CPS
application since it hinders coordination between the victim
node and the rest of the system; in fact, the consequences could
be grave depending on the victim node’s role within the CPS.
Imagine targeting the steering control or brake subsystem of a
vehicle with such an attack. We note that deriving fingerprints
from the data part of the frame would not be effective since the
victim is not expected to send the same payload every time;
hence a data field cannot be the base of fingerprints that qualify
acceptance or rejection of a transmission given the failure of
authentication of the message ID.

It is worth noting that the node isolation attack can also be
realized by forcing the victim to a bus-off state [6]. It has been
shown in [13] that such an attack can be launched in a stealthy
manner where the attacker sends a message with the same ID of
the victim, and transmits all dominant bits in the data field. The
victim ECU will detect an error and increment its TEC by 8.
After several attack rounds, the victim ECU will go into a bus-
off state and become isolated.

V. DETAILED MAS DESIGN

To mitigate the aforementioned attacks, MAS strives to provide
a clean training dataset for fingerprinting each ECU. Such a
dataset is generated using aperiodic transmissions based on a
schedule that is mutually agreed upon among the ECUs. The

clean dataset will allow the detection of fingerprint falsification
attacks since it deprives the adversary of the opportunity for
knowing when these transmissions are made. Furthermore,
MAS engages one or multiple ECUs in each of the aperiodic
transmissions. Having multiple ECUs simultaneously
transmitting further enables the detection of fingerprint
poisoning attempts since the impact on the voltage profile by
the adversarial node will become noticeable and cannot stay
stealthy. MAS is explained in the balance of this section.

A. Fingerprint Update Scheduling
The success of the aforementioned fingerprinting falsification
attacks fundamentally depends on the adversary’s ability to
predict when a victim node usually transmits. Generally, a CPS
involves a set of periodic tasks that run at rates that depend on
the specific role that the individual task plays in realizing the
CPS application. Scheduling these tasks and the associated
communication traffic is typically based on static priorities that
are monotonic with the rate that they are invoked at [39]. Fig.
4(a) shows an example, where node ξ1 gets the highest priority
since its period is the smallest. The priority of ξ2 exceeds ξ3,
and both need to transmit less frequently than ξ1. A least
common multiple of all periods is usually determined where the
scheduleability of the system is analyzed for meeting the
latency constraints. In most designs, the capacity of shared
resources, e.g., the communication bus, is not fully utilized to
avoid risk of overstressing the system and also to support low
priority non-critical tasks. For example, in an electrical vehicle
entertainment-related data is given low priority on the CAN-
Bus. MAS leverages these CPS design characteristics in
mitigating fingerprinting falsification attacks.

MAS opts to maintain uncorrupted ECU fingerprints that
can be employed by the IDS. As pointed out earlier, the attacker
targets the training datasets that are used for fingerprint updates.
MAS counters such an attack strategy by scheduling the data
measurements in a manner that cannot be predicted by snooping
on the CAN-Bus. The main idea is to designate certain
transmissions for model training and schedule them in a manner
that cannot be inferred without reverse engineering of the CPS
design, something that we assume to be impractical without
gaining full access to the system which would constitute a

Fig. 4. An illustrative example of how transmissions appear on the CAN-Bus, where: (a) reflects a typical rate monotonic schedule of real-time
communication with the priority being monotonic with the rate, i.e., ξ1 > ξ2> ξ3, (b) shows how MAS can be provisioned as a bandwidth
preserving server for scheduling aperiodic transmissions, and (c) depicts a possible selection of ECUs by MAS for solo and combined
transmissions.

ξ1
(a)ξ1

Least Common Multiple of all Periods

ξ1

Highest rate

ξ2 ξ2 ξ3

ξ1 ξ1ξ1ξ2 ξ2 ξ3MAS MAS MAS

ξ1 ξ1ξ1ξ2 ξ2 ξ3ξ2+ξ3 ξ1 ξ1+ξ2

(b)

(c)

different level of threats that is outside the scope of this paper
or the scope of cyberattacks as a matter of fact. MAS considers
training-related transmissions as aperiodic bus activities and
employs a well-established mechanism for scheduling them.
Specifically, MAS introduces a bandwidth-persevering server
[39] to support training data collection. Such a mechanism
strives to allocate some bus bandwidth for aperiodic, i.e.,
training-related, transmissions without interfering with
periodic, application-critical, tasks. Fig 4(b) shows an example
for when retraining messages could be scheduled by MAS.

A bandwidth server is in essence a periodic task that will run
to support MAS. In each invocation, the server will check a
queue of aperiodic (training) transmissions. In the context of
CAN-Bus the bandwidth server task will have the least priority
so that it does not interfere with the periodic, essential,
transmissions. Each aperiodic training transmission will be
associated with specific one or multiple ECUs, as explained
later. We note that MAS will be running on each ECU so that
all copies reach the same conclusion on when to send and which
node will transmit; yet the designated ECUs for the
transmission will indeed access the bus. There is no need for
explicit synchronization among the individual copies of the
MAS bandwidth server since they all will be monitoring the
CAN-Bus broadcast. MAS is advocating either a constant or
total bandwidth server implementation. The former ensures bus
access time for training transmissions, defined as a percentage
of the bus capacity. Such a percentage obviously will depend
on how often retraining is to be conducted and the normal bus
load, which depends on the ECU types and count in the CPS. A
total bandwidth server, on the other hand, allows such minimum
capacity to dynamically grow based on the load on the bus. The
advantage of such a server configuration is that it can allow the
training transmission frequency to be adaptively increased
based on the environmental changes, yet at the price of
increased complexity.

B. Determining Transmitters
In MAS, the introduced unpredictability is not only due to the
transmission scheduling but also to determining which node
participates. MAS pursues two types of aperiodic bus
transmissions, namely training and deceptive. The former is
designated for individual ECUs and is geared for collecting
voltage measurements to update the ECU fingerprints. As
mentioned earlier, retraining is necessary to factor in changes in
the voltage profile due to environmental effects such as
temperature. Unlike conventional approaches, MAS does not
rely on the ordinary, periodic, transmissions of nodes to update
the fingerprinting models. Instead, MAS provisions for
training-specific transmissions that cannot be guessed by an
adversary. Such a scheme evades any attempts to corrupt the
training data and hijack the fingerprint of victim nodes.
Moreover, MAS enables the model update to be continual and
thus facilitates fingerprint correction in case the adversary
accidentally succeeds in false data injection through some of the
retraining transmissions.

The deceptive type of aperiodic transmissions is meant to
detect fingerprint poisoning attempts by an attacker. As noted
in [23], the voltage variation between one transmission and two

simultaneous transmissions is noticeable and can be detected
through the use of thresholds. Yet, when a third transmission is
simultaneously made, the voltage leap cannot be noticed. In
Section VI, we show results from our experiments that confirm
such a property. MAS exploits such a property to confuse the
adversary and detect fingerprinting manipulation attempts.
Specifically, a deceptive transmission in MAS involves two
participants. Hence, MAS introduces new fingerprints
corresponding to combinations of two ECUs. Fig 4(c) shows an
example of ECU designation for the individual retraining
messages provisioned by MAS. A fingerprinting falsification
attack targeting a node will be detected by MAS by comparing
the voltage profiles of single and dual node transmissions. To
elaborate if an adversary could simultaneously transmit during
a training frame (an aperiodic transmission) of node ξi, the
system will detect such an attack given that MAS develops
fingerprints for dual node transmissions; the adversarial
transmission will also increase the voltage shift in the header
and will be flagged by the IDS. Note that targeting a deceptive
transmission will not affect the voltage profile much and would
not cause MAS to fail in detecting attacks against the training
transmissions.

The data payload of a deceptive message will also vary to
avoid replays. In MAS, each ECU will employ a pseudo
random number generator (PRNG) with the same seed. To
generate a deceptive message, each ECU generates two random
numbers reflecting the IDs of participants in the deceptive
transmission, i.e., the random numbers are generated in the
range [1, m], where m is the number of ECUs in the CPS. The
message payload will be the concatenated bit-pattern of two
additional random numbers, for a total of 64 bits which

Fig. 5. A block diagram description of how MAS generates and
checks deceptive transmissions.

MAS (ξq)

Fingerprint check

Repeat every τ

Pseudo Random
Number Generator

ξx , ξy
ϕ={ξi, ξj} Message payload

formation

ξq ϵ ϕTransmit
message

IDS

Listen on CAN Bus

Yes

No

corresponds to the data field in the CAN frame shown in Fig. 1.
By employing the same PRNG and using similar seed values,
all MAS copies at the various ECUs will generate the same
deceptive message and identify the same set of transmission
participants. By running the same bandwidth-preserving server
on all ECUs, the transmission time will be synchronized. Recall
that all ECUs receive transmissions on the CAN-Bus and thus,
they can stay synchronized. The bandwidth-preserving server
will have the least priority in terms of bus-access so that the
aperiodic transmissions do not interfere with the periodic,
critical, ones; the latter are subject to timing constraints and
should be getting privilege as noted earlier.

Fig. 5 provides a block diagram summary of MAS’
procedure for generating deceptive frames. The steps are
iterated every τ time units, which reflects the periodicity of the
bandwidth preserving server. In each iteration, the PRNG is
used to generate two pairs of ECU IDs, namely, (ξi, ξj) and (ξx,
ξy). The latter is used to form the data payload of a deceptive
message. If the node happens to be among the randomly
selected participants, i.e., ξi or ξj, the message will be sent; else
the node will just snoop on the CAN bus and match the
fingerprint of the deceptive transmission with that reflecting the
combination of ξi and ξj.

C. Identifying Transmitters
As stated in Section III-B, voltage-based fingerprinting

proved to be a robust means for identifying the source of
transmissions on the bus. MAS strives to thwart the threat of
falsification of device fingerprints by provisioning
unpredictable transmissions to collect retraining data. We note
that MAS does not presume a certain machine learning
technique or specific features for defining the fingerprints. In
other words, contemporary schemes in the literature, e.g., [18],
may be applied, where MAS only opts to ensure that the
retraining of the fingerprinting model is based on uncorrupted
data. As discussed in the previous section, MAS introduces
deceptive transmissions that are used to detect malicious
interference of the aperiodic transmissions of individual ECUs.
Such interference detection is based on comparison of the
voltage profile of a retraining-related transmission of a node ξi
and the profile when ξi co-transmit a deceptive frame with
another ECU. For that, MAS again extracts time-domain
features and applies voltage-based fingerprinting techniques to
define a signature for each pair of co-transmitting ECUs.
Specifically, we compute the mean of the voltage level for each
low-to-high/high-to-low transitions.

Identifying an ECU is usually done by extracting the
features on its transmission and applying the machine learning
classifier to find the closest fingerprint among those of existing
nodes. This corresponds to using the machine learning model
for testing. The same applies when two nodes co-transmits.
Since the fingerprint of an attacker could be unknown, e.g.,
when a malicious ECU is installed in a stealthy manner, it is
important to prevent misclassification of a simultaneous
transmission of an attacker along with a victim node ξv, from
being matched to either ξv or any pair of nodes that includes ξv.
In other words, determining the ECU that most probably sent a

frame does not allow distinguishing an unknown fingerprint
from the already-known legitimate ones. MAS tackles such an
issue by the use of Fisher-Discriminant Analysis (FDA) to find
a transformation matrix W that determines the most
discriminant features among the training samples of distinct
ECUs. The matrix W transforms the features of the transmitted
frame in order to compute the Mahalanobis distance to the
kernel of an ECU fingerprint, where the kernel here reflects the
mean and variance over the feature space. The Mahalanobis
distance, ∆, is computed using:

∆ = �(𝐹𝐹 − 𝜇𝜇)𝑇𝑇𝜎𝜎−1(𝐹𝐹 − 𝜇𝜇) (1)
where μ, and σ, respectively, are the mean and variance. If ∆
exceeds a certain threshold, the fingerprint is deemed to be
unknown. On the other hand, if ∆ is closer to another ECU, it
indicates a sign of an impersonation attempt.

VI. SECURITY ANALYSIS
The most notable attacks on CAN buses are: (1) ECU
impersonation, (2) message injection, (3) voltage corruption,
(3) bus off, and (4) ECU isolation. The first and second on the
list are obvious. The third reflects attempts to corrupt the
voltage-based fingerprint. A variant of such an attack is called
hill-climbing which opts to modify the fingerprint using
multiple frames. The hill-climbing attack is not applicable in
the case of MAS since the fingerprint is extracted based on a
single frame. In the bus-off attack a malicious unit intentionally
interferes with the target ECU to advance the error counter and
causes transition to the bus-off state. Finally, the fourth attack
is kind of a denial of service by making simultaneous
transmission with the victim so that other nodes do not
recognize the fingerprint of the victim ECU and reject its
messages. We note that detecting impersonation attempts and
identifying the attacker would suffice for mitigating the first 4
attacks on the list. Hence, in the following we analyze the
robustness of MAS against impersonation and isolation attacks.

Lemma #1: MAS detects individual or collusive impersonation
attempts.
Proof: In order to impersonate a victim node, the attacker has to
poison the fingerprint training data; otherwise the IDS will
detect the mismatch between the fingerprint of the victim and
the transmitting (malicious) ECUs. To poison the training data,
the adversary has to predict the exact time of MAS’ aperiodic
transmissions and the exact random data to be transmitted.
Given the irregular pattern of the aperiodic frames, the
adversary may try the following strategies either alone or with
the help of an accomplice:
i. Target the periodic transmission of the victim: Since MAS

uses aperiodic transmissions to collect training data, the
fingerprint of the victim node will not be impacted by
interfering with periodic transmissions. Hence, this strategy
will fail since the attack will be detected by the IDS as the
fingerprint of the attacker does not match that of the victim.

ii. Interfere with all victim node’s transmissions: The
adversary would continually snoop on the bus and transmit
when recognizing the arbitration part of the victim frame.
Here, the adversary’s transmission cannot be synchronized

with the victim and only the data part of the frame can be
targeted. Random data has to be transmitted given the
adversary’s unawareness of the actual data in the victim
mode frame. This will trigger bus collision between the
victim transmission and that of the attacker. However, as
such collision repeats it could be flagged and attributed to
the presence of malicious behavior. Also the adversary will
not succeed in replacing the training data, but rather prevents
collecting it.

Thus, impersonation attempts will be exposed.

Lemma #2: MAS detects attacks that opt to isolate a node.
Proof: The main goal of the attack is to blacklist the victim
node, where a simultaneous transmission by a malicious ECU
causes the exhibited fingerprint to mismatch what the IDS
expects. Since the attack requires synchronizing with the victim
node, a malicious ECU pair could only apply the steps in Fig.
3(a) during normal operation (periodic transmissions) and not
during retraining time (aperiodic transmissions). MAS can
detect such an attack for the following since: (a) the dataset for
forming fingerprints is clean, where the adversary cannot track
aperiodic transmissions to poison the training data; (b) even if
the adversary can interfere with aperiodic transmissions of a
victim node, MAS will detect such interference by recognizing
the difference between the voltage profile (fingerprint) of two
nodes and a single node transmission. Hence, attempts to isolate
the victim cannot be stealthy and will be detected by MAS.

VII. PERFORMANCE VALIDATION

A. Implementation Setup
In our experiment, we used voltage data that has been collected
from the vehicle electronic system of a Nissan Sentra [22]. The
dataset assumes that the frame ID is representing the ECU
identifier. We have decoded the packet in order to extract the
message IDs; those employed in the experiment were from the
following groups {374, 375}, {644, 645, 646}, {386}, {533,
534}, and {849}. We associate for each group an ECU ID. Thus
we identify five ECUs. MAS had to identify the correct group
for a transmitting ECU. We also collected results for combined
transmissions by reconstructing the bimodal distribution from
the original ECU voltage. Then we employed the feature
extraction mechanism suggested in [22]. We evaluate MAS’
ability to detect stealthy fingerprint falsification attacks, in term
of the following:
- Aperiodic transmission predictability: The success of MAS

is based on the unpredictability of the training transmissions
which prevents the synchronization of the attacker message
with the victim’s message. We assume the attacker employs
a Long Short-Term Memory (LSTM) model in order to infer
the pattern of the aperiodic transmissions. To evaluate this
metric, the adversary is assumed to have knowledge of the
schedule of some previous aperiodic transmissions, and try
to infer the next aperiodic transmission. In essence, this
metric measures the accuracy of the attacker’s prediction of
the fingerprint retraining data collection. We considered the
bus free time based on the considered dataset to determine
the schedule of MAS related transmission. The LSTM has

two layers with 4 cells; its last layer includes a softmax with
two outputs indicating whether there is aperiodic
transmission or not.

- Victim identification accuracy: The success of MAS in
mitigating targeted attacks, is based on the unpredictability
of the transmitting ECU. To assess this metric, we assume
that the attacker employs an LSTM in order to uncover the
pattern of the specific victim aperiodic transmission. We
distinguish such LSTM from the one used by the adversary
for predicting training (aperiodic) transmissions by using the
suffix V and S, respectively, i.e., LSTMV for victim
identification and LSTMS for predicting aperiodic
transmissions Assuming the adversary’s full knowledge of
the aperiodic schedule timing, we aim to gauge the accuracy
of the attacker for associating the specific victim to its own
slot in the schedule. The employed LSTMV includes two
layers with 4 cells and a softmax layer with the cardinality
of the possible combination of ECU.

To schedule the aperiodic (MAS generated) transmissions, we
consider the bus free time and randomly allocate some of that
time for MAS such that only a fraction of the available
bandwidth is utilized. Overall, the number of MAS messages is
less than the periodic transmission count, which is consistent
with practice as the training overhead should not be dominant.
In the simulation, we also vary the ECU count, the number of
deceptive (combined) transmissions, and the attacker’s
knowledge of training related transmissions. The validation
experiments and results are discussed next.

B. Simulation Results
Figure 6 gauges the effectiveness of MAS in terms of the
success rate in detecting fingerprint interference attempts. Such
success depends on the model accuracy of the number of ECU
participants in combined transmissions. Recall that MAS
analyzes the Mahalanobis distance, ∆, to distinguish between
individual (single) and simultaneous (combined) transmissions.
As indicated by the results, the accuracy of identifying a single
ECU is 99%. For combined transmissions, the fewer the number
of engaged ECUs, the more accurate the identification becomes.
MAS sustains acceptable distinction even for six combined
transmissions. The IDS can also discriminate between a mix of
individual and combined transmissions. MAS achieves such a
high success rate in detecting individual and combined
transmissions since the voltage distribution is significantly
different when a node sends alone and with other accomplices.
Figure 7 confirms such a conclusion and reports the kernel
density distribution of voltage for distinct configurations where
we reach unimodal Gaussian distribution for a single ECU and
bimodal for combined transmission. When two and three nodes
send similar headers, the distribution becomes bimodal and
spans higher voltages. Our results are consistent with the
literature [18][23]. This indicates MAS’ higher success rate of
detecting the participation of an adversarial node in a
transmission, e.g., to poison the training data.

The adversary’s ability to predict the training transmission
schedule is assessed in Figure 8. In this experiment, the
adversary is assumed to know that MAS is applied and be able

to distinguish between periodic and aperiodic transmissions. As
noted earlier, we have implemented LSTMS that is trained using
some aperiodic transmission timings to predict when the next
transmission will be. In the figure, the adversary has varying
levels of knowledge of prior training-related (aperiodic)
transmissions, where 50% implies that the attacker knows the
schedule of half of the aperiodic transmissions. Basically, as
the adversary is able to overhear some of the previous aperiodic
transmissions, and try to predict the upcoming ones. The figure
demonstrates the robustness of MAS against attempts to poison
the fingerprint training data. The randomized aperiodic
transmission schedule significantly limits the ability of an
attacker to predict when to interfere, where the accuracy of
LSTMS is quite low and reflects just random guesses. The
accuracy does not improve even if the LSTM is trained with
more data as long as the percentage does not change.

To gauge the effect of MAS’ deceptive aperiodic
transmission, we have implemented an additional LSTM,
denoted, LSTMV, that an adversary could employ to predict
when a victim ECU will transmit next. This is a different LSTM
from the one discussed about for predicting the training
schedule. Here, the adversary is assumed to know the aperiodic
schedule of training messages, which is not even feasible as
shown by Figure 8. Figure 9 reports the results which reflect the
adversary’s ability to identify the aperiodic transmission of a

targeted victim node. The figure clearly depicts a very low
prediction accuracy which confirms the adversary’s inability to
impersonate and/or invalidate the legit ECU fingerprint during
the training stage. When collectively considering the results of
both figures 8 and 9, it can be concluded that the accuracy for
predicting and identifying the aperiodic transmission of a victim
node is in the single digit (less than 10%) percent. Indeed, with
such a poisoning ratio it is impossible for the adversary to
corrupt the fingerprinting dataset.

C. Comparison with Competing Approaches
We now compare MAS with other state-of-the-art VIDSs,

namely, Viden [18], Scission [21], Simple [22] and RAID [23].
To protect the CAN-bus system, the IDS should be able to
detect the attack or raise an alarm when an attacker tries to
evade the provisioned protection, and ideally identify the
malicious actor. Yet, identifying the attacker is also the most
difficult feature to realize in an IDS. Table 1 compares the
capabilities of MAS to the aforementioned competing schemes.
As indicated by Table 1, MAS can identify the malicious actor
in all attack scenarios, something other schemes cannot do.
Such capability is attributed to the fact that MAS extracts the
ECU fingerprint from a single frame, retrains fingerprint from
legit messages, identifies the source of message based on the

Fig. 6: Fingerprinting accuracy for distinct combination of ECUs. Fig. 7: Kernel distribution for the distinct cardinality of combined

 transmissions.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

4 5 6 7

Ac
cu

ra
cy

 o
f F

in
ge

rp
rin

tin
g

Combined Transmissions

Comined

Indiv

Mix

Fig. 8: Adversary’s prediction accuracy for training related Fig. 9: Success rate for predicting the training transmission of a victim
transmission. ECU.

frame’s data field which could not be manipulated and
provisions aperiodicity of the training data collection.
Table 1: Comparing the capabilities of MAS to those of competing schemes

 IDS
Attack Viden Scission Simple RAID MAS

Message Injection I.S I.S I.S I.S I.S
Impersonation I.S I.S I.S I.S I.S
Hill-climbing V V D I.S I.S
Voltage Corruption V V V P I.S
ECU Isolation V V V V I.S
Bus off V V V V I.S

 I.S: Identify source; V: Vulnerable; D: Detection; P: Prevent

Due to changes in the operating environment, e.g., variations

in temperature and voltage input, the voltage-based fingerprint
of the existing ECUs will change and the underlying VIDS must
be updated. Viden and Scission extract fingerprint from
multiple frames and hence becomes susceptible to hill-climbing
attacks, where an attacker gradually increases the rate of
malicious messages (voltage data poisoning) in order to
associate the fingerprint of the victim ECU with that of the
attacker. Simple and MAS extract fingerprints from a single
frame and hence are able to detect hill-climbing attacks. For the
voltage corruption attack, a malicious node transmits a message
simultaneously with the victim ECU causing the voltage
features of such an ECU to be manipulated without detection.
RAID leverages the ID extension bit in the CAN bus frame to
make the ECU ID unpredictable to the attacker. MAS does
much better than RAID by: (i) randomizing the schedule of the
retraining transmissions in order to lower the probability of
corrupting the fingerprint dataset, and (ii) injecting descriptive
transmissions to confuse and expose attackers, and (iii)
detecting corruption attempts and identifying the source of the
malicious message by checking the sender’s fingerprint of the
data field of the message. We also note that all existing VIDS
are vulnerable to bus-off attacks except MAS since MAS can
identify the attacker and block it before the error count reaches
the bus-off threshold.

Since RAID is the most recently published and is more
capable than other existing schemes, we have compared the
performance of MAS and RAID. Figure 10 shows the success
rate of attacker identification when MAS or RAID are applied.
We have assumed that the adversary targets transmissions used
for collecting retraining data, i.e., launch the DUET attack
explained in Section IV. The adversary’s success ratio is varied
from 0.2-0.8, as noted on the x-axis in Figure 10. Such a success
ratio reflects the adversary’s ability of distinguishing the
transmissions of the targeted ECU, which are normally periodic
as also being considered by RAID. When detecting the DUET
attack, RAID discards the transmission and hence loses training
data. In other words, the attack diminishes the size of collected
retraining data rather than poisoning it. Consequently, as
indicated by the results in Figure 10, the fingerprinting accuracy
is reduced and RAID’s ability to identify the malicious node is
significantly degraded. Such degradation is almost proportional
to the data poisoning rate, i.e., DUET attack attempts. MAS on

the other hand stays robust, where the retraining transmissions
are no longer predictable to the adversary. To highlight the
major performance edge that MAS has, let us consider the case
when the attacker could target 50% of the training-related
transmissions. For such a case, RAID’s attack identification
accuracy drops to 70% while MAS suffers no notable impact
and thus has 30% advantage over RAID. In Figure 10, we show
two cases reflecting the probability that the attacker’s attempt
happens to accidently match some of the actual retraining
transmission, e.g., using LSTMS, leading to discarding it. Such
a probability is set for 0.2 and 0.3, which are even higher than
what is shown in Fig. 8. For the latter the attacker identification
accuracy is slightly impacted at high data poisoning, yet
consistently stays above 93% and significantly outperforms
RAID.

VIII. CONCLUSIONS
This paper has focused on the CAN bus, which is widely used
by the automotive industry. The CAN bus is deemed to be
vulnerable to node masquerading and message spoofing. The
popular approach for mitigating such vulnerability is to derive
a voltage-based fingerprint for each ECU based on the
properties of bus signals. Yet, prior work showed such
fingerprinting protection could be broken by a pair of collusive
attackers that target the system at the time of fingerprinting
update and successfully impersonate a victim node. We have
further pointed out another attack that could cause a victim ECU
to become isolated. To counter the aforementioned attacks, this
paper has presented MAS. The key design principle of MAS is
to degrade the adversary’s ability for poisoning the data
collected for forming/updating the fingerprint models. The
validation results using data from a vehicle electronic system,
have confirmed the effectiveness and viability of MAS.

The effectiveness of MAS can be further extended by
factoring in other ECU and bus characteristics, e.g.,
incorporating clock-based fingerprinting capabilities. We
envision that a combined VIDS and CIDS could better
safeguard a CAN bus. We plan to investigate such a promising
research direction in the future. We also plan to investigate the
growing attack surface with the integration of CPS systems with
the 5G technology and beyond [40].

Fig. 10. Comparing MAS to RAID in terms of their robustness under
poisoning attacks launched during the collection of retraining data.

REFERENCE
[1] M. Bozda, M. Samie, S. Aslam and I. Jennions. “Evaluation of CAN Bus

Security Challenges,” Sensors, Vol. 20, No. 8, pp. 2364, 2020.
[2] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks and

countermeasures: challenges and future directions,” IEEE Network, Vol.
31, No. 5, pp. 50–58, 2017.

[3] O. Avatefipour. “Physical-Fingerprinting of Electronic Control Unit
(ECU) Based on Machine Learning Algorithm for In-Vehicle Network
Communication Protocol ‘CAN-BUS’,” MS Thesis, Dept. of Computer
Engineering, University of Michigan-Dearborn, 2017.

[4] Tencent Keen Security Lab, “Tencent keen security lab: experimental
security research of Tesla autopilot,” 2019,
https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Security-Lab-
Experimental-Security-Research-of-\Tesla-Autopilot/.

[5] R.-P. Weinmann and B. Schmotzle, “Tbone – a zero-click exploit for
Tesla MCUs,” 2020, https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf.

[6] K.-T. Cho and K. G. Shin, “Error Handling of In-vehicle Networks Makes
Them Vulnerable,” Proc. the ACM SIGSAC Conf. on Computer and
Comm. Security (CCS '16), pp. 1044–1055, Oct. 2016.

[7] H. Wen, Q. A. Chen, and Z. Lin, “Plug-N-Pwned: Comprehensive
Vulnerability Analysis of OBD-II Dongles as A New Over-the-Air Attack
Surface in Automotive IoT,” Proc. of the 29th USENIX Conference on
Security Symposium, Article 54, pp. 949–965, 2020.

[8] U. Ezeobi, H. Olufowobi, C. Young, J. Zambreno, and G. Bloom,
“Reverse Engineering Controller Area Network Messages using
Unsupervised Machine Learning,” IEEE Consumer Electronics
Magazine, pp. 1–1, 2020.

[9] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “SAIDuCANT:
Specification-Based Automotive Intrusion Detection Using Controller
Area Network (CAN) Timing,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 2, pp. 1484–1494, Feb. 2020.

[10] M. D. Pese, T. Stacer, C. A. Campos, E. Newberry, D. Chen, and ´ K. G.
Shin, “LibreCAN: Automated CAN Message Translator,” Proc of the
ACM SIGSAC Conf, on Comp, & Comm. Security, 2019, pp. 2283–2300.

[11] S. Kulandaivel, T. Goyal, A. K. Agrawal, and V. Sekar, “CANvas: Fast
and Inexpensive Automotive Network Mapping,” Proc. the 28th USENIX
Security Symposium (USENIX Security 19), Aug. 2019, pp. 389–405.

[12] SF. Lokman, A.T. Othman, and MH. Abu-Bakar, “Intrusion detection
system for automotive Controller Area Network (CAN) bus system: a
review,” J. Wireless Com. Network, Vol. 2019, #184, 2019.

[13] K. Iehira, H. Inoue and K. Ishida, “Spoofing attack using bus-off attacks
against a specific ECU of the CAN bus,” Proc. 15th IEEE Annual
Consumer Communications & Networking Conference (CCNC), 2018.

[14] Q. Gu, D. Formby, S. Ji, H. Cam and R. Beyah, “Fingerprinting for Cyber-
Physical System Security: Device Physics Matters Too,” IEEE Security &
Privacy, vol. 16, no. 5, pp. 49-59, September/October 2018.

[15] D. Formby, P. Srinivasan, A. M. Leonard, J. D. Rogers and R. A. Beyah.
“Who's in Control of Your Control System? Device Fingerprinting for
Cyber-Physical Systems.” Proc. of NDSS, 2016.

[16] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” Proc. IEEE Intell. Veh. Symp., Jun. 2011, pp. 1110–1115.

[17] K.-T. Cho, and K. G. Shin. “Fingerprinting electronic control units for
vehicle intrusion detection,” Proc. 25th USENIX Security Symposium
(USENIX Security 16), 2016.

[18] K.-T. Cho and K. G Shin, “Viden: Attacker Identification on In- Vehicle
Networks,” Proc. of the ACM SIGSAC Conference on Computer and
Communications Security, 2017, 1109–1123.

[19] Y. Yang, Z. Duan, and M. Tehranipoor, “Identify a Spoofing Attack on
an In-Vehicle CAN Bus Based on the Deep Features of an ECU
Fingerprint Signal,” Smart Cities, Vol. 3, pp. 17-30, 2020.

[20] W. Choi, et al., “VoltageIDS: Low-level communication characteristics
for automotive intrusion detection system,” IEEE Transactions on
Information Forensics and Security, vol. 13, no. 8, pp. 2114–2129, 2018.

[21] M. Kneib and C. Huth, “Scission: Signal characteristic based sender
identification and intrusion detection in automotive networks,” Proc. of
the ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 787–800.

[22] M. Foruhandeh, et al., “SIMPLE: Single-frame based physical layer
identification for intrusion detection and prevention on in-vehicle
networks,” Proc. the Annual Computer Security Applications Conference
(ACSAC), 2019, pp. 229–244.

[23] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer and D. Xu, “Evading
Voltage-Based Intrusion Detection on Automotive CAN” Proc. of
Network and Distributed System Security Symp. (NDSS), Feb. 2021.

[24] M. Tian, R. Jiang, C. Xing, H. Qu, Q. Lu and X. Zhou, “Exploiting
Temperature-Varied ECU Fingerprints for Source Identification in In-
vehicle Network Intrusion Detection,” Proc. IEEE 38th Int’l Performance
Computing and Communications Conference (IPCCC), 2019.

[25] C. Young, J. Zambreno, H. Olufowobi, and G. Bloom, “Survey of
Automotive Controller Area Network Intrusion Detection Systems,”
IEEE Design Test, vol. 36, no. 6, pp. 48–55, Dec. 2019.

[26] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
Intrusion Detection Based on Constant CAN Message Frequencies Across
Vehicle Driving Modes,” Proc. of ACM Workshop on Automotive
Cybersecurity, Mar. 2019, pp. 9–14.

[27] Q. Zhao, M. Chen, Z. Gu, S. Luan, H. Zeng, and S. Chakrabory, “CAN
Bus Intrusion Detection Based on Auxiliary Classifier GAN and Out-of-
distribution Detection,” ACM Trans. Embed. Comput. Syst., Vol. 21, No.
4, Article 45, 30 pages, July 2022.

[28] X. Li, F. Liu, D. Li, T. Hu, M. Han, “Illegal Intrusion Detection for In-
Vehicle CAN Bus Based on Immunology Principle,” Symmetry, Vol. 14,
No. 8, Article1532, 2022.

[29] Z. Bi, G. Xu, G. Xu, M. Tian, R. Jiang, and S. Zhang, “Intrusion Detection
Method for In-Vehicle CAN Bus Based on Message and Time Transfer
Matrix,” Security and Communication Networks, vol. 2022, Article ID
2554280, 19 pages, 2022.

[30] T. Koyama, T. Shibahara, K. Hasegawa, Y. Okano, M. Tanaka, and Y.
Oshima, “Anomaly Detection for Mixed Transmission CAN Messages
Using Quantized Intervals and Absolute Difference of Payloads,” Proc.
of ACM Workshop on Automotive Cybersecurity, Mar. 2019, pp. 19–24.

[31] S. Longari, M. Penco, M. Carminati, and S. Zanero, “CopyCAN: An
Error-Handling Protocol Based Intrusion Detection System for Controller
Area Network,” Proc. of ACM Workshop on Cyber-Physical Systems
Security & Privacy, 2019, pp. 39–50.

[32] H. Olufowobi, C. Young, J. Zambreno, and G. Bloom, “SAIDuCANT:
Specification-Based Automotive Intrusion Detection Using Controller
Area Network (CAN) Timing,” IEEE Transactions on Vehicular
Technology, Vol. 69, No. 2, pp. 1484–1494, Feb. 2020.

[33] Z. Bi, G. Xu, G. Xu, M. Tian, R. Jiang, and S. Zhang, “Intrusion Detection
Method for In-Vehicle CAN Bus Based on Message and Time Transfer
Matrix,” Security and Communication Networks, vol. 2022, Article ID
2554280, 19 pages, 2022.

[34] G. Bloom “WeepingCAN: A Stealthy CAN Bus-off Attack,” Proc. of the
Network and Distributed System Security Symposium (NDSS 2022), San
Diego, CA, April 2022.

[35] M. Marchetti, D. Stabili, A. Guido and M. Colajanni, “Evaluation of
anomaly detection for in-vehicle networks through information-theoretic
algorithms,” Proc IEEE 2nd Int’l Forum on Research and Technologies
for Society and Industry Leveraging a better tomorrow (RTSI), 2016.

[36] S. Corrigan, “Introduction to the Controller Area Network (CAN),”
Technical Report # SLOA101B, Texas Instrument, May 2016.

[37] M. Hamad, and V. Prevelakis, “SAVTA: A Hybrid Vehicular Threat
Model: Overview and Case Study,” Information, 11(5), pp. 273, 2020.

[38] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Proc. of Black Hat, Las Vegas, NV, Aug. 2015.

[39] J. W. S. Liu, Real-Time Systems, 1/e. Prentice Hall, USA, 2005.
[40] A. Mughaid, S. AlZu’bi, A. Alnajjar, et al. “Improved dropping attacks

detecting system in 5g networks using machine learning and deep learning
approaches,” Multimed Tools Appl., 22 pages, Sept. 2022.

IX. STATEMENTS AND DECLARATIONS

Funding: The authors declare that no funds, grants, or other
support were received during the preparation of this manuscript.

Competing Interests: The authors have no relevant financial or
non-financial interests to disclose.

Author Contributions: All authors contributed to the study
conception and design. Material preparation, data collection
and analysis were performed by Wassila Lalouani, and Yi.

Deng. The first draft of the manuscript was written by
Mohamed Younis and all authors commented on previous
versions of the manuscript. All authors read and approved the
final manuscript.

Data Availability Statement: The datasets analyzed during the
current study are available in [22].

I. BIOGRAPHY

Wassila Lalouani is currently an assistant
professor in the Department of Computer and
Information Science, Towson University. She
got her PhD in Computer Science from the
University of Maryland Baltimore County.
Her research interest includes network
management and protocols, machine learning,
and network security.

Yi Dang received the B.S degree in
Electronic Information Engineering from
Taiyuan University of Technology, Taiyuan,
China, in 2003. He received his MS degree
in Electrical Engineering from UMBC in
December 2021. His primary research focus
is on wireless communication and security.

Mohamed F. Younis is currently a
professor in the department of computer
science and electrical engineering at the
university of Maryland Baltimore
County (UMBC). He received his Ph.D.
degree in computer science from New

Jersey Institute of Technology, USA. Before joining UMBC, he
was with the Advanced Systems Technology Group, an
Aerospace Electronic Systems R&D organization of Honeywell
International Inc. While at Honeywell he led multiple projects
for building integrated fault tolerant avionics and dependable
computing infrastructure. He also participated in the
development of the Redundancy Management System, which is
a key component of the Vehicle and Mission Computer for
NASA’s X-33 space launch vehicle. Dr. Younis’ technical
interest includes network architectures and protocols, wireless
sensor networks, embedded systems, fault tolerant computing,
secure communication and distributed real-time systems. He
has published over 300 technical papers in refereed conferences
and journals. Dr. Younis has seven granted and three pending
patents. In addition, he serves/served on the editorial board of
multiple journals and the organizing and technical program
committees of numerous conferences. Dr. Younis is a Fellow
of the IEEE and the IEEE communications society.

	BlanksCover
	CLUS-D-21-01169R2
	I. Introduction
	II. Related Work
	III. System Model and Preliminaries
	A. Background
	B. System and Adversary Models

	IV. Voltage Fingerprint Falsification Attacks
	A. ECU Impersonation Attack
	B. ECU Isolation Attack

	V. Detailed MAS Design
	A. Fingerprint Update Scheduling
	B. Determining Transmitters
	C. Identifying Transmitters

	VI. Security Analysis
	VII. Performance Validation
	A. Implementation Setup
	B. Simulation Results
	C. Comparison with Competing Approaches

	VIII. Conclusions
	Reference
	IX. Statements and Declarations
	I. Biography

