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Abstract— The Controller Area Network (CAN) bus suffers 
security vulnerabilities that allow message spoofing and 
masquerading Electronic Control Units (ECUs). A popular 
provision for mitigating these vulnerabilities is through the use of 
machine learning (ML) to derive ECU fingerprints based on the 
physical properties of bus signals. Particularly, voltage-based 
intrusion detection systems associate the message transmitter with 
its voltage fingerprint to detect conflicting logical ECU identifiers 
in the presence of cyberattacks. However, the signal 
characteristics depend on the operating conditions and hence the 
fingerprints need to be adapted overtime by online training of the 
underlying ML model. An adversary may exploit such a 
shortcoming to superimpose training data based on its own 
transmissions and thus bypass the protection mechanism. Such an 
attack not only allows device impersonation but also leads to 
rejecting transmissions of a legitimate ECU. This paper proposes 
an effective approach to thwart these attack scenarios. Our 
approach introduces unpredictably-scheduled transmissions 
involving one or multiple ECUs to confuse the adversary and 
ensure the generation of a legitimate fingerprinting dataset for 
online training. We validate the robustness of our approach using 
data collected from a real vehicle and show that it outperforms a 
prominent competing scheme by over 30% in terms of identifying 
malicious ECUs when the attacker could overwrite 50% of the 
retraining transmissions.        
Keywords—Cyber physical systems, CAN bus, security, 
fingerprinting, device authentication, impersonation attack. 

I. INTRODUCTION 
A cyber-physical system (CPS) reflects the realization of a 

control system using a networked set of modules that operate in 
a distributed manner.  The CAN bus is commonly used for 
interconnecting ECUs within a CPS. In particular, the CAN bus 
is the de facto standard for the automotive industry, where 
ECUs represent embedded automotive systems like engine 
control,  anti-lock braking, traction control, etc. [1]-[3]. Inter-
ECU communication over the CAN bus allows coordinated 
operation that directly impacts on-road safety, maintainability, 
and fuel consumption. In fact, with the increased adaptation of 
autonomous vehicles, the criticality of the CAN bus becomes 
even more prominent given the disengagement of drivers when 
making decisions. Not surprisingly, such criticality elevates the 
importance of protecting the CAN bus against cyberattacks.    

The security analysis of the CAN bus has revealed that it is 
vulnerable to ECU impersonation and message spoofing attacks 

[4]-[13]. The broadcast nature of the CAN communication 
protocol, and the lack of strong authentication and data integrity 
mechanism prevent the detection of these serious attacks. An 
attacker can masquerade an ECU and transmit malicious data 
or control information that may lead a CPS to take inappropriate 
decisions causing serious consequences. Although a CAN 
frame can be encrypted to ensure authentication and integrity 
using message authentication codes (MACs) or digital 
signatures, this imposes excessive computational overhead and 
is not suited for the resource-constrained embedded CPS 
modules. The most prominent defense strategy exploits the 
physical characteristics of the ECU signals to define a unique 
device fingerprint that serves as a means for identity verification  
[14][15]. Machine learning techniques are often used for 
devising the fingerprints based on collected measurements 
during system operation. Popular fingerprinting methodologies 
include clock variation, signal voltage, and message traffic 
based features [16]-[21]. The fingerprints are then used by 
intrusion detection systems (IDS) to classify legitimate and 
malicious transmissions. Voltage-based schemes are deemed to 
be the most robust IDS for CAN buses [18]-[20].  

Although device fingerprinting enables frame-level ECU 
authentication and is lightweight in terms of computational 
overhead, it has been shown that the adversary may associate 
its own fingerprint with legitimate ECUs [22][23]. While 
voltage-based fingerprints can be defined offline before the 
system deployment, the signal characteristics are found to vary 
based on environmental conditions, e.g., changes in 
temperature, and hence the fingerprint needs to be adjusted 
through online training of the underlying machine learning 
model [24]. The online training period allows the attacker to 
interfere with the measurement collection and gradually 
transforms the fingerprint to a version that reflects such an 
attacker rather than the legitimate ECU. The attacker takes 
advantage of the predictability (periodicity) of the ECU 
transmissions, which is typical for real-time control systems. 
The impersonation attack can be launched to delegitimize the 
messages transmitted by a victim ECU or just masquerading 
such an ECU to inject faulty data. It has been shown in [18][20], 
that existing voltage-based IDS fail to mitigate such 
impersonation attacks.  

To overcome the aforementioned shortcoming, this paper 
promotes a novel approach for Mitigating Attempts to Spoof 



 

voltage-based fingerprints (MAS). The basic idea of MAS is to 
expose the attacker by introducing: (i) unpredictably scheduled 
transmissions, and (ii) unconventional fingerprints by 
triggering simultaneous transmissions of more than one ECU.    
The objective is to generate a clean online fingerprinting dataset 
based on individual and combined transmissions of multiple 
ECUs. By provisioning for transmissions that an attacker 
cannot predict their senders, MAS enables the collection of 
uncorrupted measurements that can be used for online training.  
The combined transmissions are meant to confuse the adversary 
about which ECU is supposed to transmit and also allows the 
detection of interference attempts based on the increased 
voltage level.  MAS not only can detect fingerprint poisoning 
(hijacking) attacks, but also can flag suspicious message 
headers without dropping legitimate data frames. Our main 
contributions are summarized as follows: 
• We point out a new attack on the CAN bus where a 

malicious ECU can interfere with the frame header to 
change the voltage fingerprint and cause the rejection of 
messages of legitimate nodes.  

• We propose MAS, a novel mechanism for detecting and 
mitigating malicious attempts to impersonate or blacklist 
legitimate CAN nodes by falsifying their voltage 
fingerprints. 

• We validate the effectiveness of our MAS mechanism using 
a dataset collected from ten automotive-grade ECUs.  

The reminder of the paper is organized as follows. The next 
section discusses the related work. Section III discusses the 
system and problem models. Section IV presents our approach. 
Section V reports the validation results. Finally, the paper is 
concluded in section VI.    

II. RELATED WORK 
The CAN-Bus has been widely utilized in automotive systems, 
domestic appliances, and medical devices. A CAN-Bus 
message does not have origin and destination addresses; instead 
it reflects a broadcast so that each ECU can send and receive 
packets to/from the bus. This communication technique 
increases the network elasticity which means that if a new ECU 
is to be added to the network, it will be configured easily and 
does not require any changes to the network infrastructure and 
other nodes. However, the simplicity and agility of a CAN-Bus 
also increases the risk of intrusion [25]. To address this 
problem, quite a few IDS have been developed to protect the 
security of the CAN-Bus network. The underlying principle of 
these IDS is to characterize the normal operation involving legit 
nodes. By using such a characterization as a fingerprint 
malicious behavior could be detected [26]-[32].  

Existing IDS techniques for the CAN-Bus vary in terms of 
the features that are used for fingerprint generation, and can 
generally be classified as (i) Entropy-based IDS (EIDS), (ii) 
Clock-based IDS (CIDS), and Voltage-based IDS (VIDS). 
EIDS an information theoretic based anomaly detection 
approach. An example of EIDS is the work of Müter and Asaj 
[16] where the data recorded from the in-vehicle network during 
normal operation is used to calculate the Shannon entropy. 
Deviations from such a baseline entropy are flagged as potential 

intrusions. Hence, EIDS is a system-wide assessment 
methodology and does not identify the malicious nodes given 
the broadcast nature of the CAN-bus [35]. On the other hand, 
CIDS defines fingerprints based on the clock that usually exists 
in all digital systems. Specifically, the uniqueness of the clock 
skew and clock offset of a given ECU is exploited to identify 
the source of a CAN-Bus transmission [17]. Cho and Shin [2], 
and Young et al. [26] proposed methods that leverage the 
periodic behavior of CAN-Bus messages to fingerprint each 
ECU in the network. Messaging rate is used by  Koyama et al. 
[30] to detect malicious traffic, and by Longari et al. [31] to 
thwart attacks that opt to disconnect an ECU from the bus by 
interfering with its transmission (and hence enable spoofing 
attacks). In [32] anomalies are detected based on deviation from 
a pre-specified timing behavior, while Bi et al. [33] consider 
both the data and time characteristics of bus frames to classify 
abnormal ECU activities. Despite being superior to EIDS in 
terms of ability to fingerprint the individual ECUs, CIDS is not 
suitable when ECU’s transmission pattern cannot be 
characterized. 

Like CIDS, VIDS relies on device-level fingerprinting. 
Material and design imperfections of an ECU make the voltage 
on the bus exhibit some unique features for each transmitter. 
VIDS has higher accuracy and is easier to apply than EIDS and 
CIDS. Hence, quite a few VIDS-based techniques have been 
developed, such as Viden [18], voltageIDS [20], and Scission 
[21]. All these techniques extract features of the ECU’s voltage 
and then apply machine learning to define a model that serves 
as a fingerprint. The extracted features vary. Viden focuses on 
the control frames to learn voltage features of target ECU. It 
excludes the ACK phase of each data frame. Scission opts to 
reduce the sampling rate and the considered features by using 
rising edges, falling edges and time between consecutive 
dominant voltages (logic zero). Since the voltage profile 
changes with the environment and operating conditions (e.g., 
temperature and supply voltage), the machine learning model 
must get updated and retrained periodically. VIDS is effective 
against a single-actor based denial of service or spoofing attacks 
that opt to force the victim into the bus-off mode [34].  

Some work has also considered attacks that defeat VIDS. 
SIMPLE [22] applies a poisoning attack which could fool VIDS 
that uses multi-frame training data by injecting messages 
without raising suspicion. The attack targets the retraining data 
of a legit ECU, where malicious messages are injected in a 
gradually increasing frequency in order to transform the 
fingerprint of such a legit ECU to that of the attacker node. Such 
an attack is referred to as hill-climbing. SIMPLE also offers a 
method to overcome such a stealthy attack by extracting 
features from data frames. DUET [23] is another attack model, 
which makes the attacker transmit messages with target ECU 
simultaneously, so that it can poison the training data of the 
fingerprint model. The underlying assumption for SIMPLE and 
DUET is that the attacker can predict when a victim node will 
transmit. MAS overcomes these poisoning attacks by 
introducing unpredictability not only at the level of the 
individual transmitters but also on their multiplicity. While 
RAID also tries to introduce unpredictability to counter DUET, 



 

it does so by randomly changing the message ID [23]. In 
addition to being hard to provision, RAID also changes the bus 
access priority and hence risks the timeliness properties of the 
CPS. To the best of our knowledge, MAS is the only 
countermeasure for training data poisoning of VIDS that not 
only detects the attack but also identifies the attacker node. 

III. SYSTEM MODEL AND PRELIMINARIES 

A. Background  
The CAN-Bus is a multi-master event-triggered system, where 
a message can be transmitted by a node without the need of a 
predefined schedule. There are four frame types, namely, data, 
remote, overload, and error [16]. Error and overload frames are 
for dealing with errors on the CAN-Bus. A remote frame is used 
to request data from a specific ECU. The data frame is the most 
commonly used and carries the data from a transmitter to a 
receiver. Fig. 1 shows the CAN-Bus data frame structure. A 
data frame consists of the following bit fields: (i) start of frame 
(SOF), which reflects one dominant bit (logic zero), (i) an 
arbitration field which consists of 12 bits, (iii) a control field 
which has 6 bits, (iv) a data field that ranges from 0 to 64 bytes, 
(v) Cyclic Redundancy Check (CRC) for error detection, (vi) 
ACK field (2 bits), and (vii) an end of frame (7 bits). The RTR 
bit, within the arbitration field, defines whether this frame is a 
data frame or a remote frame. The data field can be in the length 
of zero (remote frame) to eight bytes and the control field 
specifies the length of the data frame.  

The CAN-Bus standard employs a simple arbitration 
procedure to prevent any two ECUs from concurrently 
transmitting their message frames on the bus. Each message is 
assigned an identifier, which is utilized to define its priority. 
The lower the identifier value is the higher priority a message 
has. Thus, the ECU which has a lower ID will access the bus 
while other contending nodes will terminate their transmission 
and wait for the bus to be free. The ID comparison is conducted 
bit-by-bit. To transmit a message, an ECU first synchronizes 
with the SOF field. For the ID field, each ECU sends an ID bit 

and then reads it back from the bus. If an ECU, ξi, reads a 
dominant bit (zero value) after it transmits a recessive bit (value 
of one), it concludes that a higher priority ECU is trying to 
access the bus. In such a case, ξi loses the arbitration and stops 
transmitting; otherwise, ξi continues to transmit the message.  

All nodes on a CAN-bus will send ACK when they receive 
a data message, regardless of the intended recipient of the 
message. If any node transmits ‘0’ as an ACK, the bus will show 
‘0’, and consequently the sender concludes successful delivery 
and does not retransmit. Every ECU has two error counters: 
Transmit Error Counter (TEC) and Receive Error Counter 
(REC). When an error is experienced during transmission, the 
sender’s TEC is increased by 8, and the REC of other nodes on 
the bus (receivers) are increased by 1. When an error is detected 
by a receiver, its REC grows by 8. When the message is 
correctly transmitted, both TEC and REC of the sender and 
receiver nodes are decremented by 1. A node’s state is defined 
by its TEC and REC. There are three states in CAN-Bus: error 
active, error passive, and bus off. In the latter, the node cannot 
transmit/receive any frames and is disconnected from the bus.  

B. System and Adversary Models 
We assume a CPS that consists of multiple ECUs 
interconnected through a CAN-Bus. To support authentication 
of the source of a message transmission on the bus, a voltage-
based IDS is employed. The IDS is in essence network-based 
where the bus traffic is monitored at the physical-layer and the 
fingerprints of ECUs are validated using machine learning. The 
IDS can be applied by a certain ECU or by all ECUs. The latter 
scenario is captured in Fig. 2, where each ECU, ξi,  maintains a 
machine learning model that references the voltage profile of 
each other ECU, ξs, when ξs transmits on the bus. Given the 
real-time control aspect of a CPS, the system realizes a closed 
loop where sensor data is periodically collected, processed and 
acted upon within certain time constraints. Hence, the bus 
access profile of an ECU is periodic where at the system design 
time each ECU is allocated sufficient bandwidth (access time). 
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Fig. 1: The structure of a data frame in CAN-Bus, figure redrawn based on [36]. 

 
Fig. 2. The assumed CAN-Bus based CPS architecture. 
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To ensure system stability, the bus capacity usually exceeds the 
collective demand of all ECUs. MAS exploits such property in 
mitigating cyberattacks, as explained in Section V. 

To attack the considered CPS, an adversary opts to 
destabilize the system by injecting false data, depriving the 
ECUs from getting data, or disrupting the coordination among 
the ECUs. To achieve these goals, the adversary strives to 
implant malicious ECUs that can be exploited in launching 
attacks. For that one of two approaches could be pursued [37]. 
The first is to install malicious ECUs on the CAN-Bus or 
change the firmware of existing ECUs; such a scenario could be 
feasible by getting physical access to the system, e.g., when an 
electrical vehicle is being serviced at a repair shop. The second  
scenario reflects remote access to the CPS, where a legit ECU 
is  hacked and loaded with a software to implement the desired 
attacks [38]. In essence, the adversary will exploit the interface 
of a CPS to access ECUs, e.g., through Vehicle-to-Vehicle or 
Vehicle-to-Infrastructure communications. The adversary is 
assumed to be aware of the voltage fingerprinting based IDS 
employed by the CPS.  

IV.  VOLTAGE FINGERPRINT FALSIFICATION ATTACKS  
Variations in the signal voltage are found to be distinct among 
the CAN-Bus transceivers and hence can serve as physical-
layer based fingerprints to distinguish among the connected 
devices. The features capturing the statistical and physical 
characteristics of signals are employed by the IDS to determine 
any impersonation or falsification in data packets. Such a 
fingerprinting mechanism is deemed to be very robust. Yet, a 
recent study by Bhatia et al. [23] has pointed out the 
vulnerability of voltage-based IDS to impersonation attacks, as 
summarized below. We also point out an additional voltage 
fingerprint falsification attack that is geared for blacklisting 
legit nodes. MAS tackles both attacks as detailed in Section V.   

A. ECU Impersonation Attack  
The voltage profile of an ECU usually varies due to electronics 
aging and changes in the ambient conditions, e.g., temperature. 
Therefore, it is necessary to retrain the machine learning model 

to update the ECU fingerprint and avoid false positive and false 
negative classifications by the IDS. Such retaining is conducted 
while the system is in operation and constitutes a vulnerability.  
Basically, poisoned data could be injected by corrupting the 
voltage measurements, if an attacker can determine the 
retraining time. DUET [23] constitutes a realization of such   
poisoning scenario involving a pair of malicious ECUs; through 
coordinated actions the malicious ECU pair can get the IDS to 
use wrong voltage measurements for updating the fingerprint of 
a victim node. The key condition for the attack to succeed is the 
ability of the adversary to predict: (i) when a victim ECU 
transmits, and (2) when retraining takes place. The former is 
facilitated by the periodic nature of real-time tasks where an 
ECU transmits at a constant rate. The retraining time can vary 
from one CPS to another and hence it is application dependent. 
For example, in a vehicle retraining could be conducted after 
startup or when the engine temperature reaches a certain level.  
The main idea of the attack is to get a malicious ECU to 
simultaneously transmit along with the victim, causing the 
observed voltage on the bus to deviate from that when only the 
victim ECU transmits.  

Fig. 3(a) shows the attack steps where one of the malicious 
ECU acts as a helper by sending a message with a preceded ID 
in order to force the victim to wait. Such a step is meant to allow 
the second malicious ECU (threat actor) to synchronize its 
transmission with the victim, realizing that jitters could be 
experienced and the exact time for a victim transmission could 
slightly vary from one period to another. The actor will then 
transmit along with the victim and hence the voltage will reflect 
two rather than one transmission. By using the voltage of the 
combined transmission for training, the fingerprint of the victim 
will be transformed to a one that reflects “victim & actor”. The 
threat actor needs to be in the passive error state so that its 
transmission reflects an error frame which does not interfere 
with the victim’s transmission from a bus control point of view, 
i.e., will not cause the victim ECU to back off.  Such an error 
passive state can be initially reached by a simultaneous 
transmission by the helper and actor; subsequent return to such 
a state would be a byproduct of the actor’s transmission with 

                         
(a)        (b) 

Fig. 3. Illustrating the DUET attack on the voltage-based IDS [23], where (a) shows poisoning the fingerprint of the victim ECU, and (b) 
illustrates how the victim is impersonated after its fingerprint is poisoned (hijacked). 
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the victim. Fig. 3(b) shows a consensual effect of the fingerprint 
poisoning where the malicious ECU pair impersonates the 
victim by simultaneously transmitting data frames, relying on 
the fact that the IDS cannot differentiate between the 
fingerprints of “victim & actor” and “actor & helper”.    

B. ECU Isolation Attack  
In addition to the possible victim node impersonation discussed 
above, here we point out a simpler and serious attack scenario. 
The idea is that the malicious ECU pair will apply the steps in 
Fig. 3(a) during normal operation and not just during retraining 
time. The main goal of the attack is to blacklist the victim node, 
where a simultaneous transmission by a malicious ECU causes 
the exhibited fingerprint to mismatch what the IDS expects. By 
flagging the fingerprint mismatch the IDS will classify the data 
frame as suspicious and cause the victim node to be ignored. 
Such an attack scenario can be quite damaging to the CPS 
application since it hinders coordination between the victim 
node and the rest of the system; in fact, the consequences could 
be grave depending on the victim node’s role within the CPS. 
Imagine targeting the steering control or brake subsystem of a 
vehicle with such an attack. We note that deriving fingerprints 
from the data part of the frame would not be effective since the 
victim is not expected to send the same payload every time; 
hence a data field cannot be the base of fingerprints that qualify 
acceptance or rejection of a transmission given the failure of 
authentication of the message ID.   

It is worth noting that the node isolation attack can also be 
realized by forcing the victim to a bus-off state [6]. It has been 
shown in [13] that such an attack can be launched in a stealthy 
manner where the attacker sends a message with the same ID of 
the victim, and transmits all dominant bits in the data field. The 
victim ECU will detect an error and increment its TEC by 8. 
After several attack rounds, the victim ECU will go into a bus-
off state and become isolated.   

V. DETAILED MAS DESIGN  

To mitigate the aforementioned attacks, MAS strives to provide 
a clean training dataset for fingerprinting each ECU. Such a 
dataset is generated using aperiodic transmissions based on a 
schedule that is mutually agreed upon among the ECUs. The 

clean dataset will allow the detection of fingerprint falsification 
attacks since it deprives the adversary of the opportunity for 
knowing when these transmissions are made. Furthermore, 
MAS engages one or multiple ECUs in each of the aperiodic 
transmissions. Having multiple ECUs simultaneously 
transmitting further enables the detection of fingerprint 
poisoning attempts since the impact on the voltage profile by 
the adversarial node will become noticeable and cannot stay 
stealthy.  MAS is explained in the balance of this section. 

A. Fingerprint Update Scheduling 
The success of the aforementioned fingerprinting falsification 
attacks fundamentally depends on the adversary’s ability to 
predict when a victim node usually transmits. Generally, a CPS 
involves a set of periodic tasks that run at rates that depend on 
the specific role that the individual task plays in realizing the 
CPS application. Scheduling these tasks and the associated 
communication traffic is typically based on static priorities that 
are monotonic with the rate that they are invoked at [39]. Fig. 
4(a) shows an example, where node ξ1 gets the highest priority 
since its period is the smallest. The priority of  ξ2 exceeds ξ3, 
and both need to transmit less frequently than ξ1. A least 
common multiple of all periods is usually determined where the 
scheduleability of the system is analyzed for meeting the 
latency constraints. In most designs, the capacity of shared 
resources, e.g., the communication bus, is not fully utilized to 
avoid risk of overstressing the system and also to support low 
priority non-critical tasks. For example, in an electrical vehicle 
entertainment-related data is given low priority on the CAN-
Bus. MAS leverages these CPS design characteristics in 
mitigating fingerprinting falsification attacks.  

MAS opts to maintain uncorrupted ECU fingerprints that 
can be employed by the IDS. As pointed out earlier, the attacker 
targets the training datasets that are used for fingerprint updates. 
MAS counters such an attack strategy by scheduling the data 
measurements in a manner that cannot be predicted by snooping 
on the CAN-Bus. The main idea is to designate certain 
transmissions for model training and schedule them in a manner 
that cannot be inferred without reverse engineering of the CPS 
design, something that we assume to be impractical without 
gaining full access to the system which would constitute a 

 
Fig. 4. An illustrative example of how transmissions appear on the CAN-Bus, where: (a) reflects a typical rate monotonic schedule of real-time 
communication with the priority being monotonic with the rate, i.e., ξ1 > ξ2> ξ3, (b) shows how MAS can be provisioned as a bandwidth 
preserving server for scheduling aperiodic transmissions, and (c) depicts a possible selection of ECUs by MAS for solo and combined 
transmissions.  
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different level of threats that is outside the scope of this paper 
or the scope of cyberattacks as a matter of fact.  MAS considers 
training-related transmissions as aperiodic bus activities and 
employs a well-established mechanism for scheduling them. 
Specifically, MAS introduces a bandwidth-persevering server 
[39] to support training data collection. Such a mechanism 
strives to allocate some bus bandwidth for aperiodic, i.e., 
training-related, transmissions without interfering with 
periodic, application-critical, tasks. Fig 4(b) shows an example 
for when retraining messages could be scheduled by MAS. 

A bandwidth server is in essence a periodic task that will run 
to support MAS. In each invocation, the server will check a 
queue of aperiodic (training) transmissions. In the context of 
CAN-Bus the bandwidth server task will have the least priority 
so that it does not interfere with the periodic, essential, 
transmissions.  Each aperiodic training transmission will be 
associated with specific one or multiple ECUs, as explained 
later.  We note that MAS will be running on each ECU so that 
all copies reach the same conclusion on when to send and which 
node will transmit; yet the designated ECUs for the 
transmission will indeed access the bus. There is no need for 
explicit synchronization among the individual copies of the 
MAS bandwidth server since they all will be monitoring the 
CAN-Bus broadcast.  MAS is advocating either a constant or 
total bandwidth server implementation. The former ensures bus 
access time for training transmissions, defined as a percentage 
of the bus capacity. Such a percentage obviously will depend 
on how often retraining is to be conducted and the normal bus 
load, which depends on the ECU types and count in the CPS. A 
total bandwidth server, on the other hand, allows such minimum 
capacity to dynamically grow based on the load on the bus. The 
advantage of such a server configuration is that it can allow the 
training transmission frequency to be adaptively increased 
based on the environmental changes, yet at the price of 
increased complexity.        

B.  Determining Transmitters 
In MAS, the introduced unpredictability is not only due to the 
transmission scheduling but also to determining which node 
participates. MAS pursues two types of aperiodic bus 
transmissions, namely training and deceptive. The former is 
designated for individual ECUs and is geared for collecting 
voltage measurements to update the ECU fingerprints. As 
mentioned earlier, retraining is necessary to factor in changes in 
the voltage profile due to environmental effects such as 
temperature. Unlike conventional approaches, MAS does not 
rely on the ordinary, periodic, transmissions of nodes to update 
the fingerprinting models. Instead, MAS provisions for 
training-specific transmissions that cannot be guessed by an 
adversary. Such a scheme evades any attempts to corrupt the 
training data and hijack the fingerprint of victim nodes. 
Moreover, MAS enables the model update to be continual and 
thus facilitates fingerprint correction in case the adversary 
accidentally succeeds in false data injection through some of the 
retraining transmissions.  

The deceptive type of aperiodic transmissions is meant to 
detect fingerprint poisoning attempts by an attacker. As noted 
in [23], the voltage variation between one transmission and two 

simultaneous transmissions is noticeable and can be detected 
through the use of thresholds.  Yet, when a third transmission is 
simultaneously made, the voltage leap cannot be noticed. In 
Section VI, we show results from our experiments that confirm 
such a property. MAS exploits such a property to confuse the 
adversary and detect fingerprinting manipulation attempts. 
Specifically, a deceptive transmission in MAS involves two 
participants. Hence, MAS introduces new fingerprints 
corresponding to combinations of two ECUs. Fig 4(c) shows an 
example of ECU designation for the individual retraining 
messages provisioned by MAS. A fingerprinting falsification 
attack targeting a node will be detected by MAS by comparing 
the voltage profiles of single and dual node transmissions. To 
elaborate if an adversary could simultaneously transmit during 
a training frame (an aperiodic transmission) of node ξi, the 
system will detect such an attack given that MAS develops 
fingerprints for dual node transmissions; the adversarial 
transmission will also increase the voltage shift in the header 
and will be flagged by the IDS. Note that targeting a deceptive 
transmission will not affect the voltage profile much and would 
not cause MAS to fail in detecting attacks against the training 
transmissions.  

The data payload of a deceptive message will also vary to 
avoid replays.  In MAS, each ECU will employ a pseudo 
random number generator (PRNG) with the same seed. To 
generate a deceptive message, each ECU generates two random 
numbers reflecting the IDs of participants in the deceptive 
transmission, i.e., the random numbers are generated in the 
range [1, m], where m is the number of ECUs in the CPS. The 
message payload will be the concatenated bit-pattern of two 
additional random numbers, for a total of 64 bits which 

 
Fig. 5. A block diagram description of how MAS generates and 
checks deceptive transmissions.  
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corresponds to the data field in the CAN frame shown in Fig. 1. 
By employing the same PRNG and using similar seed values, 
all MAS copies at the various ECUs will generate the same 
deceptive message and identify the same set of transmission 
participants. By running the same bandwidth-preserving server 
on all ECUs, the transmission time will be synchronized. Recall 
that all ECUs receive transmissions on the CAN-Bus and thus, 
they can stay synchronized. The bandwidth-preserving server 
will have the least priority in terms of bus-access so that the 
aperiodic transmissions do not interfere with the periodic, 
critical, ones; the latter are subject to timing constraints and 
should be getting privilege as noted earlier.  

Fig. 5 provides a block diagram summary of MAS’ 
procedure for generating deceptive frames. The steps are 
iterated every τ time units, which reflects the periodicity of the 
bandwidth preserving server. In each iteration, the PRNG is 
used to generate two pairs of ECU IDs, namely, (ξi, ξj)  and (ξx, 
ξy). The latter is used to form the data payload of a deceptive 
message. If the node happens to be among the randomly 
selected participants, i.e., ξi or ξj, the message will be sent; else 
the node will just snoop on the CAN bus and match the 
fingerprint of the deceptive transmission with that reflecting the 
combination of ξi and ξj.  

C. Identifying Transmitters 
As stated in Section III-B, voltage-based fingerprinting 

proved to be a robust means for identifying the source of 
transmissions on the bus. MAS strives to thwart the threat of 
falsification of device fingerprints by provisioning 
unpredictable transmissions to collect retraining data. We note 
that MAS does not presume a certain machine learning 
technique or specific features for defining the fingerprints. In 
other words, contemporary schemes in the literature, e.g., [18], 
may be applied, where MAS only opts to ensure that the 
retraining of the fingerprinting model is based on uncorrupted 
data. As discussed in the previous section, MAS introduces 
deceptive transmissions that are used to detect malicious 
interference of the aperiodic transmissions of individual ECUs. 
Such interference detection is based on comparison of the 
voltage profile of a retraining-related transmission of a node ξi 
and the profile when ξi  co-transmit a deceptive frame with 
another ECU. For that, MAS again extracts time-domain 
features and applies voltage-based fingerprinting techniques to 
define a signature for each pair of co-transmitting ECUs.  
Specifically, we compute the mean of the voltage level for each 
low-to-high/high-to-low transitions. 

Identifying an ECU is usually done by extracting the 
features on its transmission and applying the machine learning 
classifier to find the closest fingerprint among those of existing 
nodes. This corresponds to using the machine learning model 
for testing. The same applies when two nodes co-transmits. 
Since the fingerprint of an attacker could be unknown, e.g., 
when a malicious ECU is installed in a stealthy manner, it is 
important to prevent misclassification of a simultaneous 
transmission of an attacker along with a victim node ξv,  from 
being matched to either ξv or any pair of nodes that includes ξv. 
In other words, determining the ECU that most probably sent a 

frame does not allow distinguishing an unknown fingerprint 
from the already-known legitimate ones. MAS tackles such an 
issue by the use of Fisher-Discriminant Analysis (FDA) to find 
a transformation matrix W that determines the most 
discriminant features among the training samples of distinct 
ECUs. The matrix W transforms the features of the transmitted 
frame in order to compute the Mahalanobis distance to the 
kernel of an ECU fingerprint, where the kernel here reflects the 
mean and variance over the feature space. The Mahalanobis 
distance, ∆, is computed using: 

∆ = �(𝐹𝐹 − 𝜇𝜇)𝑇𝑇𝜎𝜎−1(𝐹𝐹 − 𝜇𝜇)  (1) 
where μ, and σ, respectively, are the mean and variance. If ∆ 
exceeds a certain threshold, the fingerprint is deemed to be 
unknown. On the other hand, if ∆ is closer to another ECU, it 
indicates a sign of an impersonation attempt.  

VI. SECURITY ANALYSIS 
The most notable attacks on CAN buses are: (1) ECU 
impersonation, (2) message injection, (3) voltage corruption, 
(3) bus off, and (4) ECU isolation. The first and second on the 
list are obvious. The third reflects attempts to corrupt the 
voltage-based fingerprint. A variant of such an attack is called 
hill-climbing which opts to modify the fingerprint using 
multiple frames. The hill-climbing attack is not applicable in 
the case of MAS since the fingerprint is extracted based on a 
single frame. In the bus-off attack a malicious unit intentionally 
interferes with the target ECU to advance the error counter and 
causes transition to the bus-off state. Finally, the fourth attack 
is kind of a denial of service by making simultaneous 
transmission with the victim so that other nodes do not 
recognize the fingerprint of the victim ECU and reject its 
messages. We note that detecting impersonation attempts and 
identifying the attacker would suffice for mitigating the first 4 
attacks on the list.  Hence, in the following we analyze the 
robustness of MAS against impersonation and isolation attacks.  

Lemma #1: MAS detects individual or collusive impersonation 
attempts.  
Proof: In order to impersonate a victim node, the attacker has to 
poison the fingerprint training data; otherwise the IDS will 
detect the mismatch between the fingerprint of the victim and 
the transmitting (malicious) ECUs. To poison the training data, 
the adversary has to predict the exact time of MAS’ aperiodic 
transmissions and the exact random data to be transmitted. 
Given the irregular pattern of the aperiodic frames, the 
adversary may try the following strategies either alone or with 
the help of an accomplice:  
i. Target the periodic transmission of the victim: Since MAS 

uses aperiodic transmissions to collect training data, the 
fingerprint of the victim node will not be impacted by 
interfering with periodic transmissions. Hence, this strategy 
will fail since the attack will be detected by the IDS as the 
fingerprint of the attacker does not match that of the victim.  

ii. Interfere with all victim node’s transmissions: The 
adversary would continually snoop on the bus and transmit 
when recognizing the arbitration part of the victim frame. 
Here, the adversary’s transmission cannot be synchronized 



 

with the victim and only the data part of the frame can be 
targeted. Random data has to be transmitted given the 
adversary’s unawareness of the actual data in the victim 
mode frame. This will trigger bus collision between the 
victim transmission and that of the attacker. However, as 
such collision repeats it could be flagged and attributed to 
the presence of malicious behavior. Also the adversary will 
not succeed in replacing the training data, but rather prevents 
collecting it. 

Thus, impersonation attempts will be exposed.  

Lemma #2: MAS detects attacks that opt to isolate a node.  
Proof: The main goal of the attack is to blacklist the victim 
node, where a simultaneous transmission by a malicious ECU 
causes the exhibited fingerprint to mismatch what the IDS 
expects. Since the attack requires synchronizing with the victim 
node, a malicious ECU pair could only apply the steps in Fig. 
3(a) during normal operation (periodic transmissions) and not 
during retraining time (aperiodic transmissions). MAS can 
detect such an attack for the following since: (a) the dataset for 
forming fingerprints is clean, where the adversary cannot track 
aperiodic transmissions to poison the training data; (b) even if 
the adversary can interfere with aperiodic transmissions of a 
victim node, MAS will detect such interference by recognizing 
the difference between the voltage profile (fingerprint) of two 
nodes and a single node transmission. Hence, attempts to isolate 
the victim cannot be stealthy and will be detected by MAS. 

VII. PERFORMANCE VALIDATION   

A. Implementation Setup   
In our experiment, we used voltage data that has been collected 
from the vehicle electronic system of a Nissan Sentra [22]. The 
dataset assumes that the frame ID is representing the ECU 
identifier. We have decoded the packet in order to extract the 
message IDs; those employed in the experiment were from the 
following groups {374, 375}, {644, 645, 646}, {386}, {533, 
534}, and {849}. We associate for each group an ECU ID. Thus 
we identify five ECUs. MAS had to identify the correct group 
for a transmitting ECU. We also collected results for combined 
transmissions by reconstructing the bimodal distribution from 
the original ECU voltage. Then we employed the feature 
extraction mechanism suggested in [22].  We evaluate MAS’ 
ability to detect stealthy fingerprint falsification attacks, in term 
of the following: 
- Aperiodic transmission predictability: The success of MAS 

is based on the unpredictability of the training transmissions 
which prevents the synchronization of the attacker message 
with the victim’s message. We assume the attacker employs 
a Long Short-Term Memory (LSTM) model in order to infer 
the pattern of the aperiodic transmissions. To evaluate this 
metric, the adversary is assumed to have knowledge of the 
schedule of some previous aperiodic transmissions, and try 
to infer the next aperiodic transmission. In essence, this 
metric measures the accuracy of the attacker’s prediction of 
the fingerprint retraining data collection. We considered the 
bus free time based on the considered dataset to determine 
the schedule of MAS related transmission. The LSTM has 

two layers with 4 cells; its last layer includes a softmax with 
two outputs indicating whether there is aperiodic 
transmission or not.      

- Victim identification accuracy: The success of MAS in 
mitigating targeted attacks, is based on the unpredictability 
of the transmitting ECU. To assess this metric, we assume 
that the attacker employs an LSTM in order to uncover the 
pattern of the specific victim aperiodic transmission.  We 
distinguish such LSTM from the one used by the adversary 
for predicting training (aperiodic) transmissions by using the 
suffix V and S, respectively, i.e., LSTMV for victim 
identification and LSTMS for predicting aperiodic 
transmissions Assuming the adversary’s full knowledge of 
the aperiodic schedule timing, we aim to gauge the accuracy 
of the attacker for associating the specific victim to its own 
slot in the schedule. The employed LSTMV includes two 
layers with 4 cells and a softmax layer with the cardinality 
of the possible combination of ECU.  

To schedule the aperiodic (MAS generated) transmissions, we 
consider the bus free time and randomly allocate some of that 
time for MAS such that only a fraction of the available 
bandwidth is utilized. Overall, the number of MAS messages is 
less than the periodic transmission count, which is consistent 
with practice as the training overhead should not be dominant.  
In the simulation, we also vary the ECU count, the number of 
deceptive (combined) transmissions, and the attacker’s 
knowledge of training related transmissions. The validation 
experiments and results are discussed next.  

B. Simulation Results 
Figure 6 gauges the effectiveness of MAS in terms of the 
success rate in detecting fingerprint interference attempts. Such 
success depends on the model accuracy of the number of ECU 
participants in combined transmissions. Recall that MAS 
analyzes the Mahalanobis distance, ∆, to distinguish between 
individual (single) and simultaneous (combined) transmissions. 
As indicated by the results, the accuracy of identifying a single 
ECU is 99%. For combined transmissions, the fewer the number 
of engaged ECUs, the more accurate the identification becomes. 
MAS sustains acceptable distinction even for six combined 
transmissions. The IDS can also discriminate between a mix of 
individual and combined transmissions. MAS achieves such a 
high success rate in detecting individual and combined 
transmissions since the voltage distribution is significantly 
different when a node sends alone and with other accomplices. 
Figure 7 confirms such a conclusion and reports the kernel 
density distribution of voltage for distinct configurations where 
we reach unimodal Gaussian distribution for a single ECU and 
bimodal for combined transmission. When two and three nodes 
send similar headers, the distribution becomes bimodal and 
spans higher voltages. Our results are consistent with the 
literature [18][23]. This indicates MAS’ higher success rate of 
detecting the participation of an adversarial node in a 
transmission, e.g., to poison the training data.  

The adversary’s ability to predict the training transmission 
schedule is assessed in Figure 8. In this experiment, the 
adversary is assumed to know that MAS is applied and be able 



 

to distinguish between periodic and aperiodic transmissions. As 
noted earlier, we have implemented LSTMS that is trained using 
some aperiodic transmission timings to predict when the next 
transmission will be. In the figure, the adversary has varying 
levels of knowledge of prior training-related (aperiodic) 
transmissions, where 50% implies that the attacker knows the 
schedule of half of the aperiodic transmissions.  Basically, as 
the adversary is able to overhear some of the previous aperiodic 
transmissions, and try to predict the upcoming ones. The figure 
demonstrates the robustness of MAS against attempts to poison 
the fingerprint training data. The randomized aperiodic 
transmission schedule significantly limits the ability of an 
attacker to predict when to interfere, where the accuracy of 
LSTMS is quite low and reflects just random guesses. The 
accuracy does not improve even if the LSTM is trained with 
more data as long as the percentage does not change.  

To gauge the effect of MAS’ deceptive aperiodic 
transmission, we have implemented an additional LSTM, 
denoted, LSTMV, that an adversary could employ to predict 
when a victim ECU will transmit next. This is a different LSTM 
from the one discussed about for predicting the training 
schedule. Here, the adversary is assumed to know the aperiodic 
schedule of training messages, which is not even feasible as 
shown by Figure 8. Figure 9 reports the results which reflect the 
adversary’s ability to identify the aperiodic transmission of a 

targeted victim node. The figure clearly depicts a very low 
prediction accuracy which confirms the adversary’s inability to 
impersonate and/or invalidate the legit ECU fingerprint during 
the training stage. When collectively considering the results of 
both figures 8 and 9, it can be concluded that the accuracy for 
predicting and identifying the aperiodic transmission of a victim 
node is in the single digit (less than 10%) percent. Indeed, with 
such a poisoning ratio it is impossible for the adversary to 
corrupt the fingerprinting dataset.  

C. Comparison with Competing Approaches  
We now compare MAS with other state-of-the-art VIDSs, 

namely, Viden [18], Scission [21], Simple [22] and RAID [23]. 
To protect the CAN-bus system, the IDS should be able to 
detect the attack or raise an alarm when an attacker tries to 
evade the provisioned protection, and ideally identify the 
malicious actor. Yet, identifying the attacker is also the most 
difficult feature to realize in an IDS. Table 1 compares the 
capabilities of MAS to the aforementioned competing schemes. 
As indicated by Table 1, MAS can identify the malicious actor 
in all attack scenarios, something other schemes cannot do. 
Such capability is attributed to the fact that MAS extracts the 
ECU fingerprint from a single frame, retrains fingerprint from 
legit messages, identifies the source of message based on the 

   
Fig. 6: Fingerprinting accuracy for distinct combination of ECUs.            Fig. 7: Kernel distribution for the distinct cardinality of combined  
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frame’s data field which could not be manipulated and 
provisions aperiodicity of the training data collection.  
Table 1: Comparing the capabilities of MAS to those of competing schemes 

                      IDS  
Attack Viden Scission Simple RAID MAS 

Message Injection  I.S I.S I.S I.S I.S 
Impersonation I.S I.S I.S I.S I.S 
Hill-climbing  V V D I.S I.S 
Voltage Corruption V V V P I.S 
ECU Isolation  V V V V I.S 
Bus off V V V V I.S 

  I.S: Identify source; V: Vulnerable; D: Detection; P: Prevent 
 
Due to changes in the operating environment, e.g., variations 

in temperature and voltage input, the voltage-based fingerprint 
of the existing ECUs will change and the underlying VIDS must 
be updated. Viden and Scission extract fingerprint from 
multiple frames and hence becomes susceptible to hill-climbing 
attacks, where an attacker gradually increases the rate of 
malicious messages (voltage data poisoning) in order to 
associate the fingerprint of the victim ECU with that of the 
attacker. Simple and MAS extract fingerprints from a single 
frame and hence are able to detect hill-climbing attacks. For the 
voltage corruption attack, a malicious node transmits a message 
simultaneously with the victim ECU causing the voltage 
features of such an ECU to be manipulated without detection. 
RAID leverages the ID extension bit in the CAN bus frame to 
make the ECU ID unpredictable to the attacker. MAS does 
much better than RAID by: (i) randomizing the schedule of the 
retraining transmissions in order to lower the probability of 
corrupting the fingerprint dataset, and (ii) injecting descriptive 
transmissions to confuse and expose attackers, and (iii) 
detecting corruption attempts and identifying the source of the 
malicious message by checking the sender’s fingerprint of the 
data field of the message. We also note that all existing VIDS 
are vulnerable to bus-off attacks except MAS since MAS can 
identify the attacker and block it before the error count reaches 
the bus-off threshold. 

Since RAID is the most recently published and is more 
capable than other existing schemes, we have compared the 
performance of MAS and RAID. Figure 10 shows the success 
rate of attacker identification when MAS or RAID are applied. 
We have assumed that the adversary targets transmissions used 
for collecting retraining data, i.e., launch the DUET attack 
explained in Section IV. The adversary’s success ratio is varied 
from 0.2-0.8, as noted on the x-axis in Figure 10. Such a success 
ratio reflects the adversary’s ability of distinguishing the 
transmissions of the targeted ECU, which are normally periodic 
as also being considered by RAID. When detecting the DUET 
attack, RAID discards the transmission and hence loses training 
data. In other words, the attack diminishes the size of collected 
retraining data rather than poisoning it. Consequently, as 
indicated by the results in Figure 10, the fingerprinting accuracy 
is reduced and RAID’s ability to identify the malicious node is 
significantly degraded. Such degradation is almost proportional 
to the data poisoning rate, i.e., DUET attack attempts. MAS on 

the other hand stays robust, where the retraining transmissions 
are no longer predictable to the adversary. To highlight the 
major performance edge that MAS has, let us consider the case 
when the attacker could target 50% of the training-related 
transmissions. For such a case, RAID’s attack identification 
accuracy drops to 70% while MAS suffers no notable impact 
and thus has 30% advantage over RAID.   In Figure 10, we show 
two cases reflecting the probability that the attacker’s attempt 
happens to accidently match some of the actual retraining 
transmission, e.g., using LSTMS, leading to discarding it. Such 
a probability is set for 0.2 and 0.3, which are even higher than 
what is shown in Fig. 8. For the latter the attacker identification 
accuracy is slightly impacted at high data poisoning, yet 
consistently stays above 93% and significantly outperforms 
RAID.  

VIII. CONCLUSIONS  
This paper has focused on the CAN bus, which is widely used 
by the automotive industry.  The CAN bus is deemed to be 
vulnerable to node masquerading and message spoofing. The 
popular approach for mitigating such vulnerability is to derive 
a voltage-based fingerprint for each ECU based on the 
properties of bus signals. Yet, prior work showed such 
fingerprinting protection could be broken by a pair of collusive 
attackers that target the system at the time of fingerprinting 
update and successfully impersonate a victim node. We have 
further pointed out another attack that could cause a victim ECU 
to become isolated. To counter the aforementioned attacks, this 
paper has presented MAS. The key design principle of MAS is 
to degrade the adversary’s ability for poisoning the data 
collected for forming/updating the fingerprint models. The 
validation results using data from a vehicle electronic system, 
have confirmed the effectiveness and viability of MAS.  

The effectiveness of MAS can be further extended by 
factoring in other ECU and bus characteristics, e.g., 
incorporating clock-based fingerprinting capabilities. We 
envision that a combined VIDS and CIDS could better 
safeguard a CAN bus. We plan to investigate such a promising 
research direction in the future. We also plan to investigate the 
growing attack surface with the integration of CPS systems with 
the 5G technology and beyond [40]. 

 
Fig. 10. Comparing MAS to RAID in terms of their robustness under 
poisoning attacks launched during the collection of retraining data.  
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