Supplementary Material for
Dossman BC, Rodewald AD, Studds CE, Marra PP. Migratory birds with delayed spring departure migrate faster but pay the costs. Ecology

Appendix S1: Section S1 - Automated Telemetry & Motus Wildlife Tracking System

The local array in Jamaica consisted of 5 automated telemetry stations outfitted with a Sensorgnome receiver (www.sensorgnome.org) and four horizontally polarized omnidirectional antennas positioned 9 meters high on a galvanized steel mast. One receiver was affixed with four 3-element directional Yagi antennas (oriented 90, 180, 270, and 0 degrees) and was situated on the northwest corner of the field site. The 3-element yagis provided better detection distances once birds were aloft and allowed for increased detection of birds and fine-scale assessment of individual trajectories upon departure.

The array located in northern Florida consisted of 6 Sensorgnome based automated telemetry towers, each affixed with at least two 9-element directional yagi’s (PLC 1669, Laird Technologies) oriented East and West, respectively. The detection range of each tower was approximately 15 km (Mitchell et al. 2012, Taylor et al. 2017). By positioning these stations (approximately 30 km apart) across the narrowest point in Florida, we covered most of the migratory corridor used by our tagged birds.

Data collected by the automated telemetry system were uploaded to the Motus Wildlife Tracking System network for preliminary processing, archiving, and dissemination (Taylor et al. 2017). We used the R packages Motus (Brzustowski and LePage 2021) & tidyverse (Wickham et al. 2019) to download, filter, and analyze the data.
Appendix S1: Section S2 - Light-level Geolocator Analyses

To identify the breeding origins of this population and to estimate the total time spent on migration, we equipped 45 (9-2017, 36-2019) individuals with a 0.32 g light-level geolocator (Intigeo-W30Z11-DIP, Migrate Technologies LTD., Cambridge, UK) using a modified leg-loop harness using stretch magic material. Of those deployed, four of 9 were recovered in 2018 and 11 of 36 were recovered in 2020 (19 of 36 returned but 11 recaptured) for a return rate of 51% which is significantly higher than the approximate 28% average geolocator return rate for similarly size warblers. Reported return rates in the literature include 35% Yellow Warbler (n=20)(Witynski and Bonter 2018), 47.5% Golden-winged Warbler (n = 40)(Peterson et al. 2015), 35.7% Kirtland’s Warbler (n = 84)(Cooper et al. 2017), 27.5% Common Yellowthroat (n = 40) (Taff et al. 2018), 19% Canada Warbler (n = 154)(Roberto-Charron et al. 2020), 17% Cerulean Warbler (n = 28)(Delancey et al. 2020), and 14% Blackpoll Warbler (n=37)(DeLuca et al. 2015).

We followed methods outlined Lisovski et al. (2019) and the R package GeolocTools to analyze our light-level geolocator data. Data were downloaded, twilights were annotated using a threshold adjusted for each individual and manually annotated to conservatively mark outliers for exclusion in final analyses. Analysis of the movement tracks and stationary distributions were conducted in the flightR package (Rakhimberdiev et al. 2017). Calibrations were made with light-level data collected on tagged birds in the weeks prior to departure, which, for most birds, occurred after April 20th. Calibration periods ranged from 10 – 46 days. We set the spatial extent for our models to -90 – -120 degrees longitudinally and 18 – 55 degrees latitudinally. This extent conservatively captured our population’s breeding and migratory distribution and improved computation efficiency for the particle filter. Particle filter runs were conducted with a million
particles. The breeding origins of these individuals were estimated by the hidden markov model implemented in the flight package and data can be found in Supplementary Table S1.

Appendix S1: Section S3 - Long-term Departure Survey Data

From 1994-2019, we followed a standardized protocol to monitor the spring departure schedules of, on average, 83 (range: 54 - 104) color-marked birds not outfitted with any other tag (Marra 1998). These surveys began on April 1st (before any documented migration occurs in this region) and continue through to May 15th by when the majority of the population has already departed. Color-banded individuals are resighted every three days that concludes with playback surveys if a bird was not detected sooner (see Marra (1998) and Studds & Marra (2011) for detailed description). The probability of resighting a color-banded individual is relatively high ($p = 0.819, 95\% CI: 0.807 – 0.831; Studds and Marra 2011$) and comparable among habitats because redstarts actively defend small territories ($0.16 ± 0.5$ hectares) that are easy to survey (Marra et al. 2015). Therefore, individuals not detected within a three-day interval are assumed to have departed on the last night of the survey period. We excluded the rare cases where an individual abandoned a territory before April 15th, a week before the earliest migratory departures. In this manuscript, we only utilized the recent decade (2010-2019) to limit the effect that shifting departure schedules would have on our estimates of expected departure timing.

Appendix S1: Section S4 - Hierarchical Model Specification

Sub Model 1: $Y_{ij} \sim \alpha_i + \beta_1 * Sex_i + \beta_2 * Rainfall_j + \beta_3 * Habitat_i + \beta_4 * d2H_i + \beta_5 * Rainfall_j * Habitat_i$

Sub Model 2: $Z_k \sim \gamma + \delta_1 * WindProfit_k + \delta_2 * RelativeMigratoryTiming_k$

$Expected\ Departure\ Date_k = \beta_1 * Sex_k + \beta_4 * d2H_k$
Relative Migratory Timing

\[R_{elativeMigratoryTiming_k} = Expected \text{ Departure Date}_k - Observed \text{ Departure Date}_k \]

\[\alpha_t \sim N(0, 100), \quad \beta_t \sim N(0, 100), \quad \delta_t \sim N(0, 100) \]

Appendix S1: Section S5 - Stable Isotope Analysis

As a proxy for breeding latitude, we used the isotopic concentration of stable-hydrogen isotopes in tail feathers (3rd rectrix) known to be molted on the breeding grounds. Isotope analyses were conducted primarily at the Smithsonian Institution’s Stable Isotope Mass Spectrometry Laboratory in Suitland, MD, USA. However, six samples were run at the Cornell Stable Isotope Lab (Ithaca, NY USA), following the exact sample protocols and standards. Efforts were made to standardize all procedures and materials used between laboratories.

Tail feathers were first rinsed in a 2:1 mixture of chloroform: methanol to remove surface oils and then subsequently allowed to equilibrate for 72h at the lab. Each feather's distal portion (length 3–5 mm) was sampled, weighed to 350 ± 10 ug, and placed into a 4 × 6-mm silver capsule. Tissue samples were combusted in an elemental analyzer and introduced to an isotope ratio mass spectrometer via a Conflo IV interface. One in-house standard was run for every 5 to 8 unknowns to measure accuracy and precision. The non-exchangeable hydrogen was determined by linear regression with calibrated in-house Keratin-based standards (Caribou Hoof Keratin, -196.90 ‰; Spectrum Keratin, -80.78 ‰; and Kudo Horn Keratin, -54.17 ‰). All stable hydrogen isotope ratios are in per mil units (‰).

Appendix S1: Section S6 - Assessing Wind Assistance

Wind assistance can influence the overall rate and survival during migration (Liechti and Schaller 1999, Drake et al. 2014, Clipp et al. 2020). We accounted for this confounding effect by first assessing how wind conditions varied across the departure window for this population of
redstarts (April 21 – May 12) and then included tailwind assistance in our migration rate model. For each individual, we calculated the mean daily tailwind component experienced while migrating between Jamaica and Florida using data from the NCEP-DOE Reanalysis 2. Averaged daily wind data presented in their easterly and northerly vector components (u & v, respectively) were acquired from the NCEP-DOE Reanalysis 2 (Kanamitsu et al. 2002) using the RNCEP package in R (Kemp et al. 2012) at a spatial resolution of 2.5° x 2.5° degrees. We used a simple vector model to estimate the tailwind assistance from the U and V components of wind velocity for a bird migrating at a bearing of 340° (towards Central Florida), which is the approximate average of bearings from individual tracks (range 336° - 344°). We constrained the spatial extent of our wind data to 20 - 27.5° N and 75 – 82.5°W corresponding to the region between Jamaica and Northern Florida—the likely airspace used by this population. Wind velocities are averaged across pressure-levels ranging from 1000 hPa (100 m.a.s.l) and 10 hPa (~26000 m.a.s.l). For simplicity and because wind conditions tend to be correlated at these lower altitudes (Gauthreaux et al. 2006) we used wind data from the 925 hPa pressure level (~760 m.a.s.l.), which is closer to the average for migratory passerines (~1km m.a.s.l.) experiencing favorable wind conditions (e.g., tailwinds) at lower elevations (Dokter et al. 2011, Kemp et al. 2013).

Appendix S1: Table S1 – Breeding origins of each individual American Redstart Setophaga ruticilla tagged with a light-level geolocator at Font Hill, Jamaica.
<table>
<thead>
<tr>
<th>ID</th>
<th>SEX</th>
<th>AGE</th>
<th>BREEDING LATITUDE</th>
<th>BREEDING LONGITUDE</th>
<th>US STATE</th>
<th>WINTER DEPARTURE</th>
<th>BREEDING ARRIVAL</th>
<th>MIGRATION DURATION</th>
<th>MIGRATION DISTANCE</th>
<th>MIGRATION RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BQ700</td>
<td>SY</td>
<td>M</td>
<td>42.5240</td>
<td>-84.3119</td>
<td>MI</td>
<td>5/17/19</td>
<td>5/25/19</td>
<td>8</td>
<td>2780.34</td>
<td>14.48</td>
</tr>
<tr>
<td>BQ702</td>
<td>SY</td>
<td>M</td>
<td>42.4974</td>
<td>-91.5326</td>
<td>IA</td>
<td>5/2/19</td>
<td>5/23/19</td>
<td>21</td>
<td>2593.08</td>
<td>5.94</td>
</tr>
<tr>
<td>BQ703</td>
<td>SY</td>
<td>M</td>
<td>43.2482</td>
<td>-90.3459</td>
<td>WI</td>
<td>5/10/19</td>
<td>5/24/19</td>
<td>14</td>
<td>3023.85</td>
<td>9.01</td>
</tr>
<tr>
<td>BQ715</td>
<td>SY</td>
<td>M</td>
<td>42.7473</td>
<td>-90.1078</td>
<td>WI</td>
<td>5/7/19</td>
<td>5/30/19</td>
<td>23</td>
<td>2970.49</td>
<td>5.38</td>
</tr>
<tr>
<td>BQ716</td>
<td>SY</td>
<td>M</td>
<td>41.8538</td>
<td>-84.6531</td>
<td>MI</td>
<td>5/9/19</td>
<td>5/23/19</td>
<td>14</td>
<td>2718.60</td>
<td>8.09</td>
</tr>
<tr>
<td>BQ719</td>
<td>SY</td>
<td>M</td>
<td>40.6068</td>
<td>-88.3233</td>
<td>IL</td>
<td>5/15/19</td>
<td>5/23/19</td>
<td>8</td>
<td>2688.68</td>
<td>14.00</td>
</tr>
<tr>
<td>BQ731</td>
<td>SY</td>
<td>M</td>
<td>45.8373</td>
<td>-89.7670</td>
<td>WI</td>
<td>5/9/19</td>
<td>5/29/19</td>
<td>23</td>
<td>3270.40</td>
<td>5.92</td>
</tr>
<tr>
<td>BQ737</td>
<td>SY</td>
<td>M</td>
<td>45.8369</td>
<td>-92.5954</td>
<td>MN</td>
<td>5/9/19</td>
<td>5/19/19</td>
<td>23</td>
<td>3174.93</td>
<td>5.75</td>
</tr>
<tr>
<td>BQ738</td>
<td>SY</td>
<td>M</td>
<td>40.9496</td>
<td>-91.9245</td>
<td>IA</td>
<td>5/10/19</td>
<td>6/1/19</td>
<td>13</td>
<td>2869.77</td>
<td>9.20</td>
</tr>
<tr>
<td>BQ740</td>
<td>SY</td>
<td>M</td>
<td>43.8216</td>
<td>-90.3515</td>
<td>WI</td>
<td>5/18/19</td>
<td>6/2/19</td>
<td>15</td>
<td>3092.67</td>
<td>8.59</td>
</tr>
<tr>
<td>BQ741</td>
<td>SY</td>
<td>M</td>
<td>42.6068</td>
<td>-89.6525</td>
<td>IL</td>
<td>5/15/19</td>
<td>5/25/19</td>
<td>10</td>
<td>2800.19</td>
<td>12.08</td>
</tr>
<tr>
<td>BD622</td>
<td>ASY</td>
<td>M</td>
<td>43.6835</td>
<td>-92.5068</td>
<td>MN</td>
<td>4/27/17</td>
<td>5/26/17</td>
<td>29</td>
<td>3153.77</td>
<td>4.53</td>
</tr>
<tr>
<td>BD624</td>
<td>ASY</td>
<td>M</td>
<td>43.3594</td>
<td>-93.3125</td>
<td>IA</td>
<td>4/24/17</td>
<td>5/13/17</td>
<td>19</td>
<td>3154.75</td>
<td>6.92</td>
</tr>
<tr>
<td>BD626</td>
<td>ASY</td>
<td>M</td>
<td>41.7608</td>
<td>-92.3556</td>
<td>IA</td>
<td>4/27/17</td>
<td>6/9/17</td>
<td>43</td>
<td>2965.32</td>
<td>2.87</td>
</tr>
<tr>
<td>BD628</td>
<td>ASY</td>
<td>M</td>
<td>42.2883</td>
<td>-77.5770</td>
<td>NY</td>
<td>4/25/17</td>
<td>5/22/17</td>
<td>27</td>
<td>2688.19</td>
<td>4.15</td>
</tr>
</tbody>
</table>
Appendix S1: Figure S1 – American redstarts breeding at more northern latitudes depart relatively later in the season than individuals with southern breeding origins. Males departed an average of 4 days earlier than females (Figure S1; $\beta_{\text{sex}} = -3.82$, 95% CRI: -5.98, -1.60).
Appendix S1: Figure S2 – Predominant wind conditions during the migratory period for this wintering population (Apr 15 – May 15). In general winds were favorable for migration in the direction of travel and all birds, irrespective of departure week, experienced positive tailwind assistance.
Appendix S1: Figure S3 – Migration rates estimated via automated telemetry (A; $5.37 \pm 1.95 \text{ km hr}^{-1}$) and light-level geolocators (B; $7.79 \pm 3.5 \text{ km hr}^{-1}$). Migration rate estimated from an independent sample (N=15) of radio-tagged (nanotag) birds was found to be positive related to departure date (days since Apr 1). Similarly, migration rate estimated for a separate group (N=15) of individuals tagged with light-level geolocators was positively related to departure date (days since Apr 1).

![Graph](image-url)

