
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

S. Frisbie and M. Younis, "AI-Enabled Jammer Deception Using Decoy Packets," GLOBECOM 2022 -

2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 5013-5018, doi:
10.1109/GLOBECOM48099.2022.10001651.

https://doi.org/10.1109/GLOBECOM48099.2022.10001651

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)

ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)

platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-

group@umbc.edu and telling us what having access to this work means to you and why it’s

important to you. Thank you.

https://doi.org/10.1109/GLOBECOM48099.2022.10001651
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

AI-Enabled Jammer Deception Using Decoy Packets
Stephan Frisbie1,2

1The Johns Hopkins University Applied Physics Laboratory
Laurel, Maryland, 20723

Stephan.Frisbie@jhuapl.edu

Mohamed Younis2

2Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County

Baltimore, Maryland, United States
younis@umbc.edu

Abstract—In this work, we present a learning algorithm for a
wireless communications network to transmit decoy packets to
counter an adversarial sensing-reactive jammer. As the jammer
is required to search across channels for data transmissions,
decoy packets can have the effect of stalling the jammer on a
particular channel, preventing it from continuing its search and
leaving legitimate packets unimpeded. A reinforcement learning
algorithm trains a deep neural network with an exploration-
exploitation algorithm and experience replay. The state- and
action-space and reward function are presented as components
of the reinforcement learning framework. Our algorithm is tested
with software simulations, modeling ZigBee communications
nodes using time-division multiple access for medium access
control. A reactive jammer is modeled in the simulation, with the
goal of disrupting any detected ZigBee transmissions. A means
to measure and distribute the reward function and system state
to enable edge-learning in this context is presented as part of
the implementation. The results demonstrate the effectiveness of
our algorithm in mitigating the jamming attack, outperforming
a random decoy strategy by a factor of two.

Index Terms—anti-jamming, deep reinforcement learning, re-
active jammer, wireless networks, internet of things

I. INTRODUCTION

Wireless communications-enabled devices have become an
integral part of society, including such application spaces as
home and industrial automation, health care, transportation
systems, first responders, etc. [1]. The proliferation of these
devices regrettably is matched with increased exploitation by
malicious actors. Denial-of-service (DoS) attacks, such as
jamming, have raised security and even reliability concerns,
where industrial equipment risks damage or destruction if the
command and control backhaul is impeded, causing monetary
loss to corporations [2]. Vehicle-to-vehicle wireless systems
risk causing accidents, resulting in injury or worse, if inter-
fered with by actors seeking to manipulate traffic in their favor
or to achieve criminal objectives [3].

Defending against jammer systems has been of interest
essentially since the advent of wireless communication tech-
nology. The increased availability of software defined radio
(SDR) technology, as well as the feasibility of wireless attacks
being demonstrated on cheap COTS equipment such as hacked
WiFi dongles [2], have elevated the importance of defense
strategies to an all-time high. Unless the frequency channel
is known, the attacker generally targets a wide frequency
band and either senses the spectrum to find active channels
or just targets the entire band at once. The latter requires

very large power and specialized jamming equipment. Classic
approaches to jamming resilience include leveraging strong
forward error correcting (FEC) schemes to maximize robust-
ness to interference. Frequency diversity offered by spread
spectrum techniques like frequency hopping (FHSS) or direct-
sequence spread spectrum (DSSS) can further suppress the
effects of a jamming signal.

Reactive jammers are a class of intelligent jammers that
aim to cause DoS to a network using minimal power. These
jammers sense the spectrum for activity by scanning the
available channels and wait until transmissions are detected
to launch their attack. Such an attack strategy provides two
key benefits: (i) the jamming signal is enabled at a lower duty
cycle, saving power, and (ii) it makes the jammer more difficult
to detect. It is important to consider typical values for sensing
and jamming times of a reactive jammer. Commercial radio
frequency integrated circuits (RFIC) cannot make changes to
their configuration instantaneously; typically, the following
parameters will be specified by the manufacturer: the time
required for the device to change frequency, change amplifier
gain, and switch between transmit and receive mode. RFICs
can take as long as hundreds of milliseconds to perform
some changes, depending on the part and re-calibrations that
must take place; although, in the context of a competent
reactive jammer, these parameters are often cited in the tens
to hundreds of microseconds [2]–[4].

We hypothesize that the reliance on time-segmented scan-
ning leaves the jammer vulnerable to having its measurements
polluted by decoy packets transmitted on intelligently-selected
channels. These decoys can be transmitted with the intent
of stalling the jammer or polluting its prediction of the data
channel pattern. In this work, we aim to provide a framework
to achieve this function as well as construct a software
implementation to assess its performance. Our contributions
are as follows: (i) we formulate a Q-learning framework to
enable a wireless network to intelligently transmit deceptive
transmissions, (ii) in the form of an algorithm, we present
a practical means to measure the state of the environment
such that online learning can take place, and (iii) we present
simulation results using the NS-3 discrete event simulator.

The rest of the paper is outlined as follows. Section II covers
related anti-jamming methods. Section III discusses the system
and jammer models. Section IV presents our reinforcement
learning-based approach. Section V presents the simulation
setup and results. Lastly, Section VI concludes the paper.978-1-6654-3540-6/22 © 2022 IEEE

II. RELATED WORK

A review of contemporary anti-jamming literature can be
found in [2]. Given the contribution, we focus here on on
existing techniques for countering reactive jammers, which
can generally be categorized as: game theoretic, deep learning
approaches, and decoy transmissions.
Game Theoretic– This jamming defense strategy has shown
success in deriving equilibrium solutions, maximizing network
utility in spite of the jammer making its own optimal decisions.
The problem is modeled as a Stackelberg game in [5] in an
environment with multiple communication networks and jam-
mers. A pure strategy Nash equilibrium solution for channel
selection is learned for each network and jammer, mutually
maximizing the utility of every actor in the environment. This
work is extended in [6], where a hypergraph model is applied
to consider cumulative weak co-channel interference.
Deep Learning– Deep reinforcement learning has been gaining
attention in anti-jamming literature. Xiao et al. [7] trained
a relay to make mobility and frequency pattern decisions in
order to establish reliable communications between nodes in
an indoor environment in the presence of a sweeping jammer.
Wang et al. [8] applied a poisoning algorithm to degrade a
jammer’s ability to predict and jam acknowledgement mes-
sages. In [9], the authors trained a deep reinforcement learning
algorithm to steer an unmanned aerial vehicle to spatially avoid
detected jammers. A deep-dueling neural network is pursued
in [10] to quickly learn a policy to launch deceptive packets,
tricking a jammer into responding with an attack. If a jamming
signal is detected, it is used to the advantage of the system
either for energy harvesting or backscatter communications;
if no jamming signal is detected, the transmitter proceeds to
transmit data. Li et al. [11] devised a utility function for a
channel-aware jammer and conducted white- and black-box
adversarial attacks on such a utility function, acting on channel
selection and transmit power. The jammer then observes a
noise-like spectrum, degrading the sensing accuracy.
Decoy Transmission Algorithm– In [12], the authors config-
ured a network of 512 nodes to randomly transmit decoy
packets in the hope of misleading reactive jammers. At any
time slot, a node will either listen for data, transmit data, or
transmit a decoy, all on a random channel. It is intuitive that
using uncoordinated, random channels to transmit data would
degrade network performance. Moreover, such an approach
places additional requirements on edge devices. However, the
large size of the network ensures a high probability that at
least one node chose to listen to a channel containing a data
packet. This allows for data packets to propagate through the
network with resilience.

III. SYSTEM AND ATTACK MODELS

A. Communications Model

Throughout this paper, the word “channel” refers to a spec-
tral frequency at which a system can operate. Communicating
nodes are assumed to be time-synchronized and all trans-
missions are bursty and slotted in time. The communication

Fig. 1. Jammer behavioral state diagram

system can operate on one of Nc channels at a time in half-
duplex. The operating channel of the system at some time slot
k is denoted as f

(k)
c . At any time instance, nodes can assume

one of the following four roles: (1) broadcast a data packet on
channel f (k)

c , (2) listen for a data packet on channel f (k)
c , (3)

transmit a decoy packet on some channel f (k)
d ̸= f

(k)
c , or (4)

perform an energy scan of the environment. An energy scan
involves rapidly hopping across the available channels with
some small dwell time and recording the maximum energy
reported on each channel. Transmitting a decoy or performing
an energy scan have an opportunity cost as any data packets
transmitted will be missed during that time.

B. Jammer Model

The jammer behavior considered in this work is one of
a sensing-reactive nature. Reactive jammers emit a signal if
and only if activity on a particular channel is detected. These
jammers often operate in a half-duplex mode; in other words,
they cannot sense and jam at the same time. Therefore, the
jammer is parameterized by a sensing dwell time τsense and
a jam time τjam. If the jammer has uncertainty in the channel
being used by the target system, it must distribute its resources
temporally across each channel. The time required to switch
frequencies, and the time required to switch between transmit
and receive mode, respectively, are denoted as τf and τx. The
jammer’s bandwidth and transmit power are denoted as Bj

and Pj , respectively.
To monitor activity, the jammer employs an energy detector,

as described in Section III-C. Only the null hypothesis H0

needs to be evaluated. The number of samples processed for
energy detection M is equal to the jammer’s time-bandwidth
product ⌊τsense ×Bj⌋. For any scan of a given jammer
channel, if a transmission is detected, the jamming channel
will switch from the sensing state to the jamming state, with
a latency of τx. After jamming for τjam, the state returns to
the sensing state, again with a latency of τx. If no activity
is detected, the jammer channel will change frequencies, with
a latency of τf , to the next channel in the scan list f j . The
frequency pattern that the jammer follows cycles through a
fixed schedule, though not necessarily a linear sweep through
the spectrum. A state diagram of the jammer’s behavior is
shown in Figure 1. At time k, the jammer state vector s(k)j

contains the frequency at the start of time slot k as well as
static parameters pj = [f j , τx, τf , τjam, τsense, Bj].

C. Energy Detection

This section describes the statistical model of energy de-
tection, which is used by both the jammer and the commu-
nicating nodes. Energy is a fundamental property of wireless
transmissions, which can be used to characterize the content
of a sample vector. The jammer uses this in order to detect
target transmissions, while the communication nodes use this
to detect jamming and decoy actions of neighboring nodes.

Energy is measured as Ex = ||x||22, where x ∈ CM is
the sample vector and M is the number of complex sam-
ples processed. The null hypothesis asserts that the sample
vector is composed of only thermal noise n ∈ CM , where
ni ∼ CN (0, 1), with noise power Pn. Under this hypothesis,
the energy measurement Ex will be chi-squared distributed
with 2M degrees of freedom [13]. The null hypothesis is
rejected if the measured metric exceeds some threshold. This
threshold can be determined by setting a constant false alarm
rate PFA and evaluating the inverse CDF of Ex at (1−PFA).

H0 : x =

√
Pn

2
n (1)

An alternate hypothesis H1 can be evaluated if a trans-
mission from a particular source is expected. This hypothesis
asserts that the sample vector is composed of both the expected
signal s ∈ CM plus thermal noise. The received power of
s is expected to be Ps. Under this hypothesis, the energy
measurement Ex will be non-central chi-squared distributed
with 2M degrees of freedom and a non-centrality parameter
of M × Ps. Again, H1 is rejected if the measured metric
exceeds some threshold, calculated by evaluating the inverse
CDF of Ex at (1− PFA).

H1 : x = s +
√

Pn

2
n (2)

If both H0 and H1 are rejected, H2 is pursued. H2 states
that there is an anomalous signal a ∈ CM in the received
sample vector, possibly along with the signal s expected by
H1, with the indicator function I ∈ {0, 1}.

H2 : x = a + Is +
√

Pn

2
n (3)

IV. DECOY TRANSMISSION ALGORITHM

This section describes the proposed approach. An under-
lying time-division multiple access (TDMA) MAC scheme is
discussed, followed by the data-driven algorithm, and finishing
with our method to distribute or measure requisite information.

A. Time-slotted Coordination

A known pseudo-random sequence indicates which channel
a data transmission will be on in each time slot. The time slot
duration should be greater than or equal to the time required
to both change frequencies and change between transmit
and receive modes plus the duration of a packet. TDMA is

Fig. 2. TDMA schedule example for 6 nodes

used for medium access control. Each node is assigned an
identifier ID ∈ {0, 1, ...Nn − 1}, where Nn is the number
of nodes in the network. At any time slot k, the node in the
network satisfying mod(k,Nn) = ID transmits a data packet.
During the time slot preceding a node sending data, when
mod(k + 1, Nn) = ID, the node will have the opportunity
to transmit a decoy, indicated by the decoy strategy Q(). Our
strategy should instruct a deceptive packet to be sent on a
decoy channel that is separate from the data channel f (k)

c as
to not directly impose a collision. Two time slots preceding
a node sending data, when mod(k + 2, Nn) = ID, the node
will perform an energy scan across each of the available data
channels in order to measure the decoy action fd component of
the system state s(k). The energy scan results will be denoted
as e ∈ RNc , where ef ∈ R is the energy measured on
channel f . In order for each node to be able to estimate the
reward of a particular action, each node’s data transmission
will include an Nn-bit vector indicating that node’s vector of
past data packet successes. Details on usage of the energy scan
and reward distribution are provided in the next section. The
TDMA schedule of the network is illustrated in Figure 2.

The functions outlined in this section, while expected to
benefit the network overall, come at a cost. If a node is
performing an energy scan or sending a decoy, it cannot listen
for a data packet. This will reduce the total throughput on the
network by up to two packets in any time slot, or only one
packet if a node does not send a decoy. This also has implica-
tions on energy expenditure of each node, which is captured
in the reward function, Eq. (7). Further, the communication
overhead required is Nn bits per packet, because each node
must communicate a history of data reception successes in the
last TDMA round, which lasts Nn slots.

B. Data-Driven Model

The jamming mitigation strategy involves transmission of
decoy packets in an intelligent manner. At any time slot k
when a wireless network is transmitting data, there is a chance
that a reactive jammer’s scanning algorithm will coincide
with the transmission and deploy its jamming attack. This
probability is a function of (i) the channel of the transmitted
data, which is known to the network, and (ii) the jammer
parameters pj and state s(k)j , which are not explicitly known
to the network. Given an estimate of the jammer state ŝ(k)j ,
an optimal channel to deploy a decoy transmission for stalling

the jammer and protect the legitimate data transmission may
exist, denoted as f

(k)
od .

f̂
(k)
od = arg max

fd

Q(fd, f
(k)
c , ŝ(k)j |θ) (4)

In Eq. (4), Q() is a model with parameters θ mapping
information on the jammer and the communication system to
some quality metric of sending a decoy packet on channel
indicated by fd. Both fd and fod are contained in the set
{1, ...Nc,∅}. This set contains an integer for each channel
between 1 and the number of channels, Nc, and ∅ indicating
the non-existence of an optimal decoy channel. In other words,
∅ indicates that a decoy should not be transmitted.

It is difficult or impossible to know at any point in time on
what channel the jammer is sensing, as there is no feedback
when the jammer is in receive mode. One source of feedback
available is the performance of the network, which is a
function of the jammer state and parameters. A finite history
of N past data channels f (k)c,p = [f

(k−i)
c]1<i≤N , the success of

those data packets j(k)c,p = [j
(k−i)
c]1<i≤N , and the decoy actions

at those time slots f (k)d,p = [f
(k−i)
d]1<i≤N can provide insight

into this unknown.

ŝ(k)j = h(f (k)c,p , j(k)c,p |p̂j) (5)

In Eq. (5), h() is a mapping between the channel and the
success of past data transmissions and an estimate of the
jammer state at time k. Eq. (5) replaces the jammer state
estimate in Eq. (4) to provide a more generalized function
relating the quality of a decoy transmission on any channel to
the feedback available to the network, in Eq. (6). For brevity,
the concatenation of all of the state information at time k is
denoted as s(k) = [f (k)c,p , j(k)c,p , f (k)d,p, f

(k)
c].

f̂
(k)
od = arg max

fd

Q(fd, s(k)|θ) (6)

If Q() is implemented as a data-driven model, then the
quality estimate function Q(), the estimate of h(), and the
jammer parameters p̂j are implicitly learned as parameters
of the model θ. Q-learning will be used to train the model
parameters. A reward r(k) is determined for each time slot, as
an indicator of the performance of the model, shown below.

r(k) = wsN
(k)
s − wdN

(k)
d (7)

In Eq. (7), N (k)
s and N

(k)
d are the number of successfully

received data packets and the number of decoy packets trans-
mitted, respectively, in time slot k; ws and wd are constant
weighting factors; and r(k) is the reward of time slot k. In
other words, successfully transmitted packets are positively re-
warded, whereas decoy transmissions are negatively rewarded.
While it is of interest to transmit decoy packets to manipulate
the jammer, the inclusion of them as negative feedback is to
discourage the model from learning to excessively transmit
decoys, which may waste energy. In case the transmit power
is not of concern, this constraint can be lifted by fixing wd to

0. Q() will be trained to iteratively improve its reward estimate
at time instance k using the Bellman Equation below.

Q(f
(k)
d , s(k)|θ)← Q(f

(k)
d , s(k)|θ) +

α · (r(k) + γ ·max
fd

Q(fd, s(k+1)|θ)−Q(f (k)d , s(k)|θ)))

(8)

In Eq. (8), α is the learning rate and γ is the discount factor.
The purpose of γ is to consider future reward of state s(k+1)

when taking action in state sk. An exploration-exploitation
policy is implemented, where a random action is selected
with probability ϵ and an action indicated by Q() is selected
otherwise. The value of ϵ assumes initial value ϵ0, selected
as 0.75. ϵ decreases by a factor of dϵ each TDMA frame,
which is selected as 0.05. These values were selected through
experimentation, providing a balance between exploration
and exploitation at the start of a simulation and exhibiting
performance convergence at a reasonable rate. Experience
replay is implemented, where a memory of state-action-reward
tuples are recorded to the node’s memory M for each decoy
action performed. Every TDMA frame, each node performs a
learning step using minibatch of 64 examples from M . It is
critical to note that the reward function is dependent on the
performance of the network as a whole and not any individual
node, posing two notable challenges. First, as nodes should
make decoy transmission decisions locally, state information
of the decoy actions in the previous time slot is needed. Decoy
actions are uncoordinated and a node sending a decoy doesn’t
have sufficient time between slots to communicate its decoy
action to the network. Second, in order for learning to take
place, the reward function of any time slot must be estimated
by the node that sent a decoy at that time. This information can
be communicated on the network; however, jammed payloads
can impact the distribution of this requisite information.

C. State and Reward Estimation

This section describes how each node individually deter-
mines state-action-reward tuples in order to both evaluate Q()
as well as conduct learning. In order for node i to evaluate Q(),
the system state s(k) must be estimated. Of the components
that make up s(k), the vector of past data channels f (k)c,p and
the current data channel f (k)

c are deterministic and therefore
do not need to be estimated. The vector of past data packet
successes j(k)c,p can be populated based on what messages node i
successfully decoded for time slots where node i was listening
for data packets. In time slots where node i transmitted a
decoy, it will rely on the other nodes broadcasting their history
of successful receptions on the network. Node i will assume
that if more than half of the nodes indicate a successful packet
reception in a time slot where node i transmitted a decoy, then
the data transmission did not get jammed. In time slots where
node i executed an energy scan, H1 can be evaluated on the
energy scan results for the data channel, given that node j was
expected to transmit a data packet and the pathloss between
nodes i and j is known. The vector of past decoy channels

is populated based on a node’s energy scan results from the
time slot prior to it deploying a decoy transmission. If H0 is
accepted for all channels other than f

(k)
c , then node i assigns

∅ to f
(k)
d . Given that node l was expected to transmit a decoy

packet and the pathloss between nodes i and l is known, the
maximum likelihood channel to contain a decoy transmission
from node l, based on the energy measured in each channel,
argmaxfdP (efd |H1) is assigned as the decoy action.

Lastly, node i measures its reward function based on the
other nodes broadcasting their history of successful packets
in their data transmissions. Since a node may not receive all
Nc − 2 reports of packet success in a TDMA frame due to
jammed packets, the estimated reward is scaled up based on
the number of reports received in a TDMA frame to produce
the reward. Our algorithm is summarized in Algorithm 1.

V. VALIDATION RESULTS

Validation Environment and Setup– Our anti-jamming ap-
proach is validated through simulation using NS-3. The deep
learning model is implemented in PyTorch. A network of 32
ZigBee devices, all within range of one another, is imple-
mented using the “lr-wpan” model in NS-3. The log-distance
path loss model with a path loss exponent of 3 models the
power loss between nodes. Stationary ZigBee devices are
placed randomly on a 50 × 50 meter grid. ZigBee signals
can occupy one of the sixteen 2 MHz wide channels with
a transmit power as high as 100 mW. ZigBee does not
implement FEC; hence a single channel error will result in
a packet error. Error detection is achieved with a 16-bit cyclic
redundancy check (CRC) following the payload. It is assumed
that any packet error is caught by the CRC and that CRC
errors are infrequent enough such that they do not affect
performance. Data packets contain 64 bytes, requiring a packet
duration of 2.7 ms, and the TDMA frame duration is 3.8 ms.

The function Q() from Eq. (6) is implemented as a dense
neural network with a single hidden layer. Channels fc are
one-hot encoded vectors with Nc elements– one for each
possible channel. Similarly, decoy actions fd are one-hot
encoded with Nc + 1 elements, having an additional element
indicating no decoy transmission. The input size of the neu-
ral network model is equal to the size of the state vector
s(k) = [f (k)c,p , j(k)c,p , f (k)d,p, f

(k)
c]. Given that Nc = 16, fc is a size-

16 vector and fd is a size-17 vector and using a history of 1
time slot for vectors f (k)c,p and j(k)c,p ; this brings the size of s(k) to
50. The input layer is followed by a single hidden layer with
size 256 and a rectified linear unit (ReLU) activation function.
The output size of the model is equal to 17, the size of fd,
and no activation function is used at the output.

A reactive jammer is placed in the 50× 50 meter grid and
tailors its attacks to specifically target a ZigBee network. A
brief jamming pulse can cause significant damage to a ZigBee
packet due to the lack of FEC in the ZigBee protocol, enabling
highly efficient jamming attacks. We assume the jammer
channel scan pattern is independent of its detections and is
not performing hop-prediction. The jammer is parameterized
as follows: Bj = 10MHz, τjam = 1ms, τsense = 1ms,

Algorithm 1: Anti-jamming policy used by each node
k, kd, Nrx, Nd,rx ← 0
M ← {}
while ALWAYS do

f
(k)
c ← Next channel in data channel list

if mod(k,Nc) = ID then
Change channel to f

(k)
c

Build packet P with P.jc ← [j
(k−i)
c]i≤1≤Nc

Transmit data packet P
else if mod(k + 1, Nc) = ID then

r(kd) ← Nd,rx ×Nc/Nrx

j
(kd)
c ← round(Nd,rx/Nrx)

s(kd) ← [f (kd)
c,p , j(kd)

c,p , f (kd)
d,p , f

(kd)
c]

s(kd+1) ← [f (kd+1)
c,p , j(kd+1)

c,p , f (kd+1)
d,p , f

(kd+1)
c]

M ← {M, (f
(kd)
d , s(kd), s(kd+1), r(kd))}

Train θ on a minibatch from M
f
(k)
d ← argmaxfdQ(fd, s(k)|θ)

Change channel to f
(k)
d

Transmit decoy packet Pd

Nd,rx ← 0
Nrx ← 0
kd ← k

else if mod(k + 2, Nc) = ID then
e← Energy scan

j(k) ←
(
e
f
(k)
c

?
∈ T

)
f
(k)
d ← argmaxfdP (efd |H1)

else
Change channel to f

(k)
c

P ← Listen for data packet
if P.V alidCRC then

j
(k)
c ← 1
Nrx ← Nrx + 1
Nd,rx ← Nd,rx + P.j

(kd)
c

else if (!P.V alidCRC)||(P = ∅) then
j
(k)
c ← 0

end
k ← k + 1
Wait for next time slot

end

τx = 10µs, τf = 10µs, and PFA = 0.1%. The frequency sense
schedule follows a linear sweep between 2.4 and 2.5 GHz in
increments of Bj , so f j = [2.405, 2.415, ...2.485, 2.495]GHz.
Simulation Results– Our data-driven decoy transmission
scheme is evaluated in two scenarios: one with the jammer
present and one without, with results shown in Figure 3 (a).
Upper and lower bounds on the system throughput are evalu-
ated with simulations of the network not employing jamming
mitigation. The upper bound has no jammer present, whereas
the lower bound does have the jammer. When the jammer
is not present, the throughput of the network approaches
1.75 kB/slot as the probability of sending a decoy falls to

Fig. 3. Results comparing (a) best- and worst-case performance, random
decoy actions, and our solution (b) the effect of γ on throughput

0. The throughput difference between this simulation and the
upper bound indicates the cost of implementing our mitigation.
When the jammer is present, the throughput of the network
starts at 0.75 kB/slot and approaches 1.5 kB/slot as time
progresses. The probability of a decoy being transmitted in
a slot is ≈ 1 for the duration of the simulation. As a point of
reference, a random decoy scheme, with decoy transmission
logic similar to [12], is simulated and presented. This scheme
has a lower cost to implement– no sensing requirement and
no communications overhead, which is accounted for in the
figure. In this scheme, the throughput is approximately 0.75
kB/slot and the probability of sending a decoy is ≈ 1 for
the duration of the simulation. Our data-driven mitigation
method is outperforming this method by almost a factor of two,
indicating that our algorithm is indeed effectively countering
the jammer, and not making random decisions.

Figure 3 (b) presents this comparison of the effect of
changing γ. The discount factor is intended to account for
the best possible reward of the state that an action moves the
environment to. We see, however, that a greedy strategy is
performing best with respect to throughput, as increasing this
hyperparameter above 0 degrades the performance.

VI. CONCLUSION

We have outlined an anti-jamming technique using a data-
driven model to instruct a network how to send deceptive
transmissions in order to mislead an adversarial jammer. We

presented a practical means to measure all of the information
necessary to enable wireless nodes to learn online how to com-
bat a jammer with a range of parameters. Simulation results
using NS-3 are used to validate this technique, showing that
(1) decoy transmissions can improve the throughput when the
network is under attack and (2) using reinforcement learning
to measure the effect of a decoy action and improve future
actions can provide additional throughput improvements.

A vulnerability to this technique lies in the dependency on
energy scanning. Energy, while a simple and useful feature
for evaluating the hypothesis tests outlined in Section III-C,
does not say much about the content of the received signal.
As such, using this to measure part of the system state leaves
sensing nodes open to having their own sensing measurements
polluted by the adversary. A more intelligent detector could
fill this vulnerability– possibly RF fingerprinting.

Lastly, a more intelligent jammer could employ the follow-
ing: (1) hop prediction, (2) covert jamming, or (3) poisoning
attacks, any of which could impact the performance of this
technique. To address (1), using a learning model to drive the
data channel pattern is of interest, though poses a substantial
technical challenge. To address (2) and (3), specialized de-
tectors can be designed to improve state measurements. The
aforementioned issues will be addressed by our future work.

REFERENCES

[1] L. Chettri and R. Bera, “A Comprehensive Survey on Internet of Things
(IoT) Toward 5G Wireless Systems,” IEEE Internet of Things Journal,
vol. 7, no. 1, pp. 16-32, 2020.

[2] H. Pirayesh, and H. Zeng. “Jamming attacks and anti-jamming strategies
in wireless networks: A comprehensive survey.” IEEE Comm. Surveys
& Tutorials, 2022.

[3] Ó. Puñal, C. Pereira, A. Aguiar and J. Gross, “Experimental Charac-
terization and Modeling of RF Jamming Attacks on VANETs,” IEEE
Trans. on Vehicular Tech., vol. 64, no. 2, pp. 524-540, 2015.

[4] K. Grover, A. Lim, and Q. Yang. “Jamming and anti–jamming tech-
niques in wireless networks: a survey.” Int. J. of Ad Hoc and Ubiquitous
Computing vol 17, no. 4, pp. 197-215, 2014.

[5] F. Yao, et al. “A hierarchical learning approach to anti-jamming channel
selection strategies.” Wireless Networks vol. 25, no. 1, pp. 201-213,
2019.

[6] L. Jia, et al. “A game-theoretic learning approach for anti-jamming
dynamic spectrum access in dense wireless networks.” IEEE Trans. on
Vehicular Technology vol 68, no.2, pp. 1646-1656, 2018.

[7] L. Xiao, D. Jiang, D. Xu, H. Zhu, Y. Zhang and H. V. Poor, “Two-
Dimensional Antijamming Mobile Communication Based on Reinforce-
ment Learning,” IEEE Trans. on Vehicular Tech., vol. 67, no. 10, pp.
9499-9512, 2018.

[8] X. Wang, M. Cenk Gursoy, T. Erpek and Y. E. Sagduyu, “Jamming-
Resilient Path Planning for Multiple UAVs via Deep Reinforcement
Learning,” Proc. IEEE Int. Conf. on Comm. Workshops, 2021.

[9] N. I. Mowla, N. H. Tran, I. Doh and K. Chae, “AFRL: Adaptive
federated reinforcement learning for intelligent jamming defense in
FANET,” J. of Comm. and Networks, vol. 22, no. 3, pp. 244-258, 2020.

[10] N. Van Huynh, D. N. Nguyen, D. T. Hoang and E. Dutkiewicz, “Defeat-
ing Reactive Jammers with Deep Dueling-based Deception Mechanism,”
Proc. IEEE Int. Conf. on Comm., 2021.

[11] W. Li, J. Wang, L. Li, X. Chen, W. Huang and S. Li, “Counter-
measure for Smart Jamming Threat: A Deceptively Adversarial Attack
Approach,” Proc. IEEE Int. Conf. on Comm., 2021.

[12] S. Sciancalepore, et al. “Strength of Crowd (SOC)-Defeating a Reactive
Jammer in IoT with Decoy Messages.” Sensors, vol. 18, no. 10, pp.
3492, 2018.

[13] H. Urkowitz, “Energy detection of unknown deterministic signals,” Proc.
of the IEEE, vol. 55, no. 4, pp. 523-531, 1967.

	Blank coversheet.pdf
	a835-frisbie final

