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Abstract
Extracellular vesicles (EVs) carry diverse bioactive components including nucleic
acids, proteins, lipids and metabolites that play versatile roles in intercellular and
interorgan communication. The capability to modulate their stability, tissue-specific
targeting and cargo render EVs as promising nanotherapeutics for treating heart,
lung, blood and sleep (HLBS) diseases. However, current limitations in large-scale
manufacturing of therapeutic-grade EVs, and knowledge gaps in EV biogenesis and
heterogeneity pose significant challenges in their clinical application as diagnostics
or therapeutics for HLBS diseases. To address these challenges, a strategic workshop
withmultidisciplinary experts in EV biology andU.S. Food andDrugAdministration
(USFDA) officials was convened by theNational Heart, Lung and Blood Institute. The
presentations and discussions were focused on summarizing the current state of sci-
ence and technology for engineering therapeutic EVs for HLBS diseases, identifying
critical knowledge gaps and regulatory challenges and suggesting potential solutions
to promulgate translation of therapeutic EVs to the clinic. Benchmarks to meet the
critical quality attributes set by the USFDA for other cell-based therapeutics were
discussed. Development of novel strategies and approaches for scaling-up EV pro-
duction and the quality control/quality analysis (QC/QA) of EV-based therapeutics
were recognized as the necessary milestones for future investigations.

KEYWORDS
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 INTRODUCTION

Extracellular vesicles (EVs) are a heterogeneous group of nanosized lipid membrane vesicles that are released by many different
cell types (Thery et al., 2018). Basically, EVs can be classified based on their biogenesis (Figure 1) into two categories, exosomes
and ectosomes (Kalluri & LeBleu, 2020; van der Pol et al., 2016; Yanez-Mo et al., 2015). Exosomes are vesicles ranging∼40–160 nm
in diameter generated by the endocytic pathway and released upon fusion of endosomal multivesicular bodies (MVBs) with the
plasma membrane (Kalluri & LeBleu, 2020; van der Pol et al., 2016; Yanez-Mo et al., 2015). Ectosomes are shed directly from the
plasma membrane of diverse cell types and include microvesicles, migrasomes, exophers, apoptotic bodies and large oncosomes
in the size range of ∼50 nm–∼5 μm (Buzas, 2022; van der Pol et al., 2016). Apart from removing toxic or unwanted molecular
materials from cells as a means for maintaining cell homeostasis (Yanez-Mo et al., 2015), EVs can also transfer various bioac-
tive molecules, including proteins, nucleic acids, lipids and metabolites from donor cells to recipient cells, acting as important
mediators of intercellular or inter-organ communication at paracrine and systemic levels in both physiological and pathological
conditions (Yanez-Mo et al., 2015). Recently,many non-vesicular (non-EV) extracellular particles, such as lipoproteins, exomeres,
supermeres, chromatimeres and several others were also found to carry distinct protein or RNA cargo and mediate intercellular
communication (Mittelbrunn & Sanchez-Madrid, 2012; Zhang et al., 2019; Zhang, Jeppensen et al., 2021).

Accumulating evidence suggests that EVs are abundantly distributed in human body fluids including blood, urine, saliva,
breast milk, cerebrospinal and synovial fluid, bile and tears (Doyle & Wang, 2019). The surface and luminal content of EVs of
different cellular origins are dynamically regulated by different pathophysiological states (Yanez-Mo et al., 2015), suggestive of
their potential as biomarkers for the diagnosis and prognosis of heart, lung, blood and sleep (HLBS) diseases. In addition, owing
to their endogenous biogenesis, EVs are produced naturally with an extensive range of natural properties, such as high biocom-
patibility, limited immunogenicity, immune priming, homing, cargo diversity and capacity, enhanced stability in circulation and
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F IGURE  Heterogenous populations of EVs and non-vesicular extracellular particles. Based on the biogenesis pathways, EVs can be classified into two
basic categories, including exosomes and ectosomes. Exosomes are vesicles ranging ∼40–160 nm in diameter generated by the endocytic pathway and released
upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. Ectosomes are released by the outward budding of the plasma membrane
and include migrasomes, microvesicles, exophers, apoptotic bodies, large oncosomes and others, in the size range of ∼50 nm–∼5 μm. Non-vesicular
extracellular particles are non-membranous complexes of proteins and nucleic acids with a diameter of less than 80 nm, that include exomeres, supermeres,
chromatimeres, lipoproteins and several others. The mechanisms of non-vesicular extracellular particle biogenesis are unknown, and such particles were not
the focus of this workshop. All the above groups may overlap in size

ability to cross blood-tissue barriers, offering the promise that EVs may prove a unique platform for standalone therapies or as
drug delivery systems (Meng et al., 2020).
Despite remarkable utility of natural EVs derived directly from stem/progenitor cells, their limitations (low yield, low purity,

heterogeneous cargo) pose major hurdles in their applications for treating HLBS diseases (Vader et al., 2016). These limitations
can be partially circumvented by engineering EVs with a desired therapeutic cargo, enhanced stability and efficacy, optimized
tropism and precise targeting specificity to desired cells and tissues for therapeutic applications, including but not limited to
vaccination and drug-delivery (Claridge et al., 2021).
Engineering of therapeutic EVs can be carried out using the following approaches (Figure 2): (1) Enrichment of endogenous

molecules in EVs by culturing parent cells under specific conditions, such as hypoxia preconditioning or in particular media; (2)
Gene editing of the source cells to secrete EVs carrying desired cargo; (3) Modification of EV membranes for targeted delivery
to specific cells or tissues and (4) Loading isolated cell-derived or synthetic EVs with therapeutic cargo (de Abreu et al., 2020;
Piffoux et al., 2021). Importantly, engineered EVs have already been used successfully for the delivery of therapeutically relevant
molecules, including miRNAs, proteins and small molecules for treating HLBS diseases in various preclinical studies (de Abreu
et al., 2020).
Around ∼300 clinical trials proposing the use of EVs as diagnostics or therapeutics have been registered at clinicaltrials.gov

(https://clinicaltrials.gov/) to date. Althoughmost of these trials were based on using endogenous (unmodified) EVs, the concept
of using engineered EVs in clinical trials has lately gained attention in the treatment of cancer, familial hypercholesterolemia and
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F IGURE  Strategies for engineering therapeutic EVs. Both EV membrane and cargo can be engineered either endogenously or exogenously for
therapeutical applications. Endogenous EV engineering refers to modulating EV-secreting (parent) cells by exposing them to stress-induced conditions or
transfecting these parent cells with exogenous compounds, such as nucleic acids, small molecules, lipids and proteins. Exogenous EV engineering is based on
the modifications of isolated EVs that include exploiting the hydrophobicity of EV membranes to carry a cargo of interest on the EV surface or permeabilizing
the EV membranes using approaches, such as electroporation, freeze-thaw procedures, sonication, surfactant treatment, and chemical transfection to carry the
cargo of interest as the luminal cargo in EVs. EV membranes can also be used to encapsulate cargo-carrying nanoparticles (NPs) or EVs can be fused to
cargo-carrying lipid nanoparticles (LNPs)

COVID-19 (Kamerkar et al., 2022; Li et al., 2021; Xie et al., 2021). Despite the growing enthusiasm to explore the potential capacity
of EVs as novel diagnostics and therapeutics, there are still major gaps in the knowledge and technology for engineering EVs to
treat HLBS diseases.
To identify the critical knowledge gaps and research opportunities in the broad EV field and to explore the utility of native or

engineered EVs for the diagnosis, prognostics and treatment of HLBS diseases, a strategic workshop was held by the National
Heart, Lung and Blood Institute (NHLBI) in September 2021. A pro versus con debate on whether EVs are ready for human
therapeutic applications was presented by Dr. Eduardo Marbán and Dr. Phillip Yang. The advantages of EV-based therapeutics,
including biologic plausibility, immune privilege, specific targeting and engineering versatility and the ongoing clinical trials
on utilizing EVs as therapeutics or diagnostics, were highlighted by Dr. Marbán (Marban, 2018). Three major concerns were
raised by Dr. Yang as challenges in the clinical application of EVs: (1) Biological unknowns including the heterogeneity of EV
populations and cargo; (2) Pharmacological unknowns such as dosing, delivery route, biodistribution, pharmacokinetics and
pharmacodynamics and (3) Setting-up scalable engineering strategies and standard operating procedures for manufacturing
high-yield engineered EVs with efficient and consistent drug loading. The thus-far-limited regulatory guidance from the U.S.
Food and Drug Administration (USFDA), which aims to ensure the safety and efficacy of cell-derived therapeutics such as EVs,
was also discussed.
To address these challenges and identify milestones for future investigations in the next decade, the presentations and discus-

sions between experts at this workshop were focused on the following four thematic sessions: (1) engineering the membrane of
EVs for HLBS disease therapy; (2) engineering the cargo of EVs for HLBS disease therapy; (3) lessons from other cell membrane-
derived vesicles and other diseases and (4) leveraging EV biology for novel diagnostics and prognostics. At the conclusion of
this workshop, the group of experts (expert panel) identified key areas for future studies required to improve the engineering of
EVs for HLBS diseases, emphasized the need to develop novel techniques for precision analysis of EV-therapeutic function and
identified the technological milestones necessary for scaling-up the production of therapeutic EVs.
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 ENGINEERING THEMEMBRANE OF EVS FOR TREATINGHLBS DISEASES

The biochemical composition of the EV membrane and the repertoire of adhesive epitopes presented by the EV membrane
dictate the efficacy of EVs for use in the treatment of HBLS diseases. During this workshop, several speakers discussed the
advantages and limitations of existing strategies used for designing of EV membranes and several areas with room for further
improvement were identified to guide the engineering of membranes for therapeutic EVs. Deborah Nelson from the University
of Chicago introduced the concept of using EVs as vehicles for functional transfer of membrane proteins to target cells, such
as engineering EVs to carry the chloride-channel Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) protein as a
membrane cargo to CFTR-deficient alveolar macrophages for restoring their phagosomal microbicidal activity or transferring
the functional light-activated ORAI-1 Ca2+ channels to cells lacking these channels. The presence of fluorescent cargo on EVs
allows size validation and characterization of EVs using new nano-flow cytometry-based or high-resolution microscopy-based
approaches. These include total internal reflection fluorescence (TIRF) microscopy or super resolution Stimulated Emission
Depletion Microscopy (STED) microscopy and their roles as complementary approaches was discussed. In addition to these
methodologies for characterizing EVs, newer approaches designed to address limitations of current methods for EV isolation
were also discussed. Specifically, use of size-exclusion columns (SECs), high-pressure liquid chromatography based-asymmetric
field flow fractionation (AF4), or magnetic beads-targeted to cargo-protein present on EV membranes were suggested to over-
come the limitations of ultracentrifugation, which is known to lead to EV aggregation and contamination by soluble proteins
and may not be practical to support commercial-scale manufacture. Several areas of improvement were identified to engineer
EV-membranes for delivery of membrane proteins to target cells, such as (1) inclusion of poly-ethylene-glycol (PEG) in EV sus-
pensions to improve fusion of EVs with recipient cells, (2) using cell or virus-derived fusion proteins to ensure EV fusion to
the target-cell plasma membrane in vivo without promoting endosomal degradation of EVs following fusion, (3) elucidating
the molecular mechanism of EV generation or secretion to increase the yield of EVs carrying specific membrane-cargo and (4)
developing strategies to enrich subsets of EVs carrying therapeutically potent levels of desired protein(s) on the membrane.
In the same session, Jennifer Lang from SUNY-Buffalo highlighted several approaches for engineering EV membranes for

potential application in cardiac cell repair post myocardial infarction (MI) or chronic coronary artery disease (CAD). Based on
the existing evidence, EVs-derived from cardiac progenitor cells, such as cardiosphere-derived cells (CDC-EVs), were suggested
to be therapeutically beneficial in reducing cardiomyocyte apoptosis, leading to reduced infarct size in preclinical models of MI
(Gallet et al., 2017; Ibrahim et al., 2014; Lang et al., 2016; Maring et al., 2017). Genetic modification approaches that involve fusion
of the gene sequence of a guiding protein or polypeptide, such as cardiomyocyte-specific binding peptide (CMP) with a selected
protein abundantly present on EV membranes including Lysosome-Associated Membrane Protein 2, Isoform B (LAMP-2b) or
a tetraspanin (CD63/CD9/CD81) or glycosylphosphatidylinositol (GPI)-anchor, were suggested to be appropriate for improving
the recruitment of EVs in the myocardium. Transfection of cardiomyocytes with lentiviral vectors carrying expression plasmids
for a Lamp-2b-CMP fusion protein was suggested to generate Lamp-2b-CMP expressing EVs that manifest functional properties
identical to unmodified EVs; recruit more efficiently than unmodified (untargeted) EVs tomurine cardiomyocytes, but not other
cardiac cells; prevent cardiomyocyte apoptosis in cell culture studies in vitro and target primarily in the heart and fusewith cardiac
myocytes, leading to improved cardiac function in mice in vivo (McGuire et al., 2004; Mentkowski & Lang, 2019). EVs injected
intravenously into the mice are known to be rapidly cleared by CD68+macrophages, primarily in the liver, lung and spleen. To
circumvent this limitation, intra-myocardial administration was suggested to be more efficient in promoting EV recruitment,
internalization and retention in the murine myocardium. However, this route of administration is not therapeutically efficient in
the clinic, suggesting the need for better approaches to engineer EV-membranes to ensure efficient delivery of EVs administered
systemically to the myocardium (Mentkowski et al., 2018).

Next, Xi Ren from Carnegie Mellon University introduced a relatively newer concept of using biomaterial immobilized-EVs
as delivery vehicles to improve therapeutic efficacy of cargo drugs. This approach relies on metabolic glycan engineering of EV
surfaces to express azide-labelled glycans using azido monosaccharide probes, such as a mannosamine analogue carrying an
azide-group (Ac4ManNAz), which can be included on endogenous membrane proteins of EVs as a post-translational glycosy-
lation modification. The azide group allowed EV detection using fluorescence imaging and efficient EV immobilization in the
extracellular matrix (ECM) using copper-free click chemistry, which is based on the reaction of a dibenzocyclooctyne moiety
(DBCO) present on collagen with the azide-group present on EV surface. Data using mesenchymal stem cell (MSC)-generated
EVs was shared to confirm that the surface azide expression on EVs (Az-EVs) had no effect on the EV-size distribution, endothe-
lial uptake of EVs, or EV-dependent endothelial cell proliferation and migration in in vitro cell culture studies. Importantly,
Az-EVs were shown to exhibit stable retention within collagen matrix expressing DBCO and be more efficient than unmodified
EVs even at lower doses in promoting angiogenesis and macrophage infiltration in DBCO-modified hydrogels subcutaneously
implanted in mice (Xing et al., 2022). However, the need to modify not only the EVmembranes, but also the ECMwas identified
as a major hurdle by the expert panel; such an approach will require more research and development before translation to the
clinic. A possible systemic immune response to Az-EVs or the modified ECM was another concern raised by the expert panel;
this will also require further investigation using more comprehensive in vivo animal studies.
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 ENGINEERING THE CARGOOF EVS FOR TREATINGHLBS DISEASES

The major limitations in the therapeutic application of bioactive molecules, including RNAs, DNAs and proteins, are associated
with their poor transport across cell membrane or tissue barriers and the risk of rapid digestion by the extracellular enzymes
(Murphy et al., 2019), which can be potentially circumvented through the use of an appropriate vehicle for the targeted-delivery
of these molecules to cells or organs of choice (Murphy et al., 2019). Conventional strategies to overcome these barriers involve
chemicallymodifying thesemolecules to promote uptake, distribution and stability by delivering the geneticmaterials using engi-
neered virus (e.g., Adeno-Associated Virus, AAV) (Kuzmin et al., 2021) or enveloping the biological molecules within synthetic
nanoparticles (e.g., lipid nanoparticles, LNPs) (Anselmo & Mitragotri, 2021). In the second session of this workshop, speakers
discussed strategies for engineering nanoparticles that could potentially be used to engineer EVs as drug vehicles and highlighted
the therapeutic potential of EVs with functional cargo in HLBS diseases. Lola Eniola-Adefeso from the University of Michigan
summarized three strategies for the engineering of EVs as drug delivery vehicles (Herrmann et al., 2021). The first strategy used
natural EVs derived from producer cells that are manipulated to produce biological therapeutics, including RNAs, DNA, pro-
teins, lipids and chemical drugs. Two modes of manipulating producer cells to produce EVs with desired cargo were discussed:
transfection of the cells with natural or tagged genetic materials and co-incubation of the cells with small chemical drugs. For
instance, insertion of the exosome sorting miRNA motif (EXOmotif) in a miRNA of choice increases the export of this miRNA
into EVs (Garcia-Martin et al., 2022; Villarroya-Beltri et al., 2013), while tagging the targeted proteins with aWWdomain results
in efficient loading of this protein into EVs (Sterzenbach et al., 2017). Incubating the cells with small molecular drugs (e.g.,
methotrexate) was also demonstrated to be an efficient method to package small molecular drugs into EVs (Guo et al., 2019).
The major advantage of EVs derived from engineered/modified producer cells is that the native cell/tissue-targeting properties
of these EVmembranes can be employed for targeted delivery of therapeutic cargo. The second strategy used post-modified EVs
that are generated by loading the isolated EVs with the cargo of choice using various strategies, ranging from passive loading
(co-incubation of EVs with desired molecular cargo) to active methods, such as thermal shock, extrusion, chemical transfec-
tion, sonication and electroporation (Witwer & Wolfram, 2021). Hydrophobic molecules, such as curcumin and doxorubicin,
which can cross plasma membranes, can also infiltrate into EVs during co-incubation under ambient conditions (Tian et al.,
2014; Zhuang et al., 2011). Electroporation, which temporally induces pores in the membranes of EVs and thereby allows biolog-
ical materials to enter EV lumen, has been widely used for packaging small chemical drugs (e.g., paclitaxel), RNAs, DNAs and
proteins into EVs (Li et al., 2018; Zhang, Cheng et al., 2021). Although electroporation seems to be an advantageous approach for
loading therapeutics into EVs, it may alter the physicochemical and morphological characteristics of EVs and induce EV aggre-
gation. To overcome this limitation, several other strategies were proposed to maximize the loading efficiency with minimal
alteration of EV characteristics. For example, co-incubation of cholesterol-conjugated siRNAs with EVs has been shown to load
therapeutic siRNAs into EVs efficiently (Didiot et al., 2016). Sonication was also suggested to be another suitable alternative for
active incorporation of RNAs, proteins and small molecules into EVs without inducing significant EV aggregation (Lamichhane
et al., 2016; Rankin-Turner et al., 2021). The third strategy used endogenous EV membranes to coat the synthetic drug carriers
resulting in improved biocompatibility, prolonged half-life in circulation and improved biological function (Fang et al., 2018;
Guerrini et al., 2018; Mathieu et al., 2019). Indeed, doxorubicin-loaded porous silicon nanoparticles coated with EV membrane
have been shown to assemble inside the tumour cells by employing endogenous EV biogenesis pathways (Yong et al., 2019).
In addition, synthetic nanomaterials can be coated with EV membrane in a cell-free condition using lipid fusion or sonication
(Liu et al., 2019). Also, liposomes carrying a desired drug can be fused with EVs to enhance the tissue-specific targeting of lipo-
somes (Sato et al., 2016). The expert panel discussed how EVmembrane-modified nanoparticlesmay exhibit multiple advantages
over unmodified nanoparticles and EVs, including diverse and abundant drug loading, controlled release of loaded drugs and
enhanced targeting specificity. Meanwhile, the need to understand the alteration of EV membrane biophysical characteristics
during coating, and how these changes may interfere with the in vivo circulation of EV-membrane coated nanoparticles were
also discussed.
In the same session, James Dahlman from the Georgia Institute of Technology introduced several novel platforms using DNA-

barcoded LNPs to deliver RNA-based therapeutics to diverse tissues. Evidence was provided to demonstrate that LNPs were
comparable in size, shape and structures to prokaryotic and eukaryotic cell-derived EVs (Witwer & Wolfram, 2021). Although
targeted nanoparticles may show homing specificity to certain tissues in vitro, the same delivery specificity by nanoparticles usu-
ally is hard to recapitulate in vivo in animal models (Gregoriadis & Ryman, 1972; Paunovska et al., 2018; Zhang et al., 2018). To
facilitate the discovery of specific nanoparticles targeting diseased tissues/cells in vivo, Dr. Dahlman shared his newly developed
nanoparticle platform to simultaneously examine the biodistribution of many chemically distinct nanoparticles by formulat-
ing nanoparticles to carry specific DNA barcodes and sequencing these barcodes in different organs following administration
(Dahlman et al., 2017). Although the platform allowed precise estimation of biodistribution in vivo, early evidence suggested
insufficient functional cargo delivery due to the inefficient escape of loaded cargo from the endosome into the cytosol (1%–2%)
(Gilleron et al., 2013). To circumvent this limitation, Dr. Dahlman shared another system, named Fast Identification of Nanopar-
ticle Delivery (FIND), which was created by co-formulating different LNPs with unique DNA barcodes and functional RNAs,
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such as siRNAs, guide RNAs or mRNAs of Cre or Cas9 (Sago et al., 2018). The screening of hundreds of chemically distinct LNPs
using the FIND system led to identification of several LNPs that specifically deliver functional cargo into splenic endothelial cells
(Sago et al., 2018), hepatic endothelial cells (Paunovska et al., 2019), Kupffer cells (Paunovska et al., 2019) and lung endothelial
cells (unpublished) following systemic administration. A similar strategy using DNA-barcoded LNPs carrying an aVHHmRNA
in various humanised or primatized mice was shown to result in the species-dependent uptake and processing of different LNPs
(Hatit et al., 2022). Using another cluster-based LNP screening system, the efficient nebulization-based delivery of therapeutic
RNAs to lung was found to need distinct LNP formulations compared to the ones used for systemic delivery (Lokugamage et al.,
2021), suggesting that several strategies for designing LNPs would be needed for engineering therapeutic cargo-loaded synthetic
EVs. The expert panel also discussed whether it would be possible in future to barcode EV populations derived from different
cell types or biogenesis pathways to screen the target cells of these EV populations in vivo.
Next, Tianji Chen from the University of Illinois at Chicago shared the concept of using endogenously engineered

endothelium-derived EVs to treat pulmonary hypertension (PH) in rodent models. Pulmonary vascular endothelial cells
(PVECs) and pulmonary artery smooth muscle cells (PASMCs) are two cell types in the lung that are critical to maintaining
vascular homeostasis; derangement of their intercellular communication is a key step in the pathogenesis of pulmonary vascu-
lar structural remodelling in all forms of PH (Gao, Chen et al., 2016). Importantly, EVs released from PVECs under hypoxic
conditions have been shown to have higher expression of miR-210-3p (a well-known pro-proliferative miRNA), and miR-212-
5p (a recently identified anti-proliferative miRNA) and to induce PASMC proliferation, pulmonary vascular remodelling and
PH in mice (Chen et al., 2022b). Dr. Chen shared published and unpublished findings to show how endogenous cell-derived
EVs carrying either miR-212-5p mimetics or miR-210-3p antagonists can be engineered to test their potency in treating PH in
rodent models (Chen et al., 2022a). She demonstrated how this can be achieved using a lentiviral system to express miR-212-5p
or antagonists against miR-210-3p with an EV-sorting sequence (GGAG) at the 3′-end to direct them into endogenous EVs prior
to their release from PVECs. Finally, Dr. Chen showed that intratracheal instillation of these engineered PVEC-EVs into PH
rodents led to efficient delivery of miR-212-5p and/or miR-210-3p antagonists into the lung and lung vessels, leading to attenu-
ation of PH. These results highlighted the therapeutic potential of engineered PVEC-EVs in the treatment of PH and the need
for development of improved strategies to engineer such EVs for other HLBS diseases.
Nykia D. Walker from the University of Maryland Baltimore County discussed the potential of MSC-based therapies, includ-

ing administration of MSC-derived EVs or direct transfusion of MSCs to deliver EVs to the target cells in vivo to promote tissue
repair (Munoz et al., 2013). MSCs, a population of cells identified based on a distinct repertoire of membrane proteins expres-
sion reside in various organs and can be derived from multiple tissues/cells (Dominici et al., 2006; Pittenger et al., 1999, 2019).
MSCs can migrate to injured sites, differentiate into various functional somatic cells, believed to promote tissue repair and man-
ifest potent immunomodulatory properties through EV-mediated remote intercellular communication (Borger et al., 2017; Kean
et al., 2013; Song et al., 2020). Dr. Walker showed that TLR4 priming of MSCs by Lipopolysaccharide (LPS) treatment induced
a pro-inflammatory phenotype leading to secretion of IL-6, IL-8 and EVs enriched with miR-146a, while TLR3 priming led to
anti-inflammatory MSCs producing nitric oxide (NO), indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE-2) and EVs
abundant in miR-221-3p (Borger et al., 2017; Levy et al., 2020; Walker et al., 2019). Additionally, Dr. Walker identified a subset
of patients with progressively elevated MSC migration in peripheral blood at various stages of orthotopic liver transplantation
surgery and recovery (Walker et al., 2017). This finding supports the concept that MSCs are both capable of retrieving inflam-
matory signals and recruiting to injured tissues. The anti-inflammatory effects and the ability of differentiation to somatic cells
(e.g., cardiomyocytes) suggest that MSCs can be useful in therapies for HLBS diseases (Diederichsen, 2017; Guo et al., 2020). Dr.
Walker discussed an emerging approach, which uses MSC-derived EVs as cell-free regenerative therapeutics against HLBS dis-
eases by delivering functional cargo (e.g., miRNAs) with versatile protective effects including anti-inflammation, anti-apoptosis,
anti-fibrosis and pro-angiogenesis to diseased cells (Panda et al., 2021; Sun et al., 2021). Dr.Walker also shared some new evidence
highlighting how local MSC-EV delivery can be achieved in future by direct transplantation at the injured site or intravenous
administration of engineeredMSCs with pertinent EV cargo to promote tissue repair. This strategy of directly engineeredMSCs
transplantation may sound more therapeutically potent than MSC-EVs administration, however, such an approach can be lim-
ited by the replicative senescence and aging of MSCs, and therefore, future in vivo studies are needed to further explore the
therapeutic potential of directly engineered MSC-based therapy in HLBS diseases.

 LESSONS FROMOTHER CELLMEMBRANE-DERIVED VESICLES ANDOTHER DISEASES

Studies done over the last decade have led to better understanding of the mechanisms underlying EV biogenesis, the diversity
and sorting of cargo proteins/DNA/RNA in EVs and the biological function of endogenous EVs released by different types of
cells during both disease and healthy conditions in vivo (Aatonen et al., 2012; Andaloussi et al., 2013; Catalano&O’Driscoll, 2020;
Kalluri & LeBleu, 2020; Lawson et al., 2016;Mathieu et al., 2019; Raposo & Stoorvogel, 2013; Shah et al., 2018; Sung et al., 2020; van
der Pol et al., 2016; van Niel et al., 2018; Xunian & Kalluri, 2020). During this workshop, a session was focused on identifying how
EV-biology in other diseases can be harnessed to developEVdiagnostics forHLBSdiseases or engineer EVs that aremore efficient
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for therapeutic use in HLBS diseases. Peter Kurre from Children’s Hospital of Philadelphia shared the current understanding of
the role that EVs play in regulating hematopoietic function in the bone marrow niches, and how this is altered in the progression
of acute myeloid leukaemia (Akinduro et al., 2018; Boyd et al., 2017; Doron et al., 2018; Miraki-Moud et al., 2013; Schepers et al.,
2013). Findings suggest that EVs released in the bonemarrow contribute to the crosstalk between hematopoietic stem cells (HSCs)
and acutemyeloid leukaemia (AML) cells, and this crosstalk can be used as amodel to understand the role of EVs in regulating the
microenvironment within the bone marrow niches (Abdelhamed et al., 2019, 2021; Doron et al., 2019; Hornick et al., 2015, 2016;
Huan et al., 2013, 2015; Viola et al., 2016). Studies using an AML xenograft model in mice have identified that EVs from human
AML cells transport human transcripts such as FLT3 and CXCR4 to murine hematopoietic stem progenitor cells (HSPCs) in the
bone marrow and how AML EVs carrying miRNAs regulate function of residual HSPCs by targeting the critical transcription
factor c-Myb, leading to progression of AML (Abdelhamed et al., 2021; Hornick et al., 2016). These studies also identified that EVs
derived from AML cells-carry a different set of miRNAs which regulate the function of HSCs by targeting the mTOR-pathway,
leading to the arrest of protein synthesis (Abdelhamed et al., 2019, 2021). Interestingly, in addition tomodulating the bonemarrow
function in other types of blood cancers, EVs have also been shown to play a role in regulating HSPC function under healthy
homeostatic conditions (Aliotta et al., 2012; Boysen et al., 2017; Corrado et al., 2014; Goloviznina et al., 2016; Huang et al., 2021;
Kumar et al., 2018; Roccaro et al., 2013; Szczepanski et al., 2009; Wen et al., 2016). Evidence provided by Dr. Kurre suggested
that much can be learned by understanding the role of HSPC-derived EVs in affecting the fate of other HSPCs by promoting
differentiation to various cell types, self-renewal or senescence, endothelial activation and angiogenesis (Hurwitz et al., 2020). For
example,HSPC-derivedEVs carrying the stem cellmarkerCD133 primarily target stromal cells, but not otherHSPCs (Bauer et al.,
2011). Also, disruption of EV biogenesis leads to impaired quiescence, self-renewal, stress resistance and increased apoptosis in
HSPCs (Alexander et al., 2017; Gu et al., 2016; Hu et al., 2022), most likely due to the impairment of autocrine signallingmediated
by EV-associated stemness factors thrombopoietin (TPO), angeopoeitin-like2 (Angptl2) and possibly ligands for other receptors
present on HSPCs (Hurwitz et al., 2020; Teng & Fussenegger, 2020). Emerging evidence was also shared to support a role for EVs
in paracrine signalling between HSPCs, megakaryocytes and neutrophils (Hurwitz et al., 2020). Similarly, CD34+ EVs released
byCD34+HSPCs are known to be enriched specifically inmiRNAs and certainmembrane integrins, suggesting that CD34+EVs
can be used for delivery ofmiRNAs to target cells based on the integrin expression on the EVmembrane (French et al., 2017; Sahoo
et al., 2011). The expert panel realized that better understanding of these mechanisms regulating EV-dependent autocrine and
paracrine signalling in HSPCs could possibly be harnessed for designing EVs that are more efficient for tissue-specific targeting
in HLBS-diseases therapy (Qin & Dallas, 2019).
Zhenjia Wang fromWashington State University shared the concept of using neutrophil membrane to create nanovesicles for

treating lung inflammation in the setting of acute lung injury (ALI). This strategy involves neutrophil disruption by nitrogen
cavitation followed by separation of membrane components using series of ultracentrifugation steps and extrusion through a
membrane of specific pore size (∼50–200 nm) to generate neutrophil-membrane-derived nanovesicles (Gao, Chu et al., 2016).
These neutrophil-derived nanovesicles express major adhesion molecules and receptors on the neutrophil membrane, such as
CD18 (β2-integrin chain), toll like receptor-4 (TLR4), P-selectin-glycoprotein-ligand-1 (PSGL-1) andCD49d (α4-integrin chain).
Akin to the parent neutrophils, these nanovesicles were shown to recruit only to inflamed cremaster muscle vasculature in TNF-
treatedmice and lungs of intra-tracheal LPS-treatedmice, but not to healthy tissue in vivo (Gao, Chu et al., 2016; Gao,Wang et al.,
2020;Wang, 2016;Wang et al., 2014), suggesting their potential for delivering therapeutics specifically to the site of inflammation.
Indeed, recent evidence shared by Dr. Wang suggested that neutrophil-derived nanovesicles carrying pro-resolving mediators
Resolvin D1 (RvD1) or D2 (RvD2) as membrane cargo, reduced the time to resolution of lung injury, cytokine storm in the lung
and endothelial ICAM-1 expression and also promoted neutrophil apoptosis in murine models of ALI (Gao, Wang et al., 2020).
Similarly, neutrophil membrane-derived nanovesicles carrying RvD1 on the membrane and antibiotic (ceftazidime) as luminal
cargo were shown to significantly reduce the bacterial load, neutrophil infiltration, cytokine storm and injury in the lungs ofmice
following bacterial infection (Gao,Wang et al., 2020). Some of the concerns raised by the expert panel centred around the lack of
specificity of these nanovesicles to inflamed endothelium in the lung versus other vascular beds, ability to scale-up the method
of nitrogen cavitation, composition of nanovesicle formulation (exosomes, microvesicles or a mixture of both), the possibility of
these nanovesicles promoting immune response and the fate of these nanovesicles following adhesion to endothelium. Therefore,
several limitations and gaps in knowledge of their mechanism of action need to be addressed before these nanovesicles can be
used for treatment of lung and other HLBS diseases (Gao, Dong et al., 2020; Gao et al., 2017).
IonitaGhiran fromBeth IsraelDeaconessMedical Centre discussed the biology underlying generation of red blood cell (RBC)-

derived EVs, how they contribute to cell-cell communication and how they can potentially be used in HLBS diseases therapy.
Besides electron microscopy, newer techniques like nanoflow cytometry, super-resolution fluorescence microscopy, dark-field
microscopy andmagnetic levitation relying on presence of specific antigens on EVs were described asmajor approaches available
for RBC-derived EV analysis or identification of EV-cargo, such as miRNAs in both high and low resource settings (Babatunde
et al., 2018; Oliveira et al., 2020). RBCs are the most abundant cell type in the blood (∼5 × 106/μl of blood), carry a negatively
charged membrane (enriched with sialic acid, glycophorin-A (GPA) and glycocalyx), lack organelles and contain a limited num-
ber of signalling proteins and small RNAs, such asmiR-451 in the cytosol (Kuo et al., 2017). RBC-derived EVs are among themost
abundant species of circulating EVs in the blood (Donadee et al., 2011). Although RBCs lack the signalling mechanism required
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for endocytosis or exocytosis, circadian-driven complement (C5b-9)-mediated ectocytosis is believed to be themainmechanism
for daily generation of RBC-derived EVs in the blood circulation both under healthy and inflammatory states (Donadee et al.,
2011; Iida et al., 1991; Karasu et al., 2018; Thangaraju et al., 2021). In collaboration with Dr. Das, the targets of circulating RBC-
EVs were recently identified using a cre-loxp murine model (Valkov et al., 2021). RBCs isolated from an erythroid-specific-cre
(EpoR-cre) mice underwent complement activation, and the resulting EVs were purified and intravenously administered into
Rosa26-mTmG reporter mice. CRE-containing RBC-EVs that are taken up by the recipient cells and bypass the lysosomal com-
partments, will promote a tomato-to-green fluorescence conversion of the recipient cells. The results showed that physiologically,
RBC-EVs fuse to megakaryocyte-erythroid progenitor cells in the bone marrow, pericytes in the blood vessels, kidney cells, car-
diomyocytes and during inflammatory condition, microglia in the brain. Based on these findings, several questions were raised
by the expert panel. How can RBCs be loaded with a therapeutic cargo to generate cargo-carrying RBC-EVs efficiently? How do
the RBC-derived EVs fuse to the target cell membrane? How do they deliver the cargo into the cytosol by bypassing the lysoso-
mal system? Can RBC-derived EVs promote an immune response (Camus et al., 2015; Donadee et al., 2011; Hierso et al., 2017;
Olatunya et al., 2019)? The better understanding of all these endogenous mechanisms could be harnessed to use RBC-derived
EVs for therapeutic delivery in treatment of HLBS-diseases.
Shannon Stott from the Harvard Medical School was the last speaker in this session and introduced the concept of using

microfluidic platforms to isolate rare populations of cell-specific EVs from the blood of cancer and COVID-19 patients (Li et al.,
2015; Reategui et al., 2015, 2018). Dr. Stott discussed EV isolation from small sample volumes (a few hundred microliters) using
an affinity-based capture methodology wherein interactions between EVs and capture moieties are enhanced by microfluidic
manipulation. Specifically, a microfluidic device (EVHB-Chip) was presented with arrays of tortuous channels functionalized
with antibodies targeted against epitopes (such as PODO, EGFRvIII or PDGFR) expressed on EVs of interest (Reategui et al.,
2018). Such amicrofluidic system functionalizedwith a thermo-responsive biomaterial presenting antibodies attached via a linker
was shown to capture 80% of EVs present in complex biofluids, such as plasma suspensions (Reategui et al., 2018). This approach
was suggested to be significantly more efficient than the traditional methods of Ab-boundmagnetic beads or ultracentrifugation
of serum (Reategui et al., 2015), and proposed to be very efficient in capturing (isolating) rare populations of tumour cell-derived
EVs—as few as 100 EVs/100 μl of sample (Reategui et al., 2018). Several examples were shown to demonstrate how microfluidic-
based EV isolation could be useful in RNA-seq based biomarker or diagnostic studies in brain glioblastoma (brain tumour)
patients. RNAs for major genes, such as EGFRvIII, were shown to be significantly enriched in EVs isolated using EVHB-Chip
compared with ultracentrifugation (Reategui et al., 2018). Evidence showed that RNAseq analysis of EVs isolated using EVHB-
Chip functionalized with an antibody cocktail against EGFRvIII, Cetuximab, PDPN and PDGFR led to the identification of at
least 100 differentially expressed genes in EVs isolated from glioblastoma patients compared with healthy controls, and allowed
discrimination between glioblastoma patients with progressive versus pseudoprogressive disease states based on EV-RNA signa-
tures. Additionally, the small volume of sample (100μl of plasma) needed formicrofluidic-based EV isolation allows this approach
to be used for biomarker discovery in small volumes of plasma from paediatric medulloblastoma patients. Preliminary evidence
was also provided to show how EVHB-Chip can be functionalized with ACE2 receptor for SARS-Cov2 virus or cell-specific Ab
cocktail (CD3, CD4 or CD8 T-cells) to capture virus or cell-specific EVs from the plasma of COVID-19 patients, and how these
EVs can be used for RNAseq to potentially identify patients suitable for immunotherapy or diagnosis of COVID-19 based on
detection of viral RNA in EVs or plasma. Although the microfluidic systems seem to allow high purity isolation of EVs from
small volume plasma samples, several areas for further research and development were identified by the expert panel, such as
the need to combine with sophisticated hardware and software, select optimumAb cocktails, address limitations associated with
the usage of whole blood and investigate how haemolysis, activation of blood cells, coagulation during blood or plasma storage
may affect the efficiency of EV isolation (Tessier et al., 2021; Wong et al., 2017).

 LEVERAGING EV BIOLOGY FOR NOVEL DIAGNOSTICS AND THERAPEUTICS

EVs are abundant in all body fluids (Yanez-Mo et al., 2015), offering promise as potential biomarkers for novel diagnostics and
prognostics (Yuana et al., 2013). The last session of this workshop was focused on the potential of EVs to serve as biomarkers and
therapeutics for HLBS diseases.
GordanaVunjak-Novakovic fromColumbia University introduced the concept of using integrated platformswithmicro-sized

human tissues linked by vascular perfusion to study the crosstalk by EVs between different tissue/organ systems (Ronaldson-
Bouchard et al., 2022). She reported the modular ‘multiorgan on a chip’ (MOC) platform configured with human tissues that
were derived from induced pluripotent stem cells (iPSC): bone, innervated skin, heart and liver. ForMOC to be a useful platform
for biomarker and therapeutic studies, iPSC-derived human tissues need to be sufficiently matured to achieve functional resem-
blance to their native counterparts. To meet this requirement, each tissue was grown and maintained in its optimal environment
(medium composition, molecular and physical regulatory signals) and matured to an adult-like phenotype over approximately
4 weeks of culture. For example, the maturation of heart muscle was achieved by subjecting the forming tissue to electrical
stimulation of an increasing intensity. This protocol resulted in human heart tissue displaying several adult CM-like signatures

 20013078, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jev2.12305 by U

niversity O
f M

aryland, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 of  LI et al.

including gene expression, ultrastructure, metabolism and calcium handling (Ronaldson-Bouchard et al., 2018). Another exam-
ple is the maturation of iPSC-derived skin tissue that was achieved by cultivation on air-liquid interface. The matured tissues
were then linked by vascular flow containing circulating immune cells, cytokines and EVs, with an endothelial barrier separat-
ing the intratissue and intravascular compartments. This way, each tissue maintained their phenotypes over long culture times,
while communicating with other tissues across endothelial barriers and vascular circulation. This biomimetic system recapitu-
lated many aspects of interorgan communication in the human body (Ronaldson-Bouchard et al., 2022). To document crosstalk
between tissues by EVs, one of the tissues (heart) was generated from hiPSCs transfected with a green fluorescent protein (GFP)-
labelledCD63 EV reporter, enabling the tracking of a non-ubiquitous organ-specificmarker of known origin. CD63-EVs secreted
by heart tissues were found in all tissues after 2 weeks of culture in the MOC, suggestive of EV-mediated inter-organ crosstalk.
Similarly, immunofluorescence imaging of the vascular barrier beneath the heart tissue after 2 weeks showed EV uptake by
endothelial cells (Ronaldson-Bouchard et al., 2022). Dr. Vunjak-Novakovic also highlighted the therapeutic effects of EVs derived
from iPSC-CMs on the regeneration of injured heart muscle after MI (Liu et al., 2018). These iPSC-CM-derived EVs were found
to be enriched with cardiac- and vascular-specificmiRNAs that modulate the cardiac response to injury. Numerous other studies
support the therapeutic use of miRNAs to control gene expression through specific targeting of mRNAs (Liu et al., 2021). Based
on these studies, the current challenges and considerations relevant for translating the use of EVs as diagnostics or therapeutics
were discussed, including the use of physiologically relevant in vitro models (e.g., MOC) and improved understanding of the
complexity of the EV biology.
Next, Robert L. Raffai from the University of California at San Francisco discussed the biological roles of macrophage-

derived EVs and their potential applications as biomarkers and therapeutics in cardiometabolic diseases, such as atherosclerosis.
Macrophages are primary innate immune cells that reside in nearly all tissues with tissue-specific characteristics (Gentek et al.,
2014). Macrophage-derived EVs can deliver proteins, lipids and genetic materials to recipient cells, which play pivotal roles in the
processes of vascular inflammation (Nguyen et al., 2018). However, the contents and functions of macrophage-derived EVs are
likely to be as diverse as the phenotype of their parentalmacrophage subtypes, aswell as their inflammatory state.Dr. Raffai shared
his recent findings demonstrating that macrophages cultured in hyperglycaemic conditions produce EVs that can contribute to
accelerated atherosclerosis resembling what has been reported in diabetes (Bouchareychas et al., 2021; Nagareddy et al., 2013).
EVs derived from the bone marrow-derived macrophages (BMDM) exposed to high glucose media communicated glycolytic
metabolism and inflammatory signalling to naive BMDMs, driving M1 polarization (Bouchareychas et al., 2021). Additionally,
adoptively transferred macrophages-derived EVs were shown to be taken up by recipient cells in the bone marrow and aorta, but
the main retention was primarily in the liver and spleen. Notably, intraperitoneal injections of macrophage-derived EVs isolated
from hyperglycaemic, but not control media, induced significant expansion of the commonmyeloid progenitor and granulocyte-
macrophage progenitor cells in both the bone marrow and spleen of ApoE−/− mice, which further augmented leukocyte counts
in the circulation and contributed to accelerate both spontaneous and diet-induced atherosclerosis (Bouchareychas et al., 2020).
EVs derived from high glucose-exposed macrophages or diabetic patients’ plasma were enriched in miRNA-486-5p, which reg-
ulates haematopoiesis by targeting ABCA-1 expression (Bouchareychas et al., 2020). In contrast, macrophages stimulated with
IL-4 secrete EVs enriched with a cluster of anti-inflammatory miRNA-99a/146b/378a that foster M2 polarization in recipient
macrophages by augmenting mitochondrial metabolism and oxidative phosphorylation. Infusions of such M2-exosomes into
ApoE-/- mice reduced western diet-induced haematopoiesis in the bone marrow and the spleen, as well as inflammatory activ-
ity in monocytes and macrophages that led to the resolution of atherosclerosis (Bouchareychas et al., 2020). The expert panel
identified the need for further studies to explore how the anti-inflammatory effects of M2-macrophage-derived EVs can be har-
nessed for therapy in cardiometabolic inflammation and how the miRNA cargo in macrophage-derived EVs can serve as reliable
biomarkers for HLBS diseases.
Next, Pilar Martin from the Spanish National Centre for Cardiovascular Research accentuated a circulating EV-bornemiRNA

as a novel biomarker for the detection of acute myocarditis, which is an inflammation of the myocardium triggered by multiple
causes, including infectious pathogens or autoimmune disorders, and may develop into the dilated cardiomyopathy (DCM), or
cause sudden cardiac death (Cooper, 2009; Felker et al., 2000; Gannon et al., 2019). Previous studies have suggested that the type
17 helper T (Th17) lymphocyte response may be a prominent immunophenotype in human myocarditis and the sequela DCM
(Myers et al., 2016). MiRNAs have emerged as epigenetic regulators and novel biomarkers for cardiac inflammation inmyocardi-
tis and other cardiovascular diseases (Boon & Dimmeler, 2015; Heymans et al., 2016). Evidence demonstrated that Th17 cells
were induced in experimental autoimmunemyocarditis (EAM)mice by the specific expression of mmu-miR-721, which directly
targets Peroxisome proliferator-activated receptor gamma (PPARγ) mRNAs and enhances RAR-related orphan receptor gamma
T (RORγt) expression and IL-17 secretion in CD4+ T cells (Blanco-Dominguez et al., 2021). Strikingly, mmu-miR-721 expression
was shown to be specifically elevated in the plasma of mouse EAM and Coxsackievirus (CVB3)-induced myocarditis models.
The mmu-miR-721 was preferentially exported into EVs by Th17 cells in the circulation of EAM mice and silencing of mmu-
miR-721 by miRNA sponge vectors inhibited RORγt expression and Th17 immune response, which eventually attenuated EAM
development in mice (unpublished data). More importantly, hsa-miR-Chr8:96 (human homologue of mmu-miR-721) was also
increased in the plasma of myocarditis patients as compared to acute myocardial infarction (AMI) patients or healthy controls,
thus suggesting that the plasma or EV-associated hsa-miR-Chr8:96 can be a reliable biomarker to distinguish acute myocarditis
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fromMI patients or healthy controls. During the panel discussion, Dr. Martin also highlighted preliminary data in which plasma
hsa-miR-Chr8:96 expression has a significant correlation with COVID-19 mRNA vaccine-induced but not COVID-19-induced
myocarditis in two small cohorts of vaccinated individuals and SARS-Cov2 patients, respectively (unpublished data), suggestive
of a possibly different pathological mechanism enabling COVID-19-induced myocarditis.
The last speaker in this session, Joost P. G. Sluijter from the University Medical Centre Utrecht Regenerative Medicine Centre,

highlighted the therapeutic roles of EVs in cardiac tissue repair. Dr. Sluijter shared published and unpublished findings to demon-
strate how EVs are believed to contribute to the beneficial effects of stem cell therapy. The percutaneous intracoronary delivery
of EVs was shown to protect the myocardium against ischemia-reperfusion-induced injury in both mouse and canine models
(Wang et al., 2021). Also, the direct injection of cardiac progenitor cell (CPC)-derived EVs into the myocardium was shown to
manifest cardioprotective roles against MI-induced cardiac injury by stimulating cardiovascular cell proliferation (Maring et al.,
2019). Several examples were highlighted by Dr. Sluijter to justify the need for our better understanding of the biological pro-
cesses responsible for the therapeutic function of EVs and the EV cargo (Roefs et al., 2020; Yang et al., 2019). The extracellular
matrix metalloproteinase inducer (EMMPRIN) was shown to be required for the angiogenic effects of CPC-derived EVs during
tissue repair (Vrijsen et al., 2016). EVs isolated using SEC were shown to manifest more intact biophysical properties and higher
functionality compared to EVs isolated by ultracentrifugation (Mol et al., 2017). Calcium ionophore-stimulated EVs from CPCs
were shown to be less efficient in activating AKT and ERK signalling pathways in endothelial cells compared to EVs generated
without calcium stimulation (Hessvik & Llorente, 2018). Unstimulated EV-specific exosomal protein, pappalysin-1 (PAPP-A),
was suggested to be indispensable for the cardioprotective effects of CPC-derived EVs (Barile et al., 2018). Dr. Sluijter also intro-
duced three different EV engineering strategies. The first strategy relied on inducible loading of EV cargo by expressing the
desired cargo (e.g., Cre) fused with DmrC and cell membrane-associated protein fused with DmrA in the EV-generating parent
cells. Following treatment of parent cells with a ligand, DmrC and DmrA form a heterodimer, which eventually results in the
packaging of desired cargo in the EVs. The second strategy was based on tagging the therapeutic EV membrane with a cardiac
homing peptide (similar to the strategy proposed by Jennifer Lang), which significantly increased the retention of modified EVs
within the heart muscle (Vandergriff et al., 2018;Wang et al., 2021). The third strategy (similar to the strategy proposed by Zhenjia
Wang) relied on cell-derived nanovesicles fabricated from cell bodies using sonication, serial extrusion and SEC isolation as a
functional EV alternative (Ilahibaks et al., 2019).

 FUTURE CHALLENGES AND CONCLUDING REMARKS

The knowledge shared by the speakers and questions raised by the expert panel led to the identification of current knowledge gaps
and challenges, as well as future opportunities and potential milestones to guide investigations for improving the engineering of
the therapeutic EVs for HLBS-diseases (Table 1). EVs are currently being tested for their potential clinical application based on
their biological origin, lower immunogenicity, versatility in engineering the membrane or cargo and their potential for tissue-
specific targeting (Anselmo & Mitragotri, 2021; Herrmann et al., 2021; Kalluri & LeBleu, 2020; Mentkowski et al., 2018; Murphy
et al., 2019). However, limited knowledge of the heterogeneity of EV populations or their corresponding cargos, challenges in
minimizing off-target effects and improving tissue-specific targeting, short half-life and bioactivity in the circulation, selection
of the dose (EVs vs. therapeutic cargo), dosage strategy (size of dose vs. frequency), route of administration (intravenous or
intratracheal or intramyocardial), poorly understood pharmacokinetics or pharmacodynamics in vivo, unknowns related to the
scale-up of manufacturing for the pharmaceutical grade EVs, challenges in ensuring batch to batch reproducibility and loss
of EV function during cryopreservation (Tessier et al., 2021) pose challenges in the translation of EVs for the therapy of HLBS
diseases. Besides functional optimization of engineered EVs, the process would also need tomatch themilestones for cell-derived
products set by regulatory agencies, such as ensuring control, standardization and reproducibility of EV sources (parent cells
used for EV production), and the methods used for EV production, including appropriate product test methods, to ensure the
reproducibility of the therapeutic effects of engineered EVs. It is important to realize that methods of EV preparation suitable for
pilot studies (e.g., making use of ultracentrifugation) may not be practical for commercial scale manufacture. It is also crucial to
understand that properties of EVs obtained by pilot scale methods may not be at all comparable to larger scale methods based
on an alternative technology. Many of the same issues encountered with somatic cell therapies also apply to EVs. These include
their inherent risk (in that terminal sterilization procedures such as gamma irradiation or autoclaving cannot be applied), short
product half-life, analytic complexity of the therapeutic and unknown critical quality attributes (CQAs) perhaps including EV
size distribution (which may influence their pharmacologic disposition and thus optimal dosing regimens), composition and
defining complete elements of the EV cargo prior to translation of engineered EVs to the clinic. It is likely that the complete set
of CQAs still remains to be determined and therefore, further work in this area is essential. To mitigate all these limitations, the
expert-panel proposed several strategies: (1) synergy between investigators to standardize the platforms for the EV-generation,
which can be partially achieved by establishing immortalized cell lines for EV-generation analogous to the monoclonal antibody
generation; (2) advancing analytical techniques analogous to single cell-RNA or genomic sequencing to characterize engineered
EVs at single EV-level and (3) developing an ATLAS of cells capable of generating EVs and types of cells/tissue targeted by these

 20013078, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jev2.12305 by U

niversity O
f M

aryland, W
iley O

nline L
ibrary on [22/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



 of  LI et al.

TABLE  Challenges and future research opportunities for engineering EV-based therapeutics for HLBS diseases

Category Challenges Future Research Opportunities

Basic EV biology Low yield of EVs from producer cells Increasing EV secretion from producer cells

Elucidating EV biogenesis and uptake mechanisms

Unspecified EV targeting properties Identifying homing/targeting specificities of EVs with different
origins or conditions

Heterogeneity of EV subpopulations and their cargo Elucidating precise mechanisms governing the sorting and
integration of biological materials into EVs

Identification and enrichment of different EV subpopulations

Unknown active biomolecules of natural EVs Identifying active ingredients of natural EVs with therapeutical
benefits

Novel EV alternatives, such as nanovesicles,
exomeres and supermeres

Investigating biogenesis and uptake of these EV alternatives

EV engineering Consistency and efficiency of cargo loading Efficient cargo loading/release from producer cells

Rigorous methodologies for exogenous cargo loading to EVs

Specific enrichment of EVs carrying potent therapeutic cargo

Contamination of other EV subpopulations Identifying the specific properties of different EV subpopulations
and optimizing the EV isolation protocol

Side-effects of other biomolecules in EVs Minimizing the ratio of other biomolecules in EVs

Low efficiency of functional EV delivery Efficient uptake/fusion with target cells

Escaping the endosomal degradation

Unspecific targeting Specific targeting with minimized off-target effects

Short half-life of transfused EVs Transfusion of donor cells producing therapeutical EVs

Novel EV alternatives, such as nanovesicles,
exomeres and supermeres

Exploring the engineering ability of these EV alternatives

Preclinical and clinical
studies

Safety and efficacy of EV administration Dosage strategy (size of dose and frequency) for each
delivery/targeting

Route of administration

Biodistribution

Pharmacokinetics and pharmacodynamics

Systematical characterization of EV therapeutics Precision methods for the analyses of EV composition and function

Single-EV level analysis

Differences between small animal models and
human patients

Large animal models (non-human primates)

Physiological in vitro human models for studying EV biology in
human

EV manufacturing Scalability and reproducibility of EV manufacturing Scalable engineering strategy

Scalable EV production procedure

Scalable EV isolation protocol

Reproducibility of EV manufacturing

Storage conditions preserving EV function Standardized procedure for EV storage and shipping

Official standards for EV-based therapeutics Standardizing critical quality attributes of EVs

Common regulatory guidance that ensures the safety and efficacy of
EV administration

EVs in vivo. Several suggestions were made to address the challenges associated with cryopreservation of plasma or EVs, such as
administering autologous primary cells loaded with therapeutic cargo that may eventually generate EVs in vivo. However, this
strategy was identified to be based on a non-trivial precision medicine approach and more elaborate studies would be needed
to identify long-term deleterious effects arising from administrating engineered autologous cells. Alternatively, EVs, such as
neutrophil membrane-derived nanovesicles, were suggested to be made on demand to avoid long term storage; however, much
remains to be learned about the efficacy, mechanism of action, target-cell specificity and half-life of such synthetic EVs.
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TABLE  Pros versus cons of the EV engineering approaches

EV engineering approach Pros Cons

Endogenous
engineering of
EV-secreting cells

Cell conditioning Enrichment of the endogenous
cargo of interest

Contamination by other
conditioning-responsive cargoes

Passive loading Convenient loading
procedures

Low EV loading efficiency

Genetic manipulation Versatile strategies enabling
the loading of almost all
genes-of-interest into EVs

Gene manipulation may change the
status of cells and the following
secretion and cargo of EVs

Feasibility of scaled-up
manufacturing

Exogenous
modification of
isolated EVs

Passive loading Convenient loading
procedures

Low loading efficiency and risk of
contamination by unwanted
cargoes

Encapsulation of nanoparticles Drug loading versatility of
nanoparticles

Challenges of identifying ideal
encapsulation method

Active loading Electroporation Diverse loading compounds
and high loading efficiency

Risk of altering the physicochemical,
morphological, and biophysical
characteristics of EVs and
inducing EV aggregation

Risk of contamination by
transfection reagents

Sonication

Freeze-thaw cycles

Surfactant treatment

Chemical transfection

In this workshop, engineering the EV-membrane or the cargo were presented as potential novel approaches that hold promise
for engineering personalized or disease-specific EVs for HLBS disease therapy. The potential EV diversity in selection of mem-
brane or cytosolic cargo could be applied to various HLBS disorders. However, gaps in knowledge of the both the biological
function and the approaches used for engineering or analysis of such EVs need to be resolved before such engineered EVs
can translate to the clinic. Specifically, the development of necessary technologies would be required for precision analysis of
key aspects such as EV content, fusion and uptake of engineered EVs by the target tissue, delivery of therapeutic cargo to the
target-tissue and the effect on the biological function of the target tissue or cell. Also, an understanding of the effect of engi-
neered EV-membrane or the cargo on the biophysical, functional and pharmacologic properties of EVs would be essential.
Especially, how altering the EV membrane composition affects the EV lipid composition, and whether it affects EV func-
tionality or uptake remains to be determined. Biological EVs with engineered membrane or cargo may also contain several
other endogenous proteins or nucleic acids; therefore, the potential side effects of endogenous biomolecules in engineered EVs
would also need to be minimized. Several key aspects of engineered EVs such as stability, tropism and release kinetics might
also require further improvement before EVs with engineered membrane or cargo could be used in the clinic. As discussed
earlier, commercial scale manufacture of engineered EVs, which could possibly be achieved in the future using high-throughput
approaches, such as 3D-bioprinting technology (Di Marzio et al., 2020; Maiullari et al., 2021; Wlodarczyk-Biegun & Del Campo,
2017), would require adequate understanding of necessary process controls to ensure EV consistency. As shown in this work-
shop, EVs with engineered therapeutic cargo or membrane can be either derived from primary cells- or synthetic nanoparticles
with synthetic or cell-extracted membranes (Fang et al., 2018; Gao, Chu et al., 2016; Witwer & Wolfram, 2021). Currently, the
pros versus cons of using one type over the other remain poorly understood. The advantage of cell-derived EVs is their ability
to cross tissue barriers and deliver functional cargo, while targeted delivery of nanoparticles to specific organs other than the
liver is still challenging (Akinc et al., 2010). However, the well-characterized formulation, efficient loading of diverse cargo, fea-
sibility of surface/content modifications and the scalability to fabricate make synthetic nanoparticles, such as LNPs, promising
drug delivery vehicles for HLBS disease therapies. Also, the potential immunogenicity and risk of developing graft-versus-host-
disease (GVHD) with administration of cell-derived EVs was also highlighted as a major concern by the expert panel. Certain
key parameters, such as the criteria for choosing a potential human donor for generating cell-derived EVs and whether source
material should be restricted to autologous cells remain poorly understood. More preclinical studies in animal models would
help to determine which EVs would be appropriate for carrying a specific therapeutic cargo for delivery to a specific tissue in a
specific HLBS disease condition. Regardless of the type of EV, optimizing the quantity of therapeutic cargo in EVs to attain the
desired biological effect was identified as a major challenge by the expert panel; this will require more analytical and preclinical
studies in the future. Fortunately, similar dosing strategy challenges have been addressed in the past in the field of LNP-based
targeted drug-delivery (Dawidczyk et al., 2014; van der Koog et al., 2022). The field of therapeutic EV-engineering could possibly
benefit from the lessons learned in the field of drug delivery, such as the use of in vivo, high throughput technology to screen for
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engineered EVs with optimal attributes. As shown in this workshop, EV engineering for HLBS diseases therapy can also benefit
from the knowledge of the endogenous biological mechanisms underlying EV generation by cells, such as stem cells or tumour
cells, uptake of these EVs by other cells in vivo and how these EVs contribute to cell-cell communication in the microenviron-
ment of bone marrow, tumour or other tissues (van der Pol et al., 2016; van Niel et al., 2018; Vats et al., 2020). Evidence shared
in this workshop also suggested that genetically or biochemically modified cells or tissues might be potential sources to generate
therapeutic EVs. Similarly, biochemical modification of the microenvironment in the target tissue may also facilitate the delivery
and uptake of the therapeutic EVs by the target tissue. However, these approaches are associated with major technological limi-
tations and more in vivo preclinical studies in rodents, as well as large animal models such as pigs or primates, would be needed
to validate them.
Improved understanding of the biology of EV biogenesis, targeting, membrane docking, tethering, followed by uptake by

target cells would also facilitate the use of the EVs for novel diagnostics and prognostics in HLBS diseases. Development of novel
technologies, such as nanoflow cytometry or microfluidic platforms capable of detecting rare populations of cell-specific EVs
or certain miRNA enriched-EVs in the plasma, might improve clinical outcomes and reduce health care costs by increasing the
specificity for diagnosis of HLBS diseases at early time points (Reategui et al., 2018; Tian et al., 2020). Also, preclinical studies in
rodent models of HLBS diseases could identify alterations in subpopulations of cell-specific EVs, the cargo of such cell-specific
EVs and the function of these EVs using novel analytical approaches to guide the diagnosis of HLBS diseases in future clinical
studies. Several key areas of research and development were identified by the expert panel to facilitate EV-based diagnostics of
HLBS diseases, such as the development of customized kits to enable EV biomarker detection in plasma samples without the
need for sample processing, avoiding cryopreservation, validation of reliable housekeeping gene(s) for RNA sequencing studies
with EVs, and encouraging the use of standardized reference materials.
In conclusion, several key areas warranting potential future investigation were identified in this NHLBI workshop to improve

the therapeutic use of EVs in HLBS diseases. The current state-of -the-art and major limitations associated with generating ther-
apeutic EVs by either engineering the EV membrane or EV cargo were identified (summary of pros vs. cons shown in Table 2).
Opportunities were discussed to develop novel analytical approaches that could improve the reproducibility, efficacy and com-
mercial scale production of therapeutic EVs for clinical use. Lessons were drawn from the knowledge of the fundamental biology
underlying EV-biogenesis by primary cells, targeting to specific cells and tissues, EV uptake by the target cells and opportunities
were suggested regarding how this informationmight be harnessed to further improve engineering of the therapeutic EVs. Lastly,
areas of potential future research were identified to enable the use of EVs in the diagnosis and prognostics of HLBS diseases.
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