
Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than the author(s) must be honored. Abstracting with credit
is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org."

Rashid,Hasib-Al, Utteja Kallakuri, Tinoosh Mohsenin. "TinyM²Net-V2: A Compact Low Power Software
Hardware Architecture for Multimodal Deep Neural Networks" ACM Transactions on Embedded
Computing Systems (3 May,2023). https://doi.org/10.1145/3595633.

Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s
important to you. Thank you.

https://doi.org/10.1145/3595633
mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu

TinyM2Net-V2: A Compact Low Power Sotware Hardware

Architecture for Multimodal Deep Neural Networks

HASIB-AL RASHID, University of Maryland, Baltimore County, USA

UTTEJA KALLAKURI, University of Maryland, Baltimore County, USA

TINOOSH MOHSENIN, University of Maryland, Baltimore County, USA

With the evaluation of Artiicial Intelligence (AI), there has been a resurgence of interest in how to use AI algorithms on

low-power embedded systems to broaden potential use cases of the Internet of Things (IoT). To mimic multimodal human

perception, multimodal deep neural networks (M-DNN) have recently become very popular with the classiication task due to

their impressive performance for computer vision and audio processing tasks. This paper presents TinyM2Net-V2 - a compact

low-power software hardware architecture for multimodal deep neural networks for resource-constrained tiny devices. In

order to compress the models to implement on tiny devices, cyclicly sparsiication and hybrid quantization (4-bits weights

and 8-bits activations) methods are used. Although model compression techniques are an active research area, we are the irst

to demonstrate their eicacy for multimodal deep neural networks, using cyclicly sparsiication and hybrid quantization

of weights/activations. TinyM2Net-V2 shows that even a tiny multimodal deep neural network model can improve the

classiication accuracy more than that of any unimodal counterparts. Parameterized M-DNN model architecture was designed

to be evaluated in two diferent case-studies: vehicle detection from multimodal images and audios and COVID-19 detection

from multimodal audio recordings. The most compressed TinyM2Net-V2 achieves 92.5% COVID-19 detection accuracy (6.8%

improvement from the unimodal full precision model) and 90.6% vehicle classiication accuracy (7.7% improvement from

the unimodal full precision model). A parameterized and lexible FPGA hardware accelerator was designed as well for

TinyM2Net-V2 models. To the best of our knowledge, this is the irst work accelerating multimodal deep neural network

models on low power Artix-7 FPGA hardware. We achieved energy eiciency of 9.04 GOP/s/W and 15.38 GOP/s/W for

case-study 1 and case-study 2 respectively which is comparable to the state-of-the-art results. Finally, we compared our tiny

FPGA hardware implementation results with of-the-shelf resource-constrained devices and showed our implementation is

faster and consumed less power compared to the of-the-shelf resource-constrained devices.

CCS Concepts: · Computing methodologies → Neural networks; · Computer systems organization → Reconigurable

computing; Real-time system architecture.

Additional Key Words and Phrases: tinyML, Multimodal Deep Neural Networks, FPGA, Model Compression.

1 INTRODUCTION

The era of Machine Learning (ML) and Deep Learning (DL) has had a tremendous impact on how we live
today. This ease of use is achievable because AI devices can now handle computationally complex activities,
reducing or even eliminating the need for human intervention. As a result, today ML-based systems can be
seen in almost every industry including healthcare diagnostics, security, autonomous vehicles, robotics, image
analytics, knowledge reasoning, navigation, and many more. Edge Machine Learning (edgeML) and Tiny Machine

Authors’ addresses: Hasib-Al Rashid, University of Maryland, Baltimore County, USA, hrashid1@umbc.edu; Utteja Kallakuri, University of

Maryland, Baltimore County, USA, ukalla1@umbc.edu; Tinoosh Mohsenin, University of Maryland, Baltimore County, Catonsville, MD,

21250, USA, tinoosh@umbc.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.

Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from

permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1539-9087/2023/5-ART $15.00

https://doi.org/10.1145/3595633

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1145/3595633
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3595633&domain=pdf&date_stamp=2023-05-03

2 • H.A. Rashid et al.

Learning (tinyML) are two contemporary approaches that aim to make machine learning more accessible. These
are the ields that fall at the conluence of machine learning and embedded Internet of Things (IoT) devices. A
new generation of neural networks has emerged as a result of the exponential growth of resource-constrained
microcontroller (MCU), microprocessor (MPU) and ield programable gate array (FPGA)-powered devices. This
new generation of neural networks is more concerned with model eiciency than model accuracy, and its size is
also signiicantly reduced. We are able to perform direct data analytics close to the sensor by running ML and DL
models on very tiny edge devices, which signiicantly expands the range of applications for artiicial intelligence
(AI). These AI-based systems are now performing with accuracy that is nearly on par with that of humans for
certain kinds of work.
However, the human perceptual system is multimodal. Through their use of their senses, humans have the

innate cognitive capacity to relate and absorb information coming from a variety of sensory modalities at the same
time at a single event. In a multimodal method, we take in information and approach problems. The items are
visible to us at the same time that we hear the sound of it. In order for machine learning algorithms to successfully
imitate human behavior, it is imperative that they incorporate multiple modalities of input. This, in turn, gives
rise to a new machine learning technique, Multimodal Deep Neural Networks (M-DNN). Modes are essentially
diferent routes through which information can be transmitted. These data come from a variety of sources, and
they are semantically associated with one another. Additionally, they may supply complimentary information
to one another, thereby relecting patterns that are not obvious when working with particular modalities on
their own. Contemporary IoT and wearable devices, such as activity trackers, environmental sensors, image
sensors, and audio sensors, are able to regularly generate massive amounts of data. In order to create results
that are more accurate, modern ML techniques are becoming increasingly reliant on data coming from a wide
variety of sources. M-DNN systems bring together those disparate, disconnected data from a variety of sensors,
which enables them to contribute to the production of more accurate and robust predictions. There are two
primary beneits associated with M-DNN systems. To begin, having several sensors monitor the same data at the
same time can result in more accurate predictions. This is because identifying changes in the data may need the
presence of both modalities. Second, the integration of a large number of sensors makes it possible to collect
supplementary data or patterns that may be missed by individual modalities.
Due to the increasing number of model parameters and computations, M-DNN models are diicult to be

implemented on resource limited edgeML and tinyML applications. For instance, the most cutting-edge ARM
Cortex-M7 CPU-based MCU available today only has 320KB of on-chip SRAM and 1MB of Flash memory available
to it. Even with more powerful hardware like the Raspberry Pi 4, which has an L2 cache of 1MB, this demonstrates
that there is a large gap between the capacity that is required and that which is available in the hardware for
DL models to be implemented. Additionally, a signiicant amount of energy is consumed whenever large model
parameters are moved between memory hierarchies (such as from DRAM/Flash to SRAM or from SRAM to a
register). Reports indicate that in order to run a DL model on an FPGA, a power consumption of between 3.5W
and 9W is necessary, with over 80% of the power consumption being attributable to the transmission of model
parameters [48]. This is a substantial increase from what is required by tinyML. The complexity of implementing
eicient M-DNN inference while maintaining a low peak memory consumption is further increased by these
new challenges. In this paper, we address the aforementioned issue and implement M-DNN models on diferent
resource-constrained hardware. To implement energy-eicient M-DNN models on tiny processing hardware,
we use all the beneits that state-of-the-art compression techniques have to ofer. We proposed a compact low
power software hardware architecture TinyM2Net-V2 which is re-conigurable in terms of input data modality
and data shapes, number of layers, ilter sizes etc. hyper-parameters for the sake of application requirements. The
high-level overview of the proposed TinyM2Net-V2 is presented in the igure 1. We evaluated TinyM2Net-V2 with
two diferent multimodal case-studies: audio processing with multimodal audios and vehicle classiication with
multimodal images and audios. TinyM2Net-V2 is then implemented on low power tiny Artix-7 FPGA, of-the-shelf

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 3

Fig. 1. The high-level overview of the proposed TinyM2Net-V2. TinyM2Net-V2 can take any number of modalities of data, designs ML

models for the required task, compress the models with state-of-the-art compression techniques like cyclic sparsification and hybrid

quantization and then deploy them onto tiny resource-constrained hardware.

NVIDIA Jetson TX2 board and commodity tiny MPU, Raspberry Pi 4 to measure real-time performance on
diferent resource-constrained hardware. The main contributions of this paper are as follows:

• We propose TinyM2Net-V2, an end-to-end lexible software-hardware co-designed architecture for M-DNN.
TinyM2Net-V2 introduces multimodal data (images and audios) to be adapted in tinyML models to improve
the application speciic accuracies.

• We compress the M-DNNmodels with cyclic sparsely connected (CSC) architecture and hybrid quantization
to reduce memory consumption and computational complexity for tinyML hardware implementation.
Although model compression techniques are an active research area, we are the irst to demonstrate their
eicacy for M-DNNs, using cyclicly sparsiication and hybrid quantization of weights/activations.

• We design a parameterized FPGA hardware accelerator introducing multimodality, cyclic sparsity and
hybrid precision quantization for energy-eicient deployment on tinyML hardware. To the best of our
knowledge, TinyM2Net-V2 is the irst work accelerating M-DNN models on FPGA hardware.

• We evaluate the proposed TinyM2Net-V2 for two diferent case-studies. Case-study 1 includes Covid-19
detection from multimodal cough, speech and breathing audio recordings. Case-study 2 includes vehicle
classiication using multimodal images and audios. Our combined low achieves state-of-the-art results
when comparing energy eiciency of diferent FPGA hardware accelerators and also implementing on
variety of edge/tinyML devices.

The rest of the paper is organized as follows: Section 2 presents some related works along with the theoretical
backgrounds. Section 3 provides description of the proposed TinyM2Net-V2. Section 4 provides detailed analysis
and results for TinyM2Net-V2 evaluation. Section 5 presents the future direction of this research. Section 6
concludes the paper.

ACM Trans. Embedd. Comput. Syst.

4 • H.A. Rashid et al.

Fig. 2. Diferent types of data fusion techniques used by state-of-the-art multimodal models. We adopted hybrid/intermediate fusion

technique for our proposed TinyM2Net-V2.

2 RELATED WORKS AND THEORETICAL BACKGROUNDS

2.1 Multimodal Deep Neural Networks

The purpose of using multimodal data is that complementary information can be retrieved from each of the
modalities evaluated for a given learning task, resulting in a better representation that can be utilized to achieve
superior results than if only one modality is employed. The most important feature of the multimodal approach
is the ability to represent data at various abstraction levels. The learned information can be integrated into two
or more modalities for a certain hypothesis by employing an intermediate formulation. Diferent data fusion
algorithms have been proposed in the literature to address this research question [4, 9]. The most popular and
traditional data fusion algorithms are early fusion, late fusion, and hybrid/intermediate fusion algorithms. Figure
2 presents a high-level overview of the multimodal data fusion algorithms. A common practice for integrating
data before analysis is called Early fusion (Fig. 2(a)). It uses two techniques. The irst technique involves merging
data while eliminating correlations. The second technique is to integrate the data at its latent sub Space, which
has a lower dimension. On unprocessed raw data, early fusion is used and executed. To reduce complexity
for modalities with variable sample rates, features are removed before fusion. It is challenging to sync data
sources that are both discrete and continuous. Individual modality sources are used by Late fusion (Fig. 2(b))
throughout the decision-making process. The techniques of bagging and boosting are used to extract it from the
ensemble classiiers. This technique can be applied when the modal data sources are uncorrelated in terms of
sampling rate and data dimensionality. Many scientists prefer late fusion to early fusion even though there is no
concrete evidence that late fusion is superior to early fusion [40]. Early and late fusions are combined to create
Hybrid/Intermediate fusion (Fig. 2(c)). A joint representation of various modalities is learned through hybrid
fusion. At the layer of representation that is shared by all, the fusion occurs. Throughout the training process,
the loss is transmitted back to the feature extractor network. Using slow or gradual fusion, several modalities
can be integrated [17, 40]. Intermediate fusion procedures are beneicial because they allow for a customized
approach to fusing marginal representations, both in terms of depth and sequencing. It is arguable that this better
depicts the genuine connections between the various modes of expression. It is possible then that more helpful
latent components, both joint and marginal, may be identiied. Since DL architectures make it simple to fuse
marginal representations by linking them to a shared layer and ensuring that hierarchical representations match
the real world, they are well-suited for intermediate fusion [40]. We adopted intermediate fusion technique for
our TinyM2Net-V2 based on this intuition.

Multimodal Deep Neural Networks (M-DNN) have recently gained much popularity in the domain of human
activity recognition [7, 29], autonomous systems [20, 24] and most importantly, medical applications. Computer-
aided diagnosis [23], tissue and organ segmentation [18], multimodal medical image retrieval [47], and multimodal
medical image registration [39] are just some of the applications of multimodal deep learning in medical domain.
Combining diferent medical imaging modalities such as MRI, CT scans, X-Rays etc are very popular nowadays in
disease diagnosis. Recently, multimodal audio processing has gained popularity for detecting respiratory diseases
[26, 35, 36].

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 5

Fig. 3. The flow diagram of proposed TinyM2Net-V2 sotware hardware architecture. We consider pre-processed multimodal inputs for our

proposed TinyM2Net-V2. Proposed TinyM2Net-V2 is the sequential combination of the steps shown in the diagram.

2.2 TinyML Inference Hardware

A high-level review of the optimization strategies of deep neural networks (DNN) for tinyML on device inferences
was presented by the authors in [25]. TinyML model optimization utilizes a variety of algorithms for parameter
search, including Pruning, Sparsiication and Quantization techniques. Element-wise pruning[28] and Structured
Pruning [2, 19] compress the models so that they can be implemented on tinyML devices by reducing the weights
of irrelevant elements. Researchers have decided to implement mixed precision quantization [13, 14, 45, 46, 49]
and extremely low precision quantization [1, 21] in their DNN models in order to reduce the memory needs
placed on them by these models. MCUNet [22], MicroNets [3], EtinyNet [48], TinyLSTMs [8] are networks that
have been proposed for use in the deployment of DNN models on microcontroller units (MCU). Recently, ARIS
[33], CoughNet-V2 [36], TinyM2Net [35], OMAD [6], RhythmEdge [10] and authors in [30ś32, 34] implemented
various optimized unimodal and multimodal neural networks on diferent edge devices and tiny devices.

ACM Trans. Embedd. Comput. Syst.

6 • H.A. Rashid et al.

3 TinyM2Net-V2 SOFTWARE HARDWARE ARCHITECTURE

3.1 Multimodal Deep Neural Network Model Architecture Design

The igure 3 shows how Multimodal Deep Neural Network (M-DNN) models are built taking diferent modalities
of data from the physical world and pre-process them according to the need of the neural network formulation.
The purpose of employing multimodal data is that complementary information can be recovered from each
of the modalities evaluated for a given learning task, resulting in a better representation that can be used to
achieve superior results than if only one modality is employed. We formulated the following multimodal learning
problem, where diferent modalities of data are exploited in classiication tasks. We adopted Intermediate fusion

technique to fuse multiple modalities in this work due to its superiority over other types of fusion [40].
At irst, let us consider that we have i number of input streams of diferent modalities: �1 = {��1, ..., �

�
�
},

�2 = {��1 , ..., �
�
�
}, ... �� = {��1 , ..., �

�
�
}; where ��

�
, ��

�
, ... ��

�
refer to the �−,�−, ... �− dimensional feature vectors

of �1, �2, ... �� modalities in time � , respectively. Then, by combining three modalities at time � , we consider the
three unimodal output distributions at diferent levels of representation. We will then train our multimodal fusion
network, �� which will map �1, �2, ... �� to the same categorical set of ground truth labels, � = {�1, ...,�� }.
Then we will construct i diferent unimodal networks from �1, �2, ... �� which will be denoted as �1, �2, ... ��

respectively. Here, �1 : �1 → � , �2 : �2 → � , ... �� : �� → � , and �� = �1 ⊕ �2 ⊕ ... ⊕ �� .
� signiies the predicted class labels of the training samples generated by the output of the constructed network.

⊕ represents the fusion operation.
We designed the multimodal model empirically following the proposed multimodal model in [35]. We replaced

the depthwise separable (DS) CNN layers with vanilla CNN layers to mitigate the accuracy degradation due to
DS-CNN. Hyper-parameters (ilter size, number of ilters) for each unimodal network can be decided by adopting
neural architecture search (NAS) algorithms. However, for our tinyML case-studies, unimodal networks are
decided empirically as the search space is comparatively tractable due to limited model architectures. Then the
unimodal networks with best accuracies are selected for each modality to be concatenated. Then after getting
features from each of the unimodal network, they are fused and passed to the fusion network. Finally, the
classiication output is visualized as the probability distribution of the last fully connected layer using the Softmax
activation function.

3.2 Model Compression for Tiny Machine Learning Hardware Implementation

Pruning and quantization are two methods commonly used to reduce the size of large neural network models
for implementation on edge hardware, which often have limited computational resources and memory. Pruning
techniques remove unimportant or redundant parameters from the model, thereby reducing its size. However,
this also introduces irregularity into the DNN architecture, as some weights are zeroed out while others are kept.
To handle these non-zero weights, an additional indexing memory is required. Quantization, on the other hand,
reduces the precision of the weights and activations in the model. It converts the parameters from loating-point
numbers to integer values, which requires less memory and computation. Combining pruning and quantization
together can provide a signiicant reduction in the size of the model while still maintaining its accuracy to a
certain extent. In order to overcome the irregularity introduced by pruning and reduce the need for indexing
memory, structural sparsity is introduced, which eliminates this indexing through an appropriate architecture
design. The following sections describe special cases for structural sparsity and quantization together which are
used in our TinyM2Net-V2 to perform model compression

3.2.1 Cyclicly Sparsification. Cyclic Sparsely Connected Convolutional Neural Networks (CSC-CNNs) [12] is a
variation of the conventional Convolutional Neural Networks (CNNs) that employ sparse connectivity patterns
between neurons. The sparse connectivity in CSC-CNNs creates a loop-like structure, which allows for an

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 7

Fig. 4. Key idea in compact schemes of CSC architecture illustrated with a typical multi-layer architecture and an equivalent structured

graphs. (a) Baseline CNN with fully connectivity (b) Low-Rank Expansion [16, 42, 43] (c) Cyclic Sparsely Connected (CSC) CNN.

eicient low of information. This type of architecture reduces the number of parameters, resulting in a decrease
in overitting and improved performance on resource-constrained devices.

In comparison, GoogleNet and Inception-V3 [16, 42, 43] implementations utilize a low-rank decomposition of
ilters, which involves splitting them into two separable layers and applying them in sequence. This approach
reduces the number of parameters and computational complexity, but still maintains full connectivity between
neurons as shown in igure 4 (b). On the other hand, CSC-CNNs are a specialized form of low-rank decomposition
that employs sparse connectivity patterns in the convolutional layers to achieve an even further reduction in the
number of parameters and computational complexity, improving eiciency.
It was proposed by the authors in [11, 12] that cyclic sparsely connected layers shown in igure 4, which

are cascades of a few layers, have memory and computation of the order of � (�����) and their structure of
connection can be adjusted to the point where they can be used in place of both CNN and Dense layers. The
cyclic sparse connection occurs channel-to-channel for CNN layers. As a replacement for CNN and dense layers,
we used the cascaded two-layer CSC-II architecture from [12].

We use the CSC-II architecture from [11, 12] to compress our model. CSC hyper-parameters like as connection
(�), fan in/out (�), and dilation (�) can be ine-tuned using equations mentioned in [11]:

�� = �� (1)

�
∑�−1

�=0 �� = �0 (�) · �1 (�) mod
(
�� − 1

)

�0 (�) =

∑�−1
�=0 ��0 .� , �0 = 1

�1 (�) =

∑�−1
�=0 ��1 .� , �1 =

�
�

(2)

Here, � = number of nodes and �� (�) = �
∑�−1

�=0 �� is a generator polynomial. The end goal for these
hyperparameter tuning was to maintain the higher accuracy depending on the case-studies. Equations 10 and
12 from [12] are the base to replace the calculations of the original dense and CNN layers with CSC connected
dense and CNN layers. To have better performance, we have included CSC in all layers except the irst CNN
layer that processes the input data and the very last dense layer that is the classiication layer.

3.2.2 Hybrid uantization. Quantization is the process of converting real-valued numbers in a neural network
to lower precision representations, such as ixed-point numbers, in order to reduce the memory and computation
requirements for deployment on hardware with limited resources. Now-a-days uniform 8 bits quantization
achieves full precision level of accuracy [49]. We can further reduce memory requirements changing the bit
precision of both the weights and activation to the diferent lower bits which is termed as hybrid quantization.

ACM Trans. Embedd. Comput. Syst.

8 • H.A. Rashid et al.

However, quantizing the activations of a neural network is more challenging compared to quantizing the weights,
as the activations have a wider range of values and can dynamically luctuate with the input to the network.
Activations are the output of each neuron in a neural network and are used as input for the next layer of neurons.
They are computed by multiplying the inputs with the weights and passing the result through a non-linear
activation function. Because of the multiply-accumulate operations, the range of activations can be much wider
compared to the weights, making it diicult to choose an appropriate quantization scheme. Moreover, the
activations can change rapidly with changes in the input, making it diicult to determine the right quantization
range ahead of time. To maintain a good level of accuracy in the quantized model, it is important to preserve a
higher level of precision in the activations compared to the weights. This can help avoid the need to retrain or
recalibrate the model, which can be time-consuming and computationally expensive. Therefore we used higher
level of precision for activations and used lower bits of weights.
We used Qkeras [5] to incorporate quantize-aware training scheme. This scheme uses the quantization into

the training process. The model is trained with quantization operations included, so that the quantization error
is reduced and the model accuracy is improved. Authors in [15] describes that for each layer, quantization is
parameterized by the number of quantization levels and clamping range, and is performed by applying point-wise
the quantization function � deined as follows:

clamp(� ;�, �) := min(max(�, �), �)

� (�, �, �) :=
� − �

� − 1

�(� ;�, �, �) :=

⌊
clamp(� ;�, �) − �

� (�, �, �)

⌉
� (�, �, �) + �,

(3)

where � is a real-valued number to be quantized, [�;�] is the quantization range, � is the number of quantization
levels, and ⌊.⌉ denotes rounding to the nearest integer.

3.3 TinyML Hardware Deployment

Three diferent hardware choices - tiny FPGA, Raspberry Pi 4 and NVIDIA Jetson TX2 board are used in
proposed TinyM2Net-V2 hardware deployment as mentioned in the Fig. 3(c). We would advocate for tiny FPGA
implementation TinyM2Net-V2 hardware deployment because FPGA provides better lexibility, parallelism,
energy eiciency and reduced latency compared to of-the-shelf hardware deployment boards. However, the
FPGA implementation has implementation complexity and lack of libraries to directly convert the models from its
software counterpart, which is very user-friendly when of-the-shelf devices are used for hardware deployment.

The tiny FPGA design is described in Verilog and can be programmed onto the target device after assigning a
set of hardware speciic parameters. Fig. 3(c) shows the ingredients needed to program and deploy the tiny FPGA
as the target inference device. These parameters are the Number of Processing Elements (# PEs), the sizes of the
input feature map memory (which is large enough to hold the largest feature map generated for all the modalities),
the size of the weight memories (one in each PE) and the output memory size. Finally, the parameter M which
indicates the number of modalities is also assigned. The next step is to generate the binary representation iles
(or the mem iles) for the weights and the input feature maps. Generate the network coniguration ile to load
the coniguration memory. The design is now synthesized, implemented and programmed onto the target tiny
FPGA using the Xilinx Vivado tool. For Raspberry Pi 4, the compressed models are converted using available
libraries and then deployed onto it. For Jetson TX2 board, after converting the compressed models with available
libraries, we can set-up the working frequencies for the CPU-GPU coniguration. Then we can deploy the models
on the Jetson TX2 board which is mentioned in Fig. 3(c). Following sections describes the deployment procedure
in details.

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 9

3.3.1 FPGA Hardware Architecture Design and Deployment. The hardware for the tiny FPGA is designed such
that it is independent of a DRAM. It integrates the processing components along with a suicient on-chip SRAM
memory to store the DCNN model and generated intermediate feature maps needed for one inference[50]. For a
well designed hardware with the aforementioned consideration, with #PE number of Processing Elements (or
processing components), #MAC number of Multiply-Accumulators, running at a frequency of freq MHz, the
peak-performance can approach,

2 × #�� × � ��� × #��� (4)

Fig. 5 shows the hardware architecture for the CSC-CNN processor. The hardware architecture aims to implement
the equation. 12 from [12] for the CSC-CNN layers. With little modiication to the parameters of the CSC layers,
the hardware architecture can be programmed to implement CSC-Dense layers. Additional DCNN layers, such
as standard convolution and depth-wise separable convolutions, can also be implemented by modifying the
parameters. The hardware architecture shown in the Fig. 5 has been designed in Verilog HDL and implemented
on the Xilinx Artix-7 FPGA. The hardware architecture is designed to compute DCNNs with or without CSC
layers and have a programmable number of Processing Engines (PEs), MACs per PE, input modalities along with
allowing a variable precision to the datawidth that is equal to the model quantization.
The main components of the hardware shown in Fig. 5 includes the PE array, a dedicated CSC router and a

partitioned feature map memory to store the intermediary input feature maps. Each PE is also equipped with
another SRAM (the output memory) that bufers the generated layerwise outputs back to the input feature
map memory once the current layer is processed for all the modalities. The PEs are further provided with a
programmable number of MAC units that compute the MACs between the ilters and the corresponding feature
values. The MAC modules support hybrid-precision by extending the lower precision data value to match the
higher precision data value by extending zeros on the most signiicant side. This ensures that the inference
accuracy of the accelerator is comparable to the testing accuracy of the software.

The address generator unit generates the addresses to the weight and the feature map memories in accordance
to the parameters �� , � and� that are the number of input nodes, number of non-zero ilters and the modality
respectively. The inclusion of� in the address generator as shown in Fig. 5 ensures that all the diferent modalities
of the current layer are processed before moving to the next layer. Hence, the computations of the DCNN are
parallelized within each modality while serially processing diferent modalities in a layerwise fashion. The weight
memory within each PE is designed so that it can hold suicient data for the PE to process the convolution
according to the output channel tiling scheme. The weight memory, moreover, is designed to have a variable
data-width size to enable the hybrid precision operations. Similarly, the partitioned output memory is designed
such that it can store the generated results from the MAC modules. At the end of each patch of feature map, the
parallel data from the MAC modules is stored in a single row in the output memory.
The accelerator also houses a dedicated CSC based high-bandwidth router to fetch the data from the feature

map memory to the PE array and load the data from the output memory to the input feature map memory. At
the end of the computation of each layer for all the modalities, the data from the output memory is written to the
feature map memory. This feature map data acts as the input for the next layers. For the sake of simplicity, the
hardware architecture does not show the state-machine,max-pooling, batch-normalization, and the nonlinear
activation functions.
To perform the convolution computations (i.e. repeated MAC operations), there are at least three diferent

parallel processing schemes namely, output channel tiling, input channel tiling and image patch tiling. In this
work, the PE arrays adhere to the output channel tiling scheme. Each PE processes the 2D convolution of one
input feature map channel that can be accessed through the router with the corresponding ilter set that is
available in the weight memory. Additionally, within each PE; depending on the number of MACs-per-PE, follow

ACM Trans. Embedd. Comput. Syst.

10 • H.A. Rashid et al.

Fig. 5. Proposed TinyM2Net-V2 tiny FPGA hardware accelerator architecture. Three key contributions towards the hardware architecture

design are marked transparent red: 1. Multimodal input and multimodal counter, 2. Cyclic Sparsely Connection (CSC) based router, 3.

Hybrid quantized feature map, weight and output memories. Complete hardware architecture is implemented on Artix-7 FPGA chip.

the image patch tiling scheme where the 2D channel is subdivided into multiple rows that can be worked on by
the parallel multipliers.

3.3.2 Of-The-Shelf Device Deployment. The of-the-shelf device are single-board computer systems, that have
great performance despite having a relatively straightforward architecture. There is a wide variety of single-
board computer systems available, each of which contains a CPU and/or a GPU in addition to providing the
opportunity to design hardware and software. A few examples of these are the Jetson Nano / TX2, Raspberry Pi,
BeagleBoard, and Asus Tinker Board. ATMs, medical diagnostics, precision agriculture, intelligent home systems,
robotic systems, and many other types of applications all make use of single-board computers for the tinyML
implementation [41].
Raspberry Pi 4 is a single credit-card size board that can be used as an tinyML inference hardware. It has

quad-core ARM Cortex A72 64-bit CPU running at 1.5GHz. NVIDIA Jetson TX2 is a mid-level board of the NVIDIA
Jetson ecosystem, which is a small, powerful single board computer allowing parallel operations of multimple
neural networksfor diferent applications. It has quad-core ARM Cortex-A57 CPU and dual-core NVIDIA Denver
2 CPU, both running at 2GHz. It also houses NVIDIA Pascal 256 CUDA cores which can be run at 1300MHz. We
implemented compressed TinyM2Net-V2 models on Raspberry Pi 4 and NVIDIA Jetson TX2 board. Tensorlow
Lite is used as the library to convert the compressed model for both the of-the-shelf device deployments.

4 TinyM2Net-V2 EVALUATION RESULTS AND ANALYSIS

4.1 Evaluation Case-Study 1: Vehicle Classification from Multimodal Images and Audios

4.1.1 Dataset. We used a subset of the dataset provided with the paper [44]. This large audio-visual events
(AVE) dataset encompasses 28 diferent audio-visual events captured in 4143 10-second youtube videos. We have
selected a small subset of 4 classes from this large dataset to make compatible with our resource constrained tiny
hardware implementation. We selected 4 distinguished vehicles’ AVE data which makes our target application to
be vehicle classiication from multimodal images and audios. After subsetting, we have 609 video recordings from
where we extracted the images and corresponding audios of Airplane, Motorcycle, Car, and Truck. Sampling
rate of the image extraction was one frame per 2 seconds. We have collected the images in .jpg format. We
extracted in total 3045 images for all the 4 classes. On the contrary, sampling frequency was 22050Hz for the
audio recordings. Length of our audios was 1 sec. We have takens 2 sec windows from the audios and converted

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 11

Fig. 6. The model architecture of the proposed TinyM2Net-V2 for Case-study 1. Here, Conv = 2 dimensional CNN, MP = Max Pooling, and

FC = Fully Connected Layer.

into Mel-frequency cepstral coeicients (MFCC) spectrograms. We extracted in total 3045 MFCC spectrograms
for 4 classe swhere rows correspond to features from MFCC and columns correspond to time (window). The
total number of extracted images and corresponding audio MFCC spectrograms were as follows: Airplane - 920,
Motorcycle - 495, Car - 940, Truck- 690. We have used the 70% of the data for training, 10% for the validation and
20% for testing during our experiments.

4.1.2 Experimental Setup, Results and Analysis. Proposed TinyM2Net-V2 received both the images and the audio
MFCCs that corresponded to them as inputs. Following this, TinyM2Net-V2 will process two distinct modalities
using its parallel CNN layers, will extract features, will fuse those features, and will inally categorize the data
using a multiclass classiication. Fig. 6 depicts the model architecture used for the case-study 1. After training the
model with its baseline coniguration, we created CSC conigurations for the CNN layers and the fully connected
layers, leaving the very 1st CNN layers and the output fully connected layer as it is, which is the common practice
to address the accuracy degradation. The we re-trained the model again setting bit precision for weights as 4-bits
and activations as 8-bits. The detailed baseline network architecture and the corresponding CSC architecture
are mentioned in Table 1. Our model was trained for 200 epochs using categorical cross-entropy loss and the
Adam optimizer. Accuracy was the performance evaluation metrics for our multimodal model. We also measured
accuracy for the unimodal networks by passing the output of the fully connected layers to the Softmax layer.
Figure 7(a) presents the evaluation results of proposed TinyM2Net-V2 for vehicle classiication task. It is

evident from the igure that when only image or audio is used for the vehicle classiication, the classiication
accuracy were much lower. When both image and audio modality were used together as multimodal input, the
classiication accuracy for baseline CNN model increased to 92.8%, which is 7.7× improvement from unimodal
model. Then after compressing the multimodal baseline model with CSC layers and reducing the data bit-width
using hybrid quantization, the accuracy degrades to 90.6% which is 2.2% less. This 2.2% performance degradation
is still allowable to be implemented on resource constrained edge hardware, considering the hybrid quantization
and model compression due to CSC compressed layers. Table 1 presents the model compression ratio for baseline
model and CSC compressed model in terms of number of parameters and number of computations required. In
igure 7(b), the FPGA memory requirement for baseline model is 36.2Mbits. The FPGA memory requirements

ACM Trans. Embedd. Comput. Syst.

12 • H.A. Rashid et al.

Table 1. Baseline TinyM2Net-V2 for Case-study 1 and its compressed model using CSC-II architecture in detail. Input shape is denoted by

�� × �� × �� , Filter shape is denoted by�� × �� × �� × � . D denotes dilation; I, and A denote Image, and Audio modalities. M denotes

multimodality. Number of parameters reduces 5.5× and number of computation reduced 1.8× due to CSC compression.

TinyM2Net-V2 Base Model CSC II Compressed

Layer Input Shape Filter Shape Dial. Input Shape Filter Shape Dial.

CNN_I 1 224×224×3 3×3×3×64 1 - - -

CNN_I 2 112×112×64 3×3×64×64 1
112×112×64 3×1×64×16 1
112×112×64 1×3×64×16 4

CNN_I 3 56×56×64 3×3×64×32 1
56×56×64 3×1×64×8 1
56×56×64 1×3×64×8 4

FC_I 1 1×1×64 1×1×64×64 1
1×1×64 1×1×64×8 1
1×1×64 1×1×64×8 4

FC_I 2 1×1×64 1×1×64×64 1
1×1×64 1×1×64×8 1
1 × 1 × 64 1 × 1 × 64 × 8 8

CNN_A 1 997 × 13 × 1 3 × 3 × 1 × 64 1 - - -

CNN_A 2 498 × 6 × 64 3 × 3 × 64 × 64 1
498 × 6 × 64 3 × 1 × 64 × 16 1
498 × 6 × 64 1 × 3 × 64 × 16 4

CNN_A 3 249 × 3 × 64 3 × 3 × 64 × 32 1
249 × 3 × 64 3 × 1 × 64 × 32 1
249 × 3 × 64 1 × 3 × 64 × 32 4

FC_A 1 1 × 1 × 64 1 × 1 × 64 × 64 1
1 × 1 × 64 1 × 1 × 64 × 8 1
1 × 1 × 64 1 × 1 × 64 × 8 4

FC_A 2 1 × 1 × 64 1 × 1 × 64 × 64 1
1 × 1 × 64 1 × 1 × 64 × 8 1
1 × 1 × 64 1 × 1 × 64 × 8 8

Concatenation

FC_M 1 1 × 1 × 64 1 × 1 × 64 × 64 1
1 × 1 × 128 1 × 1 × 128 × 16 1
1 × 1 × 128 1 × 1 × 128 × 16 4

FC_M 2 1 × 1 × 64 1 × 1 × 64 × 64 1
1 × 1 × 64 1 × 1 × 64 × 8 1
1 × 1 × 64 1 × 1 × 64 × 8 8

FC_M 4 1 × 1 × 64 1 × 1 × 64 × 4 1 - - -

Parameters 137728 24832 (5.54×)

Computations 738 M 395 M (1.86×)

Accuracy 92.8% 90.6%

Fig. 7. (a) TinyM2Net-V2 classification results for Case-Study 1 in terms of both unimodal and multimodal setings. The multimodal setings

improved accuracy 7.7% compared to unimodal (audio) setings. Model compression techniques reduce 2.2% accuracy of multimodal seting.

(b) Impact of model compression on TinyM2Net-V2 for Case-Study 1. Using only CSC reduces 1.11× FPGA memory usage from baseline

model. Using both CSC and hybrid quantization reduces 4.5× FPGA memory usage baseline model.

refers to largest feature map size for the particular model. With CSC compression and hybrid precision, the
memory requirement is compressed by 4.5× to 8 Mbits.

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 13

Fig. 8. The model architecture of the proposed TinyM2Net-V2 for Case-study 2. Here, Conv = 2 dimensional CNN, MP = Max Pooling, and

FC = Fully Connected Layer.

4.2 Evaluation Case-Study 2: COVID-19 Detection from Multimodal Audios

4.2.1 Dataset. The second DiCOVA challenge dataset [38] was used in this case study. This dataset is a subset of
the larger dataset, Coswara [37]. There are 929 participants in this dataset, each contributing one cough audio,
one breathing audio, and one speech audio, among whom 172 participants were COVID positive. Each participant
provided three diferent audio recordings, cough, speech, and breathing audios, along with their self-reported
COVID-19 test result. To construct the two-class classiication task, the original COVID-19 test results were
classiied as either positive (designated as ‘P’) or negative (identiied as ‘N’). As a last step, we generated 6000
random samples by dividing the audios into two-second chunks and balanced the samples in terms of their binary
classes. Then we converted them into MFCC spectrogram and passed them to TinyM2Net-V2. We selected the
sampling frequency for all recordings as 22.5 KHz. We have used 70% data for training, 10% for validation and
20% for evaluation.

4.2.2 Experimental Setup, Results and Analysis. Proposed TinyM2Net-V2 received all the audio MFCCs as inputs.
Following this, TinyM2Net-V2 will process three distinct modalities using its parallel CNN layers, will extract
features, will fuse those features, and will inally categorize the data using a binary classiication. Fig. 8 depicts the
model architecture used for the case-study 2. After training the model with its baseline coniguration, we created
CSC conigurations for the CNN layers and the fully connected layers, leaving the very 1st CNN layers and the
output fully connected layer as it is, which is the common practice to address the accuracy degradation and to
have better generalized performance. The we re-trained the model again setting bit precision for weights as 4-bits
and activations as 8-bits. The detailed baseline network architecture and the corresponding CSC architecture
are mentioned in table 2. Our model was trained for 200 epochs using categorical cross-entropy loss and the

ACM Trans. Embedd. Comput. Syst.

14 • H.A. Rashid et al.

Table 2. Baseline of TinyM2Net-V2 for Case-study 1 and its compressed model using CSC-II architecture in detail. Input shape is denoted

by�� × �� × �� , Filter shape is denoted by�� × �� × �� × � . D denotes dilation; C, B, S denoting Cough, Breathing, Speech modalities.

M denotes multimodality. Number of parameters reduces 5× and number of computation reduced 2.7× due to CSC compression.

TinyM2Net-V2 Base Model CSC II Compressed

Layers Input Shape Filter Shape D Input Shape Filter Shape D

CNN_C 1 212×20×1 3×3×1×16 1 - - -

CNN_C 2 106×10×16 3×3×16×32 1
106×10×16 3×1×16×8 1
106×10×16 1×3×16×8 2

CNN_C 3 53×5×32 3×3×32×64 1
53×5×32 3×1×32×8 1
53×5×32 1×3×32×8 4

FC_C 1 1×1×64 1×1×64×64 1
1×1×64 1×1×64×16 1
1×1×64 1×1×64×16 4

FC_C 2 1×1×64 1×1×64×32 1
1×1×32 1×1×32×8 1
1×1×32 1×1×32×8 4

CNN_B 1 249×20×1 3×3×1×16 1 - - -

CNN_B 2 124×10×16 3×3×16×32 1
124×10×16 3×1×16×8 1
124×10×16 1×3×16×8 2

CNN_B 3 62×5×32 3×3×32×64 1
62×5×32 3×1×32×8 1
62×5×32 1×3×32×8 4

FC_B 1 1×1×64 1×1×64×64 1
1×1×64 1×1×64×16 1
1×1×64 1×1×64×16 4

FC_B 2 1×1×64 1×1×64×32 1
1×1×32 1×1×32×8 1
1×1×32 1×1×32×8 4

CNN_S 1 203×13×1 3×3×1×16 1 - - -

CNN_S 2 101×6×16 3×3×16×32 1
101×6×16 3×1×16×8 1
101×6×16 1×3×16×8 4

CNN_S 3 50×3×32 3×3×32×64 1
50×3×32 3×1×32×8 1
50×3×32 1×3×32×8 2

FC_S 1 1×1×64 1×1×64×64 1
1×1×64 1×1×64×16 1
1×1×64 1×1×64×16 4

FC_S 2 1×1×64 1×1×64×32 1
1×1×32 1×1×32×8 1
1×1×32 1×1×32×8 4

Concatenation

FC_M 1 1×1×96 1×1×96×256 1
1×1×96 1×1×96×24 1
1×1×96 1×1×96×24 4

FC_M 2 1×1×256 1×1×256×128 1
1×1×128 1×1×128×16 1
1x1×128 1×1×128×16 8

FC_M 3 1×1×128 1×1×128×64 1
1×1×64 1×1×64×16 1
1×1×64 1×1×64×16 4

FC_M 4 1×1×64 1×1×64×2 1×1×64 1×1×64×2 1

Parameters 153648 30512 (5.03×)

Computations 28.5 M 10.5 M (2.7×)

Accuracy 94.1% 92.5%

Adam optimizer. Accuracy was the performance evaluation metrics for our multimodal model. We also measured
accuracy for the unimodal networks by passing the output of the fully connected layers to the Softmax layer.

Figure 9(a) presents the evaluation results of proposed TinyM2Net-V2. It is evident from the igure that when
only single input modalities were used, for example, only coughing audio or only speech audio, the binary
classiication accuracies were much lower. When all available input modalities were used together as multimodal
inputs, the binary classiication accuracy for the CNN baseline model increased. The baseline models’ accuracy
for case-study 2 is 94.1%. Then after compressing the model with CSC layers and reducing the data bit width to
hybrid bit precision settings, the accuracy degrades to 92.5% which is 1.6% less compared to full precision models.
Multimodal models are memory intensive due to their simultaneous storing and processing of diferent modalities.
CSC layers and hybrid quantization help here to reduce the to reduces the computation and the memory cost from

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 15

Fig. 9. (a) TinyM2Net-V2 classification results for Case-Study 2 in terms of both unimodal and multimodal setings. The multimodal seting

improved 6.8% accuracy compared to unimodal (speech) classification seting. Model compression techniques reduce 1.6% accuracy of the

multimodal seting. (b) Impact of model compression on TinyM2Net-V2 for Case-Study 2. Using only CSC reduces 2.6× FPGA memory

usage from baseline model. Using both CSC and hybrid quantization reduces 13× FPGA memory usage baseline model.

Fig. 10. Empirical Study for Hybriduantization of Case-Study 1 and Case-Study 2.

� (� 2) to � (�����). This 1.6% performance degradation due to CSC layers and quantization is still allowable,
considering the energy-eicient tinyML deployment for resource-constrained tiny POC hardware. In igure 9(b),
the FPGA memory requirement for baseline model is 6.4 Mbits. With CSC compression and hybrid precision, the
memory requirement is compressed by 13× to 0.4 Mbits.
To select the bit precision for our hybrid precision models we experimented with both the case-studies and

selected bit precision settings empirically. Figure 10 presents our experimental results for diferent bit precision
settings. We can see, 8 bits of activation and 4 bits of weights gives us optimal amount of accuracy for both the
case-studies. This is the reason we have selected 4 bits of weights and 8 bits of activation throughout our hybrid
quantized model.

4.3 FPGA Implementation and Results

Given a variety of parameters to tweak in the accelerator to obtain the most energy-eicient hardware conigura-
tion, we use an Energy Eiciency vs Number of PE curve. It allows us to select a coniguration that provides

ACM Trans. Embedd. Comput. Syst.

16 • H.A. Rashid et al.

Fig. 11. TinyM2Net-V2 Energy Eficiency cs Number of PEs for the case study 1 and case study 2. Highlighted in red is the most energy

eficient configuration.

us the highest performance for the least hardware utilization. Figure 11, summarizes the results for the Energy
Eiciency vs Number of PEs for Case-Study 1 and Case-Study 2 for the TinyM2Net-V2 hardware architecture.
For both the case studies we increased the number of PEs and measured the energy eiciency. Plotting a curve
for this reveals a ridge point until where the energy eiciency increases consistently with each new PE added.
Beyond this point further increasing in PEs does not contribute to increase in parallaization as there are PEs
that are being under utilized. For the case studies here, we obtain the highest Energy Eiciency for the 64PE
coniguration. The enrgy eiciency for Case Study 1 is 7.62 GOP/s/W and the enrgy eiciency for Case Study 2 is
15.38 GOP/s/W.

The compressed model along with its corresponding parameters is loaded into the coniguration memory of
the accelerator. The design was then implemented on the Xilinx Artix-7 FPGA at a clock frequency of 100MHz
using the Xilinx Vivado 2018.3 design suite. Various measurements such as power, fpga utilization, latency etc.
are also obtained from the Vivado suite using appropriate switching activity iles obtained using well-written
test-benches. The hardware for the compressed network is conigured to have a total of 64 PEs and 1 MAC per
PE. The accelerator has also been conigured to work with 4 bit quantized weights and 8 bit quantized features.
Our target FPGA platform is the Xilinx Artix-7 FPGA (xc7a200t) to demonstrate the feasibility of achieving

milliwatts of power for running tiny multimodal models. It has 134.6K LUTs, 1.6MB of on-chip block RAM (BRAM)
and 740 DSP slices. To implement baseline models for our case-studies, 32.6MB of on-chip block RAM (BRAM)
is required (for case-study 1). We highly compress the baseline models using model compression techniques
mentioned in the previous sections, so that we could it the models into low power Artix-7 FPGAs. Table 3 shows
the utilization for the proposed TinyM2Net-V2 for both the case studies. Our design requires 96.7 % and 25 % of
the available BRAM to store the weights, input and the output feature maps for case-study 1 and 2 respectively. It
also requires 18 % and 30 % of the available LUTs for case-study 1 and 2 respectively.
Minimizing power consumption on an Artix-7 FPGA can be achieved through a combination of design

techniques and device-speciic features. Some techniques employed in this work to minimize power consumption
on the Artix-7 FPGA to mW range are but not limited to the following:

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 17

Table 3. Resource utilization data of TinyM2Net-V2 implemented on Artix -7 FPGA (XC7A200t) at 100 MHz with 64 PE configuration.

Resources LUTs BRAMs DSPs

Available 134.6K 365 740

Case-Study 1
Utilization

24K 353 71

Case-Study 2
Utilization

40K 90 71

Table 4. Implementation results and comparisons of the proposed TinyM2Net-V2 with its baseline hardware designs. The baseline results

are obtained for uniform 8 bits quantized models at a clock frequency of 100 MHz as full precision models do not fit in target Artix-7 FPGA

board.

Case-Study 1 Case-Study 2

Model
Compression

Uncompressed
(Uniform 8 bits)

Compressed
(CSC + 8/4 bits)

Uncompressed
(Uniform 8 bits)

Compressed
(CSC + 8/4 bits)

No. of P.E. 64

Freq. (MHz) 100

Power (W) 1.28 0.94 0.65 0.52

Latency (ms) 175.9 49.5 3.65 1.3

Energy (mJ) 225.16 46.53 2.37 0.67

Performance
(GOP/s)

4.2 8.5 7.8 8

Energy Eiciency
(GOP/s/W)

3.28 9.04 12.01 15.38

• Optimal design for the hardware architecture
• Eiciently using of the available hardware resources - for instance, the amount of power block RAM
consumes is directly proportional to the amount of time it is enabled. To save power, the block RAM enable
can be driven Low on clock cycles when the block RAM is not used in the design.

• Design level decisions such as, minimizing the asynchronous control signals to minimize the use of routing
resources.

• Pipelining the design to minimize the size of the combinatorial cones.
• Sharing resources such as the BRAMs. Once the feature map values have been served the same set of
locations can hold new values. Such designs minimizes the amount of BRAMs consumed.

• Block RAM (BRAM) rich designs are excellent candidates for power savings as the Vivado tool uses a
variety of optimization techniques to generate ‘enables’ and in-turn save power.

Static power consumption for Artix-7 board is 140 mW. The table 5 shows that our FPGA implementation
consumes total power of 0.94 W for case-study 1 (static 140 mW and dynamic 808 mW) and 0.52 W for case-study
2 (static power = 140 mW and dynamic power = 384 mW), which are less than tinyML power consumption limit
of 1W. Figure 12 shows the total dynamic power breakdown per FPGA resources of TinyM2Net-V2 for both the
case-studies. With the highest utilization of the available BRAMs, our design consumes 77 % and 46 % of the
total dynamic power for the BRAMs utilization in case study 1 and 2 respectively. It also consumes 4 % and 10
% of the total dynamic power for the Logic in case study 1 and 2 respectively. Table 4 describes a comparison
with the baseline models of the same applications with our adopted model compression techniques to show the
improvement using our intended model compression techniques. As per the expectation, our proposed model
achieves a reduction in power consumption and improved energy eiciency from its baseline counterpart

ACM Trans. Embedd. Comput. Syst.

18 • H.A. Rashid et al.

Fig. 12. Dynamic power breakdown per FPGA resources of TinyM2Net-V2 for case-studies 1 and 2. Both of the implementations consume

140 mW of static power on Artix-7 board.

4.4 Comparison with State-of-the-Art Implementations

The table 5 presents the FPGA implementation results for both of our case-studies and also comparison with the
recent state-of-the-art FPGA accelerators [27, 51] while keeping the application category the same. At 100 MHz
frequency, we achieved 49.5 ms latency for vehicle classiication and 1.3 ms latency for COVID-19 detection. Our
implementation has 9.04 GOP/s/W energy eiciency for case-study 1 and 15.38 GOP/s/W energy eiciency for
case-study 2.
Both [51] and our case-study 1 are performing image classiication task in high level. Although [51] is faster

with than ours in terms of latency and computations, we achieve better power consumption than that of [51]
(1.01 W vs 0.94 W) due to our highly compressed models. Our implementation has 5.47× better energy-eiciency
when compared to the [51] implementation.

Both [27] and our case-study 2 are performing multimodal audio classiication task in high level. Although [27]
is smaller than ours in terms of model size (40 KB vs 62 KB), our computations are highly reduced due to CSC
architecture. [27] model has 6 Giga Operations (GOP), whereas our case-study 2 model has only 0.01 GOP. This
results in 3.13× improved energy-eiciency when our implementation is compared to the [27] implementation.
Our hardware implementation is much faster compared to [27] which is very important for real-time audio
classiication systems.

4.5 Comparison with Of-The-Shelf Device Implementations

To establish a point of reference, we also deployed our proposed TinyM2Net-V2 models on resource-constrained
commodity edge hardware, NVIDIA Jetson TX2 and Raspberry Pi 4 and measured hardware merits such as
latency and power consumption. All platforms were conigured to perform at their peak performance. The
implementation result is summarized in Table 6. From Table 6, it can obviously be said that our tiny FPGA
implementation outperforms any other edge hardware by a comparable margin. Our FPGA implementation is 25
× faster from the Raspberry Pi 4 and 3.23 × from the NVIDIA CPU-GPU coniguration for case-study 1. Our FPGA
implementation is 753 × faster from the Raspberry Pi 4 and 76.9 × from the NVIDIA CPU-GPU coniguration
for case-study 2. Our tiny FPGA power consumption is below 1W which is the power consumption limit for
state-of-the-art tinyML devices.

ACM Trans. Embedd. Comput. Syst.

TinyM2Net-V2 • 19

Table 5. Implementation results and comparisons of the proposed TinyM2Net-V2 with state-of-the-art CNN hardware designs. The results

of our work are obtained for hybrid (4bits weights and 8bits activations) quantized CSC compressed multimodal neural network at a clock

frequency of 100 MHz.

Architecture [51] [27] This Work

FPGA platform Zync XC7Z020 Artix 7 Artix 7 Artix 7

Application
Type

Image
Classiication

Audio
Classiication

Image
Classiication

Audio
Classiication

Model Size (KB) - 40 932 62

Computations (GOP) 0.02 6 0.42 0.01

Frequency
(MHz)

100 80 100

Latency (ms) 16 5000 49.5 1.3

Power (W) 1.01 0.24 0.94 0.52

Energy (mJ) 33.7 1.2 46.53 0.67

Performance
(GOP/s)

1.67 1.2 8.5 8

Energy Eiciency
(GOP/s/W)

1.65 4.9 9.04 15.38

Table 6. TinyM2Net-V2 hardware implementation results on the various commercial of-the-shelf edge devices.

Edge Devices
NVIDIA TX2
(with GPU)

Raspberry
Pi 4

Artix-7
FPGA

Case-Study 1 2 1 2 1 2

Frequency (MHz)
CPU: 2035
GPU: 1300

1500 100

Latency (ms) 160 100 1240 980 49.5 1.3

Power (mW) 9856 8876 1567 994 948 524

5 FUTURE WORKS
TinyM2Net-V2 is a compact and low-power software and hardware architecture for multi-modal deep neural
networks that can run on resource-constrained tiny devices. The ield of tiny machine learning, which deals
with deep learning models for ultra-low power devices, has primarily focused on a train-and-deploy approach.
This results in static models that cannot be adjusted based on new data without cloud-based retraining. To make
multi-modal tiny machine learning devices more prevalent, there is a growing need for adaptive methods that can
update the model parameters in response to changes in the environment, sensors, and input data. However, the
limited computational resources on these devices pose a signiicant challenge to implementing adaptive online
learning methods, which typically require substantial computational and memory resources. One of the future
direction of this research would be implementation of adaptive online learning method for resource-constrained
edge devices.

Hardware-agnostic model compression refers to the process of reducing the size of a deep learning model in a
manner that is not speciic to a particular hardware platform. This approach is aimed at making the compressed
model more suitable for deployment on resource-constrained devices. However, this type of model compression
can often result in a deterioration of both model accuracy and performance. This is because the compression
technique used is not speciically tailored to the hardware platform, and as a result, the compressed model may
not perform optimally on the target hardware. The compression process may also lead to a loss of information
and a reduction in accuracy, which can negatively impact the performance of the model. Thus, hardware-agnostic
model compression may not be the best approach for achieving high accuracy and performance on resource-
constrained devices. To address this research gap, hardware aware model compression techniques would be

ACM Trans. Embedd. Comput. Syst.

20 • H.A. Rashid et al.

addressed in the future of this research. Hardware-aware quantization and pruning would be implemented on
tiny machine learning hardware systems to achieve better performance. Impact of choice of quantization such as
linear, biModel, trained quantization, ternary connect etc. would be interesting study for this research in the
future. In practical applications like autonomous driving cars, hardware constraints often prove to be a signiicant
obstacle in fully utilizing multimodal neural network models. Additionally, designing a manual architecture that
takes into account hardware limitations and diversity is a challenging task. Hence, hardware-aware multimodal
architecture search is an area of future research that holds promise in this ield. We would address these research
gaps to make more robust TinyM2Net in future.

6 CONCLUSION
In this paper, we introduce TinyM2Net-V2, a compact and low-power software and hardware architecture
for multi-modal deep neural networks that can run on resource-constrained tiny devices. We are the irst
to show the efectiveness of model compression strategies for multimodal deep neural networks employing
cyclically sparsiication and hybrid quantization of weights/activations. We evaluated our TinyM2Net-V2 with
two distinct case studies: COVID-19 detection from multimodal audio recordings and vehicle detection from
multimodal images and audios. The most compressed TinyM2Net-V2 achieves 92.5% accuracy in COVID-19
detection (6.8% improvement over the unimodal full precision model) and 90.6% accuracy in vehicle classiication
(7.7% improvement over the unimodal full precision model). For TinyM2Net-V2 models, a parameterized and
adaptable FPGA hardware accelerator was also created. This is the irst efort, as far as we are aware, at accelerating
multimodal deep neural network models on the low-power Artix-7 FPGA devices. For vehicle classiication task
and COVID-19 detection task, respectively, we obtained energy eiciencies of 9.04 GOP/s/W and 15.38 GOP/s/W,
which are comparable to results from leading-edge research. Finally, we compared our tiny FPGA hardware
implementation results with of-the-shelf resource-constrained devices and showed our implementation is faster
and consumed less power compared to the of-the-shelf resource-constrained devices.

7 ACKNOWLEDGEMENT

This research was partly supported by the National Science Foundation CAREER Award under Grant No. 1652703.
We also acknowledge the partial support of the University of Maryland, Baltimore, Institute for Clinical &
Translational Research (ICTR) and the National Center for Advancing Translational Sciences (NCATS) Clinical
Translational Science Award (CTSA) grant number UL1TR003098.

REFERENCES

[1] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric Pétrot. 2017. Ternary neural networks for resource-eicient AI

applications. In 2017 international joint conference on neural networks (IJCNN). IEEE, 2547ś2554.

[2] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. 2017. Structured pruning of deep convolutional neural networks. ACM Journal on

Emerging Technologies in Computing Systems (JETC) 13, 3 (2017), 1ś18.

[3] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker, Dibakar Gope, Vijay Janapa Reddi, Matthew Mattina, and

Paul Whatmough. 2021. Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers.

Proceedings of Machine Learning and Systems 3 (2021).

[4] George Barnum, Sabera Talukder, and Yisong Yue. 2020. On the Beneits of Early Fusion in Multimodal Representation Learning. arXiv

preprint arXiv:2011.07191 (2020).

[5] Claudionor N Coelho, Aki Kuusela, Shan Li, Hao Zhuang, Jennifer Ngadiuba, Thea Klaeboe Aarrestad, Vladimir Loncar, Maurizio Pierini,

Adrian Alan Pol, and Sioni Summers. 2021. Automatic heterogeneous quantization of deep neural networks for low-latency inference

on the edge for particle detectors. Nature Machine Intelligence 3, 8 (2021), 675ś686.

[6] Emon Dey and Nirmalya Roy. 2020. OMAD: On-device Mental Anomaly Detection for Substance and Non-Substance Users. In 2020

IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE). 466ś471. https://doi.org/10.1109/BIBE50027.2020.00081

[7] Changxing Ding and Dacheng Tao. 2015. Robust face recognition via multimodal deep face representation. IEEE Transactions on

Multimedia 17, 11 (2015), 2049ś2058.

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/BIBE50027.2020.00081

TinyM2Net-V2 • 21

[8] Igor Fedorov, Marko Stamenovic, Carl Jensen, Li-Chia Yang, Ari Mandell, Yiming Gan, Matthew Mattina, and Paul N Whatmough. 2020.

TinyLSTMs: Eicient neural speech enhancement for hearing aids. arXiv preprint arXiv:2005.11138 (2020).

[9] Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche. 2020. Early vs late fusion in multimodal convolutional neural

networks. In 2020 IEEE 23rd International Conference on Information Fusion (FUSION). IEEE, 1ś6.

[10] Zahid Hasan, Emon Dey, Sreenivasan Ramasamy Ramamurthy, Nirmalya Roy, and Archan Misra. 2022. RhythmEdge: Enabling

Contactless Heart Rate Estimation on the Edge. In 2022 IEEE International Conference on Smart Computing (SMARTCOMP). 92ś99.

https://doi.org/10.1109/SMARTCOMP55677.2022.00028

[11] Morteza Hosseini, Mark Horton, et al. 2019. On the Complexity Reduction of Dense Layers from� (� 2) to� (�����) with Cyclic

Sparsely Connected Layers. In Proceedings of the 56th Annual Design Automation Conference 2019. ACM.

[12] Morteza Hosseini, Nitheesh Kumar Manjunath, Bharat Prakash, Arnab Mazumder, Vandana Chandrareddy, Houman Homayoun, and

Tinoosh Mohsenin. 2021. Cyclic Sparsely Connected Architectures for Compact Deep Convolutional Neural Networks. IEEE Transactions

on Very Large Scale Integration (VLSI) Systems 29, 10 (2021), 1757ś1770.

[13] Morteza Hosseini and Tinoosh Mohsenin. 2021. QS-NAS: Optimally Quantized Scaled Architecture Search to Enable Eicient On-Device

Micro-AI. IEEE Journal on Emerging and Selected Topics in Circuits and Systems (2021).

[14] Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. 2020. Improving post training neural quantization: Layer-wise

calibration and integer programming. arXiv preprint arXiv:2006.10518 (2020).

[15] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

2018. Quantization and training of neural networks for eicient integer-arithmetic-only inference. In Proceedings of the IEEE conference

on computer vision and pattern recognition. 2704ś2713.

[16] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. 2014. Speeding up convolutional neural networks with low rank expansions.

arXiv preprint arXiv:1405.3866 (2014).

[17] Gargi Joshi, Rahee Walambe, and Ketan Kotecha. 2021. A review on explainability in multimodal deep neural nets. IEEE Access 9 (2021),

59800ś59821.

[18] Ryan Kiros, Karteek Popuri, Dana Cobzas, and Martin Jagersand. 2014. Stacked multiscale feature learning for domain independent

medical image segmentation. In International workshop on machine learning in medical imaging. Springer, 25ś32.

[19] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. 2019. Structured pruning of neural networks with budget-aware regularization.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9108ś9116.

[20] Ian Lenz, Honglak Lee, and Ashutosh Saxena. 2015. Deep learning for detecting robotic grasps. The International Journal of Robotics

Research 34, 4-5 (2015), 705ś724.

[21] Shuang Liang, Shouyi Yin, Leibo Liu, Wayne Luk, and Shaojun Wei. 2018. FP-BNN: Binarized neural network on FPGA. Neurocomputing

275 (2018), 1072ś1086.

[22] Ji Lin, Wei-Ming Chen, Yujun Lin, John Cohn, Chuang Gan, and Song Han. 2020. Mcunet: Tiny deep learning on iot devices. arXiv

preprint arXiv:2007.10319 (2020).

[23] Siqi Liu, Sidong Liu, Weidong Cai, Hangyu Che, Sonia Pujol, Ron Kikinis, Dagan Feng, Michael J Fulham, et al. 2014. Multimodal

neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE transactions on biomedical engineering 62, 4 (2014),

1132ś1140.

[24] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation. In Proceedings of

the IEEE conference on computer vision and pattern recognition. 3431ś3440.

[25] Arnab Neelim Mazumder, Jian Meng, Hasib-Al Rashid, Utteja Kallakuri, Xin Zhang, Jae-sun Seo, and Tinoosh Mohsenin. 2021. A Survey

on the Optimization of Neural Network Accelerators for Micro-AI On-Device Inference. IEEE Journal on Emerging and Selected Topics in

Circuits and Systems (2021).

[26] Arnab Neelim Mazumder, Haoran Ren, Hasib-Al Rashid, Morteza Hosseini, Vandana Chandrareddy, Houman Homayoun, and Tinoosh

Mohsenin. 2021. Automatic Detection of Respiratory Symptoms Using a Low Power Multi-Input CNN Processor. IEEE Design Test (2021),

1ś1. https://doi.org/10.1109/MDAT.2021.3079318

[27] Arnab Neelim Mazumder, Haoran Ren, Hasib-Al Rashid, Morteza Hosseini, Vandana Chandrareddy, Houman Homayoun, and Tinoosh

Mohsenin. 2021. Automatic Detection of Respiratory Symptoms Using a Low Power Multi-Input CNN Processor. IEEE Design & Test

(2021).

[28] Jian Meng, Shreyas Kolala Venkataramanaiah, Chuteng Zhou, Patrick Hansen, Paul Whatmough, and Jae-sun Seo. 2021. FixyFPGA:

Eicient FPGA Accelerator for Deep Neural Networks with High Element-Wise Sparsity and without External Memory Access. In 2021

31st International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 9ś16.

[29] Sankha S Mukherjee and Neil Martin Robertson. 2015. Deep head pose: Gaze-direction estimation in multimodal video. IEEE Transactions

on Multimedia 17, 11 (2015), 2094ś2107.

[30] Mozhgan Navardi, Prakhar Dixit, Tejaswini Manjunath, Nicholas R Waytowich, Tinoosh Mohsenin, and Tim Oates. 2022. Toward

Real-World Implementation of Deep Reinforcement Learning for Vision-Based Autonomous Drone Navigation with Mission. UMBC

Student Collection (2022).

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/SMARTCOMP55677.2022.00028
https://doi.org/10.1109/MDAT.2021.3079318

22 • H.A. Rashid et al.

[31] Mozhgan Navardi, Edward Humes, and Tinoosh Mohsenin. 2022. E2EdgeAI: Energy-Eicient Edge Computing for Deployment of

Vision-Based DNNs on Autonomous Tiny Drones. In 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC). 504ś509. https:

//doi.org/10.1109/SEC54971.2022.00077

[32] Mozhgan Navardi, Aidin Shiri, Edward Humes, Nicholas R Waytowich, and Tinoosh Mohsenin. 2022. An Optimization Framework for

Eicient Vision-Based Autonomous Drone Navigation. In 2022 IEEE 4th International Conference on Artiicial Intelligence Circuits and

Systems (AICAS). IEEE, 304ś307.

[33] Pretom Roy Ovi et al. 2021. ARIS: A Real Time Edge Computed Accident Risk Inference System. In 2021 IEEE International Conference on

Smart Computing (SMARTCOMP). 47ś54. https://doi.org/10.1109/SMARTCOMP52413.2021.00027

[34] Pretom Roy Ovi, Emon Dey, Nirmalya Roy, Aryya Gangopadhyay, and Robert F Erbacher. 2022. Towards developing a data security aware

federated training framework in multi-modal contested environments. In Artiicial Intelligence and Machine Learning for Multi-Domain

Operations Applications IV, Vol. 12113. SPIE, 189ś198.

[35] Hasib-Al Rashid, Pretom Roy Ovi, Aryya Busart, Carl Gangopadhyay, and Tinoosh Mohsenin. 2022. TinyM2Net: A Flexible System

Algorithm Co-designed Multimodal Learning Framework for Tiny Devices. ArXiv (2022).

[36] Hasib-Al Rashid, Mohammad M Sajadi, and Tinoosh Mohsenin. 2022. CoughNet-V2: A Scalable Multimodal DNN Framework for

Point-of-Care Edge Devices to Detect Symptomatic COVID-19 Cough. In 2022 IEEE Healthcare Innovations and Point of Care Technologies

(HI-POCT). IEEE, 37ś40.

[37] Neeraj Sharma et al. 2020. CoswaraśA Database of Breathing, Cough, and Voice Sounds for COVID-19 Diagnosis. (2020).

[38] Neeraj Kumar Sharma, Srikanth Raj Chetupalli, Debarpan Bhattacharya, Debottam Dutta, Pravin Mote, and Sriram Ganapathy. 2021. The

Second DiCOVA Challenge: Dataset and performance analysis for COVID-19 diagnosis using acoustics. arXiv preprint arXiv:2110.01177

(2021).

[39] Martin Simonovsky, Benjamín Gutiérrez-Becker, Diana Mateus, Nassir Navab, and Nikos Komodakis. 2016. A deep metric for multimodal

registration. In International conference on medical image computing and computer-assisted intervention. Springer, 10ś18.

[40] Sören Richard Stahlschmidt, Benjamin Ulfenborg, and Jane Synnergren. 2022. Multimodal deep learning for biomedical data fusion: a

review. Brieings in Bioinformatics 23, 2 (2022), bbab569.

[41] Ahmet Ali Süzen, Burhan Duman, and Betül Şen. 2020. Benchmark analysis of jetson tx2, jetson nano and raspberry pi using deep-cnn.

In 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). IEEE, 1ś5.

[42] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and

Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern

recognition. 1ś9.

[43] Christian Szegedy, Vincent Vanhoucke, Sergey Iofe, Jon Shlens, and Zbigniew Wojna. 2016. Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition. 2818ś2826.

[44] Yapeng Tian et al. 2018. Audio-visual event localization in unconstrained videos. In Proceedings of the European Conference on Computer

Vision (ECCV). 247ś263.

[45] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song Han. 2019. Haq: Hardware-aware automated quantization with mixed precision. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8612ś8620.

[46] Bichen Wu, Yanghan Wang, Peizhao Zhang, Yuandong Tian, Peter Vajda, and Kurt Keutzer. 2018. Mixed precision quantization of

convnets via diferentiable neural architecture search. arXiv preprint arXiv:1812.00090 (2018).

[47] Pengcheng Wu, Steven CH Hoi, Hao Xia, Peilin Zhao, Dayong Wang, and Chunyan Miao. 2013. Online multimodal deep similarity

learning with application to image retrieval. In Proceedings of the 21st ACM international conference on Multimedia. 153ś162.

[48] Kunran Xu, Yishi Li, Huawei Zhang, Rui Lai, and Lin Gu. 2022. EtinyNet: Extremely Tiny Network for TinyML. (2022).

[49] Zhewei Yao, ZhenDong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, LeyuanWang, Qijing Huang, YidaWang,MichaelMahoney,

et al. 2021. Hawq-v3: Dyadic neural network quantization. In International Conference on Machine Learning. PMLR, 11875ś11886.

[50] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas Chandra. 2017. Hello edge: Keyword spotting on microcontrollers. arXiv

preprint arXiv:1711.07128 (2017).

[51] Guanwen Zhong, Akshat Dubey, Cheng Tan, and Tulika Mitra. 2019. Synergy: An hw/sw framework for high throughput cnns on

embedded heterogeneous soc. ACM Transactions on Embedded Computing Systems (TECS) 18, 2 (2019), 1ś23.

ACM Trans. Embedd. Comput. Syst.

https://doi.org/10.1109/SEC54971.2022.00077
https://doi.org/10.1109/SEC54971.2022.00077
https://doi.org/10.1109/SMARTCOMP52413.2021.00027

	Blank Coversheet editable.pdf
	3595633
	Abstract
	1 Introduction
	2 Related Works and Theoretical Backgrounds
	2.1 Multimodal Deep Neural Networks
	2.2 TinyML Inference Hardware

	3 TinyM2Net-V2 Software Hardware Architecture
	3.1 Multimodal Deep Neural Network Model Architecture Design
	3.2 Model Compression for Tiny Machine Learning Hardware Implementation
	3.3 TinyML Hardware Deployment

	4 TinyM2Net-V2 Evaluation Results and Analysis
	4.1 Evaluation Case-Study 1: Vehicle Classification from Multimodal Images and Audios
	4.2 Evaluation Case-Study 2: COVID-19 Detection from Multimodal Audios
	4.3 FPGA Implementation and Results
	4.4 Comparison with State-of-the-Art Implementations
	4.5 Comparison with Off-The-Shelf Device Implementations

	5 Future Works
	6 Conclusion
	7 Acknowledgement
	References

