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ABSTRACT

Title of Thesis: Systematic Effects of Compressive Sensing for Time-Series

Photometric Measurements for Space Observatories

Name of Candidate: Asmita Korde-Patel

Thesis directed by: Dr. Tinoosh Mohsenin
Department of Computer Science and
Electrical Engineering

- and -

Dr. Richard K. Barry
Laboratory for Exoplanets and
Stellar Astrophysics, NASA

Natural phenomena may be sparse in some physical or temporal domain. If we

exploit this sparsity by applying the technique of Compressive Sensing (CS) to obtain

information about a phenomenon, what are the specific implications for the science

and for the sensing infrastructure?

In this thesis, we directly address this issue by an in-depth study of the general-

ized systematic effects consequent to the application of CS to time-series photometric

measurements. We will assess implications for observability, sparsification, and infor-

mation loss in the detection, retrieval and reconstruction process. CS is a simultane-

ous data acquisition and compression technique, which can significantly reduce data

samples at the detector front-end itself.

To study time-series photometry, we explore the field of gravitational microlens-

ing. A source star, typically in the galactic bulge, gets microlensed when there is a

precise alignment of a lensing star and its planetary system with the source star. The



microlensed source star changes in flux magnification as the lensing system crosses

the precise path of alignment, resulting in a microlensing curve in the time domain.

We develop a CS based architecture for acquiring and reconstructing transient

astrophysical events. This architecture reconstructs a differenced image, eliminating

the need for any sparse domain transforms otherwise required for traditional CS

reconstruction. The resulting reconstructed differenced image is of importance as

the information required for generating time-series photometric light curves is best

obtained from an image differenced with a reference image.

To complete CS analysis for gravitational microlesning data, we simulate crowded

stellar fields to obtain photometric light curves from the differenced images. We show

through simulation modelling the error sensitivity for detecting microlensing event pa-

rameters. Our results conclude that for single and binary microlensing events we can

obtain error less than 1% over a 3-pixel radius of the center of the microlensing star

by using 25% Nyquist rate measurements. We show that CS accurately reconstructs

gravitational microlensing curves within at least 10% statistical bounds of critical

microlensing parameters. In addition, we show the effect of noise on such crowded

stellar fields, where a star in the field is experiencing a microlensing event. We provide

techniques to tune the CS measurement matrix in order to improve CS reconstruction

in the presence of noise. We also study the effect of CS on gravitational microlensing

parallax measurements for space-based observatories. Microlensing parallax breaks

down degeneracy in the gravitational microlensing parameters, hence, providing ad-

ditional information on the microlensing parameters of interest. Space observatory

constellations provide an optimal platform for microlensing parallax measurements.

The use of CS technology for small satellites (SmallSat) can be a game changing

technology for obtaining valuable science parameters for gravitational microlensing.
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Chapter 1

INTRODUCTION

1.1 Motivation and Problem Statement

1.1.1 Motivation

Remote sensing applications characteristically suffer limitations on the availabil-

ity of electrical power, data communications bandwidth and processing power. There

is at present a significant, sustained trend towards miniaturization of the bus infras-

tructure that supports many sensing applications - a trend which quite exacerbates

these limitations. For example, there is currently a renaissance in the approach to the

design and implementation of space-borne observatories to reduce their size and com-

plexity. Indeed, NASA has constructed a new categorization for such observatories;

from minisatellites, ranging in mass from 100-180 kilograms, down to femtosatellites

as small as 0.001 kilograms - about the mass of a paperclip.

Contemporaneously with these significant bus infrastructure design trends the

miniaturization of individual detectors is permitting the manufacture of large, dense

detector arrays capable of making measurements requiring enormous data storage,

processing and transmission capabilities. We may confidently expect that the con-

fluence of these trends will reach a self-limiting point - the precise bottleneck being,

again, availability of electrical power, data communications bandwidth and processing
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power.

In light of these conflicting trends, exploitation of sparsity in the observed phe-

nomena presents an obvious opportunity. Reduction in the power and communica-

tions bandwidth may be effectuated by the use of post-detection compression - at

the expense of increased on-board processing power. The use of Compressive Sensing

(CS) technology - reduction of data bandwidth at the point of detection - holds the

promise of reducing all three. As with post-detection compression, loss of informa-

tion will certainly occur and will increase in inverse proportion to data bandwidth

and power savings.

Theoretical aspects of post-detection compression have been well-studied in the

literature and exhaustively exploited by technologists. In contrast, CS, a relatively

new technique, is only now beginning to be explored for detection and measurement

of many phenomena. As with post-detection compression, the critical aspect of the

technique - its effect on the measurement - must be carefully assessed. Crucially, no

comprehensive study of the systematic effects of CS has been conducted to date on

this promising and potentially enabling technology.

1.1.2 Statement of Problem and Proposed Research

Natural phenomena may be sparse in some physical or temporal domain. If

we exploit this sparsity by applying the technique of Compressive Sensing to obtain

information about a phenomenon, how do our measurements change as a function of

domain and generalized measurement systematics? What are the specific implications

for the science and for the remote sensing bus infrastructure?

With this thesis we propose to directly address this issue through application

of CS to remotely sensed time-ordered photometric measurements. Specifically, this

thesis will examine the application of CS in the study of the photometric transient
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phenomenology associated with gravitational microlensing in the presence of measure-

ment systematics. This thesis will assess implications for observability, sparsification,

and information loss in the detection and retrieval processes. These results will be of

general applicability to measurement using CS.

1.2 Contributions

This thesis will make the following specific contributions: 1. Develop a CS frame-

work for application of transient photometric measurements. We specifically studied

photometric measurements due to gravitational microlensing events. 2. Analyze the

impact of CS on the retrieval of gravitational microlensing parameters 3. Perform

a study and analysis on CS reconstruction for measuring microlensing parallax from

space observatories 4. Analyze the impact of background noise, as well as detector

measurement noise on CS reconstruction 5. Developed a framework for a spaceflight

constellation architecture for measuring gravitational microlenisng parallax.

The next few sections discuss each contribution in detail.

1.2.1 CS Framework for Transient Photometry

We develop a CS framework as applicable for transient photometry. We show

that this architecture implementation increases sparsity of the data set, as required for

accurate CS reconstruction. This architecture eliminates the need to transform the

data into a sparse domain, thereby significantly reducing computational complexity.

1.2.2 CS Application for Gravitational Microlensing

We show the effect of CS on transient photometric measurements, specifically

obtained due to gravitational microlensing events. Our work shows the effectiveness
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of CS as a function of magnification factors for microlensing events. Furthermore, we

perform an in-depth analysis on the retrieval of gravitational microlensing parameters

due to the impact of CS data acquisition and reconstruction for both single and binary

lensed events.

1.2.3 CS Analysis for Measuring Gravitational Microlensing Parallax

In order to obtain lens mass in a gravitational microlenisng event, microlensing

parallax measurements are critical. We provide a simulation model for obtaining

space-based microlensing parallax using CS techniques. We show the effectiveness

and the need for implementing CS for space-based SmallSat observatories.

1.2.4 Impact of Noise on CS Reconstruction

We show the impact of noise on CS reconstruction of transient photometric

curves. In addition, we provide techniques to tune the CS measurement matrix in

order to provide higher accuracy for CS reconstruction in the presence of noise.

1.2.5 CS Detector for a Space-Based Satellite Constellation

Lastly, we show an architecture for space-based satellite constellation for obtain-

ing microlensing parallax using CS detectors. We also show the data volume resource

usage comparison for CS-based detectors versus traditional detectors.

1.3 Literature Review

Compressive sensing applied to astronomical observation is a new field. Bobin

et al. discuss application of CS to astronomical images in (Bobin, Starck, & Ot-

tensamer 2008). In their work, CS is discussed as a way of sensor design as well a
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compression scheme. We will be implementing CS as part of the sensor design in ar-

chitecture I and II, while as a compression scheme in architecture III. They apply CS

to simulated Hershel data, and show that CS has great potential for its application

to the Hershel space mission. Their conclusions help foster the effectiveness of using

CS on astronomical data sets. In our research, we extend this aspect of preserving

accuracy in spatial reconstructed images to preserving accuracy in time-domain pho-

tometric data, specifically microlensing events, while sampling in the spatial domain.

CS has also been studied in the context of weak gravitational lensing by Leonard et

al. (Leonard, Dupé, & Starck 2012). Their results show that CS works better than

the currently used linear methods to accurately reproduce clusters.

The advancement of CS technology has been very prominent in the past few

years. From the theoretical implications discussed in (Eldar & Kutyniok 2012) and

(Candès & Wakin 2008) to recent advances in practical applications. In this research,

we mainly focus on CS theory as applicable to astronomical data sets. We explore

reconstruction algorithms, measurement matrix, and sparsity. For reconstruction al-

gorithms, we use the latest developments in convex optimization theory (O Donoghue

et al. 2016) as well as their corresponding Python packages (Diamond & Boyd 2016)

as provided by Boyd and group. Our research will consist of finding the optimal

algorithms for microlensing application. For better CS reconstruction, sparsity in

data sets is necessary. Starck applies various transforms for sparsifying astronomical

images (Starck, Murtagh, & Fadili 2010a). In our future work, we will experiment

with some of these transforms. However, as dictionary learning has become a new

and emerging field of sparsiying data as relevant to our specific training sets, we first

explore its effectiveness for our application. Beckouche et al. have studied dictio-

nary learning, but instead for denoising astronomical images (Beckouche, Starck, &

Fadili 2013). Duarte-Carvajalino et al. studied optimal methods to obtain a sens-
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ing (or measurement) matrix while simultaneously finding a sparse basis dictionary

(Duarte-Carvajalino & Sapiro 2009). As we further our research on obtaining good

measurement matrices, we will build on their work. Currently, we have separately

analyzed random measurement matrices and use of dictionary learning for obtaining

a sparse transform domain for use in CS applications.

To our knowledge, there is no published research on the application of CS tech-

niques to detect and analyze astronomical time-domain transient events such as the

ones caused by microlensing. This can be generalized to the detection of all time-

domain phenomena and would be a novel approach for the science community and

an enabling technology for the entire class of microsatellites.

1.4 Organization of Thesis

This thesis combines gravitational microlensing and compressive sensing into one

architecture. In Chapter 2, we discuss CS theory and CS related parameters. This

is followed by Chapter 3, in which gravitational microlensing related parameters are

discussed. In Chapter 4, we provide a CS based architecture for reconstructing tran-

sient photometric measurements. In Chapter 5, we perform a detailed analysis on

the implication of CS on gravitational microlensing parameters. We follow that with

Chapter 6, where we analyze the implications of microlensing parallax observations

using CS techniques. In Chapter 7, we analyze effects of noise on CS reconstruc-

tion for transient photometric curves. In Chapter 8, we put together a CS detector

architecture for implementing a space observatory, in order to detect gravitational

microlensing parallax. Finally in Chapter 9, we provide conclusions and our path

forward for this research.
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Chapter 2

COMPRESSIVE SENSING PARAMETERS

Compressive sensing is a mathematical theory for sampling at a rate much lower

than the Nyquist rate, and yet, reconstructing the signal back with little or no loss

of information. The signal is reconstructed by solving an underdetermined system.

This works only when the signal we are solving for is sparse in the domain we are

reconstructing. Hence, if it is not sparse in the sampling domain, we can transform

it to a sparse domain, perform the reconstruction and then transform it back to the

original domain. This theory is applied to gravitational microlensing datasets to ex-

tract relevant information about a microlensing event. In this chapter, we begin by

providing some background on Compressive Sensing and then discuss gravitational

microlenisng application. Then, we incorporate them together to provide architec-

tures for implementation.

2.1 CS Theory

The signal of interest, x, is a sparse signal of length N . Here, ΦMxN is the

measurement matrix, which is projected onto x to obtain the yMx1 measurements,

where M << N , as shown in Figure 2.1. The goal is to solve for x in equation 2.1.
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y = Φx (2.1)

Fig. 2.1: CS Architecture I

If x is not sparse in the sampling domain, then a transform basis, ΨNxN , can

be applied to obtain sparsity. CS requires the signal to be sparse in order for the

reconstruction algorithms to reconstruct the signal accurately. This is further de-

scribed in Chapter 3. A sparse transformed domain signal, s, can be reconstructed

during CS reconstruction process and then transformed back to the sampling domain

to obtain x. In this section, we describe two ways of implementing sparse domain
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transformation as applicable to CS. The first method uses a dictionary basis and an

encoded signal to represent the signal, x.

y = ΦΨs (2.2)

If sampling occurs in the spatial domain, then in this case, Φ is projected onto

the spatial image, x, and s is reconstructed, given y, using ΦΨ. Once s is obtained it

can easily be transformed back to the domain of x using x = Ψs

Similarly, if x = Ψs, we can obtain a D such that Dx = s. Here, Ψ is the inverse

of D. The second method uses that form, to solve the problem show in equation 2.4.

y = ΦDx (2.3)

= Φs (2.4)

Here, ΦD is projected onto x to obtain y, and only Φ is used to reconstruct s,

which is then transformed back to the domain of x. The second method is briefly

discussed in (Candes et al. 2011) as part of a discussion on coherence of dictionaries.

In their paper, their goal is to reconstruct the sparse signal, s itself rather than the

transformed signal.

In this chapter we discuss some of the important parameters required for com-

pressive sensing as applicable to time-domain photometry, specifically, gravitational

microlensing. We discuss sparsity, number of measurements, measurement matrix,

and reconstruction algorithms.
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2.2 Sparsity

Compressive sensing exploits sparsity in signal, so that a signal can be recovered

using fewer number of measurements, as compared to sampling the total number of

pixels in the image. If a signal is sparse, then it can be well approximated by a

linear combination of only a few elements of a given basis. A typical sky field can be

densely populated especially if we are analyzing microlensing events in the galactic

bulge. We will apply a few common transforms such as Fourier and wavelet to analyze

the sparsification due to the transforms. Starck discusses other transforms relevant

to astronomical images in (Starck, Murtagh, & Fadili 2010a). Rebello-Neira uses

redundant discrete B-Spline based dictionaries for astronomical images (Rebollo-

Neira & Bowley 2013). In this proposal research, we apply dictionary learning to find

a sparse basis given a training data set. A signal, x is k sparse if:

x : ||x||0 <= k (2.5)

As real-world signals are not exactly sparse, compressible signals can be approxi-

mated as relatively sparse. A compressible signal has coefficients which decay at a high

rate (Eldar & Kutyniok 2012). We study a HST data set image, iabf01bxqraw.fits

(Figure 2.2), to determine the compressibility of the coefficients of that image.
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Fig. 2.2: HST Image
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Fig. 2.3: Sorted coefficients

To reach from the maximum to the minimum pixel value, the rate of decay is

not very high as it stays constant before dropping off to near 0.

To emphasize the need for sparsity in CS applications, we apply CS using 50%

of N measurements to Figure 2.2 and reconstruct it. Here N is the total number

of pixels in the image. Figure 2.4 is the reconstructed image using CS techniques

without applying any sparsifying basis.
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Fig. 2.4: CS Reconstructed image without sparse domain transformation

As seen from Figure 2.4, the germane information from Figure 2.2 is not pre-

served in figure 2.4. The PSNR of this image is 14.24 dB. In the next experiment, a

specific dictionary is generated for each column of the image and CS is applied indi-

vidually to each column. This will be used as a method of sparsifying data in Figure

2.2. The complete image is stitched together after all the columns of the image are

reconstructed.

Dictionary Learning In our simulation, we use Online Dictionary learning as

described in (Mairal et al. 2009). A python package, (Pedregosa et al. 2011), which

uses that algorithm is used for our simulations. Online dictionary learning algorithm

finds a sparse representation of our image, iteratively. For each column of Figure 2.2,

a dictionary and an encoded signal is obtained using Equation 2.6.
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(s,Ψ) = min
s,Ψ

0.5||xi − sψ||22 + ||s||1 (2.6)

For computational purposes, we assume a 1D signal by slicing the image into n vectors,

where each column of Figure 2.2, xi, represents a vector. Once a dictionary and code

is obtained, a sparse representation is shown as in 2.7.

x = sΨ (2.7)

Here xi, where i = 1 : n, is n x 1 image vector, snxp is the code and Ψpx1 is the

dictionary.

In order for CS to reconstruct the sparse signal, s, the sensing matrix must be

multiplied with Ψ during the reconstruction process. The steps for the rearranging

matrix while preserving the matrix properties are shown below.

xT = (sΨ)T (2.8)

= ΨT sT (2.9)

Figures 2.5 show a sample dictionary and encoded signal for an image vector

from Figure 2.2.
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(a) Sample Dictionary, Ψ (b) Sample sparse coded signal, s

(c) Comparison between original signal, xT and

encoded signal (ΨT sT )

Fig. 2.5: Ψ, s, and encoded signal (red dotted line) compared with original signal

(blue continuous line)

If each column is provided with its optimal dictionary, a nearly perfect image

can be reconstructed even with only 50% of Nyquist rate measurements as seen from

Figure 2.6. Figure 2.6 has a PSNR of 90.2 dB.
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Fig. 2.6: CS Reconstructed Image

Fig. 2.7: Difference between reconstructed and original image
16



Finding a dictionary specific to each image column may be impractical in a real-

world application as the signal itself is unknown. In order to obtain a good dictionary

suitable for a wide range of data sets, a good training data set needs to be gener-

ated. However, as the sky portion, specifically the galactic bulge, which is usually

observed for microlensing events, has been imaged by several missions, finding a good

dictionary for each portion of that region of the sky is feasible. There has been

a lot of literature on finding sparse matrices using dictionary learning. Recent ad-

vances provide methods of simultaneously acquiring a dictionary and sensing matrix

(Duarte-Carvajalino & Sapiro 2009). These methods will be further studied to apply

them to our astronomical images and to analyze their impact in the time domain.

An important criteria is to reconstruct an image to the accuracy such that the pixels

containing the flux of the star source is preserved in the time domain to differenti-

ate the amount of change in flux over two consecutive time sampled spatial images.

This extended research will be studied in our future work in order to complete the

thesis. In previous work related to astronomical images, dictionary learning was used

as a method of denoising images (Beckouche, Starck, & Fadili 2013). In this pre-

liminary work, we showed that dictionary learning is a feasible option for sparsifying

astronomical images and we have incorporated it into the CS framework.

2.3 Measurement Matrix

Measurement matrix or sensing matrix is the matrix projected onto the signal of

interest to acquire the less than Nyquist rate measurement samples. The projection

onto the signal, x, is A = ΦD from equation 2.4. This is the sensing matrix multi-

plied by the transform basis. From here on, in this thesis, we will refer to A as the

measurement matrix, and Φ as the sensing matrix. However, in other literature, the
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projection matrix, with or without multiplication with a transform basis is referred

to as the sensing matrix.

2.4 Measurement Matrix Theory

For simplicity, in this section, we assume D, the transform basis, to be the

identity matrix. We will consider Equation 2.1:

y = Φx

For CS to reconstruct accurately while being robust to noise as well, the restricted

isometric property (RIP) is given:

(1 − δk)||x||22 ≤ ||Ax|| ≤ (1 + δk)||x||22 (2.10)

for δk ∈ (0, 1)

This property states that the distance is preserved between any pairs of such x vectors

(Eldar & Kutyniok 2012). Further theoretical derivations are also provided in (Pope

2009). For matrix A satisfying this property, it is sufficient for stable recovery of

x using various l1 norm minimization algorithms. However, the RIP property is

not easy to compute as it is NP hard. Gaussian and Bernoulli matrices are known to

satisfy k-order RIP (Nguyen & Shin 2013) and hence, are good measurement matrices

for CS. As RIP is not easily computable, other properties such as incoherence of the

measurement matrix can be computed to provide recovery guarantees. This is further

analyzed in the next section.

The number of measurements required is related to the sparsity of the signal as

well as the length of the signal. In addition, the measurement matrix has to satisfy

the RIP of order 2k to achieve the measurements bound. Theoretically,
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M ≥ Ck log n
k

(2.11)

where C = 1
2 log(

√
24 + 1)

≈ 0.28 (Eldar & Kutyniok 2012).

2.4.1 Measurement Matrix Analysis

The measurement matrix is the matrix projected onto to the original signal.

This matrix needs to be incoherent with the basis of the original signal. In general,

random matrices are universally incoherent. We studied Bernoulli and Gaussian

random matrices to understand their incoherence as a function of the number of rows

and columns in a matrix. We assume D to be the identity matrix and Φ to be either

a Bernoulli or Gaussian random matrix. In order to obtain accurate recovery for

compressive sensing reconstruction, various bounds must be met. The bounds relate

to the mutual coherence of the measurement matrix (Eldar & Kutyniok 2012).

spark(A) ≥ 1 + 1
µ(A) (2.12)

k <
1
2spark(A) (2.13)

where A is an M x N matrix and µ(A) is the coherence of A. If this bound is

satisfied, we can get a guaranteed k-sparse solution using L1 minimization techniques.

Work from (Elad 2007) shows that the lower the incoherence of the measurement

matrix, the better results CS is able to acquire. Sparsity and mutual coherence

theoretical implications are also discussed in (Candes & Romberg 2007)

In this thesis, we analyze the behavior of µ(A) for varying sizes of A.
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Results and Analysis We measure coherence of matrix A for M x N sizes

with ratio of 1:3 for Gaussian random matrix and Bernoulli random matrix. Here we

take

A = A′
√
M

(2.14)

A′ is a randomly generated independent and identically distributed (i.i.d) Bernoulli

or Gaussian matrix. We compute the coherence:

µ(A) = max
0≤i ̸=j≤N

| < ai, aj > |
|∥ai∥2|∥aj∥2

(2.15)

Bernoulli Random Matrix We analyze the coherence and behavior of the

Bernoulli Random matrix of size 200x600. Fig. 2.8 shows the average coherence over

50 iterations for matrix size varying from 1x3 to 200x600 by a factor of 1 to 3.
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Fig. 2.8: Average Coherence of Bernoulli Random Matrix

Gaussian Random Matrix We analyze the coherence of a Gaussian random

matrix of size 200x600, iterating 50 times.
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Fig. 2.9: Average Coherence of Gaussian Random Matrix

For the last iteration, at matrix 200x600, Bernoulli random matrix reached about

0.6786, whereas Gaussian random matrix reached about 0.3219. Hence, we can see

that Guassian reaches a much lower coherence for the same size matrix. The speed

up for Gaussian matrix is almost twice that of Bernoulli. Also, for both measurement

matrices, we can see that coherence drops as the size of the matrix increases. In

the simulatios performed in this proposal research, we use Bernoulli random matrix

because of the ease in implementation at the detector level.
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2.5 Reconstruction Algorithms

Once compressive sensing measurements are acquired, reconstruction algorithms

need to be applied to obtain the sparse signal from the few measurements. There

are two main categories of reconstruction algorithms: optimization techniques and

greedy algorithms.

2.5.1 Optimization Techniques

Optimization techniques usually minimize a norm to obtain an optimal global

solution. Few commonly used norms are defined below:

1. L1 norm:

|x|1 =
n∑

i=1
|xi| (2.16)

2. L2 norm:

|x|2 =
n∑

i=1
|xi|2 (2.17)

Similarly any p- norm can be defined as:

|x|p =
n∑

i=1
|xi|p (2.18)

For the simulations in this section, reconstruction for the microlensing event was

performed using L1 optimization algorithm. The following optimization problem was

solved:

min
x

||x||1 (2.19)

subject to|Ax− b| < 0.001 (2.20)
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This problem is solved by using convex optimization techniques. A primal-dual

approach is used. Firstly, the problem can be rewritten as equation 2.22. The La-

grangian of this problem can be set as

minx1Tx (2.21)

subject to|Ax− b| < 0.001 (2.22)

The Lagrange is given by:

L(x, λ, γ) = 1Tx+ λ(Ax− b− 0.001) + γ(b− Ax− 0.001) (2.23)

By obtaining the infimum of the Lagrange over x, a dual problem can be gener-

ated. The solution to a dual problem provides a lower bound for the primal problem.

Only for certain optimization problems, the duality gap is reduced to 0 (Boyd &

Vandenberghe 2004). We use the package (O Donoghue et al. 2016) which uses

splitting conic solver (SCS) to find the optimal solution to the problem stated in

equation 2.20.

Similarly, as the primal problem is modified to suit a specific application, the

corresponding dual problem is generated and solved by SCS algorithm. There are a

variety of optimization problem solver as described in detail in (Bertsekas & Scientific

2015). However, in this research we use SCS due to its recent developments and

comprehensive package, as well as its ability to perform well in our application.
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2.5.2 Greedy algorithms

At each iteration, greedy algorithms obtain a local solution, and through con-

secutive iterations, the goal is to achieve the global solution. In (Needell, Tropp, &

Vershynin 2008), a comprehensive review is given. In addition, (Needell & Vershynin

2010), (Tropp & Gilbert 2007), and (Cai & Wang 2011) provide implications of

Orthogonal Matching Pursuit (OMP) and its derivants on applications relevant to

CS. OMP is one of the commonly used greedy algorithms. OMP works by choosing

the column of A which has the highest column correlation with the residual. We use

OMP for all of our simulations due to its fast computation time.
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Chapter 3

GRAVITATIONAL MICROLENSING

PARAMETERS

To analyze time-series photometric measurements, we focus on gravitational mi-

crolensing curves, which are an example of time-series measurements. In this chapter

we discuss microlensing parameters that could be sensitive to CS measurements. We

conduct a preliminary analysis on lens-source separation parameter in this research

work, while other parameters are to be researched in our future work. In addition we

propose, implement, and analyze new differencing algorithms for Gaussian as well as

Airy point spread functions.

3.1 Gravitational Microlensing Theory

Using Netwonian physics and Einstein’s theory, the gravitational lensing equation

shown in Equation 3.1 can be derived. The derivation is shown in Appendix A.

β = θ − αd(θ) (3.1)

where β is the angular distance from the observer to the source, θ is the angu-

lar distance between the observer and the projected image, and α is the deflection
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angle. In gravitational lensing, the surface brightness, which is the flux per area, is

conserved. The total flux increases or decreases, since the area increases or decreases.

In microlensing two images of the source star are created due to the distortion of

light. However, these separate images are not observed, but rather, magnification

or demagnification of the source is observed; the images are not resolved. Since

the Jacobian matrix gives the amount of change in the source in each direction, the

transformation of the original source to the “stretched” source, can be mapped by the

Jacobian. The absolute value of the inverse of determinant (det) gives the amount of

magnification.The magnification is given by

Ai = 1
detJ

(3.2)

Then, total magnification is

A =
∑

i

|Ai| (3.3)

In the next section, we analyze the image resolution and source magnification

for single lens systems followed by binary and multiple lens systems.

3.2 Single lens System

In a single lens system, the lensing system consists only of a lensing star. This

is the simplest model we first used for preliminary results. By assuming a point

source, the magnification of the source star at each time is given by the source-lens

separation, µ0, peak magnification time, t0, and Einstein’s ring radius crossing time,

te. We apply compressive sensing to simulated singles lens gravitational microlensing

events.

Magnification as a function of time is given by equation 3.2.
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A(t) =
u2

0 + (t− t0)2

tE
+ 2

(u2
0 + (t− t0)2

tE
)1/2(u2

0 + (t− t0)2

tE
+ 4)1/2

(3.4)

3.2.1 Lens-Source Separation

In this research, we analyze the effects of compressive sensing on low magnifi-

cation events due to large lens-source separations, normalized in terms of Einstien’s

ring radius. The lens-source separation parameter, µ0, influences the magnification

of the microlensing curve (Equation 3.2). We determine the uncertainty caused as we

vary u0 from 0.1 units to 0.9 units of Einstein’s ring radius. We use 4% of Nyquist

rate measurements. In this context, Nyquist rate refers to the total number of pixels

in the image, which traditional methods would need to capture.

Fig. 3.1: Magnification for varying Lens-Source Separation parameters. Credit: (Sea-

ger 2010)
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As u0 increases, the magnification curve decreases in magnification at 0.

3.3 Binary and M-ary Lens Systems

Binary and M-ary lens systems do not have an analylical solution, and, hence,

are very difficult to compute. Modelling techniques for generating microlensed event

curves due to M-ary lens systems is provided in (Bozza 2010a). Figure 3.2 shows a

sample binary lens event due to a lensing star and a planet.

3.3.1 Binary Lensing

Application of CS to single lens microlensing events can be extended to binary

lens events. In a binary lens event, the lensing system consists of two bodies, typically

a planet and a star.
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Fig. 3.2: Binary Lens Event

[Top Image]The black dot represents the lensing star and the red filled circle

represents the source star. As the lens and source move in relative motion, the blue

set of images will be created- one inside the Einstein’s ring (green circle) and one

outside. The separation between the two set of images is not resolved and hence,
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will look like magnified flux to the observer. The red X represents a planet orbiting

the lensing star. [Bottom Image] The black line is the microlensing curve due to the

lensing star. The red spike is due to the distortion caused by a planet orbiting the

lensing star. Credit: Astronomy Dept. of Ohio Statue University As seen from Figure

3.2, it is critical to capture short lived transits for binary or M-ary lens systems.

Critical curves and caustics From application perspective, we can map out a

time-series photometric curve using a detector, which takes images at t time samples.

Once a light curve is generated using instrument data, it needs to be mapped back

to the lensing parameters, which determine the characteristics of the lensing system.

The following flow chart maps the lensing equation values to the magnification

curves. Hence, the obtained magnification curve from detector data can be mapped

back to the lensing equation parameters.

To obtain the magnification:

• Input image positions using the lensing equation

• Find the Jacobian

• Amplification = 1
|J |
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Fig. 3.3: critical curves based on projected separation and mass ratio. (Seager 2010)

Wide caustic topology gives two disjoint caustics, intermediate/resonant topol-

ogy gives a single caustic, and a close topology gives three disjoint caustics. Depending

on the trajectory, the magnification is given as the source passes through the caustic.

3.4 Simulations

For binary lens simulations, parameters are chosen such that the caustics cover

all three topographies. In order to understand the effects of magnification due to the

crossing of caustics, the trajectory angle is varied to cover a range of caustic curve

crossings. We use the three caustic topographies as listed below.
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• Wide Topography

• Intermediate/Resonant Topography

• Close Topography

3.5 Differencing Algorithms

To detect a microlensing event, scientists are only interested in star sources

whose flux changes over time. In order to capture only the star sources with varying

flux, differencing can be performed, where the observed image is differenced with

a reference image, eliminating static star sources. Star variations can be caused

by cosmic sources, or dimming of star flux due to planetary transits in addition to

gravitational microlensing. However, there are very few stars sources experiencing

magnification in their fluxes caused by gravitational microlensing. A reference image

has a cleaner point spread function (PSF), that is, the spread of the point source

is very narrow. This is usually generated by registering good seeing images. An

observed image in our context is any image output of a detector system, typically

with a worse seeing PSF.

3.5.1 Difference Image Analysis (DIA)

DIA is the current state-of-the-art algorithm for differencing images. Through

literature search, we use the differencing algorithm provided by Bramich in (Bramich

2008) and (Albrow et al. 2009) as it uses a numerical kernel and is the latest improved

version of the standard differencing method (Alard & Lupton 1998). The previous

differencing method is based on the defining Gaussian basis function for the kernel.

An implementation for OGLE-II based on that method is shown in (Wozniak 2000).

However, the correct kernel may not be obtained if the pre-chosen basis functions were
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inaccurate to begin with. Hence, this (Bramich 2008) algorithm uses a numerical

kernel to match the PSF of the reference image with the observed image. Assuming

σij, pixel uncertainty, = 1, Equation 3.5 can be formulated as a least squares problem

as shown in 3.6.

χ2 =
∑

ij

(Iij −Mij

σij

)2 (3.5)

min
K

||I −M ||22 (3.6)

where

Mij = (R ⋆ K)ij +Bij (3.7)

=
∑

lm

KlmR(i+l)(j+m) +B0 (3.8)

R is the referenced image and K is the kernel which registers the reference image

with the observed image. We represent convolution as ⋆. Bij is the background. Here

background is kept at a constant B0.

In order to minimize χ2, we need to set the differential of Equation 3.5 to 0.

As we optimizing K and B0, we take differentials with respect to K and B0. The

implementation in Python is provided by Ian Crossfield.

3.6 Detectors Theory

Optical set up of telescopes can have a major impact on the quality of the image.

The point source response of a detector is given by its point spread function (PSF).
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In this section we discuss common aperture types and the PSF they generate.

3.6.1 Point Spread Functions

Fig. 3.4: Observed Image from a detector

As the light from a point source travels from the object plane to the lens into the

image plane, it gets diffracted due to the lens as it reaches the image plane. Theory

of diffraction of light due apertures is given in (Mansuripur 1986). PSF calculation

is shown in Appendix B.

Airy Disk Circular optics aperture give a PSF which has an airy disk pattern

due to the diffraction of light through the optics (Tschunko 1974). This Airy disk

pattern can be characterized using Bessel function as shown in 3.9, where J1 is Bessel

function of the first kind.

I(u) = 1
(1 − ϵ2)2

[2J1(u)
u

− ϵ2 2J1(ϵu)
ϵu

]2
(3.9)

Here u is the distance from the optical axis and ϵ is the fractional radius of the

primary aperture, and can be set to 0.

A sample Airy shaped PSF generated due to a circular aperture with 15m radius,
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0.01 pixel scale, 3 arcsecond field of view and 2 microns wavelength, is shown in Figure

3.5. This PSF is generated by a Python library.

Fig. 3.5: Sample Airy Disk PSF

Gaussian Gaussian PSFs are good approximate of Airy functions (Raffel,

Willert, & Kompenhans 1998) and can also be used to model detector optics. They

are easier to mathematically model. Gaussian function can be modeled as:

f(x) = 1
2σ

√
2π
e

−(x− µ)2

2σ2 (3.10)
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In our simulations to depict real world applications, we generate star sources

created by Airy shaped PSF of detector optics.
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Chapter 4

COMPRESSIVE SENSING ARCHITECTURE

We show a CS architecture as applicable for transient photometry, specifically

generated by gravitational microlensing events.

4.1 Gravitational Microlensing Application

In this section we give an overview of gravitational microlensing and its appli-

cation in the architecture. Gravitational microlensing is a time-domain photometric

application. Although we sample in spatial domain, the light curves are obtained in

the time domain.

Analysis of gravitational microlensed events start from differenced images. As

part of either the detector sensing or as part of post-processing, sampled spatial

images are differenced with a reference image to obtain a differenced image. Figure

4.1 shows a clean reference image, an observed image in which one of the star sources

experiences a change in flux, and a differenced image. The differenced image captures

the change in flux of any of the star sources at the given time the observed image was

taken.
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(a) Reference Image (b) Observed Image

(c) Differenced Image

Fig. 4.1: Image Differencing

All such differenced images are taken and analyzed over time to generate a mi-

crolensing curve as shown in Figure 4.2.
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Fig. 4.2: Generating a Microlensing curve from differenced images

Using these mirolensing curves specific characteristics about the stars and planets

in the lensing systems can be derived.

4.2 Architectures

CS framework will be applied as shown in Figure 4.3.

Fig. 4.3: CS Architecture implementation overview
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We propose two architectures in this research. All architectures show imple-

mentation and processing up to the stage of obtaining a differenced image. The

implementation shows a snapshot of sampling an image at one time.

4.2.1 Architecture I

In this architecture traditional CS methods are applied to acquire the spatial sky

image.

Fig. 4.4: CS Architecture I. Color code, blue: on-board spacecraft, orange: ground

processing

The architecture show in Fig 4.4, uses sparse domain transformation as part of

the projection process to sparsify the data. Sparse transformation in Figure 4.4 is

shown using equation 2.4, but can be substituted by equation 2.2 as well. The pro-

jection consists of the measurement matrix and the sparse basis. Differencing in this

architecture is performed on the reconstructed spatial domain images. Architecture

I can be used as a survey observatory architecture, where the complete spatial sky

image is acquired. This thesis focuses on Architecture II as it is more suitable for

gravitational microlensing application.
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4.2.2 Architecture II

The second architecture, shown in Figure 4.5, implements differencing at the CS

measurements level. The output of this architecture is a differenced image. Thus, the

original spatial sky image is not preserved. We study limitations and requirements of

the measurement matrix for when CS in this architecture is realizable.

Fig. 4.5: CS Architecture II

Architecture II eliminates the need for sparsifying data as the reconstructed

differenced signal would be sparse. This can reduce computational power and memory

required for transforming into a sparse domain. A key difference between the two

architectures is where differencing takes place - in architecture I, differencing is applied

to the reconstructed images, where as in architecture II, differencing is applied to the

measurements. As the measurements have a smaller dimension than the reconstructed

images, computational power can also be reducded while differencing. We will further

study these architectures to quantify the advantages of one over the other.

In general, architecture II, Figure 4.5, is not realizable with any measurement matrix,

A, as shown in equations 4.1 - 4.5. Only if equation 5.7 is satisfied, the differencing

of measurements, y, can result is a differenced image.
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ydiff = yo − (yr ⋆ M) (4.1)

= Axo − ((Axr) ⋆ M) (4.2)

̸= Axo − A(xr ⋆ M)) (4.3)

̸= A(xo − (xr ⋆ M)) (4.4)

̸= A(xdiff ) (4.5)

where A = ψ and M is the kernel

ydiff = A(xo − (xr ⋆ M)) (4.6)

To overcome this limitation, we develop a suitable measurement matrix. Research

from (Tropp 2006) shows that random filters using Toeplitz matrices (Gray & others

2006) can be used for compressive sensing as measurement matrices. Using random

fiters and convolution, we can create a measurement matrix that will potentially

satisfy equation 5.7.

Instead of using a matrix multiplication for projecting the measurement matrix, we

can apply convolution (Tropp 2006) as shown in equation 4.7.

yB = B ⋆ xo − ((B ⋆ xr) ⋆ M) (4.7)

Linear convolution is identical to multiplying the signal, xo by a Toeplitz matrix.

Let A be a quasi-Toeplitz matrix which is equal to the convolution of B with xo as
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shown in equation 4.12. Equation 4.9 is true because of the associative property of

convolution.

B ⋆ xo − ((B ⋆ xr) ⋆ M) (4.8)

= B ⋆ xo − (B ⋆ (xr ⋆ M)) (4.9)

= Axo − (A(xr ⋆ M)) (4.10)

= A(xo − (xr ⋆ M)) (4.11)

= ydiff (4.12)

In the next section, we perform simulations to validate these theoretical results.

4.2.3 Simulation Results

We perform numerical simulations to verify the theoretical results. An nxn image

is generated with n star sources at Gaussian randomly distributed locations and flux

values. A kernel is generated for the purpose of verification. A Toeplitz matrix, Amxn

is created using Gaussian random values as shown in Figure 4.6. In our simulations,

we use n = 75, m = 0.5 × n × n = 2813, and kernel, K is set as [1, 2, 1]. For

simulation purposes, the n × n image is converted to a 1D vector. Hence, xo and xr

are 1 × (n × n) or in this specific case, 1 × 5625. Here, we prove

yo − (yr ⋆ K) = A(xo − (xr ⋆ K)) (4.13)

ydiff = A(xdiff ) (4.14)

Array length sizes due to convolution, subtraction and/or multiplication for both
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left and right side of equation 4.14 are shown in Table 4.1 and Table 4.2, respectively.

To determine convolution sizes, let n× n = p, which is the size of xo and xr. Let k be

the length of kernel and let m be the length of yr and yo. Due to the subtraction step

involved, convolution of the same length as either yo or xo, for the right and left side

of equation respectively, is performed. A full convolution for the left-hand side would

give m + k − 1 = 2815, while for the right hand side would give p + k − 1 = 5627

multiplied by an m × p matrix. A valid convolution signal with complete overlap will

have m− k+ 1, where m > k, and p− k+ 1, where p > k, for the left and right hand

side of equation 4.14, respectively.

Table 4.1: Operation sizes for left hand side of equation 4.14 using same length

convolution as yo

Step Convolution size

yr ⋆ K max(m, k) = m

yo − yr ⋆ K m length vector - m length vector = m

The first step contains end-points which do not completely overlap during con-

volution giving rise to boundary effects. These boundary effects are carried over in

the second step as well.
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Table 4.2: Operation sizes for right hand side of equation 4.14 using same length

convolution as xo

Step Convolution size

xr ⋆ K max(p, k) = p

xo − xr ⋆ K p length vector - p length vector = p

A(xo − xr ⋆ K) m length vector

Similarly, the boundary effects take place here. This end-point values get carried

over during multiplication with A, causing a mismatch with the ydiff values at the

endpoint as seen in Figure 4.8. The valid portion of the convolution in which both

the signals completely overlap are from 2 : m− 1 for Table 4.1 and 2 : p− 1 for Table

4.2.
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Fig. 4.6: Sample Quasi-Toeplitz matrix

Figure 4.6 is transposed and m rows are taken as shown in Figure 4.7 for the

second step in table 4.1 to obtain y measurements and the third step in table 4.2.

Fig. 4.7: m rows of Quasi-Toeplitz matrix
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Fig. 4.8: difference between ydiff and Axdiff

As seen from Figure 4.8, only the first and last element have a different value.

This is because of the boundary conditions during convolution. The rest of the values

are zero, hence, we can say that equation 4.14 is true.

Next, a complete CS experiment is performed to validate architecture II. In this

experiment, 100 Monte Carlo simulations are performed. In this case, the kernel is

found using L1 norm optimization technique, which is further discussed in Chapter

4. This experiment depicts Figure 4.5. Reference image has a Gaussian PSF of 0.1

units of pixel magnitude spread in both x and y direction, while the observed image

has a Gaussian PSF of 0.5 units spread in both x and y direction. Both reference and

observed image are 75 × 75 pixels. For simulation purposes, the images are converted

to 1D signals of length 75 × 75 = 5625. The number of measurements is 50% of the

total number of pixels, (75 x 75)/2 = 2812. In this experiment, we compare the
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following three methods:

1. Ideal case:

xdiff = xo − (xr ⋆ k) (4.15)

2. Apply a Toeplitz matrix, A, as the measurement matrix and reconstruct xdiff .

Here, A is the Toeplitz form of B, with B from 4.9.

ydiff = A(yo − yr ⋆ k) (4.16)

Then use CS reconstruction algorithm to solve for xdiff using the obtained ydiff .

3. Apply a random matrix, C, as the measurement matrix and reconstruct

xdiff . Theoretically, this method should not work correctly. However, we use this for

validation to show that only Toeplitz matrix as in step 2 should provide an accurate

solution.

ydiff = C(yo − yr ⋆ k) (4.17)

Then use CS reconstruction algorithm to solve for xdiff using the obtained ydiff .

For all the methods, L1 minimization technique described in Chapter 4 is used. Both

methods 2. and 3. are compared with the ideal result approximation obtained from 1.

All three categories use the same differencing algorithm for an accurate comparison.

The differenced image value (column two of Table 4.3) should ideally be zero, as we

would want to obtain a kernel that perfectly matches the referenced image to the

observed image. However, due to the limitations of the differencing algorithm, the

possible minimum we can attain is obtained from method 1. A differenced image

output from each of the methods from one simulation is shown in 4.9.
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(a) Differenced Image, Method 1

(b) Differenced Image, Method 2 (c) Differenced Image, Method 3

Fig. 4.9: Image Differencing using the three methods

This shows that method 2 gives the same differenced image The average values

over 100 simulations are shown in Table 4.3.
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Table 4.3: Average value of the differenced image using the 3 different methods (de-

scribed above)

Method number Avg. of differenced image std. deviation

1 147.21 7.87

2 142.24 14.84

3 250.88 11.95

As shown from equations 4.14, the kernels should be almost the same for method

2 as method 1. The table below shows the average difference between the kernel values

over 100 Monte Carlo simulations for method 2 and method 3 as compared to method

1. As seen from table 4.4, average of the differenced image in method 2 is very close to

that of method 1. The slight difference could be either due to the end-point variations

because of incomplete overlap in convolution as discussed in the previous experiment

or could be due to the limitations of CS reconstruction using 50% measurements. As

expected method 3, has a much higher average value.

Table 4.4: Average difference between obtained kernel values

Method number Avg. difference between kernels std. deviation

2 0.0066 0.0046

3 0.061 0.0667

However, from the later chapters, we will know that 1D differencing algorithms

do not work as well on 2D images, hence, the greater residual. To verify this method
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with a microlensed event and 2D algorithms, we use a 128 by 128 image with 128

star sources. Out of those star sources, 1 star source experiences magnification of

5%. The reference image has a standard deviation PSF of 0.1, while the observed

image has standard deviation of 0.5. We then reconstruct the images using the three

methods. A sample reconstruction is shown in figure 4.10

(a) Differenced Image, Method 1

(b) Differenced Image, Method 2 (c) Differenced Image, Method 3

Fig. 4.10: Image Differencing using the three methods
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From Figure 4.10, we can see that Method 1 and 2 correctly identify the mi-

crolensed star source. As method 1 gives the ideal method comparison for our ex-

periments, method 2 and method 3 are compared with method 1. From the results,

method 2 resembles method 1 with an error between them of only 3.36%, while

method 3 has an error of 100%.

For simplicity in our simulations moving forward, we can make the assumption

that the PSF of the reference image and the observed image is the same. This can

especially be valid for observations performed on space flight. However, in cases where

this assumption is not true, we show a method to implement our CS techniques using

a Toeplitz matrix.
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Chapter 5

COMPRESSIVE SENSING APPLICATION FOR

GRAVITATIONAL MICROLENSING EVENTS

In gravitational lensing, the surface brightness, which is the flux per area, is

conserved. The total flux increases or decreases, since the area increases or decreases.

In microlensing, distinct images, due to the gravitational effects of the lensing sys-

tem, are not seen, but rather, magnification or demagnification of the source star is

observed; the images are not resolved. Since the Jacobian matrix gives the amount

of change in the source star flux in each direction, the transformation of the original

source to the stretched source, can be mapped by the Jacobian. The absolute value

of the inverse of determinant gives the amount of magnification.

Einstein’s ring forms when there is an exact alignment of the source, lens and

observer and is an important parameter for the basis of gravitational microlensing

equations. Einstein’s ring radius, θE can be defined by equation 9.34.

θE =
√

4GMDLS

c2DLDS

(5.1)

where M is the the mass of the lensing system, DLS is the distance from the lens

to the source, DL is the distance from the observer to the lensing system, and DS is
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the distance from the observer to the source (Seager 2010), (Tsapras 2018).

5.1 Single Lens Gravitationally Microlensed events

Here we describe the amplification value for each time as the source star moves in

relation to the lensing system. Let u represent source position, and y represent image

position, normalized by θE. Then, the lensing equation for a single lens microlensing

event can be given as equation 5.2 (Seager 2010).

y± = ±
√
u2 + 4 ± u

2 (5.2)

Total amplification of the two images formed is given by

A(u) = u2 + 2
u
√
u2 + 4

(5.3)

Due to the relative motion between the lens and source, amplification is dependent

on the position of the source image at each time, t. Equation 6.13 shows the position

of the source at each time given the trajectory the source takes (Seager 2010).

u(t) =
[
u2

0 +
(
t− t0
tE

)2]1/2

(5.4)

The trajectory is defined by the impact parameter, u0, which is the minimum ap-

parent separation between the lens and source in units of θE. Einstein ring radius

crossing time is given by tE and the time of peak magnification is given by t0 (Seager

2010). The amplification with time dependency is shown in equation 7.24
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A(t) =
u2

0 +
(
t− t0
tE

)2
+ 2

[
u2

0 +
(
t− t0
tE

2)]1/2[
u2

0 +
(
t− t0
tE

)2
+ 4)

]1/2 (5.5)

5.2 Preliminary Results

In this section, we apply apply CS techniques to very simple microlensing data

to identify the number of measurements needed for the recovery of a microlensing

curve. This also establishes preliminary research on applying CS to time-domain

photometric curves. In our setup, we show a sparse image with only a star source

present.

5.2.1 Experiment I setup

We generate a microlensing curve for one source star with base flux value of one.

Only star source is used in this simplified case. We use Gaussian PSF with a stan-

dard deviation of 0.2 in both x and y coordinates to depict the spread of the point

source star. The event time scale, te, is 30 days, while the peak magnification time,

t0, is at the 15th day. Lens-source separation parameter, u0, is 0.1 units of Einstein’s

ring radius. The sample star source is shown in Figure 5.1 and its corresponding

microlensing curve ranging from t = 1 to t = te is shown in 5.6. This image has N×N

pixels, where N = 25. For CS we convert the image into a 1D vector of length 25×25

= 625. We use the toolbox provided by (Diamond & Boyd 2016) to reconstruct the

signal using CS reconstruction algorithms.
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Fig. 5.1: Star source at peak magnification time
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Fig. 5.2: Microlensing curve

At each time, t, the star source in the spatial domain image consisting changes

its flux according to the microlening event curve. In this experiment we reconstruct

the spatial domain image at each time, t, to generate a microlensing curve of that

one star source.

5.2.2 Experiment I Results

In this preliminary research, we study the number of measurements required to

reconstruct a single lens microlensing event with minimal error. We use a Bernoulli

random measurement matrix, as it is know to be universally incoherent. In the first

experiment, an L1 minimization algorithm, SCS, is used.
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(a) Error bars using 2% measurements (b) Error bars using 3% measurements

(c) Error bars using 4% measurements (d) Error bars using 5% measurements

(e) Error bars using 6% measurements

Fig. 5.3: Error bars for varying % measurements using L1 minimization technique

for CS reconstruction
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If we assume only the center pixel has a significant value, applying equation 2.11,

we would need less than 1 measurement to accurately reconstruct the spatial domain

image. However, in the time-domain event, it is evident from the simulations that in

practical applications, the theoretical bounds are not very accurate and it depends

on various other factors such as the data signal and measurement matrix. Table 5.1

shows error at specific time values for a varying number of measurements.

Error at t = 15 Error at t = 30 Avg. sdev over all t

4.07 0.86 1.60

0.52 0.044 0.52

4.15 × 10−5 5.77 × 10−5 9.64 x 10−4

1.81 × 10−4 2.58 × 10−4 7.76 × 10−4

4.19 × 10−5 5.36 × 10−6 7.32 × 10−4

Table 5.1: Reconstruction Error (magnitude difference) and average standard devia-

tion for 2% to 6% measurements, accordingly (top to bottom)
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Fig. 5.4: Average Error over all t for center pixel with a 3-pixel radius for varying

%Measurements
(
M

N
x 100

)
from 2% of N to 6% of N.

We repeat the same experiment, but instead use OMP as a reconstruction algo-

rithm.
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(a) Error bars using 2% measurements (b) Error bars using 3% measurements

(c) Error bars using 4% measurements (d) Error bars using 5% measurements

(e) Error bars using 6% measurements

Fig. 5.5: Error bars for varying % measurements using OMP algorithm for CS re-

construction
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Fig. 5.6: Percent measurement

In this case, a greedy algorithm, OMP, worked slightly better than the L1 mini-

mization algorithm. We will further study and compare them to detect microlensing

events in noisy detector images or crowded star fields.

In the next section, we study the effect of the impact parameter, u0, on CS

reconstruction.

5.2.3 Experiment II Setup

We use a 25x25 pixel image, with a source star at the center of the image. The

measurement matrix consists of Bernoulli random values of 0’s and 1’s. For each

time value, 100 Monte Carlo simulations are performed by varying the measurement
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matrix. The center pixel in each image is portrayed as the source star with Gaussian

distribution of flux in its surrounding pixels. Hence, while analyzing reconstruction

of the microlensing curve, total flux or magnification is calculated using the center

pixel with a 3 pixel radius. For all simulations, number of measurements, M, is 4% of

N, where N is the total number of pixels in the image. Reconstruction is performed

using an optimization algorithm provided in a software package by O’Donoghue et.

al (2016).

5.2.4 Experiment II Results

Reconstructed microlensed curves for varying impact parameters are shown in

Figure 5.7.
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Fig. 5.7: Original and reconstructed microlensing curves with error bars for lens-

source separation parameter u0 ranging from 0.1 to 0.9.

Table 5.2: Ratio of uncertainty at t0 to the difference in magnification at t0 and

t0 + / − 1. This is to ensure that uncertainty is within limits to acquire a good

resolution at peak time using 4% measurements

u0 uncertainty at t0: difference in magnitude between t0 and t0 + / − 1

0.1 0.0012

0.3 0.0268

0.5 0.192

0.7 0.334

0.9 1.046
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Table 5.3: Average % error over all time values for each µ0 using 4% of N measure-

ments

u0 Average % error

0.1 0.00160

0.3 0.00258

0.5 0.00272

0.7 0.00301

0.9 0.00334

Compressive sensing works well for low magnification events as seen from Figure

5.7. However, as the magnification decreases, uncertainty increases. In order to

ensure key characteristics in the microlensing curve are captured, the uncertainty

at peak magnification time, t0, needs to be less than the difference in magnitude

at the time before (or after) t0. The ratio of uncertainty at t0 to the difference in

magnification between t0 and t0 +/− 1 is shown in Table 5.2. As µ0 reaches 0.9 units

of Einstein’s ring radius, the ratio reaches slightly above 1, indicating the limits of

CS reconstruction resolution. One way to overcome such a limitation is to increase

the number of measurements. When we increase % of measurements for µ0 = 0.9

from 4% to 5%, the ratio decreases to 0.84. As the % of measurements increase,

the error decreases, as expected. Table 5.3 shows average % error over 100 Monte

Carlo simulations over all time values. Error is calculated using the difference in

magnitude between the original and reconstructed image at the center pixel with a 3

pixel radius. From table 5.3, all µ0 values give average reconstruction % error to be

within 0.0000334 units of flux. Although % error is relatively low, uncertainty can

reach a limiting factor as the lens-source characteristic distance increases. This leads

to a trade-off between optimal number of measurements and resolution uncertainty.
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5.3 CS Architecture with Implications on CS Reconstruction

In this section, we describe the implications of using Architecture II as the opti-

mal architecture for CS data acquisition of transient photometric events.

We discuss a novel CS-based architecture for acquiring differenced crowded stel-

lar images. Our research is targeted towards microlensing events, however, it can

be extended to any astronomical events which require differenced images for observ-

ing transient events. Our previous work (Korde-Patel, Barry, & Mohsenin 2016a),

(Korde-Patel, Barry, & Mohsenin 2016b) shows optimistic preliminary results for

applying CS to very sparse spatial images consisting of a star source experiencing

single lens microlensing event. This research extends to differenced images by apply-

ing a novel CS architecture. Figure 4.3 shows how CS is used as a data acquisition

technique to obtain a photometric light curve.

A traditional CS based architecture will use a sparse domain transform, ϕ, to

sparsify the crowded stellar field (Starck, Murtagh, & Fadili 2010b) (Rebollo-Neira

& Bowley 2013), which would then be reconstructed using optimization techniques.

The architecture overview is shown in Figure 4.4.

In this work, we demonstrate a CS based architecture for efficiently obtaining only the

transient star sources in crowded stellar fields. Applying this technique to differenced

images over time can help generate the light curve shown in Figure 4.3. This archi-

tecture, shown in Figure 4.5, implements differencing at the CS measurement level.

The output of this architecture is a differenced image. Thus, the original spatial sky

image is not preserved. We study limitations and requirements of this architecture.

The architecture is implemented in the following manner:

1. Obtain CS based measurements, yo for a spatial image.

CS can be applied by projecting a matrix, A, onto the region of interest, xo.
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This can be done on a column-by-column basis for a n × n spatial region, xo.

Thus, for 2D images, y0 and A are of size m × n, where m << n.

2. Given A and a clean reference image, xr, construct measurements matrix yr,

where yr = Axr

3. Apply a 2D differencing algorithm on yo and yr to obtain a differenced image,

ydiff, and the corresponding convolution kernel, M, which is used to match the

observed and reference CS measurement vectors, yo and yr .

4. Reconstruct the differenced image, x′
diff using CS algorithms, given A and ydiff.

This architecture eliminates the need for sparsifying data as needed by traditional

CS architectures since the reconstructed differenced signal would be sparse. This can

reduce computational power and memory required for transforming into a sparse do-

main. As the measurements have a smaller dimension than the reconstructed images,

computational power can also be reduced while differencing.

In this architecture, we create the differenced measurements matrix, ydiff by

ydiff = yo − (yr ⋆ M) (5.6)

= Axo − (Axr ⋆ M) (5.7)

Here xo and xr are the observed and reference images, respectively, and M is the

obtained convolution kernel using differencing algorithm. The known parameters are

A, yo and xr. Using differencing algorithms, we solve for M, to obtain ydiff.

For 2D images, if differencing gives optimal results, ydiff will have non-zero values

in only the columns corresponding to the non-zero elements in xdiff. Hence, recon-

structing ydiff using CS reconstruction techniques will give a sparse signal back, cor-
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responding to x′
diff. To obtain the best results using CS techniques, x′diff has to be

very sparse. Sparsity of x′diff in this case is dependent on two factors:

1. PSF: Images with fairly narrow PSFs, and reference and observed images which

have a similar distribution PSF, give optimal results using differencing algo-

rithms. This, in turn, produces sparser differenced images. If the PSFs are able

to be matched perfectly using a differencing algorithm, the differenced image

will only contain center pixels with magnitude difference between the two.

2. Magnification: Sparsity in CS can also be viewed as the rate at which the

coefficients decay (Eldar & Kutyniok 2012). The higher the rate of decay of

the coefficients, the sparser the image. Hence, higher magnification events give

a sparser image compared to lower magnification events. When magnification

factor is 1, ideal differencing should result in zero magnitude over all pixels.

In the case of all zero magnitude pixels, the sparsity is zero. This can lead to

erroneous results as the CS reconstruction algorithm searches for k non-zero

pixel values.

We want to solve for x′
diff as this is the differenced image, which contains pertinent

information for generating a microlensing light curve. In our simplified case study,

we study the effects of magnification of a source star, depicting a time sample of

the microlensing light curve. Magnification at the source star with position [p1, p2] is

defined as

xo[p1, p2] = mf(xs[p1, p2]) ⋆ PO (5.8)
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where mf is the magnification factor, ranging from 1 to 1.8 in our experiments.

ydiff = A(xdiff) (5.9)

In equation (5.9), xdiff = xo − (xr ⋆ K).

where δ − ϵ ≤ K ≤ δ + ϵ, and δ is defined by equation (5.10). For equation

(5.11) to hold true, ϵ must be 0. For small quantities of ϵ, the results are discussed

in section 5.3.1.

∫ t0b

t0a

∫ t1b

t1a
δ(t0, t1)dt =





1, if t0 = p1, t1 = p2

0, otherwise
(5.10)

where t0a < t0 < t0b and t1a < t1 < t1b

If ϵ = 0, then

Axo − (Axr ⋆ M) = A(xo − (xr ⋆ K)) (5.11)

In practical cases, differencing algorithms like Difference Image Analysis (DIA)

are used to find this kernel given two images. Although a differenced image with no

microlensing events will give sub-optimal results, an image with a microlensing event

should increase image sparsity leading to better CS reconstruction results. We use a

conic optimization algorithm as described in (Diamond & Boyd 2016) (O Donoghue

et al. 2016) to solve the optimization problem shown in equation 5.12.

minimize ||x′
diff ||1 s.t.

(Ax′
diff − ydiff) ≤ 0.001 (5.12)
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5.3.1 Simulation Results

Using the proposed CS based architecture for 2D images, we apply CS on a

column-by-column basis for a 2D spatial crowded stellar field. We use a 128x128 size

image with 128 star sources spread across spatially in a random uniform manner.

The flux of these star sources are also generated uniform randomly within the range

of [10000, 50000] units of pixel magnitude. Figure 5.8 and Figure 5.9 show a clean

reference image and an observed image with a worse seeing PSF, respectively. For CS,

a Gaussian normal random measurement matrix is applied. We analyze the average %

error and standard deviation of the error over 100 Monte Carlo simulations, where the

random Gaussian measurement matrix is varied. Given the CS architecture described

in section 4, we reconstruct a differenced image, and then analyze the accuracy in

reconstruction of the microlensing photometric curve over time. The reconstructed

result (sample image shown in Figure 5.11) is compared to that of the differenced

image resulting from applying DIA on the spatial domain images, xo and xr (sample

image shown in Figure 5.10). Statistical error analysis using varying parameters is

shown in tables 5.4, 5.5, 5.6, and 5.7. As DIA is the current state-of-art differencing

algorithm, we use that as our basis for comparison. The % error is calculated by

|x′[s0, s1] − x[s0, s1]|
x[s0, s1] × 100% (5.13)

Here, s0 and s1 are pixel indices corresponding to the center pixel of the star experi-

encing a change in flux. x[s0, s1] is the DIA output value at position [s0, s1]. Similarly

x′[s0, s1] is the reconstructed differenced image value at position [s0, s1].
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Fig. 5.8: Reference Image with 0.1 pixel units standard deviation PSF
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Fig. 5.9: Observed Image with 0.3 pixel units standard deviation PSF
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Fig. 5.10: Residual after differencing using DIA
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Fig. 5.11: Reconstructed residual using CS techniques with 10% of Nyquist rate

measurements

Simulations are performed for a reference image with a PSF of 0.1 pixel units of

standard deviation for a Gaussian spread PSF in both x and y direction. Similarly,

the observed image has a PSF with standard deviation of 0.1, 0.3 or 0.5 pixel units.

In table 5.4, the PSF of the reference image is 0.1 pixel units and PSF of observed

image is 0.3 pixel units. In this case, the kernel is known a priori. Hence, in equation

7.5, M is known. Magnification factor is used to calculate the amplification value of

the source star at position [s0, s1]:

Amplification Value = Source star value × magnification factor
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Table 5.4: Average % error in magnitude of the source star and standard deviation

of error over 100 Monte Carlo simulations.

Convolution kernel, M is known.

Observed image PSF = 0.3

Reference image PSF = 0.1

Magnification Factor Average % error standard deviation of error

1 100 0.093

1.2 0.73 0.0073

1.4 1.87 0.099

1.6 0.75 0.0077

1.8 0.73 0.0072
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Table 5.5: Average % error in magnitude of the source star and standard deviation

of error over 100 Monte Carlo simulations.

Observed image PSF = 0.1

Reference image PSF = 0.1.

Magnification Factor Average % error standard deviation of error

1 100+ 1244

1.2 1.75 0.0090

1.4 1.70 0.0097

1.6 1.64 0.0090

1.8 1.71 0.0090

Table 5.6: Average % error in magnitude of the source star and standard deviation

of error over 100 Monte Carlo simulations.

Observed image PSF = 0.3

reference image PSF = 0.1.

Magnification Factor Average % error (m =

0.1×n, m = 0.3×n)

standard deviation of error

(m = 0.1×n, m = 0.3×n)

1 100+, 100+ 2.6×108, 4.86×108

1.2 7.2, 1.76 0.037, 0.0041

1.4 6.2, 0.78 0.099, 0.0017

1.6 4.1, 0.49 0.018, 0.0013

1.8 4.0, 0.28 0.0197, 0.0012
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Table 5.7: Average % error in magnitude of the source star and standard deviation

of error over 100 Monte Carlo simulations.

Number of measurements is 10% of n and 50% of n, where n = 128

Observed image PSF = 0.5

reference image PSF = 0.1

Magnification Factor Average % error (m =

0.1×n, m = 0.5×n)

standard deviation of error

(m = 0.1×n, m = 0.5×n)

1 100+, 100+ 14751, 3416

1.2 87.06, 75.13 0.26, 0.38

1.4 47.59, 28.23 0.36, 0.30

1.6 32.13, 15.17 0.22, 0.19

1.8 33.34, 8.96 0.17, 0.13
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Table 5.8: Legend descriptions for plots in Figure 5.12

Marker Name Table Reference Description

r1 Table I Convolution Kernel is known

10% of Nyquist rate measurements used

Observed image PSF = 0.3

Reference image PSF = 0.1

r2 Table II Convolution Kernel is unknown

10% of Nyquist rate measurements used

Observed image PSF = 0.1

Reference image PSF = 0.1

r3a Table III Convolution Kernel is unknown

10% of Nyquist rate measurements used

Observed image PSF = 0.3

Reference image PSF = 0.1

r3b Table III Convolution Kernel is unknown

30% of Nyquist rate measurements used

Observed image PSF = 0.3

Reference image PSF = 0.1
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Table 5.9: Continuation of legend descriptions for plots in Figure 5.12

Marker Name Table Reference Description

r4a Table IV Convolution Kernel is unknown

10% of Nyquist rate measurements used

Observed image PSF = 0.5

Reference image PSF = 0.1

r4b Table IV Convolution Kernel is unknown

50% of Nyquist rate measurements used

Observed image PSF = 0.5

Reference image PSF = 0.1

When the magnification factor is 1, there is no change in the magnification of the

source star. Hence, the resulting differenced image should have ideally all zero value

pixels if the differencing works perfectly. However, for CS to give optimal results, the

differenced image must be sparse, that is, the coefficients in the differenced image

must decay at a high rate, which is not the case if all of the pixel values are close

to zero. This results in the higher % error when there is no change in magnification

(magnification factor = 1).

We show that for when the observed image PSF is similar in characteristics as

the reference image PSF, the error in CS reconstruction is significantly lower. A

summary plot is shown in Figure 5.12. The legends are described in table 5.9.
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Fig. 5.12: Average % Errors for the configureations shown in table 5.9

From the results it is evident that when no magnification takes place, the differ-

enced image is not sparse, hence, CS does not work well. A 100% error indicates a

false positive, that is, the differenced image value of the pixels indicating the presence

of the source star is zero, but a non-zero value is detected. However, as magnification

factor increases, CS results give minimal error. This architecture gives optimal results

in either of three circumstances, given a transient event is taking place:

1. Convolution kernel for differencing is known a priori

2. PSF of an observed image has similar characteristics as the reference image PSF

3. There is a significant change in magnification of a star source experiencing a

transient event
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If these requirements are not met, the number of measurements can be increased

to reduce the error. Table 5.7, shows how the error can be drastically reduced by

increasing the number of measurements from 10% of n to 50% of n. In cases where

the ratio of PSF of the reference image to observed image is 1 : 5 for a magnification

factor of 1.8, the error is reduced to less than 10% with 50% measurements.

Furthermore, it is evident that CS techniques can work within 10% accuracy

using only 10% of the required samples for crowded stellar fields when both the

reference and observed image have fairly narrow PSF widths and there is a transient

star source present. The error can significantly reduce, to less than 2% by increasing

the number of measurements to 30% of the Nyquist sampling rate. For detector read-

outs with a very clean PSF, we can reconstruct the images within 2% accuracy using

only 10% measurements. We also show that CS techniques fail when the differenced

image of interest is not sparse. As we can see when none of the stars experience any

variation in magnitude, the resulting differenced image should all have pixel values

close to zero. This results in a non-sparse image. Furthermore, we show that this novel

CS based architecture eliminates the need to find a sparse transformation domain,

while reconstructing only the needed information to do transient photometric science.

5.3.2 Results Summary

To summarize, this study shows promising results for applying CS on crowded

star fields to detect and characterize transient events, such as the ones produced

through gravitational microlensing. This could be a game-changing technology in

the way we acquire data to efficiently capture and reconstruct samples which are of

importance to science, while discarding wasteful samples. This process significantly

reduces the on-board storage, power, and transmission requirements. The results of

this study show that for a crowded star field with clean seeing, we need to acquire
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only 10% of the Nyquist rate samples to correctly capture a change in star magnitude

over time. There is a trade-off with the % of measurements required and the accuracy

in reconstruction, which can be studied as applicable to each science need. Further

study in differencing algorithms for measurement vectors obtained through CS will

produce even better results in CS reconstruction of the differenced images.

5.4 Error sensitivity of CS techniques on microlensing parameters

In this section, we show the error sensitivity for a realistic crowded stellar field

(Korde-Patel, Barry, & Mohsenin 2022). We apply CS using architecture from Figure

4.5. In these set of simulations, we take into consideration both reference and observed

images, in order to generate a photometric curve. We show the relation of error to

the sensitivity of the parameter θE. For an error of ϵ(t) in the change in amplification

at any given time, the amplification at each time changes by A(t) + ϵ(t). This change

in ϵ(t) at each time, t, changes the amplification equation derived due to two images

resulting from a single lens microlensing event. Using equation 6.13, equation 7.24

can be written as 5.14.

A(t) = u2(t) + 2
u(t)

√
[u2(t) + 4]

(5.14)

Incorporating error, we get equation 5.15.

A(t) + ϵ(t) =
u2(t) + 2 + ϵ(t)

[
u(t)

√
u2(t) + 4

]

u(t)
√
u2(t) + 4

(5.15)

From equation 5.15, it is evident that a change in the light curve due to an error,

ϵ(t), will not merely result in a change in u0, but rather a change in the lensing system

itself. That is, the light curve produced would not be accurately mapped to a lensing

system.
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In order to better understand analytical effects of error on science parameters, here,

we show the effect of the change in science parameter and its implication on the

amplification value. For a change of γ in the value of θE, which depends on the

properties of the lensing system, as noted in equation 9.34, we can define, θ̃E as

θ̃E = γθE (5.16)

Using this θ̃E in the lensing system, we derive the new amplification curve shown in

equation 5.18. In our model, for ˜A(t), we scale u0 by θE and not by θ̃E to keep the

same u0 scale for comparison to A(t).

A(u) = u2 + 2γ2

u
√
u2 + 4γ2 (5.17)

Expanding to include the definition of u(t), we get equation 5.18.

Ã(t) =
u2

0 +
(
t− t0
tE

)2
+ 2γ2

[
u2

0 +
(
t− t0
tE

)2 ]1/2[
u2

0 +
(
t− t0
tE

)2
+ 4γ2)

]1/2 (5.18)

To analyze the effect of compressive sensing errors, for single microlensing events,

we consider the effect of θE on the amplification value. In equation 7.24, u0 is in

units of θE. Hence, a change of γ in θE, will directly affect the mass and distance

parameters, M , DLS, DL and DS of the lensing system. Our CS based modelling

incorporates γ to determine the effect of errors due to CS application on the value of

θE.

For astronomical measurements, the detector measures the flux of the source

star. Hence, for microlensing, total flux received from the source star is given by

equation 5.19.
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F (t) = FsA(t) + Fb (5.19)

where Fs is the flux from the source, A is the amplification amount and Fb is the

blended flux. In our simulation modelling, we use Fb = 0 for simplicity.

5.4.1 Binary Lensed Gravitational Microlensed Events

A binary microlensed system consists of two lensing bodies, which act as a lens,

deflecting the light from the observed source star. Here, we have two lensing bodies

with mass, m1 and m2, where m1 +m2 = M . The source position is given by Ψ̄. The

image positions are given by equation 5.20 (Seager 2010).

z̄ = Ψ̄ + m1

z − z1
+ m2

z − z2
(5.20)

The amplification due to this lensing system is given by the ratio of the total

area of the images to the total area of the source. Finding the amplification at each

time is given by the following process (Bozza 2010a):

1. Find the roots of the polynomial given by the lensing equation 5.20.

2. Determine the boundaries of the images given the critical curves. The Jacobian

of the lensing equation is used to determine the boundaries.

3. Find the area of all the images bounded by the critical curves.

4. Total amplification is given by equation 5.21.
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A = AI

AS

(5.21)

where A is the amplification value, AI is the total area of all the images produced

due the lensing, and AS is the area of source star.

For an error, ϵ, in the amplification, that is, Ã = A ± ϵ we can say either

ÃI = AI ± δ1 or ÃS = AS ± δ2. The area of the source star is determined by the

source star radius, ρ, mass ratio, q, and the separation between the two lenses, s.

Amplification as a function of time is dependent on the trajectory angle, α. The

solution to this polynomial of 5th order contains either 3 or 5 images formed. To

determine the total area of the 3 or 5 images, Green’s theorem is used (Bozza 2010a).

The magnification is given by the relative motion of the source star and lensing

system.

In this work we examine single and binary lens caustics. A single lens event will

have a caustic as a point. Hence the observed light curve should have a single peak

as it approaches the caustic. Binary lens caustics are more complicated and can

be characterized by three different categories- Close, Intermediate, and Wide. The

three categories are divided based on the combination of the mass ratio and the

separation between the two lensing masses(Seager 2010). Binary sources as well as

binary lenses could cause two peaks as depicted in our simulated light curves (Section

5.5). However, when generating light curves, we focus on the magnification due to

binary lensing. Thus, a generalization of our CS results would be applicable for binary

sources as well. Caustic curves represent closed loci where the magnification of a point

source goes to infinity. Change in magnification as a function of time, depends on

1. ρ: source star radius

2. α: trajectory angle
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3. q: ratio of the mass of the two lensing bodies

4. s: distance between the two lensing bodies

For a given q value, the topography changes to one, two, or three caustic curves based

on the value of s. In terms of the magnification curve, the change in the number of

caustics can result in different light curve signatures as the source crosses the caustic.

Mass ratio, q, and separation parameter, s, have a direct effect on the caustic

topography generated. In this work, we focus on the error caused due to small

changes, δ and ϵ, in q and s, respectively.

We show the error sensitivity for δ = 0.1q and ϵ = 0.1s. In order to study error

sensitivity, we choose points on the topography map in (Tsapras 2018) well within

each region, so that the change in the parameter does not result in a change in caustic

topography. The architecture is implemented in the following manner:

1. Obtain CS based measurements, yo, for a spatial image.

CS can be applied by projecting a matrix, A, onto the region of interest, xo.

This can be done on a column-by-column basis for a n×n spatial region, xo.

Thus, for 2D images, y0 and A are of size m×n, where m << n.

2. Given A and a clean reference image, xr, construct measurements matrix yr,

where yr = Axr.

3. Apply a 2D differencing algorithm on yo and yr to obtain a differenced image,

ydiff, and the corresponding convolution kernel, M, which is used to match the

observed and reference CS measurement vectors, yo and yr (Bramich 2008). In

our modelling, we use ydiff = yo − yr, by using the assumption that the PSF of

the reference and observed image is the same as discussed in Section 5.4.2.

87



4. Reconstruct the differenced image, x′
diff using CS reconstruction algorithms,

given A and ydiff.

5.4.2 Assumptions in our Model

To understand merely the effects of Compressive Sensing on photometric mea-

surements, we eliminate the following variables in our simulations. In future work,

we will incorporate each of these factors in one at a time to thoroughly understand

the effect of each one in our CS based framework. The two assumptions we make are:

1.) The PSF of the reference image and the observed image is the same. This would

typically be the case for space-borne observatories in which the PSF changes very

slowly, if at all. The two images differ in any magnification of a star source due to a

transient event.

In applications where the PSF of the reference and observed images are different,

equation 5.23 is used.

ydiff = Axo − (Axr ⋆ M) (5.22)

= yo − (yr ⋆ M) (5.23)

However, in our models, for simplicity, we assume the same PSF for a reference

and observed image, thus resulting in equation 5.26.
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ydiff = A(xdiff) (5.24)

= A(xo) − A(xr) (5.25)

= yo − yr (5.26)

Hence, in Figure 4.5, image differencing consists of subtracting the reference

measurements from the observed measurements. In non-ideal cases, when the PSF of

the reference image is different as compared to the observed image, image differencing

algorithms can be added. However, that adds another layer of uncertainty and error,

which we needed to eliminate for our purpose of understanding purely the effects of

compressive sensing acquisition and reconstruction.

2.) There is no noise present.

To eliminate added complexity in this preliminary study, we do not incorporate any

noise. In future studies, we will add in detector noise, measurement noise, as well as

any background noise.

For a practical approach, we can assume the effects of noise to be minimal if the

SNR during a magnification event for the specific group of pixels representing the

microlensing star is sufficiently high, such that, the sparsity content of the image is

preserved. In section 5.5, we briefly show the basic effect of CS reconstruction for

degrading SNR for an image with Gaussian added noise.

5.4.3 Simulation Setup Parameters

In our simulations, we use a 128×128 size image. In order to depict a crowded

stellar field, we generate the number of star sources to be 75% of the total number
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of pixels. To simulate realistic fields, we use Airy shaped PSFs with varying radius

and flux of the star sources. The radius ranges from [0, 5] pixel units and flux ranges

from [50, 5000] pixel counts. We perform 100 Monte Carlo simulations for each set

of parameter values discussed later in this section. For each of the 100 Monte Carlo

simulations, the crowded stellar field is changed, including the PSF radius and flux

values of each star source generated. In addition, for each of the simulation, the

Bernoulli random values in A are changed. We use Orthogonal Matching Pursuit

algorithm, as provided by Python libraries, for reconstruction.

Compressive Sensing Parameters

For a n×n size spatial image, we use a measurement matrix, A, of size m×n to obtain

the measurements, y, of size m×n. Hence, our compression factor is m
n

.

For both single lens and binary lens event simulations, we use the following CS pa-

rameters.

• Number of measurements, m = 25% of n

• Measurement matrix, A, consists of Bernoulli random variables of values 1 and

0. These values were chosen such that the matrix can be relevant for practical

application.

Gravitational Microlensing Parameters

We simulate microlensing events for single lens and binary lens systems.

1. Single Microlensing events

For single lens systems we use the following parameters and for each of the sim-

ulation cases, u0 and t0 are varied in the simulation setup.The other parameters

from equation 7.24 are shown in Table 5.10.
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Parameter Value

u0 0.01, 0.1, 0.5

t0 13, 15, 17

te 30

Table 5.10: Single microlensing event equation parameters used for CS simulation

modelling

2. Binary Microlensing events

For binary microlensing events, we perform simulations for each of the three

topographies with the parameter list shown below.

Parameter Close Intermediate Wide

s 0.6 1 1.7

q 1 0.1 0.01

ρ 0.01 0.01 0.01

α 0.03 0.93 0.03

tE 100.3 100.3 100.3

t0 7154 7154 7154

u0 0.1 0.2 0.3

Table 5.11: Binary microlensing event equation parameters used for CS simulation

modelling

The description of parameters show in Table 5.11 is given below:
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1 ) s: separation between the two masses in the lensing system in units of total

angular Einstein radii

2 ) q: Mass ratio of the two lenses

3 ) ρ: Source radius in units of Einstein’s ring raidus

4 ) α Trajectory angle between lens axis and source

5 ) tE: Einstein ring radius crossing time

6 ) t0: Time of peak magnification

7 ) u0: Impact parameter in units of Einstein’s ring radius

Error Calculations

We calculate % error based on total flux of the microlensing star in a 3 pixel unit

radius from the center pixel of the star. Error is calculated using

|f ′
diff − fdiff|
fdiff

× 100% (5.27)

where f ′
diff and fdiff are the total fluxes within the 3-pixel radius of the source positions

of the reconstructed and original differenced images, respectively.

5.5 Simulation Results

5.5.1 Single Lens Events

In these first set of simulations, we vary u0, while keeping t0 = 15 and te = 30

constant.

Amplification for single lens microlensing events are generated using equation 7.24.

We compare the CS reconstruction with error due to a γ change in θE as described

in equation 5.18, where γ = 1 ± 0.1. Hence θE = 0.9θE and θE = 1.1θE.

92



Fig. 5.13: Single Lens microlensing event, u0 = 0.01.

The original simulated microlensing curve along with the CS reconstruction, and the

microlensing curve generated due to a change γ in θE is shown
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Fig. 5.14: % Errors for Single Lens event, u0 = 0.01 for CS reconstruction and the

change in microlensing light curve generated due to γ changes in θE as compared to

the original simulated microlensing curve for the light curves in Figure 5.13

Single lens event with u0 = 0.01 Average % error Average standard deviation

CS 0.49 0.00

γ = 0.9 12.62 1.53

γ = 1.1 12.71 1.61

Table 5.12: Errors for single microlensing light curve with u0 = 0.01
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Fig. 5.15: Single Lens microlensing event, u0 = 0.1.

The original simulated microlensing curve along with the CS reconstruction, and the

microlensing curve generated due to a change in γ in θE is shown
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Fig. 5.16: % Errors for Single Lens event, u0 = 0.1 for CS reconstruction and the

change in microlensing light curve generated due to γ changes in θE as compared to

the original simulated microlensing curve for the light curves in Figure 5.15

Single lens event with u0 = 0.1 Average % error Average standard deviation

CS 0.36 0.00

γ = 0.9 12.91 1.36

γ = 1.1 13.01 1.43

Table 5.13: Errors for single microlensing light curve with u0 = 0.1
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Fig. 5.17: Single Lens microlensing event, u0 = 0.5.

The original simulated microlensing curve along with the CS reconstruction, and the

microlensing curve generated due to a change in γ in θE is shown
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Fig. 5.18: % Errors for Single Lens event, u0 = 0.5 for CS reconstruction and the

change in microlensing light curve generated due to γ changes in θE as compared to

the original simulated microlensing curve for the light curves in Figure 5.17

Single lens event with u0 = 0.5 Average % error Average standard deviation

CS 0.77 0.00

γ = 0.9 16.07 0.66

γ = 1.1 16.45 0.76

Table 5.14: Errors for single microlensing light curve with u0 = 0.5

In the next set of simulations, we use u0 = 0.1 and vary t0 with t0 = 13 and

t0 = 17.
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Fig. 5.19: Single Lens microlensing event, t0 = 13.

The original simulated microlensing curve along with the CS reconstruction, and the

microlensing curve generated due to a change in γ in θE is shown
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Fig. 5.20: % Errors for Single Lens event, t0 = 13 for CS reconstruction and the

change in microlensing light curve generated due to γ changes in θE as compared to

the original simulated microlensing curve for the light curves in Figure 5.19

Single lens event with t0 = 13 Average % error Average standard deviation

CS 0.42 0.00

γ = 0.9 12.94 1.40

γ = 1.1 13.03 1.48

Table 5.15: Errors for single microlensing light curve with t0 = 13
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Fig. 5.21: Single Lens microlensing event, t0 = 17.

The original simulated microlensing curve along with the CS reconstruction, and the

microlensing curve generated due to a change in γ in θE is shown
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Fig. 5.22: % Errors for Single Lens event, t0 = 17 for CS reconstruction and the

change in microlensing light curve generated due to γ changes in θE as compared to

the original simulated microlensing curve for the light curves in Figure 5.21

Single lens event with t0 = 17 Average % error Average standard deviation

CS 0.32 0.00

γ = 0.9 12.98 1.48

γ = 1.1 13.09 1.57

Table 5.16: Errors for single microlensing light curve with t0 = 17

Our simulations show that CS reconstruction is affected by the magnification

value of the source star in each differenced image. For low magnification events, such

as the one caused by u0 = 0.5, the error in CS reconstruction is higher. The results in
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(Korde-Patel, Barry, & Mohsenin 2020) also indicate that CS reconstruction accuracy

is dependent on the magnification of the event, which in turn affects the sparsity of

the data set. For low magnification star in a differenced image, the rate of decay

of the coefficients in the differenced images also decreases, hence, causing a higher

error in CS reconstruction. The small fluctuations in the average error are due to

the variation in Bernoulli random measurement matrix. From the error plots (5.16,

5.18, 5.14), we see that CS error is fairly constant, with little variability, over the

microlensing curves for all u0 and t0 values.

Error Sensitivity of Microlensing Parameters In this section, we fit the

differenced magnification curve and the CS reconstructed curve to obtain the mi-

crolensing parameters: Fs, Fb, t0, tE, u0. The differenced magnification curve is ob-

tained from xdiff at the microlnesing star source center pixel, [px, py] and CS recon-

structed magnification curve is obtained from x′
diff [px, py]. We use the same setup

as in Section 5.4.3. We obtain the parameters for each CS reconstructed data set

over the 100 Monte Carlo simulations and present the average derived value in Table

5.18. We used Mulens Model software for obtaining the parameters(Poleski & Yee

2019). When we generated our magnification light curves, we used Fb = 0. However,

due to the observed and reference image differencing, and the Mulens Model software

modelling factors, we obtain a non-zero Fb during parameter fitting. Thus, in order

to accurately understand the effect of CS reconstruction on the derivation of the pa-

rameters, we compare the Mulens Model software derived parameters for xdiff [px, py]

with x′
diff [px, py]. The obtained results of the parameters depend on the initial guess

provided. Hence, in our analysis, we vary the initial guess to determine the effects of

CS, despite of the initial guess values. Our true values are listed below:

• t0 = 15
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• tE = 30

• u0 = 0.5

We use the initial values as shown in Table 5.17.

Trial Number t0 tE u0

1 15 30 0.5

2 15 30 0.4

3 13 30 0.5

4 15 32 0.5

Table 5.17: Microlensing Parameters used as initial guess for Mulens Model Software

For each trial, we show the % error in the parameters derived from Mulens Model

software between xdiff [px, py] and x′
diff [px, py] in Table 5.18

Trial Number Fs Fb t0 tE u0

1 0.585 0.585 0.00 0.025 0.029

2 0.585 0.585 0.00 0.025 0.029

3 0.586 0.586 0.00 0.025 0.029

4 0.585 0.585 0.00 0.025 0.029

Table 5.18: Derived Parameter % Errors

In all the different initialization parameters, there was a very insignificant dif-

ference in the % error for all of the parameters. The largest % error was in Fs and
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Fb. Hence, through this setup, we can say that Fs and Fb are most affected by CS

reconstruction. In order to visually understand the effect of CS reconstruction on Fs,

we simulate a star field and run CS reconstruction for 100 Monte Carlo simulation by

varying the Bernoulli random matrix each time. Figure 5.23 shows the flux variation

caused due to the CS measurement matrix, for a given star field with a source star

experiencing a single lens microlensing event with µ0 = 0.5. Similar to our other

simulations, 25% CS measurements were used.

Fig. 5.23: Single lens microlensing event CS reconstruction with error bars

Figure 5.24 and 5.25 show detailed plots for some of the statistics for the data

in Figure 5.23.
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Fig. 5.24: Difference in amplitude between the original microlensing curve and aver-

age CS reconstruction microlensing curve for the data in Figure 5.23

For the data in Figure 5.23, we explicitly show the standard deviation of the CS

reconstruction curve over 100 Monte Carlo simulations for each time sample in Figure

5.25.
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Fig. 5.25: Standard deviation of the CS reconstruction pixel values over 100 Monte

Carlo simulations for each time sample for the data in Figure 5.23

As noted in Figure 5.24 and 5.25, the variation in CS reconstruction, as calculated

by the difference in pixel amplitude and the standard deviation, changes as a function

of the pixel value of the original source star. That is, a smaller standard deviation

is seen for time samples where the magnification is lower as compared to the time

samples where the pixel magnification is higher.

Noise effects on a Single Lens Microlensing Event Curve In this section,

we briefly show the effect of Gaussian noise on the reconstruction of the microlensing

event curves. From CS theory, it is known that the signal of interest is accurately

reconstructed for sparse signals. Hence, adding noise to the spatial images can degrade

the sparsity of the images. In our simulations, we add random Gaussian noise with
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mean = 0, and varying standard deviation to obtain images with different SNRs. CS

architecture shown in Figure 4.5 is applied, with the noise application on the observed

image, xo. In the noise simulation, 25% CS measurements were used.

Fig. 5.26: % error as a function of image SNR. Images are generated by varying

added Gaussian noise. The dashed red line represents % error without any addition

of noise

From Figure 5.26, it is evident that as the SNR decreases, the % of error increases

at a higher rate. The rate of increase is 0.06 % error per SNR unit towards the higher

SNR values and 0.29 % error per SNR unit towards the lower SNR range.
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5.5.2 Binary Lens Microlensing Events

The amplification for the photometric curves is derived using gravitational mi-

crolensing equations, generated by the software provided in (Bozza 2010b).

We perform simulations on the three categories described in Section 5.4.1 - close,

intermediate, and wide. To determine error sensitivity in terms of impact on the

separation parameter, s, and mass ratio, q, we compare the CS reconstruction with

the following values of s and q, thereby providing CS reconstruction accuracy bounds

of 10% for the value of s and q.

Caustic Original s ±0.1s Original q ±0.1q

Close 0.6 0.54, 0.66 1 0.9, 1.1

Intermediate 1 0.9, 1.1 0.1 0.09, 0.11

Wide 1.7 1.53, 1.87 0.01 0.009, 0.011

Table 5.19: Values of s and q chosen for calculating error sensitivity, such that it is

within 10% of the value chosen for the original caustic
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Fig. 5.27: Closed caustic microlensing curve with s = 0.6 and q = 1, shown along

with the CS reconstruction, as well as the microlensing curve generated using s= 0.54,

0.66 and q = 0.9, 1.1
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Fig. 5.28: % error of CS reconstruction as compared to % error due to 10% deviation

in the value of s.
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Fig. 5.29: % error of CS reconstruction as compared to % error due to 10% deviation

in the value of q

CloseCaustic Average % Error Avg Standard deviation of the % error

CS 0.76 0.00

s= 0.54 0.52 11.52

s= 0.66 10.47 40.02

q= 0.9 1.11 0.80

q= 1.1 1.07 0.82

Table 5.20: Errors for close caustic topographies model for CS reconstruction, and

for microlensing light curve generated due to 10% variation in s and q
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Fig. 5.30: Intermediate caustic microlensing curve with s = 1 and q = 0.1, shown

along with the CS reconstruction, as well as the microlensing curve generated using

s= 0.9, 1.1 and q = 0.09, 0.11
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Fig. 5.31: % error of CS reconstruction as compared to % error due to 10% deviation

in the value of s for the given (Figure 5.30) intermediate caustic binary lensing light

curve reconstruction
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Fig. 5.32: % error of CS reconstruction as compared to % error due to 10% deviation

in the value of q for the given (Figure 5.30) intermediate caustic binary lensing light

curve reconstruction

Intermediate Caustic Average % Error Avg Standard deviation of the % error

CS 0.61 0.00

s= 0.9 7.74 10.45

s= 1.1 25.86 94.24

q= 0.09 6.76 40.14

q= 0.11 1.13 3.23

Table 5.21: Errors for intermediate caustic topographies model for CS reconstruction,

and for microlensing light curve generated due to 10% variation in s and q
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Fig. 5.33: Wide caustic microlensing curve with s = 1.7 and q = 0.01, shown along

with the CS reconstruction, as well as the microlensing curve generated using s= 1.53,

1.87 and q = 0.009, 0.011
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Fig. 5.34: % error of CS reconstruction as compared to % error due to 10% deviation

in the value of s for the given (Figure 5.33) wide caustic binary lensing light curve

reconstruction
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Fig. 5.35: % error of CS reconstruction as compared to % error due to 10% deviation

in the value of q for the given (Figure 5.33) wide caustic binary lensing light curve

reconstruction

Wide Caustic Average % Error Avg Standard deviation of the % error

CS 0.97 0.00

s= 1.53 13.64 46.57

s= 1.87 5.54 11.02

q= 0.009 0.96 1.73

q= 0.011 0.97 1.74

Table 5.22: Errors for wide caustic topographies model for CS reconstruction, and

for microlensing light curve generated due to 10% variation in s and q

118



Our simulations show that we can attain error less than 1% using

25% of the Nyquist rate measurements. In addition, the error obtained

through CS reconstruction, will be well within 10% deviation in verified

microlensing parameters of θE, s and q.

5.6 Conclusions

Using this technique we give limitations on the sensitivity of detection of plane-

tary perturbations given our CS parameters. We show examples of the effects of error

tolerance on the science parameters that are of importance in the microlensing curves.

For both single and binary microlensed events, we provide examples of the changes

in the microlensing parameters due to minimal error tolerance. This gives a bound

for analyzing the effects of compressive sensing for the application of gravitational

microlensing. These are simulated theoretical error bounds for given sensitivities-

the sensitivity of the detectors and technology currently used may not be sensitive

to such δ changes in the science parameters. For single lensed microlesning events,

we showed the CS reconstruction error as compared to error from ± 10% in θE. Our

results show that CS is sensitive to changes in u0 and not to changes in t0, as t0 causes

merely a shift in data, while u0 causes a change in magnification value.Through our

analysis for microlensing parameter fitting, we show that CS is most sensitive to Fs

and Fb. For binary lensed microlensing events, we show CS reconstruction error as

compared to error within ± 10% of the mass ratio and the separation between the

two lenses. Our work shows that we can reconstruct microlensing light curves using

25% of the required Nyquist rate measurements with error less than 1%. In terms

of microlensing sensitivity, we show that this error is within the bounds of 10% of

θE for single microlensed events and within 10% of q and s for binary microlensed
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events. In this work we only focus on bounds determined by our simulated models

using microlensing theory and disregard detector optics effects. In cases where less

sensitivity is affordable, fewer measurements can be used to further save on-board

resources. Vice Versa, if more sensitivity to perturbations is required the number

of measurements can be increased. This technique works with high accuracy, with

less than 1% error for crowded stellar fields with the same PSFs for a reference and

observed image.
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Chapter 6

CS DETECTION OF MICROLENSING

PARALLAX

In gravitational lensing, the surface brightness, which is the flux per area, is

conserved. The total flux increases or decreases, since the area increases or decreases.

In microlensing, distinct images, due to the gravitational effects of the lensing sys-

tem, are not seen, but rather, magnification or demagnification of the source star is

observed; the images are not resolved. Since the Jacobian matrix gives the amount

of change in the source star flux in each direction, the transformation of the original

source to the stretched source can be mapped by the Jacobian. The absolute value

of the inverse of determinant gives the amount of magnification.

Einstein’s ring forms when there is an exact alignment of the source, lens and

observer and is an important parameter for the basis of gravitational microlensing

equations. Einstein’s ring radius, θE, can be defined by equation 9.34.

θE =
√

4GMDLS

c2DLDS

(6.1)

where M is the total mass of the lensing system, DLS is the distance from the

lens to the source, DL is the distance from the observer to the lensing system, and
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DS is the distance from the observer to the source (Seager 2010).

From the formalization from (Gould 2020), rewriting this in terms of relative

lens-source parallax, πrel, where πrel = AUDLS

DsDL

, we get

θE =
√
kMπrel (6.2)

Here k = 4G
c2AU

and AU is 1 astronomical unit or 1.5 × 108 km.

If we define microlensing parallax in terms of the relative lens-source parallax, we

obtain πE = πrel

θE

(Yee 2015), (Bachelet, Hinse, & Street 2018),

M = θ2
E

kπrel

(6.3)

= θE

kπE

(6.4)

The amplification of a single lensed microlensing event light curve with time depen-

dency is given by equation 7.24 (Seager 2010)

A(t) =
u2

0 +
(
t− t0
tE

)2
+ 2

[
u2

0 +
(
t− t0
tE

2)]1/2[
u2

0 +
(
t− t0
tE

)2
+ 4

]1/2 (6.5)

The flux at each time sample, t is given by equation 6.6 (Seager 2010).

F (t) = FsA(t) + Fb (6.6)

Thus, from a photometric curve, for a single microlensing event, we can obtain

the parameters: t0, tE, u0, Fs and Fb from a microlensing photometric curve. All of
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the parameters are defined in table 6.1.

Parameter Definition

t0 Time of peak magnification

tE Einstein ring crossing time: θE

µrel

µ0 Impact parameter in units of θE

Fs Microlensing source star flux

Fb Microlensing source star blended flux

Table 6.1: Microlensing Parameter Definitions

In table 6.1, µrel is the relative lens-source proper motion. Here, obtaining the

lens mass remains unresolved, as we have two unknown parameters: θE and πrel. In

order to break the degeneracy to obtain specific microlensing parameters, measuring

the parallax, πE, offers once such solution(Lee 2017) (Smith, Mao, & Paczyński 2003).

If we obtain u0, we can solve for M , given πE. According to (Bachelet, Hinse, & Street

2018), microlensing parallax can be measured in three ways:

1. Motion of the Earth around the sun causing an annual parallax

2. Two or more space based observatories, separated by a significant baseline

3. Terrestrial parallax measured using a ground and space based observatory

In our work, we focus on a constellation of a space based observatory to create

simultaneous parallax measurements.

We can define the parallel and perpendicular shifts due to a microlensing par-

allax as in (Bachelet, Hinse, & Street 2018) (Gould 2020). Let us assume o as the
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vector for the motion of the observatory. In a telescope constellation, from (Bachelet,

Hinse, & Street 2018), o = < o1, o2 >, where:

o1 = ϵ∥cosΩ (6.7)

and

o2 = ϵ∥sinλsinΩ (6.8)

Here ϵ = R

AU
and we use λ = π

6 in our simulations.

The parallax vector πE = (πEcosθ, πEsinθ), where θ is the lens source trajectory

angle.

To obtain the shifts due to parallax, we get:

δτ = πE · o (6.9)

= πEcosθϵ∥cosΩ + πEsinθϵ∥sinλsinΩ (6.10)

δβ = πE × o (6.11)

= πEcosθϵ∥sinλsinΩ − πEsinθϵ∥cosΩ (6.12)

where Ω = 2π
P

(t − t0) + Φ, P is the orbital period and Φ is the orbital phase

relative to t0 (Bachelet, Hinse, & Street 2018). We use θ = π

4 in our modelling. From

equation 7.24, we can write

u(t) =
[
u2

0 + τ 2
]1/2

(6.13)
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where τ =
(
t− t0
tE

)

We can define ũ(t) as the microlensing equations due to parallax (Bachelet, Hinse, &

Street 2018):

ũ(t) =
√

(u0 + δβ)2 + (τ + δτ )2 (6.14)

In this manner, we can define the new amplification equation as

Ã(t) = ũ(t)2 + 2
ũ(t)

√
ũ(t)2 + 4

(6.15)

Thus, from a photometric curve with a microlens parallax, we can obtain u0 + δβ

and τ + δτ .

6.1 Simulation Setup

In this section we discuss the microlensing parameters and the CS parameters

used for our simulation modelling.

6.1.1 Parallax Measurement Setup

In this section, we show effectiveness of CS over a range of δτ and δβ as described

in equations. We vary Φ, the space-flight instrument orbital phase to span over a

range of values of δτ and δβ. Our microlensing parallax, πE is given by equation

6.19. From (Bachelet, Hinse, & Street 2018), we make the same assumptions of the

source being located in the galactic bulge at 4kpc and the lens at 8kpc with a relative

lens-source speed of 200km/sec to obtain the value of πE.

Hence, in a simple case, with origin as the center of the satellite trajectories, we
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can write

δτ = πEϵ∥cosΩ (6.16)

δβ = πEϵ⊥sinΩ (6.17)

To generate our parallax measurements, we make the assumptions as in

(Bachelet, Hinse, & Street 2018):

1. Source is in the galactic bulge: Ds = 8 kpc

2. DL = 4 kpc

3. µrel = 200Km
s

We can write tEµrel = θE (Gould 2000) (Yan & Zhu 2022).

πE = AU(DLS)
tEµrelDLDS

(6.18)

= AU(0.000624s)
tE

(6.19)

We can use equation 6.10 and equation 6.12 with the given value for πE in

equation 6.19. Our simulations vary the value of R and Φ to determine the effect

of CS reconstruction on photometric curves with a microlensing parallax. We use R

values as shown in Table 6.2.
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R tE Cadence Observation time

7000 km 1 day 48 minutes 1 day

42000 Km 1 day 48 minutes 1 day

1 AU 1 day 5.02 days 150.5 days

Table 6.2: Simulation setup parameters

The different R values approximately correspond to the type of orbit the constel-

lation could be in: low earth orbit, geosynchronous orbit, and solar orbit, respectively

(Bachelet, Hinse, & Street 2018). We use 8 equally space Φ values. Hence, our results

could show the effect for any constellation spaced at the given Φ values:
π

8 , π4 , 3π
8 , π2 , 5π

8 , 3π
4 , 7π

8 , π

A tE value of 1 day depicts photometric curves due to free floating planets.

6.1.2 Compressive Sensing Setup

For CS application, we a generate a crowded star field with Airy PSF with PSF

radius ranging from (1,5) pixel units. For n× n image, we generate 0.75 × n× n star

sources. The flux of the star sources range from 50 to 5000 units. In our simulations we

use m = 0.25 ×n, where m is the number of CS measurements obtained. A Bernoulli

measurement matrix is used, which is varied during each Monte Carlo simulation.

For a given R and Ω, we run 100 Monte Carlo simulations at each time sample, t.

For CS reconstruction, we use the greedy algorithm, orthogonal matching pursuit, as

its computational time is relatively less than optimization algorithms.
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6.2 Results

In our first set of simulations for R = 7000km, we get the different parallax light

curves for each varying Φ as shown in Figure 6.1, with the legend shown in Figure

6.2. The photometric curve without parallax, labeled as Original, is also shown for

comparison. We perform 100 Monte Carlo simulations for each time sample. The

average CS reconstruction error is shown in Table 6.3. For each R value, we show %

error in peak magnification value between each parallax photometric curve as well as

the difference in time shift for the peak magnification.

Fig. 6.1: Photometric curves generated by different parallax values, shown with its

corresponding CS reconstructed curve for R = 7000 Km
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Fig. 6.2: Legend for Figure 6.1

Φ 0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

Avg % Err 0.175 0.230 0.088 0.109 0.163 0.161 0.240 0.098

Avg % Err at peak 0.075 0.06 1.07 0.068 1.09 0.076 0.081 0.073

Std dev. % Err at peak 0.057 0.064 9.94 0.056 9.94 0.086 0.070 0.068

Table 6.3: % Error for CS reconstruction for each Φ for R = 7000 km. The second

row shows average % error over all time samples, the third row shows average % error

at peak magnification and the last rows shows the standard deviation of the % error

at peak magnification
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0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

0 - 12.0 25.3 40.0 50.2 56.5 59.8 60.1
π

8 13.6 - 15.2 31.8 43.4 50.6 54.4 54.7
π

4 33.9 17.9 - 19.6 33.3 41.7 46.2 46.6
3π
8 66.7 46.7 24.5 - 16.9 27.5 33.1 33.5
π

2 101 76.6 49.8 20.4 - 12.7 19.4 20.0
5π
8 130 102 71.6 37.9 14.5 - 7.72 8.34

3π
4 149 119 85.9 49.4 24.1 8.36 - 0.674

7π
8 151 121 87.2 50.4 24.9 9.10 0.679 -

Table 6.4: % error at peak magnification over 100 Monte carlo simulations, between

microlening photometric curve with Φ shown in the first row, compared to the pho-

tometric curve with Φ in the first column. Error values for R = 7000 km. Values in

bold underline show where % error between the two curves is less than 10%.
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0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

0 - 0 0.828 0.828 1.66 1.66 0.828 0.828
π

8 0 - 0.828 0.828 1.66 1.66 0.828 0.828
π

4 0.828 0.828 - 0 0.828 0.828 0. 0
3π
8 0.828 0.828 0 - 0.828 0.828 0 0
π

2 1.66 1.66 0.828 0.828 - 0 0.828 0.828
5π
8 1.66 1.66 0.828 0.828 0 - 0.828 0.828

3π
4 0.828 0.828 0 0 0.828 0.828 - 0

7π
8 0.828 0.828 0 0 0.828 0.828 0 -

Table 6.5: Time difference in Hours at peak magnification between microlening

photometric curve with Φ shown in the first row, compared to the photometric curve

with Φ in the first column. R = 7000 Km.

In the next set of simulations, we use R = 42000Km. We show the microlensing

parallax curves and the photometric curve without microlensing parallax, shown as

Original, in Figure 6.3, with the figure legend shown in Figure 6.4. The corresponding

errors due to CS reconstruction are shown in Table 6.6.
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Fig. 6.3: Photometric curves generated by different parallax values, shown with its

corresponding CS reconstructed curve for R = 42000 km. The original photometric

curve without any microlensing effects is shown in red for comparison.

Fig. 6.4: Legend for Figure 6.3
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Φ 0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

Avg % Err 0.108 0.110 0.182 0.110 0.191 0.208 0.173 0.201

Avg % Err at peak 1.07 0.059 0.091 1.07 0.086 0.063 0.062 0.071

Std dev. % Err at peak 9.94 0.041 0.205 9.94 0.094 0.049 0.062 0.057

Table 6.6: % Error for CS reconstruction for each Φ for R = 42000 km. The second

row shows average % error over all time samples, the third row shows average % error

at t0 and the last rows shows the standard deviation of the % error at t0.

0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

0 - 22.1 7.50 109 215 25.1 59.7 70.9
π

8 28.3 - 18.7 168 305 3.85 48.3 62.6
π

4 8.11 15.8 - 126 241 19.0 56.5 68.5
3π
8 52.1 62.7 55.7 - 51.0 64.1 80.7 86.1
π

2 68.3 75.3 70.7 33.8 - 76.2 87.2 90.8
5π
8 33.5 4.00 23.5 179 321 - 46.2 61.1

3π
4 148 93.4 130 418 682 86.0 - 27.7

7π
8 243 168 218 617 982 157 38.3 -

Table 6.7: % error at peak magnification between microlening photometric curve

with Φ shown in the first row, compared to the photometric curve with Φ in the first

column. Error values for R = 42000 Km. Values in bold underline show where %

error between the two curves is less than 10%.
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0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

0 - 1.66 4.14 6.62 9.10 10.8 10.8 10.8
π

8 1.66 - 2.48 4.97 7.45 9.10 9.10 9.10
π

4 4.14 2.48 - 2.48 4.97 6.62 6.62 6.62
3π
8 6.62 4.97 2.48 - 2.48 4.14 4.14 4.14
π

2 9.10 7.45 4.97 2.48 - 1.66 1.66 1.66
5π
8 10.8 9.10 6.62 4.14 1.66 - 0 0

3π
4 10.8 9.10 6.62 4.14 1.66 0 - 0

7π
8 10.8 9.10 6.62 4.14 1.66 0 0 -

Table 6.8: Time difference in Hours at peak magnification between microlening

photometric curve with Φ shown in the first row, compared to the photometric curve

with Φ in the first column. Error values for R = 42000 Km.

Figure 6.5 shows the microlensing parallax curves for R = 1 AU. In this figure,

we do not show the microlensing curve without parallax (Original curve in Figure

6.1 and 6.3) for comparison as the ∆ in u0 and t0 are significantly high and will

not be clearly readable with the given sampling cadence and observation window.

Figure 6.6 is the corresponding legend. In table 6.9, we show the % error due to CS

reconstruction in the photometric curves.
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Fig. 6.5: Photometric curves generated by different parallax values, shown with its

corresponding CS reconstructed curve for R = 1 AU. The magnification is signficantly

lower because the differenced image is recoonstruced using our CS technique and the

∆ in both u0 and t0 are significantly high.
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Fig. 6.6: Legend for Figure 6.5

Φ 0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

Avg % Err 0.437 0.441 0.633 0.743 0.621 0.348 0.616 0.582

Avg % Err at peak 0.186 0.192 0.192 0.194 0.183 0.119 0.106 0.117

Std dev. % Err at peak 0.146 0.190 0.178 0.183 0.137 0.287 0.092 0.083

Table 6.9: % Error for CS reconstruction for each Φ for R =1 AU. The second row

shows average % error over all time samples, the third row shows average % error at

the peak of each curve and the last rows shows the standard deviation of the % error

at the peak.
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0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

0 - 12.7 27.2 43.7 18.7 276 217 167
π

8 11.3 - 12.8 27.5 5.34 234 181 137
π

4 21.4 11.4 - 13.0 6.65 196 149 110
3π
8 30.4 21.5 11.5 - 17.4 162 121 85.6
π

2 15.8 5.07 7.12 21.0 - 217 167 125
5π
8 73.4 70.0 66.2 61.8 68.4 - 15.7 29.1

3π
4 68.5 64.4 59.9 54.7 62.5 18.6 - 15.9

7π
8 62.5 57.7 52.3 46.1 55.5 41.0 18.9 -

Table 6.10: % error at peak between microlening photometric curve with Φ shown in

the first row, compared to the photometric curve with Φ in the first column. Error

values for R = 1 AU. Values in bold underline show where % error between the two

curves is less than 5%.
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0 π

8
π

4
3π
8

π

2
5π
8

3π
4

7π
8

0 - 25.9 51.9 77.8 88.2 62.3 36.3 10.4
π

8 25.9 - 25.9 51.9 62.3 88.2 62.3 36.3
π

4 51.9 25.9 - 25.9 36.3 114 88.2 62.3
3π
8 77.8 51.9 25.9 - 10.4 140 114 88.2
π

2 88.2 62.3 36.3 10.4 - 151 125 98.6
5π
8 62.3 88.2 114 140 151 - 25.9 51.9

3π
4 36.3 62.3 88.2 114 125 25.9 - 25.9

7π
8 10.4 36.3 62.3 88.2 98.6 51.9 25.9 -

Table 6.11: Time difference in Days at peak between microlening photometric curve

with Φ shown in the first row, compared to the photometric curve with Φ in the first

column. Error values for R = 1 AU. Values in bold underline show where % error

between the two curves is less than 5%.

Average CS reconstruction % error over all samples for the photometric curve

with no microlensing parallax was 0.175% and the average % error at t0 was 0.100%.

Microlensing parallax provides a ∆u0, which shows the change in magnification am-

plitude, as well as a ∆t0, which shows a change in t0 location. The higher the R

value, the greater the ∆ as evident in Tables 6.4, 6.5, 6.7, 6.8, 6.10, and 6.11. Our

results show that there is no significant error for microlensing parallax event using

CS techniques. For all the photometric curves the average error is less than 0.5% for

all CS reconstructed curves and less than 1.1% at peak magnification time.

From our simulations, we note that the parallax curves get more distinguished for

higher R values, that is, the time separation and amplitude separation between the
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photometric curves is higher. From our simulations we show that the error due to CS

reconstruction is less than the error between any two microlens parallax curves. How-

ever, we can use Tables 6.4, 6.7 and 6.10 as a basis to determine the optimal orbital

phases to choose for satellite placement. Although CS reconstruction results show

average error within the % error for the two curves, a better placement, if using less

than 8 satellites, would be to choose orbital phases which have a greater microlensing

detectability.

6.3 Conclusions

Our CS simulation results show error less than 0.5% over all time samples and

average error less than 1.1% at t0, while using 25% of traditional detector measure-

ments for microlensing parallax light curves with a range of Φ from [0, 7π
8 ]. Although

different microlensing parallax at the three orbital radii generated different photo-

metric curves with significant difference in flux magnitude, CS worked well for all

the cases. The CS error at peak magnification for R = 7000 km, 42000 km and 1

AU, at each Φ value is less than the error between the parallax curve generated with

that particular Φ value and any other parallax curve generated using the Φ value

ranges. This shows that CS reconstruction should not cause any significant errors in

detection of a microlensing parallax curve for any given Φ value. Using CS, we can

significantly reduce on the data storage volume, as well as data downlink bandwidth-

both of which can be a limitation for SmallSat type instruments. CS shows potential

for implementation in a SmallSat constellation for detecting microlensing parallax

events.
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Chapter 7

NOISE ANALYSIS FOR CS

RECONSTRUCTION

In this work we analyze the effect of noise on the detection of these events using

Compressive Sensing (CS). We show numerical results on the impact of source and

measurement noise on the reconstruction of transient photometric curves, generated

due to gravitational microlensing events. In our work, we define source noise as

background noise, or any inherent noise present in the sampling region of interest. For

our models, measurement noise is defined as the noise present during data acquisition.

These results can be generalized for any transient photometric CS measurements

with source noise and CS data acquisition measurement noise. Our results show that

the CS measurement matrix properties have an effect on CS reconstruction in the

presence of source noise and measurement noise. We provide potential solutions for

improving the performance by tuning some of the properties of the measurement

matrices. For source noise applications, we show choosing a matrix with low mutual

coherence and variance can lower the amount of error caused due to CS reconstruction.

Similarly, for measurement noise addition, we show by choosing a lower expected value

of the Binomial measurement matrix, we can lower the amount of error due to CS

reconstruction.

140



7.0.1 Noise in Compressive Sensing Measurements

For our simulation modelling purposes we use architecture shown in Figure 4.5.

We assume optimal differencing results, typically provided with both reference and

observed images having the same detector response. The result of differencing can

then be used to only detect a change in magnitude corresponding to a microlensing

event. We can write the differenced image in that case as

xdiff = xr − xo (7.1)

The differenced image consists of relevant information needed to reconstruct a tran-

sient photometric curve. From the architecture in Figure 4, we obtain

ydiff = yr − yo (7.2)

= Axr − Axo (7.3)

= A(xr − xo) (7.4)

= A(xdiff) (7.5)

Differencing the images makes them sparse with non-zero pixel coefficients for

only the star sources experiencing magnification. Adding noise leads to less sparse

images, which can hinder performance of CS reconstruction algorithms. Further

details on the type of noise used in our work is discussed in section 7.1.

For 2D images, we apply CS in the following manner.

1. Generate a spatial sky image of size n × n using uniform random distribution,

in the range of 50 and 5000 pixel value. The radius of these star sources are
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generated using an airy point spread function with aperture radius between 1

and 5 pixel units, uniform randomly chosen.

2. Magnification for the source star experiencing a single lensed microlensing event

is determined by the microlensing equations (Seager 2010). The center pixel

value, P [x0, x1], at any time, t, is given by

Amp[x0, x1] = M(t) × P [x0, x1] (7.6)

Where Amp is the amplification value, P is the pixel value from step 1, and

M(t) is the magnification value at time, t.

3. If adding background noise, generate a noise image of the same size, n x n. Add

this image to the image generated in step 1.

4. Generate a CS based projection matrix of size m×n, where m = q% × n. In

our simulations, we use q = 25

5. Create CS based measurements by

yo = Axo + nt (7.7)

where xo is the observed spatial region, yo is the CS measurements acquired

from applying CS on xo and nt is the total measurements noise added.

6. Create CS based measurements from a reference image, xr and the same mea-

surement matrix, A:

yr = Axr (7.8)

142



7. Obtain the difference, ydiff = yo − yr

8. Reconstruct xdiff using CS reconstruction algorithms, given ydiff and A.

7.1 Noise in Compressive Sensing Measurements

In this section, we discuss two types of noise: source noise and measurement

noise.

7.1.1 Source Noise

This noise is associated with the sampling star field itself. The star sources can

be contaminated with flux from surrounding stars. In addition, other sky background

noise can leak into the source star flux measurement. For our analysis, we will assume

the source noise is of Gaussian distribution. We can characterize it by

y = A(x+ nb) (7.9)

where nb is Gaussian noise. In this case, noise gets folded into the measurement

matrix, A (Arias-Castro & Eldar 2011). Incorporating this for differenced images, as

stated in equation (7.5),

ydiff = A(xo + nb) − A(xr) (7.10)

= A(xdiff + nb) (7.11)

= A(xdiff) + A(nb) (7.12)

where xdiff = xo − xr
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7.1.2 Measurement noise

Measurement noise is associated with the data acquisition process at the detector

front end. For measurement noise, we model photocurrent shot noise using Poisson

distribution, as well as thermal noise using Gaussian distribution. This modelling

can be generalized to any type of noise which either requires applying Poisson noise

or additive Gaussian noise to the data measurements.

Shot Noise Shot noise is associated with the implicit arrival of electrons at

the detector. This noise is applied to the detector measurements (Jauregui-Sánchez

et al. 2018), (Hasinoff 2014). For equation purposes, we write this as additive noise

to Ax. However, for practical purposes, shot noise is applied to Ax, as it is dependent

on the signal and thus, cannot be added independently to the measurements.

y = Ax+ ns (7.13)

Thermal noise This noise is produced by the random motion of electrons in

the detector (Jauregui-Sánchez et al. 2018), (Zmuidzinas 2003). We can model this

by stationary Gaussian random noise.

y = Ax+ nt (7.14)

7.1.3 Total Noise in detectors

Since random, uncorrelated noise adds quadratically, total detector noise, nst is

given by

nst =
√
n2

s + n2
t (7.15)
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where ns is shot noise and nt is thermal noise. Incorporating all the noise sources,

CS can be modelled as

y = A(x+ nb) + nst (7.16)

Total noise is

N = Anb + nst (7.17)

In our simulations, we model each of the noise sources separately to understand the

effects relevant to each noise source.

7.2 Noise effects on compressive sensing

In this section, we discuss theoretical implications of noise on CS reconstruction.

For source noise, we generate Gaussian random noise. By varying standard deviation

of the Gaussian kernel, we can obtain noise with different Signal-Noise-Ratios (SNR).

We define SNR as

SNR = 10 log10

(∑
i xoi

n× n
−
∑

i xoni

n× n

)
(7.18)

where xo is the observed image, and xon is the noisy observed image.

Since A and nb are independent random variables, the expected value of the noise

is

E[N ] = E[A]E[nb] + E[ns] + E[nt] (7.19)

Given nb has a Gaussian distribution with mean 0, expected value of E[A]E[nb] = 0.

If we assume thermal noise to be normally distributed as well, E[nt] = 0. Hence

E[N ] = E[ns] in those circumstances. For all independent noise sources, variance is
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given by

V ar[N ] = V ar[A]V ar[nb] + V ar[ns] + V ar[nt] (7.20)

In our work we propose to construct A such that it has a low variance. We compare

results with a Binomial distribution as well as Gaussian distribution.

In this section, we also describe mutual coherence of a matrix and its relation to CS

reconstruction. Hence, the variance of the noise as well as mutual coherence, µ, of A

will factor in the reconstruction accuracy using CS methods.

7.2.1 Mutual Coherence of a matrix

From (Eldar & Kutyniok 2012), we can incorporate the following equations for

CS analysis. First, we define µ(A) as given in (Eldar & Kutyniok 2012):

µ(A) = max
1≤i<j

| < ai, aj > |
||ai||2||aj||2

(7.21)

where A is the measurement matrix and a represents a column of A.

Given A, the sparsity of the signal, or the number of non-zero elements, k, in a signal

is given by equation 7.22 (Eldar & Kutyniok 2012).

k <
1
2

(
1 + 1

µ(A)

)
(7.22)

Hence, we want µ(A) to be as low as possible, in order to increase the bound for

k. This will ensure a higher accuracy in CS reconstruction with a higher sparsity

tolerance in signals.
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7.3 Numerical Results

To analyze the effect on single lensed microlensing events in crowded star fields,

we generate dense stellar fields with Airy spread point sources. For a 128 × 128 pixel

image, we generate star sources equal to 75% of the total number of pixels Each star

is chosen to have a Airy disk radius between 1 and 5 in pixel units and amplitude

ranging from 50 to 5000 units. The values are chosen randomly from a uniform ran-

dom distribution. For an image of size n × n, where n = 128, we use m = 0.25 × n.

From equation 2.2, y is of size m × n. For transient events, as portrayed by our

modelling using single lens gravitational microlensing, we want to reconstruct the

time domain signal, representing the pixels experiencing a transient event. For CS,

sparsity is essential, hence, in our simulations we apply CS on differenced images,

which are sparse. We difference the crowded star fields with a reference image. For

understanding the effect of noise, the crowded stellar images have noise added. Thus,

when differenced, noise as well as the microelensed star should be evident in the

residual. For ideal comparison, we simulate detector point spread function (PSF) to

be the same for the observed and reference image. Noise is the only addition in the

observed image. Hence, in the differenced image, the characteristics of the noise are

preserved. In our simulations we use Orthogonal Matching Pursuit (OMP) to recon-

struct CS measurements. Convex optimization algorithms provide better accuracy

in reconstruction (Pope 2009) than greedy algorithms. However, greedy algorithms

are computationally less complex and can have faster run times. Due to the latter

advantage, we use greedy algorithms to run 100 Monte Carlo simulations for each set

of parameters.

Percent error as described in equation 7.23 is used as a metric to quantify the accu-

racy in reconstruction of the image.

147



|f ′
diff − fdiff|
fdiff

× 100% (7.23)

where f ′
diff and fdiff are the total fluxes within the 3-pixel radius of the source positions

of the reconstructed and original differenced images, respectively. The error at the

source star is of critical importance as the photometric light curve is generated based

on the magnification of the source star of interest.

Gravitational Microlensing Setup For all our simulations, we use a grav-

itational microlensing curve generated by a single lens. The amplification over time

due to a single microlensing event is generated by the equation given in (Seager 2010).

A(t) =
u2

0 +
(
t− t0
tE

)2
+ 2

[
µ2

0 +
(
t− t0
tE

2)]1/2[
µ2

0 +
(
t− t0
tE

)2
+ 4

]1/2 (7.24)

Here, t is the time sample, u0 is the impact parameter, t0 is the peak magnifica-

tion time, and tE is the Einstein ring radius crossing time. In our simulations we use

µ0 = 0.1 and µ0 = 0.01 to vary the amplitude of the photometric curve, in order to

understand the effect of noise with the different magnifications. We use t0 = 15 and

tE = 30. Figure 7.1 shows sample magnification curves with µ0 = 0.1 and µ0 = 0.01.

The lower µ0 value provides a higher magnification of the light curve.
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Fig. 7.1: Magnification curve for µ0 = 0.1 and µ0 = 0.01

In practical applications where the samples are not exactly zero, we can distin-

guish sparse signals as signals whose coefficients decay at a high rate. In figures 7.2

and 7.3, We show the rate of decay of the coefficients for µ0 = 0.1 and µ0 = 0.01.
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Fig. 7.2: Rate of decay of coefficients for µ0 = 0.1 and µ0 = 0.01
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Fig. 7.3: Rate of decay of coefficients, zoomed in towards the higher magnification

coefficients to view the difference between µ0 = 0.1 and µ0 = 0.01

Hence, it is evident that photometric curves with µ0 = 0.01 has a higher rate

of decay as compared to photometric curves with µ0 = 0.1. Hence for CS, sparser

signals should have better reconstruction accuracy.

CS Analysis with Source Noise This set of simulations vary the amount

of source noise, nb, added to the observed image for a single lens microlensing event

with µ0 = 0.1 and µ0 = 0.01. Simulations are performed using the model described

in equation 7.9.

To characterize source noise or background noise, we use Gaussian noise, with

mean 0 and varying standard deviation. By varying the standard deviation of the

added Gaussian noise, we obtain the different SNRs for the observed image and noisy
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observed image. Figure 7.4 shows CS reconstruction error with different amounts of

added source noise to the observed image. Binomial measurement matrix with 25%

CS measurements is used for this simulation.
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Fig. 7.4: % error for an image with added Gaussian source noise for a single lensed

microlensing event with µ0 = 0.1 and µ0 = 0.01 for varying levels of Gaussian noise

addition to the spatial region of interest.

In Figure 7.4, we can note that % error is the lowest when the magnification peaks
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at t0, as shown in Figure 7.1. We also see the effect of the different levels of noise on

the % error. Figure 7.5 shows the comparison between µ0 = 0.1 and µ0 = 0.01. As

the SNR decreases, the % error difference between the two µ0 also increases. High

magnification events, where µ0 is lower, sparisty is higher. Thus, % error is lower

in those circumstances, as noted in figure 7.5. From Figure 7.4 and Figure 7.5, it is

evident that for low SNR images, CS reconstruction works better when the impact

factor, µ0 = 0.01 as opposed to when µ0 = 0.1. A summarizing result from this figure

is that CS works well for high magnification images, even with addition of noise,

following the need for sparsity in signals for accurate CS reconstruction.

Fig. 7.5: Average % error for an image with added Gaussian source noise for a single

lensed microlensing event with µ0 = 0.1 and µ0 = 0.01

For source noise, as shown in equation 7.9, both x and nb are impacted by the
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measurement matrix A. Hence, tuning A would not affect the noise alone. The SNR

would remain constant, even if the variance of A is changed. In this section we show

the effect of choosing A on CS reconstruction. We show the % error as a function

of SNR. From equation 7.20, we get total noise variance for added Gaussian source

noise with noise variance, σ2
n, as shown in Table 7.1.

Measurement Matrix, A Total Noise Variance Average µ(A)

Gaussian with σ2 = 0.25 0.25×σ2
n 0.616

Binomial with σ2 = 0.25 0.25×σ2
n 0.841

Table 7.1: Total noise variance and mutual coherence of A, µ(A), with the given

properties of A
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Fig. 7.6: % error for an image with added Gaussian source noise for a single lensed

microlensing event with µ0 = 0.1. Binomial and Gaussian measurement matricies,

with the given variance, are used for comparison.
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Fig. 7.7: % error for an image with added Gaussian source noise for a single lensed

microlensing event with µ0 = 0.01. Binomial and Gaussian measurement matricies,

with the given variance, are used for comparison.

From figure 7.6 and figure 7.7, we note that CS reconstruction is better with

lower mutual coherence measurement matrices. By adding source noise, we are mak-

ing the images less sparse, thus, Gaussian measurement matrix, which has lower

mutual coherence works better. In the case of source noise, variance of A does not

affect CS reconstruction. Changing the variance of A is equivalent to scaling the y

measurements. A matrix folds into x as well as nb, thereby retaining the same SNR

level, and thus in turn, should have no effect on CS reconstruction.
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7.3.1 CS with added measurement noise

For our numerical analysis, we use addition of shot noise, as well as thermal noise.

Typically shot noise is of Poisson distribution. Poisson noise is applied and cannot be

added, as it is signal dependent. Hence, for each element in y, Poisson noise is applied

by generating a Poisson distribution with λ = the value of that specific element in y.

Here λ is the expected value of the Poisson distribution. We apply Poisson noise to

different simulated star fields, over 100 simulations, and obtain the average % error

over all the Monte Carlo simulations. We use A as a Binomial random matrix. The

expected value of the product of the two independent probability distributions are

given by

E[λ] = E[y] = E[A]E[x] (7.25)

= p

(
1
2(xh − xl)

)
(7.26)

where λ is the expected value and variance of the Poisson distribution for each element

in y, p is the expected value of the Binomial distribution in A with the number of

trials = 1. Hence, E[λ] refers to the expected value of the variance of the Poisson

distribution over all samples of y. In order to reduce the Poisson noise variance, p

can be tuned. However, CS reconstruction depends on µ(A), as well. Table 7.2 shows

noise variance and mutual coherence of A for the binomial distributions with p = 0.5

and p = 0.25. Both the distributions have similar µ(A) values.
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Measurement Matrix, A Expected value of total noise variance Average µ(A)

Binomial with p = 0.5 0.5E[x] 0.841

Binomial with p = 0.25 0.25E[x] 0.789

Table 7.2: Total noise variance and mutual coherence for A with the given properties

of a binomial distribution

Shot noise is applied using Poisson distribution to yo. We apply Poisson noise

with λ = yoi, where i represents the ith element in yo. If the microlensing star pixel

flux is lower than the other pixel star fluxes in the images, then the addition of Poisson

noise to yo can significantly degrade the CS reconstruction of xo. Figure 7.8 show the

effect of tuning p on CS reconstruction.
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Fig. 7.8: Average % error for an image with applied Poisson noise to CS measurements

for a single lensed microlensing event with u0 = 0.1 using Binomial measurement

matrix with p = 0.5 and p = 0.25
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Fig. 7.9: Average % error for an image with applied Poisson noise to CS measurements

for a single lensed microlensing event with u0 = 0.01 using Binomial measurement

matrix with p = 0.5 and p = 0.25

Figure 7.8 show that for high magnification pixels in the time-series light curve

(as shown in Figure 7.1), Poisson noise error is lowest at those time samples, as

compared to the low magnification time samples. Also, we show that by decreasing

p of the Binomial matrix, A, we can decrease the noise error by an average of 4.6%

over all time samples for µ0 = 0.1 and 4.27% for µ0 = 0.01.

In the next simulation, we apply thermal noise to the CS measurements by adding

Gaussian noise. Figure 7.10 shows different amounts of Gaussian noise added to the

CS measurements, as measured by the SNR of yo. We also compare it with applied

Poisson noise.
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Fig. 7.10: % error for an image with applied Poisson noise to CS measurements as

compared to addition of Gaussian noise to the CS measurements for a single lensed

microlensing event with µ0 = 0.01, using Binomial measurement matrix, p = 0.5,

σ2 = 0.25.

Applying Poisson noise to CS measurements acquired from a differenced image of

simulated crowded stellar field is roughly equivalent to adding Gaussian noise of SNR

58.8, given our model parameters in Section 7.3. From Figure 7.10, it is evident that

CS measurement noise is higher for high SNR, low magnification pixels. As compared

to Figure 7.5, CS measurements noise has a greater impact on CS reconstruction than

CS source noise with similar SNR. However, for CS source noise, SNR is calculated

using the observed image, xo, and the noisy image, xon, while for CS measurements,

SNR is calculated using the acquired CS measurements from the observed image, yo,

and the noisy CS measurements from the observed image, yon.
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7.4 Conclusion

In our previous studies on application of compressive sensing to gravitational

microlensing, we show that CS is able to reconstruct the light curve without compro-

mising on science parameters of interest. However, our study did not incorporate the

effect of noise. In this study, we show the effect of source noise as well as measure-

ment noise. For source noise, we note that total noise variance is dependent on the

measurement matrix. Our analytical results show that the variance of measurement

matrix does not have an impact in the presence of source noise as the measurement

matrix gets folded into the signal as well as noise. We compared Binomial measure-

ment matrix with Gaussian measurement matrix. Binomial measurement matrix has

a higher mutual coherence as compared to a Gaussian measurement matrix, as also

shown through numerical simulations. Through our simulations, we can conclude

that matrices with lower mutual coherence, provide better CS results. For the mea-

surement noise analysis, we applied Poisson noise to depict shot noise, and Gaussian

noise to depict thermal noise. As Poisson noise is dependent on the signal itself, we

note that for high magnification events, where the flux of the microlensing source star

pixels are comparatively higher, Poisson noise during CS measurements acquisition

can lead to a lower % error. Also, we show through our analytical and numerical

results, by reducing the value of p, where p represents the expected value of the Bi-

nomial distribution of A, we can achieve lower noise variance, thereby decreasing the

average % error in CS reconstruction. Furthermore, our anlaysis of thermal noise ad-

dition shows the effects of CS reconstruction on the various amount of Gaussian noise

added. As we decrease the SNR of the added Gaussian noise, the % error increases

at a higher rate for the time samples with the lower magnification values.
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Chapter 8

COMPRESSIVE SENSING FOR SPACE

FLIGHT INSTRUMENT CONSTELLATION

In this section, we describe implications of CS on space-flight instruments in a

constellation.

8.1 State-of-the-Art Space Flight Instrumentation

The front-end-electronics for acquiring photometric measurements will be com-

pletely transformed to a novel data acquisition approach, resulting in fewer data sam-

ples, eventually putting the image reconstruction load onto computational imaging.

Current detectors for imaging photometric events are comprised of Charge Couple

Device (CCD) cameras. For space observatories, we discuss the latest transient pho-

tometric survey telescopes- Transiting Exoplanet Survey Satellite (TESS) and Nancy

Grace Roman Space Telescope. TESS: There are four CCD cameras on TESS with a

combined field-of-view of 24x96 degrees, making up one observation sector. There are

such 13 sectors being observed serially. Each CCD has a 2048 x 2048 pixel detector

array, with the four CCDs having an effective 4096 x 4096 pixel detector array, with

less than 10 e- read noise. The cadence is about 30 minutes. In order to store such

high volume data, a 192 gigabyte solid state recorder (SSR) is used. The data is
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downlinked every 13.7 days. The data downlink per month is 8.5TB. Nancy Grace

Roman Space Telescope: The wide field instrument is a 300Mega Pixel camera view-

ing. The instrument will be using H4RG detectors with 0.11 arcsec pixel scale. Data

will be downlink at a rate of 290 Mbps with a total volume of 11 Tbits/day. A full

frame readout will take 2.78 seconds with an effective field of view of 0.281 deg2.

Key differences in the optical setup and read-out of traditional detectors and CS

based detectors include:
Traditional Detectors CS Detector

CCD Detectors Typically designed with

spatial light modulators

and photodiode

Pixel by pixel readout of the

image

Total power reflected from

the matrix projected onto

the image is measured

Digitization of each pixel

readout

Digitization of the total

power read
Both TESS and Nancy Grace Roman Space Telescope obtain large volumes of data,

which requires a large on-board storage capacity, in addition to larger data bandwidth

for data transmission. Through our simulation results we show that we can potentially

reduce data volume to 25% of that required by traditional detectors. This detector

is targeted for SmallSat type instruments. Hence, given the data and optics volume,

we will determine the feasibility of using them on SmallSat type missions.

8.1.1 Parallax Measurements

The current state-of-art for microlensing parallax consists of large space obser-

vatories, like Nancy Grace Roman Space Telescope detecting an event, then alerting
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a microlensing event, which is then followed up by a ground observatory. Use of large

observatories is very costly. A CS based instrument can detect a microlensing event

and capture the complete set. If a parallax measurement is needed, a ground based

observatory may be alerted. However, replacing a large observatory with a smaller in-

strument which acquires the same resolution science will be a game-changer, causing

significant reduction in costs and resources.

8.2 CS Detector Architecture

There are numerous options for implementing a CS based detector system as

discussed in (Wakin et al. 2006), (Guzzi et al. 2019), (Zamkotsian, Lanzoni, & Tan-

gen 2019). Spatial light modulators are used to implement measurement matrices.

Previous work by (Xiao et al. 2012) show a CS implementation using coded aperture

masks. In the literature from (Zhang et al. 2019), (Kuusela 2019) and (Huang et al.

2013), they implemented a single pixel camera using liquid crystal displays (LCD).

Their work shows that lensless single pixel cameras can be implemented using LCD

as their coded apertures.

In our analysis, we focus on using a DMD array for the CS projection. A CS archi-

tecture using a DMD array can have a frame rate of 32KHz with 2048x1080 pixels

(Guzzi et al. 2019). In our simulations, we show the effectiveness with 0.25% of n.

Let’s assume n = 2048 × 1040 pixels. We would need 550800 measurements. With

the frame rate, this gives us 17.2 seconds to obtain one CS image, in addition to the

needed exposure time. A typical microlensing event can last for 30 days. In (Mróz

et al. 2020), they discovered the shortest time scale microlensing event, where te

≈ 41.5 minutes. Using Nyquist rate for this short time scale, we would expect to

sample at least te2 ≈ 20.75 seconds. Detection efficiency will not only depend on the
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cadence of the system, but also on the flux magnification and Field-of-view (FOV).

The larger the FOV, the greater the chances of detection of a microlensing event. A

CS detector system would be beneficial for use on small satellites, where data storage

and downlink can be limiting factors. Using a CS detector system on a constellation

of satellites, we can detect microlensing parallax, as shown in Figure 8.1. In our

simulations, we assume the number of satellites in the constellation to be [0, nsat],

where the maximum number is nsat = 8.

Fig. 8.1: A diagram of satellite constellations observing the same spatial region in

order to capture a microlensing parallax of any microlensing events occuring the given

field-of-view. X represents a satellite with a CS detector system.

A detector concept for placing a telescope on a Small Satellite can be based

off of ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics)

(Krishnamurthy et al. 2021). ASTERIA is a 6U CubeSat with a telescope aperture

of 6.7cm with a CMOS detector of 2592 × 2192 pixels. For a CS system our optics

would include a telescope, micro-mirror arrays or any spatial light modulators, as well
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as a photodiode to acquire the sum total of the reflected light from the micro-mirrors,

as shown in Figure 8.2.

Fig. 8.2: A potential CS implementation of the detector system using a telescope to

acquire the light from the spatial region, a set of micro-mirror arrays to reflect light

using CS projection methods, and a photodiode to capture a single measurement of

the total reflected light.

8.3 Detector Implementation

We briefly discuss implementation techniques to complete the architecture sec-

tion. However, the implementation analysis is beyond the scope of this thesis and is

discussed here only for complete understanding of the architectures and to validate

feasibility of the path forward. One potential implementation of a Compressive Sens-

ing based detector is a single pixel camera. A single pixel camera obtains a collective

sum of photons, representing one compressive sensing measurement. The signal of

interest is manipulated using a measurement matrix. Our previous work included de-

veloping a single pixel camera for capturing images, which used a digital micro-mirror
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device (DMD) for the measurement matrix. Using this technique we can use random

numbers of binary values, where one value represents the micro-mirror to be open and

the other represents the micro-mirror to be close. Digital micro-mirrors are a type

of spatial light omdulators which can be used to capture CS based images. Spatial

light modulators are used to implement measurement matrices. Marcia discusses use

of coded apertures and superimposing images to capture a video frame in (Marcia,

Harmany, & Willett 2009). Uniformly redundant arrays have been used for aperture

coding in optics (Fenimore & Cannon 1978). HxRG are Teledyne detectors which

have been used for various space missions including OSIRIS-X, EUCLID, and JWST.

They cover visible and infrared range, with the latest generation, H4RG, containing

4K by 4K pixels. They allow programmable windows to determine which areas of

the detector need to be read out. Using such windows a CS measurement matrix

projection scheme could be implemented.

8.4 Data Volume and Resources

In this section, we perform a comparison analysis of using traditional detectors

versus CS based detectors.

1. Data volume storage

Using a n× n image, with a 14-bit ADC resolution, we would expect the total

data volume to be:

Traditional Detector CS detector

14 bits × n× n 14 bits × m× n

where m are the number of CS measurements and m is << n. We would
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make the assumption that the photodetector is not saturated with the ADC

bit resolution needed to sample. Without data compression, we will need to

transfer 14n2 bits/ FOV using a traditional detector. Using CS approach for

25% measurements, we can will need to transmit 14×0.25×n×n = 3.5n2 bits/

FOV.

2. Computational resources

On-board computation will consist of programming the spatial modulator and

storing the m×n size acquired data for each n×n spatial image. To compare this

with a traditional detector system, we would require computational resources for

compressing data on-board, in order to be accommodated in the data down-link

bandwidth.

Traditional Detector CS detector

1 Data acquisition (ADC) interface Data acquisition (ADC) interface

2 Data storage module Data storage module

3 Data compression Spatial modulation implementation

4 Data packetization and transmission Data packetization and transmission

Table 8.1: FPGA modules comparison for traditional detector and CS based detector

In terms of on-board Field Programmable Gate Array (FPGA) resources for

each of the modules listed in table 8.1, we would expect similar amount of logic

gates, except for item 3. There are different methods for implementing data

compression, including compression algorithms and pixel averaging (Anuradha

& Bhuvaneswari 2016), (Dua, Kumar, & Singh 2020). For CS detectors, spatial

modulation implementation will depend on the spatial modulator used. In
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addition, we would require either storage or generation and transmission of

the spatial modulation matrix (CS measurement matrix) on-board. The on-

board storage needed for traditional detectors would be significantly higher

than storage needed for CS architecture modules.

3. Optics

A traditional detector consists of a telescope and a detector, typically a CCD

camera. In the case for CS, we would need a telescope, as well as lenses to

focus the light on a spatial modulator device, such as DMD array, followed

by a photodetector. However, lensless cameras for CS applications have been

implemented (Zhang et al. 2019), (Kuusela 2019) and (Huang et al. 2013) and

would need to be studied for a SmallSat type instrument. The optical path

required to implement the detector system will be further studied in future

work.
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Chapter 9

CONCLUSIONS AND FUTURE WORK

In this chapter we will summarize the conclusions of each chapter as well as pro-

vide a detailed path forward for the completion of this thesis.

We performed an in-depth study on the effects of CS on transient photometric mea-

surements, specifically light curves generated due to gravitational microlensing. In

an ideal case, with only one source star pixel present in a differenced image, we show

that we can obtain average error over all time samples with less than 0.0033% error

using only 4% of Nyquist rate measurements. This shows CS can significantly reduce

the number of data needed to be acquired, when the image is very sparse.

For detector read-outs with a very clean PSF of both observed and reference

image, we can reconstruct the images within 2% accuracy using only 10% measure-

ments. As the PSF of the reference and observed image are close in the width of the

Airy shaped function, we note that the average % error decreases significantly.

Using CS techniques we give limitations on the sensitivity of detection of plane-

tary perturbations given our CS parameters. Through our analysis for microlensing

parameter fitting, we show that CS is most sensitive to Fs and Fb. Our work shows

that we can reconstruct microlensing light curves using 25% of the required Nyquist

rate measurements with error less than 1%. In terms of microlensing sensitivity, we
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show that this error is within the bounds of 10% of θE for single microlensed events

and within 10% of q and s for binary microlensed events.

In addition, we simulated microlensing parallax curves with different orbital

phases using CS techniques. Our CS simulation results show error less than 0.5%

over all time samples and average error less than 1.1% at t0, while using 25% of tra-

ditional detector measurements for microlensing parallax light curves with a range

of Φ from
[
0, 7π

8

]
. Our results show that CS reconstruction should not cause any

significant errors in detection of a microlensing parallax curve for any given orbital

phase, Φ, value simulated. CS shows potential for implementation in a SmallSat con-

stellation for detecting microlensing parallax events.

In this study, we show the effect of source noise as well as measurement noise.

For source noise, if we use a measurement matrix with lower mutual coherence, we

can attain better CS reconstruction in the presence of source noise for less sparse

events. This result can also be generalized for any microlensing event with less sparse

signals. For measurement noise added during data acquisition, we show that, when

using a binomial measurement matrix, we can increase CS reconstruction accuracy

by decreasing the expected value of the binomial distribution.

Our thesis work shows an optimistic path forward for applying compressive sens-

ing for gravitational microlensing events. Our results show the error due to CS does

not cause any significant errors in obtaining the science parameters of interest for a

gravitational microlensing event. There is a trade-off between the number of mea-

surements needed and the obtained CS reconstruction resolution error. Our work

emphasizes that CS technology is especially essential for space flight instruments
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using small satellites, where on-board resources are limited, which in turn hinders

science resolution. CS provides a solution for retaining good science resolution, while

reducing on-board resources. Our path forward would include architecting a design

for implementation on a space flight instrument. This will include studying detectors

suitable for building a CS based system on a small satellite.
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APPENDIX A

9.1 Lensing Equations

In this section we derive the gravitational lensing equations.

9.1.1 Deflection angle due to a concentrated mass

Light deflects due to the gravitational effects of a lensing star (or planet). In

this section, we show the derivation of the deflection angle of a light ray due to the

gravitational effects of a point source with mass M.

In order to derive deflection angle, we can start with the force exerted on the

photon due to the concentrated mass body. A pictorial representation is shown in

Figure 9.1.

Fig. 9.1: Deflection of light due to the gravitational effects of a concentrated mass

To derive the force, we begin with Newton’s second law of motion, equation 9.1,

where m is the mass of the light photon and a is the acceleration of the photon.

F = ma (9.1)

We need to derive the force perpendicular to the path of motion of the light
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particle.

F⊥ = m
dv⊥
dt

(9.2)

v⊥ = 1
m

∫ ∞

−∞
F⊥dt (9.3)

(9.4)

Since, sin θ = b

r
,

F⊥ =F sin θ (9.5)

= F
b

r
(9.6)

Newton’s law of gravity states,

F = GMm

r2 (9.7)

F⊥ = GMmb

r3 (9.8)

Einstein’s equivalence principle states that the laws of nature are the same in

uniform static graviational field and an accelerated frame of reference. Hence, equa-

tion 9.1 and equation 9.7 can be used equivalently. We can thus plus in equation 9.8

into equation 9.4. This gives us equation 9.9

v⊥ = 1
m

∫ ∞

−∞

GMmb

r3 dt (9.9)
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Due to the symmetry of sin θ, the limits of equation 9.9 can be rewritten as

v⊥ = 2
m

∫ ∞

0

GMmb

r3 dt (9.10)

v = ds

dt
dt = ds

v
(9.11)

Plugging this into equation 9.12,

v⊥ = 2
m

∫ ∞

0

GMmb

r3

(
ds

v

)
(9.12)

From Figure 9.1, r =
√
d2 + b2. Using this, equation 9.12 can be further simpli-

fied as follows:

v⊥ = 2
m

∫ ∞

0

GMmb

(d2 + b2)3/2

(
ds

v

)
(9.13)

= 2GM
v

∫ ∞

0

ds

b
((d2 + b2) + 1)3/2 (9.14)

(9.15)

Define, s = d

b

v⊥ = 2GM
vb

∫ ∞

0

dx

(x2 + 1)3/2 (9.16)

(9.17)
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Solving the integral in equation 9.15,

v⊥ = 2GM
vb

(9.18)

Deflection angle, α is related to v⊥ and v by

sinα = v⊥
v

(9.19)

(9.20)

By small angle approximation, we get

α = v⊥
v

(9.21)

= 2GM
v2b

(9.22)

As this is a light corpuscle, v can be replaced with c. General relativity states

that the deflection angle is twice as large due to the curvature in space-time dimension.

Hence,

α = 4GM
c2b

(9.23)

(9.24)

9.1.2 Lensing Equations Derivation

To begin with, Figure 9.2 shows the geometry of a typical gravitational lensing

system.
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Fig. 9.2: Gravitational lensing system

Gravitational lensing happens due to a concentrated mass on the lensing plane

deflecting the path of the light rays coming from the source to the observer. In this

representation, trigonometry and small-angle approximations can be used to solve for

the various angles and lengths. The angular distance from the observer to the source

is given by equation 9.25

β = HS

DS

(9.25)

The angular distance from observer to the projected image due to gravitational lensing

is given bye equation 9.26

θ = (HI +HS)
DS

(9.26)

In the geometric depiction of the triangle with α, consider a bisector bisecting

through α into two angles, α1 and α2. Using the geometry and small-angle approxi-
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mation, α1 = HI1

DLS

and α2 = HI2

DLS

. Given α = α1 + α2 , α = HI1 +HI2

DLS

and given

HI = HI1 +HI2, equation 9.27 can be derived.

α = HI

DLS

(9.27)

From equation 9.26, 9.25, and 9.27, we obtain:

θDS = αDLS + βDS (9.28)

Reducing equation 9.28, the lensing equation can be derived, where αd = α
DLS

DS

β = θ − αd(θ) (9.29)

Applying equation 9.24 to figure 9.2, we obtain:

α(θ) = 4GM
c2θDL

(9.30)

From equation 9.24, b is the distance from the the light ray to the concentrated

mass, and thus, can be replaced with θDL. Deflection angle, α, now becomes a

function of θ. Hence αd can now be rewritten as:

αd(θ) = 4GM
c2θDL

DLS

DS

(9.31)

= 4GMθ

c2θ2DL

DLS

DS

(9.32)

Let us consider a point source multiple mass systems with positions not corre-

sponding to the origin as assumed in the previous derivations.
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αd(θ) = 4GDLS

c2DLDS

N∑

i=0
mi

θ − θi

|θ − θi|2
(9.33)

Einstein’s ring radius, θE, is commonly used to normalize all angles.

θE =
√

4GMDLS

c2DLDS

(9.34)

Let u = (u1, u2) and y = (y1, y2), where u = β

θE

and y = θ

θE

. For complex

coordinates of source and image positions, let ζ = u1 + iu2, and z = y1 + iy2.

ζ = z −
N∑

i

mi

M
z − zi

(9.35)

If ϵi = mi

M
, then we obtain:

ζ = z −
N∑

i

ϵi

z − zi

(9.36)

ζ corresponds to the position of the source, while z corresponds to the position

of the image. By solving for z, we can find the image positions corresponding to that

source image. This results in a complex polynomial of order N2 + 1. This problem

can be solved analytically for values of N < 2.

9.1.3 Amplification

Amplification can be measured by how much the source image is ”stretched” on

the image plane.

Amplification = ImageArea

SourceArea
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We are transforming the coordinates from the source plane to the image plane to de-

termine the amount of ”stretching”. The inverse of Jacobian, J, is used to determine

the amount of stretching. The Jacobian is the determinant of the Jacobian matrix,

which is given by 9.1.3. The Jacobian matrix is given by the matrix below.

d(u1, u2)
d(y1, y2) =




du1

dy1

du2

dy1
du2

dy1

du2

dy2




Replacing u and y with ζ and z, and applying to 9.29, we get,

detJ = 1 − ∂ζ

∂z̄

∂ζ̄

∂̄z

(9.37)

∂ζ

∂z̄

∂ζ̄

∂̄z
=
∣∣∣∣∣
∂ζ

∂z̄

∣∣∣∣∣

2

Hence, equation 9.1.3 can be simplifed to

1 −
∣∣∣∣∣
∂ζ

∂z̄

∣∣∣∣∣

2

Amplification is given by 9.1.3 at each image position z = zj.

Aj = 1
detJ (9.38)

Total amplification is given by A = ∑
j |A|j From 9.1.3, we can say that at source

positions, zj, when det J = 0, amplification is infinite. when
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∣∣∣∣∣
∂ζ

∂z̄

∣∣∣∣∣

2

= 1

In polar coordinates, the image positions are given by

∂ζ

∂z̄
= eiϕ (9.39)

Here, ϕ can range from 0 to 2π. Critical curves are the positions on the image plane

where the amplification goes to infinity. These critical curves can be mapped onto

the source plane as caustic curves.

9.1.4 Single Lens Events

Single lens events can be analyzed during perfect and imperfect alignment. The

lensing equation can be written as

β = θ − θ2
E

θ
(9.40)

For perfect alignment when β = 0, θ = θE. In this case, the image falls on Einstein’s

ring. For a single, lens equation, the image positions y as a function of source po-

sitions, u, can be derived from equation 9.28. Assuming point mass and using the

origin for the position of the lens, 9.28 reduces to

u = y − 1
y

(9.41)

In the case of imperfect alignment, When β ̸= 0, the image positions, y, are the

solutions to this equation 9.1.4.
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uy = y2 − 1 (9.42)

y2 − uy − 1 = 0 (9.43)

Solving this quadratic equation for complex values, we get

y = u

2 ±
√
u2 + 4

2 (9.44)

For single lens events, we can use real coordinates, x and y, to determine the

amplification, which is solely the ratio of the image are to the source area.

A± = y±
u

dy±
du

(9.45)

For image, y+, the magnification, A+ is given by

dy+

du
= 1

2 + u

2
√
u2 + 4

(9.46)

y+

u
= 1

2 +
√
u2 + 4
2u (9.47)

Thus,

A+ = 1
2 +

(1
2

)
u2 + 2

u
√
u2 + 4

(9.48)
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Similarly for A−,

dy−
du

= 1
2 − u

2
√
u2 + 4

(9.49)

since this image is on the other side of the lens:

−
(
y−
u

)
= −

(1
2 −

√
u2 + 4
2u

)
(9.50)

= −1
2 +

√
u2 + 4
2u (9.51)

A− = −1
2 +

(1
2

)
u2 + 2

u
√
u2 + 4

(9.52)

Total amplification is given by

A = |A+| + |A−| (9.53)

= u2 + 2
u
√
u2 + 4

(9.54)

As the lens and source are in relative motion, the amplification at a given time

can be parameterized using Shapiro time delay, making the source take a slightly

longer path due to gravitational microlensing effects. For a uniform, straight line

motion, the relative lens-source motion is

u(t) =

u2

0 +

t− t0

tE






1
2

(9.55)
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• u0 is the minimum separation between lens and source in terms of θE.

• t0 is the peak magnifcation time, which corresponds to when u = u0.

• tE = θE

µrel

, is the Einstein ring radius crossing time, where µrel is the motion of

the source in relation to the lens

Combining equation 9.1.4 with equation 9.1.4, we get

A(t) =
u2

0 + (t− t0)2

tE
+ 2

[
u2

0 + (t− t0)2

tE

]1/2[
u2

0 + (t− t0)2

tE
+ 4

]1/2 (9.56)

Magnification of single lens events depends primarily on u0.

9.1.5 Binary Lens Equations

For binary lensing with both point-mass lenses, equation 9.1.2 can be written as

Ψ = z − m1

z̄ − z̄1
− m2

z̄ − z̄2
(9.57)

Taking the conjugate of 9.57,

Ψ̄ = z̄ − m1

z − z1
− m2

z − z2
(9.58)

Solving for z̄,

z̄ = Ψ̄ + m1

z − z1
+ m2

z − z2
(9.59)
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Replacing z̄ with 9.59, equation 9.57 can be rewritten as

Ψ = z − m1

Ψ̄ + m1

z − z1
+ m2

z − z2
− z̄1

− m2

Ψ̄ + m1

z − z1
+ m2

z − z2
− z̄2

Ψ = z − m1

Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄1(z − z1)(z − z2)
(z − z1)(z − z2)

− m2

Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄2(z − z1)(z − z2)
(z − z1)(z − z2)

Ψ = z − m1(z − z1)(z − z2)
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄1(z − z1)(z − z2)

− m2(z − z1)(z − z2)
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄2(z − z1)(z − z2)

The numerator can be written as:

z

(
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄1(z − z1)(z − z2)

)

(
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄2(z − z1)(z − z2)

)

−
(
m1(z − z1)(z − z2)

)(
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄2(z − z1)(z − z2)

)

−
(
m2(z − z1)(z − z2)

)

(
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄1(z − z1)(z − z2)

)
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and denominator can be written as

(
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄2(z − z1)(z − z2)

)

(
Ψ̄(z − z1)(z − z2) +m1(z − z2) −m2(z − z1) − z̄1(z − z1)(z − z2)

)

From the numerator, we get a 5th degree polynomial. Hence, there are either 5

or 3 solutions to 9.58. Since this is a 5th order polynomial, there are no analytical

solutions, and hence, must be solved numerically.

Similar to single lens equations, once the solutions have been found, the magnifi-

cation can be derived using equation 9.1.3 and equation 9.1.3. In our work, the light

curves generated due to binary lensed microlensing events are given by the contour

integration (Bozza 2010c) method as implemented in (Bozza et al. 2018).
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APPENDIX B

9.2 Point Spread Function

Impulse response, h(t), is the response of the a δ function through the system.

x =
∫ ∞

−∞
x(τ)δ(τ − t)dτ

y(t) = H(x(t)) (9.60)

= H(
∫ ∞

−∞
x(τ)δ(τ − t)dτ) (9.61)

(9.62)

Due to linearity,

y(t) =
∫ ∞

−∞
x(τ)H(δ(τ − t))dτ (9.63)

=
∫ ∞

−∞
x(τ)h(τ − t)dτ (9.64)

(9.65)

h(t) can be the PSF obtained from TinyTim’s tool or it could be a synthetically

generated PSF. In order to obtain the output image, the point source image is con-

volved with the generated PSF.
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APPENDIX C

9.3 Gravitational Microlensing Amplification Derivation for γ change in

θE

We start with the equation shown in Appendix B (9.40). To obtain the solutions,

we re-write equation 9.40 as equation 9.75

θ2 − βθ − θ2
E = 0 (9.66)

Using the quadratic formulate to solve for the roots, we get the following equa-

tion:

θ± = 1
2
(
β ±

√
β2 + 4θ2

E

)
(9.67)

Amplification in terms of the angles is given by equation 9.68.

A± =
∣∣∣∣
θ±
β

dθ±
dβ

∣∣∣∣ (9.68)

First, we find each component required for solving for A.

θ±
β

= 1
2 ±

√
β2 + 4θ2

E

2β (9.69)

dθ±
dβ

= 1
2 ± β

2
√
β2 + 4θ2

E

(9.70)

190



∣∣∣
θ+

β

dθ+

dβ

∣∣∣ =
(1

2 +

√
β2 + 4θ2

E

2β

)(1
2 + β

2
√
β2 + 4θ2

E

)

= 1
4 + β

4
√
β2 + 4θ2

E

+

√
β2 + 4θ2

E

4β + 1
4

= 1
2 + β2 + 2θ2

E

2β
√
β2 + 4θ2

E

For the negative solution, we obtain:

∣∣∣
θ−
β

dθ−
dβ

∣∣∣ =
(1

2 −
√
β2 + 4θ2

E

2β

)(1
2 − β

2
√
β2 + 4θ2

E

)

= 1
4 − β

4
√
β2 + 4θ2

E

−
√
β2 + 4θ2

E

4β + 1
4

= 1
2 − β2 + 2θ2

E

2β
√
β2 + 4θ2

E

Due to negative parity, A− becomes:

−1
2 + β2 + 2θ2

E

2β
√

4β2 + 4θ2
E

(9.71)

Hence,

A = 1
2 + β2 + 2θ2

E

2β
√
β2 + 4θ2

E

− 1
2 + β2 + 2θ2

E

2β
√
β2 + 4θ2

E

(9.72)

= β2 + 2θ2
E

β
√
β2 + 4θ2

E

(9.73)
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To simplify, we multiply the result for A by θ2
E

θ2
E

to obtain

A =

( β
θE

)2
+ 2

β

θ2
E

√
β2 + 4θ2

E

=

( β
θE

)2
+ 2

β

θE

√( β
θE

)2
+ 4

Let u = β

θE

as consistent with the previous definition.

A = u2 + 2
u
√
u2 + 4

(9.74)

To calculate error sensitivity for γ change in θE, we can derive the following to

obtain Ã.

We start with the lensing equation using γθE

θ2 − βθ − γ2θ2
E = 0 (9.75)

Using the quadratic formulate to solve for the roots, we get the following equation:

θ± = 1
2
(
β ±

√
β2 + 4γ2θ2

E

)
(9.76)

Similarly, we obtain:
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θ±
β

= 1
2 ±

√
β2 + 4γ2θ2

E

2β (9.77)

dθ±
dβ

= 1
2 ± β

2
√
β2 + 4γ2θ2

E

(9.78)

We do similar derivation to obtain A+ and A−:

∣∣∣
θ+

β

dθ+

dβ

∣∣∣ =
(1

2 +

√
β2 + 4γ2θ2

E

2β

)(1
2 + β

2
√
β2 + 4γ2θ2

E

)

= 1
4 + β

4
√
β2 + 4γ2θ2

E

+

√
β2 + 4γ2θ2

E

4β + 1
4

= 1
2 + β2 + 2γ2θ2

E

2β
√
β2 + 4γ2θ2

E

For the negative solution, we obtain:

∣∣∣
θ−
β

dθ−
dβ

∣∣∣ =
(1

2 −
√
β2 + 4γ2θ2

E

2β

)(1
2 − β

2
√
β2 + 4γ2θ2

E

)

= 1
4 − β

4
√
β2 + 4γ2θ2

E

−
√
β2 + 4 γ2θ2

E

4β + 1
4

= 1
2 − β2 + 2γ2θ2

E

2β
√
β2 + 4γ2θ2

E

Due to negative parity, Ã− becomes:

−1
2 + β2 + 2γ2θ2

E

2β
√

4β2 + 4γ2θ2
E

(9.79)
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Summing both Ã+ and Ã−, we get Ã as

Ã = 1
2 + β2 + 2γ2θ2

E

2β
√
β2 + 4γ2θ2

E

− 1
2 + β2 + 2γ2θ2

E

2β
√
β2 + 4γ2θ2

E

= β2 + 2γ2θ2
E

β
√
β2 + 4γ2θ2

E

Here, we assume the same scaling factor to define u, in order to correctly compare

the change in magnification for θE and γθE.

Ã = u2 + 2γ2

u
√
u2 + 4γ2 (9.80)
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[54] Smith, M. C.; Mao, S.; and Paczyński, B. 2003. Acceleration and parallax effects

in gravitational microlensing. Monthly Notices of the Royal Astronomical Society

339(4):925–936.

[55] Starck, J.-L.; Murtagh, F.; and Fadili, J. 2010a. Sparse Image and Signal

Processing: Wavelets, Curvelets, Morphological Diversity. New York, NY, USA:

Cambridge University Press.

[56] Starck, J.-L.; Murtagh, F.; and Fadili, J. M. 2010b. Sparse image and sig-

nal processing: wavelets, curvelets, morphological diversity. Cambridge university

press.

[57] Tropp, J. A., and Gilbert, A. C. 2007. Signal recovery from random measure-

ments via orthogonal matching pursuit. IEEE Transactions on information theory

53(12):4655–4666.

[58] Tropp, J. A. 2006. Random filters for compressive sampling. In Information

Sciences and Systems, 2006 40th Annual Conference on, 216–217. IEEE.

[59] Tsapras, Y. 2018. Microlensing searches for exoplanets. Geosciences 8(10):365.

[60] Tschunko, H. F. 1974. Imaging performance of annular apertures. Applied optics

13(8):1820–1823.

201



[61] Wakin, M. B.; Laska, J. N.; Duarte, M. F.; Baron, D.; Sarvotham, S.; Takhar,

D.; Kelly, K. F.; and Baraniuk, R. G. 2006. An architecture for compressive

imaging. In 2006 international conference on image processing, 1273–1276. IEEE.

[62] Wozniak, P. 2000. Difference image analysis of the ogle-ii bulge data. i. the

method. arXiv preprint astro-ph/0012143.

[63] Xiao, L.-l.; Liu, K.; Han, D.-p.; and Liu, J.-y. 2012. A compressed sensing

approach for enhancing infrared imaging resolution. Optics & Laser Technology

44(8):2354–2360.

[64] Yan, S., and Zhu, W. 2022. Measuring microlensing parallax via simultaneous

observations from chinese space station telescope and roman telescope. Research

in Astronomy and Astrophysics 22(2):025006.

[65] Yee, J. C. 2015. Lens masses and distances from microlens parallax and flux.

The Astrophysical Journal Letters 814(1):L11.

[66] Zamkotsian, F.; Lanzoni, P.; and Tangen, K. 2019. Micromirror arrays for multi-

object spectroscopy in space. In International Conference on Space Optics—ICSO

2010, volume 10565, 105655J. International Society for Optics and Photonics.

[67] Zhang, Z.; Su, Z.; Deng, Q.; Ye, J.; Peng, J.; and Zhong, J. 2019. Lensless

single-pixel imaging by using lcd: application to small-size and multi-functional

scanner. Optics Express 27(3):3731–3745.

[68] Zmuidzinas, J. 2003. Thermal noise and correlations in photon detection. Applied

optics 42(25):4989–5008.

202




