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Abstract—Cyber-Physical Systems (CPSs) are new types of
intelligent systems that integrate computing, control, and com-
munication technologies, bridging the cyberspace and physical
world. These systems enhance the capabilities of our critical
infrastructure and are widely used in a variety of safety-critical
systems. CPSs are susceptible to cyber attacks due to their
vulnerabilities such that their security has become a critical
issue. Therefore, it is important to classify and comprehen-
sively investigate this issue. Most of the existing surveys on
it are conducted from a single perspective. In this paper, we
present a comprehensive view of the security of CPSs from
three perspectives: the physical domain, the cyber domain, and
the cyber-physical domain. In the physical domain, we review
some attacks that directly damage the physical components of
CPSs such as sensors and discuss corresponding defenses. We
also review the attacks that CPSs in the cyber domain may
face and study methods to detect and defend against them. In
addition, we survey the intelligent attacks faced by CPSs and the
corresponding defensive means. In the cyber-physical domain,
we provide an overview of attacks that come from the cyber
domain and eventually damage the physical parts, and discuss the
corresponding detection and defense methods. Finally, we present
the challenges and future research directions. Through this in-
depth review, we attempt to summarize the current security
threats to CPSs and the state-of-the-art security means to provide
researchers with a comprehensive overview.

Index Terms—Cyber-physical systems, security, cyber-attack,
cyber-physical attack, vulnerability, defense.

I. INTRODUCTION

The rapid development of information technology has put
forward higher requirements on the physical world, which en-
tails investigations into cyber-physical systems (CPSs). CPSs
are intelligent systems that integrate computing, communica-
tion and control. They form an important part of the Industrial
Internet of Things and play an important role in Industry 4.0
[1]. They can sense world around them and have the ability
to adapt to and control the physical world [2]. They closely
integrate cyber and physical processes, and exchange data
and information in real time. Physical processes are usually
carried out by several tiny devices with sensing, computing,
or communication capabilities. These physical devices can
be identified with physical properties or information sensing
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devices and are connected to a cyber system, to send data to
the computing system [3].

The development of CPSs has gone through different stages:
Embedded Systems, Intelligent Embedded Systems, Systems
of Systems [4]. They are widely used in many different
fields in the current development stage, such as power trans-
mission systems, agricultural systems, military systems, and
autonomous systems [5] (unmanned aerial vehicles and au-
tonomous driving systems, etc.), as well as other fields directly
related to our daily life.

Although CPSs have many advantages and are developing
fast and are being more widely used, attacks on CPSs can
result in immeasurable losses. For example, in March 2019,
Venezuelas Gury Hydropower Station that provides 80% of
its country’s electricity, was destroyed, causing power outages
in 18 of the countrys 23 states. Large-scale blackouts paralyse
traffic, interrupt communications, and prevent fighter jets from
taking off and landing [3]. Therefore, it is important to
establish robust security measures.

Fig. 1: 3C technology

A. CPSs definition and architecture

CPSs are generally considered to be multidimensional and
complex systems that integrate computing, networks, and
physical environments. The 3C technology is the collective
name of communication, computation, and control technolo-
gies. The main purpose of CPSs is to use the combined
3C technology to achieve feedback control of a computing
system [6]. The 3C technology is shown in Fig.1. Since
the advent of CPSs, many researchers have attempted to
define them. Baheti et al. [7] propose that a CPS is a highly
reliable system that closely integrates various computational
and physical elements in a system and coordinates them with
each other under dynamic uncertain events. Sastry [8] believes
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Fig. 2: CPSs layer structure

that CPSs integrate computing, communication, and storage
capabilities, and can operate in real-time reliably, safely, stably,
and efficiently. They are networked computer systems that can
monitor various entities in the physical world. Lee [9] defines
CPSs as the tight integration of a series of computing and
physical processes. The computing core of CPSs is used to
monitor the operations of physical entities, and the physical
entities use the network and computing components to realize
perception and control of the environment.

CPSs are first proposed as a new technology to integrate
the physical world and virtual applications (such as cloud
computing) into computing applications [10]. Helen Gill [11]
of the National Science Foundation provides a more com-
plete definition: CPSs are physical, biological, and engineer-
ing systems whose operations are integrated, monitored, and
controlled by the computing core. Computation is deeply
embedded in every physical component and may even be
embedded in materials. The computing core is an embedded
system that usually needs a real-time response and is usually
distributed. The modern definition of CPSs is integration of
computing, communication, and control capabilities to monitor
and control entities in the physical world. The physical process
is controlled and monitored by the cyber process, and the cyber
process is also affected by the physical one [12].

In terms of their definition, researchers have reached a
consensus, but there are still many different opinions about
the architecture of CPSs. They have several mainstream ar-
chitectures, such as the prototype architecture [13], “publish
and subscribe” architecture [14], service-oriented architecture
[15], and cloud-based architecture [16]. In this paper, we focus
on the three layer architecture. They are perception, network,
and application layers, as shown in Fig. 2.

The first layer is the perception layer, also called the sensing

or the recognition layer [17]. This layer includes sensors,
actuators, Global Positioning Systems (GPS), and Radio-
Frequency Identification (RFID) tags along with other terminal
devices for collecting real-time data to monitor or track the
physical world and execute commands from the controller.
The data collected can be sound, light [18], electric, biology
or location, depending on the type of sensors .

The second layer is the network layer, also known as the
transport layer [19] or transmission layer [1]. This layer trans-
mits the sensory data through the network and executes control
commands from the application layer. The data transmission
uses local area network (LAN) and communication networks,
including 4G, 5G, infrared, Wi-Fi, and ZigBee, etc. This layer
also uses routing devices, Internet gateways, firewalls, and
intrusion detection systems to ensure data transfer [20].

The third layer is the application layer. Its tasks are to
process information received from the network layer and issue
commands that are executed by physical units such as actuators
[21]. This layer also receives and processes information from
the perception layer and then determines the automated actions
that need to be performed [22]. Cloud computing and data
mining algorithms are used to manage this layer of data
[23]. In addition, this layer requires a robust multi-factor
authentication process to prevent unauthorized access [24].

B. CPSs Development History and Research Status

In 2006, the American National Science Foundation pro-
posed and described the concept of CPSs in detail, and then
the construction of “New Science” began. CPSs have attracted
much attention from governments, academia, and industry. In
2008, the United States established the CPS Steering Group
to apply CPSs to energy, transportation, medical treatment,
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and agriculture. Germany also proposed “Industry 4.0”, a core
technology of which is the cyber-physical system [25]. By
2025, with the introduction of CPSs into Industry 4.0, the total
gross value added of Germany is predicted to be 267 billion
euros [26]. For Made in China 2025, CPSs are considered to
be a comprehensive technology that promotes the integration
and development of manufacturing and the Internet.

The emergence of CPSs has aroused widespread concerns
in various countries. CPSs have been a priority issue for the
United States, which seeks to seize the commanding heights
of global industries. In 2013, the “German Industry 4.0 Imple-
mentation Recommendations” made CPSs the core technology
of Industry 4.0. South Korea tried to offer CPS courses
as early as 2006 and focused on cross-platform research in
computing, communications, and embedded objects. In Japan,
the application of CPSs in smart medicine and robotics is
led by the University of Tokyo. With the rapid integration
and development of manufacturing and the Internet, CPSs are
becoming core technology systems that support and lead a
new round of global industrial change. In China, the Chinese
Academy of Sciences initiated research on CPSs as early as
2007; it was not until 2016 that Germany used CPSs as a basic
science, and it attracted domestic attention. The White Paper
on China’s CPSs focuses on “What are CPSs” and “Why are
CPSs”.

At present, CPSs theory is still under construction, and the
related research still faces many problems that need to be
solved. Since the National Science Council of China listed
CPSs as an important area in 2006, it has held many relevant
seminars internationally. Many journals have also published
related special issues, which summarized the basic architecture
of the system and the modeling, system testing and verifica-
tion, information acquisition and processing, communication
modes and protocols, intelligent computing methods, advanced
control methods, information security and comprehensive se-
curity analysis, and other theories and methods. Researches on
CPSs in industrial control systems, intelligent transportation
systems, energy systems, and medical treatment have also
attracted much attention.

C. Research on CPSs Security Issues

In CPSs, data can be captured by physical objects or sensors
and transmitted to a control system over a network. Physical
devices are increasingly equipped with barcodes and RFID
tags that can be scanned by smart devices, sending identified
information over the Internet to monitor and manage the
physical environment [23]. At the same time, computing and
processing units can be placed in the cloud, where decisions
are generated and sent to physical objects [22]. The close
integration of cyber and the physical world poses significant
security challenges on CPSs.

In recent years, some researchers have studied the security
issues of CPSs. Lu et al. [27] propose a security framework
for CPSs and analyze three aspects of the security objectives.
Dibaji et al. [28] review the security of CPSs from the
perspective of system and control. Different CPSs security
objectives are discussed in [29] [30]. The security issues and

challenges faced by CPSs are presented in [31] [32]. As the
integration of the cyber and physical processes in CPSs is
becoming increasingly closer, CPSs may be attacked from the
cyber domain, resulting in a series of consequences, such as
hardware damage or certain failures. However, the existing
studies have not divided the attacks faced by CPSs into
specific domains (cyber, physical, and cyber-physical domains)
to conduct a comprehensive analysis of the security of CPSs.
Cyber-physical security is the difference of the security issues
between CPSs and other systems or applications. It means
that an attack in cyberspace can impact on the physical
equipment in ways that can be previously realized by physical
means. Therefore, in the following, we analyze the security
threats faced by CPSs from the above domains and propose
corresponding solutions to the security attacks faced by CPSs.

D. Contributions of This Paper

In this paper, we classify the security threats to CPSs into
three domains: physical, cyber, and cyber-physical domains,
and review the attack mechanisms as well as detection methods
and defensive measures for each attack. The contributions
include the following:

• A comprehensive overview of the general background
of CPSs, including the development of CPSs and the
existing architectures is provided.

• the security of CPSs is reviewed from a new perspec-
tive, i.e., the physical domain, cyber domain, and cyber-
physical domain.

• The possible security threats to CPSs’ intelligent systems
caused by the widespread application of artificial intel-
ligence are analyzed, and the corresponding defensive
measures are presented.

• A comprehensive summary of security threats and de-
fense methods for CPSs is provided, and the current
challenges and future research directions are presented.

E. Organization

Aside from the introduction, this paper is divided into four
main sections as follows. Section II details the key security
threats that CPSs may face from the physical, cyber, and cyber-
physical domains. Section III presents and analyzes the main
CPSs security solutions that can be taken against the attacks
from each domain. Finally, Section IV concludes the paper.

II. ATTACKS ON CYBER-PHYSICAL SYSTEMS

There are much related work on attack classification in CPSs
[33]–[35], and this paper classifies CPSs attacks from three
domains. Fig. 3 shows the classification of attacks faced by
CPSs in this paper. Attackers can directly damage physical
devices such as sensors and actuators that are called physical
domain attacks. Cyber domain attacks mainly refer to attacks
on communication networks, such as wormhole and SQL
attacks that may result in data leakage and transmission delays.
Attackers can damage the physical domain, such as physical
equipment, through the cyber domain, which we call cyber-
physical attacks. We introduce these three types of attacks in
this section.
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Fig. 3: Overall structure of a CPS attack

A. Attacks on the Physical Domain

1) Natural and the external environment: The physical
layer is composed of terminal devices, such as sensors and
actuators, and these devices are generally located in an external
or outdoor environment. Thus, they are susceptible to physical
attacks, such as stealing device components or replacing these
devices. Common physical failures are equipment failure,
line failure, perceived data destruction, node capture, etc. A
summary of the physical domain attacks is presented in Table
1. Natural and environmental factors include the impact of
tornadoes, wildlife, and plants that may grow wildly. In [36],
a hailstorm in Philadelphia that lasted several days make 75000
people without electricity. In addition, there were more than
50 blackouts in the United States due to wildlife feeding on
cables.

2) Destruction of physical components: The physical layer
of CPSs consists of sensors and actuators, which are connected
through a wired or wireless network [32]. The destruction
of sensors, actuators, or the wires that connect them may
cause CPSs to become unusable. However, due to physical
or technical limitations, sensors and actuators are generally
distributed outdoors without much protection and are thus
easily damaged. For example, a smart energy meter, i.e., the
Intron centrum [37], can automatically calculate power and
send results to a company. However, an attacker can easily
access its hardware and destroy data by damaging sensing
devices, thus causing financial loss to the company. In [38],
Cardenas et al. mention that attackers destroy some sensors
or controllers to oscillate a physical system at its resonance
frequency.

3) Jamming and noise: System noise usually refers to
the bombardment of a large number of radiated signals on
an audio/video system. The system inevitably suffers from
noise interference. Maheshwari [39] mentions that by blocking
the wireless channel between sensor nodes and remote base
stations, noise or signals of the same frequency can be intro-
duced. These attacks may result in DoS by creating intentional
network interference [40]. An attacker can transmit interfering
signals at the same frequency via a malicious device. If the
interference continues in an area, all nodes in the area would
be unable to communicate [41].

B. Attacks on the Cyber Domain

1) Cyber attacks:
a) Wormhole attack: According to [42], a wormhole

attack makes a node transmit data by masquerading as the
shortest channel; it is a malicious node in networks that
captures packets from one location, transmits them to another
malicious node through a tunnel, and then replays these
packets locally.

If a packet usually passes several hops from positions X to
Y, the packet transmitted through a wormhole near X would
arrive at Y before the packet passes through the multihop
network. As shown in Fig. 4, the source node can send packets
to node B through a wormhole link instead of adopting a
multihop path. This kind of data packet transmitted through a
tunnel can arrive faster or with fewer hops than that transmitted
through conventional multihop routing [42]. Attackers can
make nodes a and b believe that they are neighbors by
forwarding routing messages, and then selectively discard the
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TABLE I: Summary of physical attacks

Types Descriptions

Destruction of physical components This attack directly destroys physical components.

Jamming noise This attack causes the system to not work properly through system noise or signal interference.

Nature and environment Some uncontrollable factors, such as weather or disasters, cause damage to physical components.

data messages to destroy the communication between nodes a
and b [43].

Wormhole attacks are common in wireless sensor networks.
Attackers can create wormhole tunnels between two endpoints
to replay messages observed in different regions [43], [44]. For
cars in Internet of Vehicles, two malicious vehicles in a net-
work can cooperate and transmit packets from their dedicated
tunnel. In addition, the first malicious node would generate a
higher signal strength intensity to persuade legitimate nodes
to believe that they are close to the destination [45].

Teng et al. [46] present a wormhole attack detection al-
gorithm related to the node trust optimization model against
wormholes in wireless sensor networks (WSNs). The proposed
method owns a high detection rate and a low false-positive rate
for networks with high node density and high vulnerability,
which ensures the safety and reliability of the WSNs.

Fig. 4: Wormhole attack

b) SQL injection attack: Many CPSs still rely on
databases for data management. Structured query language
(SQL) injection attacks are commonly used by hackers to
attack databases, and attackers can access data records with-
out authorization. SQL comes from many different dialects,
but most are based on the SQL-92 ANSI standard [34].
SQL queries contain one or more SQL commands, such as
SELECT, UPDATE or INSERT. The type of SQL query
makes the SQL language very popular and flexible. Hence,
SQL attacks are prone to occur. SQL injection attacks target
websites driven and managed by a CPS database to read
sensitive data or delete data, resulting in database shutdown
and other consequences [47].

Halfond et al. [48] mention some of the main types of SQL
attacks. Most small industrial applications can use SQL for
structural modification and content manipulation.

A Supervisory Control And Data Acquisition (SCADA)
system is a typical CPS. Given the current data historians
and web accessibility in a SCADA system, SQL injection is
one of the most important web attacks, and thus is of great

Fig. 5: SQL Attack

significance to the security of a SCADA system [34]. In [49],
SQL attacks against SCADA systems are studied (shown in
Fig. 5). Even with a firewall installed, SQL attacks can still
occur. An attacker may send commands to the SQL server
through the web server, which may compromise information
such as user authentication inside the SQL server.

To address the threat of SQL-injection attacks (SQLIA),
Gowtham and Pramod [50] propose SQLIA-prediction systems
by using semantic features combined with the highly robust
computing environment. Moreover, to alleviate computational
burden, the authors introduce two feature selection algorithms
called Mann-Whitney significance predictor test and principal
component analysis.

This work in [51] focuses on a systematic review of
machine learning and deep learning solutions that have been
used to improve the detectability of SQL injection attacks.
This systematic review allows researchers to understand the
intersection between SQL injection attacks and artificial intel-
ligence.

c) DoS (Denial of Service) attack: A denial-of-service
attack [52], [53] is a kind of resource exhaustion attack that
makes communication networks or servers unable to provide
services by using the defects of software or communication
protocol or by sending a large number of useless requests to
exhaust the server’s resources [54]. In [55], some examples of
DoS attacks that occur in CPSs are described. The work in
[56] presents different types of DoS attacks.

A more serious DoS attack is a distributed DoS (DDoS)
attack. In 2016, US attackers launched the largest distributed
DoS attack on the Dyn server through small CPSs and Internet
of Things devices, causing downtime for Twitter, Cable News
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Network (CNN), and the Guardian [35].
In CPSs, DoS attacks mainly block the information ex-

change between controllers and actuators by consuming com-
munication bandwidth. These attacks cut off their link, making
the controller unable to obtain feedback from actuators, thus
causing CPSs to be out of control [57]. Similarly, Koscher et
al. [58] propose a DoS attack applied to intelligent vehicles,
which disables Controller Area Network (CAN) communica-
tion among vehicle body control modules (BCMs) and makes
speedometers suddenly indicate 0. The attack also causes an
instrument panel cluster (IPC) to freeze.

The article in [59] provides a structured and comprehensive
survey of the existing application layer DoS attacks and
defense mechanisms. The article classifies the existing attacks
and defense mechanisms into different categories, describes
how they work, and compares them based on relevant param-
eters.

d) False data injection attack: Another potential threat to
CPSs is false data injection attack (FDIA) [60], [61]. This type
of attack mainly involves an attacker injecting false sensor data
into a sensor or transmitting false data to trigger a malicious
event [35]. Fig. 6 shows the process. The FDIA was originally

Fig. 6: False data injection attack

introduced in smart grids. A smart grid is a typical CPS. An
attacker modifies sensor readings in some way, and eventually
an undetected error occurs. The FDIA can interfere with the
process of power system state estimation. A successful FDIA
may cause a state estimator to send an error message to system
operators, resulting in a series of impacts on power systems
[62]. The FDIA is a hot topic in the study of power system
security, which is of great significance to the stability and safe
operation of smart grids.

One form of FDIA is that an attacker destroys sensors and
sends damaged sensor readings to state estimators to mislead
controllers [63]. For example, in [64], Hichem et al. mention
that drones located in the same neighborhood should report
the same phenomenon. However, malicious drones may disrupt
sensor readings and cause erroneous physical phenomena. This
attack is usually directed against CPSs with wireless sensor
networks [65]. Injecting false data into smart grid traffic can
lead to different consequences, such as service interruption
and financial losses [66]. Some researchers have put forward
other FDIA attacks against data integrity in CPSs [67]–[69].

Lu and Yang [70] study the stealthy false data injection
attack design problem for CPSs that has state estimators and

attack detectors. The work obtains a necessary and sufficient
condition for the existence of perfect and nonperfect attacks.
The advantage of the proposed method is that attacks have no
knowledge of estimator and can be injected at any time.

e) Malware attack: Malware is used to damage CPSs
devices to steal data or bypass control systems [1] and is one of
the potential threats to CPSs. It can result in abnormal system
behavior, including stealing important system data.

Min [71] proposes an attack method called feature dis-
tributed malware (FDM), which can be used to attack CPSs
supported by the Internet. This attack mainly targets low-cost
devices such as sensors because they are less secure.

Malware attacks may be able to see a user’s system activities
without the user’s authorization. Flame is a typical malware
that targets industrial control system (ICS) with spying pur-
poses. Flame monitored the ICS networks in the Middle East
and was discovered in 2012. The main goal of this malware
is to collect private data related to companies, such as emails,
keyboard keys, and network traffic [72]. Yu et al. [73] present
a malware propagation model in CPSs, namely SEI2RS, which
considers two infectious rates. The equilibria are calculated,
and the stability, bifurcation of the equilibria are analyzed and
proved. Simulation results show the impact of malware spread
on CPSs.

There are also some malware targeting specific systems
to intercept traffic or interrupt operations [66]. The work
in [74] presents an overview of different malware types and
the vectors of attacks subjected to modern vehicles injection.
Moreover, the work also have an in-depth survey of available
defenses against such attacks, and show how the defense can
be used for secure intelligent vehicles against malware threats.

f) Man-in-the-middle attack: In CPSs, when an attacker
tries to eavesdrop on communication between a system and
a server, a man-in-the-middle (MITM) attack may occur
[35]. The attacker sends forged information to the server,
and the server performs unnecessary operations based on the
received information, which may lead to some undesirable
consequences [75]. The attack process is shown in Fig. 7. In
[76], Melamed discusses an MITM attack between a Bluetooth
smart device and its designated mobile application. This case
study proves that when a Bluetooth device is connected to a
mobile device, an attacker can control even a mobile device
once the attack succeeds.

Fig. 7: Man-in-the-middle attack

The commonly used techniques for the man-in-the-middle
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attacks are packet injection, session hijacking, and SSL strip-
ping [35]. Akter et al. [77] establish MITM attacks in near field
communication (NFC) between a passive tag and an active
terminal, illustrate the possibility that the designed attack
can compromise the process of a contactless payment via a
malicious MITM card, and also show the impacts of the MITM
attacks on attack/victim scenarios.

g) Spoofing attack: A spoofing attack occurs when an
attacker pretends to be a part of a CPS to participate in its
legal activities [12]. After successful installation, in addition
to introducing incorrect information, attackers can not only
access information from CPSs but also modify or delete it
[3].

Common network spoofing attacks include IP spoofing,
Address Resolution Protocol (ARP) spoofing, Domain Name
Server (DNS) spoofing, email spoofing, and routing spoofing.
These attacks are usually set up and initiated on a network
to obtain confidential system information [35]. The work [78]
tackles three problems in GPS spoofing attack: multiattack
detection on different phasor measurement unit (PMU), attack
detection about the dynamic model of power systems, and
measurement correction. The results are illustrated for the
detection method in the PMU and supervisory control and
data acquisition systems.

h) Eavesdropping: Eavesdropping refers to an attack in
which an adversary can intercept information communicated
by a system [79]. In CPSs, control information may be
monitored during the transmission from a sensor to a server
[3]. In addition, it is possible to intercept the monitoring data
transmitted by sensor networks collected by monitoring via
traffic analysis.

In [80], Balakrishnan et al. introduce two new types of
eavesdropping attacks based on a next-generation wireless
communication network, i.e., opportunistic stationary attacks
and active nomadic attacks, and study the success probability
of these two attacks.

Wang et al. [81] study the security issues to a CPS under
eavesdropping attacks. For a network system that is attacked
by eavesdropping, the researchers establish necessary and suf-
ficient conditions for an eavesdropper to carry out observations
in CPSs.

Wu et al. [82] study eavesdropping and anti-eavesdropping
relations between a UAV-enabled eaves-dropper (UAV-E) and
a UAV-enabled base station (UAV-BS) in a downlink wiretap
system. In particular, they provide definition and existence
of Nash equilibrium, and a Gauss-Seidel-like implicit finite-
difference method. Finally, numerical results illustrate the
effectiveness of the proposed game model.

2) Intelligent system security threat: In recent years, the
rapid development of artificial intelligence technology has
made CPSs more intelligent, which brings many new security
threats to CPSs. For example, in Uber Autonomous Driving
accident in Arizona in March 2018, an autonomous vehicle
failed to detect pedestrians and killed them [83]. The work
in [84] systematically discusses the existing research and
summarizes the adversarial attacks and defenses for CPSs by
using several kinds of their senor data. With the development
of society, we have put forward higher requirements for the

security of artificial intelligence systems. The main attacks on
artificial intelligence systems in CPSs are poisoning attacks,
adversarial attacks, extraction attacks, and inversion attacks,
which are shown in Fig. 8.

Fig. 8: Intelligent system security threat

a) Poisoning attacks: In poisoning attacks, an attacker
modifies data and distribution to affect training results of an
artifical intelligence model in CPSs [85].

Generally, using various methods to gain unauthorized
access to data, attackers can mark enough data points to
tamper with training data to obtain desired effects. Yang et al.
[86] contaminate a training data set by injecting constructed
false association data into a recommendation system and
realize human intervention, thus affecting the results of a
recommendation system.

Attackers can also confuse a model by changing enough
data. For example, through the continuous training and instiga-
tion of some racist netizens, Microsoft’s chat robot eventually
turns into a racist and foul-mouthed robot [87].

In [88], a poisoning attack with a target is executed in a deep
learning system. An attacker only needs to know that a small
amount of contaminated data is inserted into the training data
sets, and a backdoor can be inserted into the training model to
make the model classify and judge according to the attacker’s
purpose.

This article in [89] reviews existing poisoning attacks and
countermeasures in intelligent networks, compares the princi-
ples of different types of poisoning attacks, and analyzes the
advantages and drawbacks of defense methods.

b) Adversarial attacks: Most of traditional machine
learning models are based on a stability assumption: training
data and test data follow approximately the same distribution.
When rare samples or even maliciously constructed abnormal
samples are input into a machine learning model, the machine
learning model may output abnormal results [85].

By constructing an adversarial sample, an attacker can inter-
fere with reasoning process of artificial intelligence services to
achieve attacks such as evasion detection. In [90], researchers
design an anti-sample attack against an unmanned driving
system. By overlaying a disturbance sign on a road sign,
the authors show that the Youdao unmanned driving system
recognizes “parking” as a “speed limit”.

In the field of machine vision, adversarial samples are
divided into target attacks [91] and nontarget attacks [92]
according to the attack effect; based on an attacker’s ability,
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attacks can be classified as white-box attacks [93] and black-
box attacks [94]. Kumar et al. [95] conduct an empirical study
on speech error interpretation attacks in speech systems.

This article in [96] carefully discusses different types of
adversarial attacks and corresponding defense strategies, con-
cluding that adversarial learning is the real threat to machine
learning in applications.

c) Extraction attacks: In an extraction attack, an attacker
can send polling data and view the corresponding response
results to infer parameters or functions of a machine learning
model and copy a machine learning model with similar or even
identical functions [85].

Lowd and Meek [97] propose an algorithm to steal the
parameters of a linear classifier model. Based on the principle
that the parameters learned by the machine learning model
can minimize the cost function, Wang et al. [98] present a
hyperparameter estimation method for the machine learning
model. Yan et al. [98] introduce an model extraction attack
that are used for stealing confidential information of the
learning models through public queries, and optimize the
attack behaviour by sending the data based on the real-
time feedback. Then, a defense strategy based on differential
privacy is proposed for mitigating this kind of attack.

d) Inversion attacks: An inversion attack refers to inverse
extraction of training data set information from the model,
which mainly includes member reasoning attack and attribute
reasoning attack [85]. Attackers can pry into the privacy of
the training data based on the difference in fitting between the
training data and non-training data.

The attribute reasoning attacks [85] mainly obtain attribute
information such as age distribution, prevalence, and income
distribution of the data set. For instance, Fredrikson et al.
[100] elaborate on the inversion attack through the issue of
privacy in medical machine learning. Specifically, attackers try
to infer the patient’s genotype based on the warfarin dosage
information.

The member reasoning attack [85] mainly infers whether a
specific record appears in the data set. Truex et al. [45] propose
a general system scheme for member reasoning attacks in the
MlaaS platform. At present, member reasoning attacks can be
implemented through three methods, namely the training data
model [101], [102], probability information calculation [103],
and similar sample generation [104].

Alufaisan et al. [105] introduce a novel technique that
complements differential privacy to ensure model transparency
and accuracy, which are robust against model inversion attacks.
In fact, the proposed method with differential privacy has high
transparency and preserves privacy against model inversion
attacks.

C. Cyber-physical attack

In [106], Valise and Miller refer to cyber-physical attacks
as cyber-attacks “that result in physical control of various
aspects” of a cyber-physical system. However, Yam et al define
them more generally as cyber-attacks with “physical effect
propagation”. A more general definition is put forward in
[107]. Researchers consider that a cyber-physical attack as a

security vulnerability in cyberspace, which has have a negative
impact on the physical space. For example, some attackers may
damage network components by injecting malware. A noted
example is Stuxnet [108] that exploits software vulnerabilities
to damage centrifuges used for uranium enrichment, causing
very serious consequences.

A physical device here refers to any device that collects
information about a physical environment such as a sensor,
e.g., sensing movement, measuring temperature, and sensing
sound. An actuator is a device that can be turned on or off.
Actions that occur through the cyber domain include turning
on a medical device, disabling an air bag, and turning a light
on or off.

1) Malicious destruction attack: Malicious damage can
occur through malware injection. In smart cars, malware
injection through an OBD-II port requires physical access
to a car. Hoppe et al. [109] show how an injected malware
can launch a number of malicious destruction attacks, such
as preventing passengers from opening and closing windows
and preventing a car from displaying missing airbag warning
lights.

Checkoway et al. [110] conduct an attack, launched by a
compromised device connected to the car via Bluetooth. This
is realized by installing hidden malware, a Trojan Horse, on
the connected smartphone. The malware captures Bluetooth
connections and then sends a malicious payload to the Trans-
mission Control Unit (TCU). Then, once the TCU is com-
promised, the attacker can communicate with safety-critical
Electronic Control Unit (ECUs), such as antilock brake system
(ABS). In addition, Woo et al. [111] show a wireless attack
that exploits a malicious diagnostic mobile APP connected to
the OBD-II port via Bluetooth. Since the APP runs on a mobile
device, the attack can be launched through cellular networks.

The cellular channel in TCU is exploitable and vulnerable
to malware injection attacks. An attack is realized by calling a
target car and injecting a payload by playing an MP3 file [110].
In 2003, the Slammer worm, which had infected thousands
of personal computers worldwide, injected the network of
the Davis-Beth nuclear power plant in Ohio and disabled its
display [107].

2) Trojan attack: A Trojan virus refers to a piece of mali-
cious code with special functions hidden in normal programs.
In [38], an attacker cooperated with a hacker and used a Trojan
virus to control the central switch responsible for controlling
the flow of natural gas through a pipeline, thus breaking
into the largest natural gas company in Russia. In [112], the
explosion of the Siberian natural gas pipeline is due to a Trojan
virus implanted in SCADA systems that regulates the gas
pipeline. The malicious program changes the coordination of
the pump, turbine and valve, which changes the pressure in the
pipeline and doubles the power of the explosion. The article
in [113] provides attack methodologies to neural-architecture-
search (NAS) enabled edge devices for identifying NAS’s
vulnerability to trojaning attacks and interpret the backdoor
attack, and it illustrates that the occurrence of high impact
nodes decreases the robustness of the systems.

3) Sensor attack: Communication network security plays
a very important role in CPSs. The information measured
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by a sensor from a physical environment or the commands
generated by a controller are some of the main attack targets.
By sending wrong data to a sensor, an attacker causes a
controller to make decisions based on incorrect measurement
results and issue incorrect commands, which may make CPSs
enter an unsafe state [114].

4) Replay attacks: A replay attack occurs when an attacker
sends a packet that has been received by a destination host to
cheat CPSs. It is mainly used in the identity authentication
process to destroy the correctness of authentication [115]. As
shown in Fig. 9, an attacker captures the authentication of one
or more sessions.

Fig. 9: Replay attack

Attackers replay an authenticated session, or use multiple
sessions to synthesize the authentication portion of the session.
Since the session is valid, the attacker can establish an authen-
ticated session. Koscher et al. [58] successfully disable a cars
interior and exterior lights by sending previously eavesdropped
packets.

In a medical CPS, by using the loophole of an insulin pump,
we can replay eavesdropping packets by replaying the pin of a
previous intercepting device [116]. In addition, replay attacks
may lead to incorrect decisions about insulin injection [117].
For example, by replaying an old continuous glucose monitor
packet to an insulin pump, a patient would receive dishonest
glucose level readings and therefore would mistakenly decide
to inject a wrong amount of insulin. This incorrect decision
can lead to serious health conditions.

Naha et al. [118] tackle the problem of replay attack detec-
tion by watermarking the control inputs and execute resilient
detection via cumulative sum test on the innovation signal and
the watermarking signal. Compared with the related work, the
simulation results shows that the presented methodology has
smaller detection delay.

5) Backdoor attack: A backdoor is a computing program
that allows an attacker to access a CPS without authorization.
With access, an attacker can launch any attack on CPSs
[119]. A backdoor may be one of the main security problems
of CPSs. Backdoors can be created by programmers during
software development stages. Backdoors can also be created
by attackers. A common way to create an application backdoor
is to use a Trojan horse [35].

The work in [120] proposes a federated backdoor filter
defense that can identify backdoor inputs and save the data
to availability by the blur-label-flipping strategy. The proposed
method exploits AI, and the accuracy of detecting the backdoor
recognition is up to 99%.

III. DEFENSE MEASURES ON CYBER-PHYSICAL SYSTEMS

This paper reviews the various security threats that CPSs
may face in Section II. For the mentioned security threats,
this section summarizes the corresponding defense measures
and detection methods, as shown in Table II.

A. Physical Domain Attack Defense

As most nodes in the physical domain are distributed in an
unsupervised environment, they are vulnerable to intrusion.
Attacks mainly focus on exposed physical components, such
as sensors and actuators. In addition to being easily affected by
harsh natural environments, such as lightning and hurricanes,
they can also be deliberately destroyed by human beings.

Since most physical components are exposed, we need to
physically protect them [66]. For example, exposed wires
should be protected and smart meters should be sealed within
moisture-proof devices as smart meters are usually exposed.
According to NIST standard, in addition to physical protection,
smart meters must have encryption modules. The standard also
emphasize that smart meters need to be sealed within tamper-
proof units to prevent them from being physically tampered
with by unauthorized personnel [121].

B. Cyber Domain Attack Defense

1) Cyber attacks defense: Defense is very important for the
security in the cyber domain. The paper in [122] provides a
review of the latest research results on secure state estimation
of CPSs for different performance indicators and defense
strategies. Then the recent secure control results have been
reviewed and classified, and it also provides examples of two
representative applications of secure estimation and control
approaches in real-world CPSs, namely, water distribution sys-
tems and wide-area power systems, to provide a preliminary
analytical framework for modern infrastructure security. For
attacks in the cyber domain mentioned above, we propose
corresponding defense and detection methods as follows.

a) Wormhole attack defense: In CPSs, especially against
many ad hoc network routing protocols and location-based
wireless security systems, wormhole attacks can pose serious
threats. Therefore, the detection and defense against wormhole
attacks are particularly important. A summary of the wormhole
attack detection approaches is shown in Table II. Hu et al.
[44] propose a new mechanism called packet traction to detect
and defend against wormhole attacks using a special protocol
called TIK to achieve traction. In particular, TIK requires just
n public keys in a network with n nodes, and has relatively
modest storage, per packet, and computation overheads.

In [43], Hu and Evans propose a strategy to use directional
antennas. In this proposed cooperation agreement, nodes share
direction information to prevent wormhole endpoints from
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TABLE II: Cyber attack defense summary

Attack Type Defense References
Wormhole attacks A new mechanism called packet traction, which is a detection mechanism

based on the round-trip time (RTT) and the number of neighborhoods. [40-43]
SQL injection attacks Defense coding, SQLIV detection, and SQLIA runtime prevention [48],[113],[114]

DoS attacks An elastic model predictive control (MPC) framework,
a queuing model, Bernoulli model and Markov model [115],[116]

False data injection attack a false data filtering scheme based on adjacent information (NFFS) and
a false data filtering scheme based on geographic information (GFFs) [117-119]

Man-in-the-middle attack A computing device called an intrusion detection module to detect attacks [54],[120-121]
Malware attack A new strategy of malware defense using security authentication,

an antivirus software, firewalls and web security gateways, [54],[122-125]
based on the cooperation of trace-routing and trusted neighbor nodes

Spoofing attack A malicious host detection algorithm based on the ICMP. [54],[124-125]

being disguised as fake neighbors. The defense proposed in
the article greatly reduces the threat of wormhole attacks and
does not require location information or clock synchronization.

Tun et al. [123] propose wormhole detection mechanisms
based on round-trip time (RTT) and the number of neighbors.
The first mechanism considers RTT between two consecutive
nodes and the number of neighbors of these nodes. This
requires comparing the values of other consecutive nodes. The
second mechanism is based on the fact that, by introducing
new links in a network, the adversary increases the number
of neighbors of nodes within its radius. The system does
not require any specific hardware, has good performance, low
overhead, and consumes no additional energy.

Some existing methods for detecting wormhole attacks
require strict clock synchronization or long processing times.
Wu et al. [124] propose a local neighborhood information
detection method based on a transmission range. Simulation
results show that this method can effectively detect wormhole
attacks.

b) SQL injection attack defense: SQL injection defense
methods can be roughly divided into three categories: defense
coding, SQLIV detection, and SQLIA runtime prevention
[125]. The root cause of SQL attacks is insufficient input
verification.

It is not sufficient to use professional vulnerability scanning
tools to prevent SQL injection attacks.

The latest vulnerability scanner can find newly discov-
ered vulnerabilities [69]. Halfond et al. propose a series of
techniques to prevent SQL injection attacks, such as new
query development paradigms, proxy filters and instruction set
randomization [48]. In [126], Musaab et al. present a heuristic
algorithm based on machine learning to prevent SQL injection
attacks. The article uses a dataset containing a large number of
statements to train different machine learning classifiers, and
selects the five classifiers with the highest accuracy to develop
the program. The training results show that the algorithm can
accurately detect SQL injection attacks.

c) DoS attack defense: In [127], Agah et al. put forward
two new schemes to prevent DoS attacks. The first one is

called utility-based dynamic source routing (UDSR), which
combines the total utility of each route in the packet. Utility
is the value that we try to maximize in the game theory. The
second one is based on a watch list, where each node obtains
a score from its neighbors based on its previous cooperation in
networks. The results show that the proposed game framework
significantly increases the success rate of wireless sensor and
actor networks in defense strategies.

In [128], Sun et al. propose an elastic model predictive
control (MPC) framework. This system can mitigate the ad-
verse effects of DoS attacks on CPSs by modeling linear
time-invariant systems. Ding et al. [129] investigates the
resilient filtering issue for power systems with DoS attacks
and gain perturbations. By utilizing elementary inequalities
and the fashionable mathematical induction, an upper bound of
filtering error covariance has been derived and then minimized
via selecting suitable filter gains relying on two Riccati-like
difference equations. Finally, a benchmark simulation test is
exploited to check the usefulness of the designed filter.

This paper in [130] has investigated the maximum cor-
rentropy filtering issue for a class of large-scale systems
consisting of a set of spatially distributed subsystems subject
to randomly occurring cyber attacks and non-Gaussian noises.
A hybrid attack model composed of DoS attacks and deception
attacks is used to describe the complex attack behavior in
practical engineering. With the help of fixed-point iteration
rules, a distributed algorithm of MCC-KF has been proposed,
and the desired filter gains depend on the local information
and the received one-step prediction.

d) False data injection attack defense: It is difficult to
defend against FDIAs due to their concealment [131]. Two
FDIA detection methods are proposed in [132]: 1) state-
estimation based detection, and 2) machine-learning based
detection.

In [133], Wang et al. propose two methods to defend against
false data injection attacks. One is a false data filtering scheme
based on geographic information, which makes full use of the
absolute position of a sensor; and the other is a false data
filtering scheme based on adjacent information, which makes
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use of the relative position of a sensor when the absolute
position is not obtained.

e) Man-in-the-middle attack defense: In [35], Ahmad et
al. use a private network in CPSs to prevent man-in-the-middle
attacks. Lima et al. study a man-in-the-middle attack in [134].
They set up a system deterministic model under attacks on
the sensor and actuator channels and put forward a defense
strategy, which can detect the intrusion and protect CPSs from
damage caused by man-in-the-middle attacks. To realize this
model, the paper develops a plant model under sensor attack
and a supervisor model under actuator attack.

f) Malware attack defense: The rapid growth of malware
has caused very large economic losses for various organiza-
tions. The continuous progress and development of malware
put forward higher requirements for its defense and detection.

Previous malware defenses are largely based on fingerprint
or signature technology. Joseph and Errin [135] introduce a
new strategy that uses security certification to defend against
malware. This strategy focuses on malware vulnerabilities
rather than attacks. The system uses remote security scanners
to check for vulnerabilities and uses logical network segmenta-
tion to isolate machines to maximize the availability of related
machines while preventing attacks.

In [136], unsupervised learning and supervised learning are
used to classify malware, and machine learning algorithms
and deep learning models are used to analyze and detect
malware. The article uses methods such as cross-validation and
fixing class imbalance problem to build models that ultimately
increase the accuracy rate significantly.

g) Spoofing attack defense: Spoofing could be avoided
by packet filtering or by using a secure encryption protocol.
The prevention of these attacks includes DVCerts and DAPS
[35].

In [137], Zeng et al. propose a malicious host detection
algorithm based on Internet Control Message Protocol (ICMP).
This technology involves collecting and analyzing ARP pack-
ets and then injecting ICMP echo request packets according
to their response packets to detect malicious hosts. It does not
interfere with host activity on networks. It can also detect real
address mappings during an attack.

In [138], Gao et al. use an effective method to prevent IP
spoofing attacks based on the cooperation of trace routing and
trusted neighbor nodes. This method can effectively detect
IP spoofing attacks, thus effectively preventing IP spoofing
attacks.

2) Defense against intelligent system attacks: For the se-
curity threats to the intelligent system mentioned above, we
propose the corresponding defense methods and make a brief
summary as shown in Table III.

a) Poisoning attack defense: For data poisoning attacks,
current defense methods are mainly divided into two types: the
data cleaning technology and algorithm robustness improve-
ment to resist malicious training data.

the data cleaning technology mainly filters and removes
malicious training data directly to protect collected data from
tampering and rewriting attacks [139]. An attack detection
strategy is proposed to detect potential contamination by
isolating a special holdout set. In [88], Baracaldo et al. use

source information as part of a filtering algorithm to detect
poison attacks. They use the source of training data points
and transform context to identify harmful data, which is
implemented on partially trusted and completely untrusted data
sets. This is the first defense strategy that uses data sources to
prevent poisoning attacks. For partially trusted and completely
untrusted datasets, the authors propose two variants of source
defense.

A learning algorithm always has to make a trade-off be-
tween preventing regularization and reducing loss function,
which may lead to vulnerability of the learning algorithm;
thus, it is necessary to improve the robustness of the algorithm
against malicious training data. Biggio et al. propose improv-
ing a PCA algorithm and reduce the influence of malicious
training data by combining the PCA with the Laplacian
truncation threshold [87].

In [140], Jagielski et al. propose a new defense algorithm
called TRIM to train a regression model with toxic data. It
trains the subset of the smallest residual points in each iteration
by trimming iterative regression parameters. In adversarial
situations, regularized linear regression is applied, and the
algorithm is proved to be more effective than other defenses
on a series of models and real data sets.

b) Adversarial attack defense: The defense methods of
adversarial attacks mainly focus on preventing the generation
of confrontation samples and the detection of confrontation
samples [141].

In [141], a SafetyNet detector is designed, and an output
binary threshold of each ReLU layer is extracted as the feature
of a counter detector. This method can better resist adversarial
attacks because it is difficult for attackers to find an optimal
value for confrontation samples and the SafetyNet detector.

In [142], McDaniel et al. use network purification as a
defense mechanism to resist the disturbance of deep neural
networks. Although there have been many studies on adversar-
ial sample methods, there is still a lack of an effective defense
strategy against adversarial attacks. Most current methods
measure the lower bound of the ability to resist adversarial
attacks [92].

c) Extraction attacks defense: The defense strategy for
model extraction attacks is mainly to approximate model
parameters [143] or output results [144]. In addition, to avoid
the model from being stolen to protect intellectual property
rights, some researchers have proposed the concept of model
watermarking [145].

The researchers in [146], [147] add a watermark to the
neural network by adding a new regularization term to the loss
function. Merrer et al. [148] combine adversarial examples
and adversarial training methods to inject watermarks into
neural networks. Adi et al. [149] study a black-box deep neu-
ral network watermarking technology, which proved through
experiments that this method does not affect the performance
of the original model.

In [101], researchers inject noise into the parameters, and
models such as deep neural networks could be trained by
multiparty computation to resist model extraction attacks.
Making models no longer output a trusted value or, in some
cases where the trusted value must be output, rounding the
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TABLE III: Intelligent system attack defense summary

Type Defense References
Poisoning attack Use data cleaning technology and improve thealgorithm robustness. [130-133]

Adversarial attack Check adversarial examples after building the machine learning system and make the machine [134-136]

learning system more robust before the attacker generates adversarial examples.

Extraction attack To approximate model parameters or output results. [92],[137-148]

Inversion attack Use of machine learning algorithms with privacy protection functions. [85],[141-144]

output trusted value can reduce the success rate of model
extraction [150].

d) Inversion attacks defense: A typical method of de-
fending against inversion attacks is the use of machine learning
algorithms with privacy protection functions. Currently, homo-
morphic encryption [151] and differential privacy technologies
[152] are widely used.

Homomorphic encryption allows users to directly perform
specific algebraic operations on the ciphertext, and the data
obtained is still the result of encryption. Xie et al. [153]
propose a defense method that uses homomorphic encryption
technology to encrypt data, so that the neural network does not
decrypt the data while processing the data, thereby protecting
the confidentiality of a single input.

Differential privacy protects the information in the data by
adding interference noise to the data. The greater the noise
added, the better the data protection effect [154]. Papernot et
al. [91] put forward a universal PATE framework to protect
training data in machine learning.

C. Cyber-physical Domain Attack Defense

We review defense and detection methods of cyber-physical
domain attacks mentioned (see Table IV).

1) Trojan attack defense: There are also many Trojans
in integrated circuits, and Trojans can be implanted in a
variety of ways to weaken the security links of a chip, steal
internal sensitive data or modify the original functions, which
may cause severe economic losses for society. Therefore, we
analyze the entire life cycle of integrated circuit (IC) and
protect hardware Trojan. In [155], we elaborate an integrated
circuit market model to illustrate the potential Trojan threat
participation model faced by both parties.

2) Backdoor attack defense: Backdoor attacks have at-
tracted widespread attention. An attacker’s goal is to build
a malicious deep neural network and use backdoor trigger
to incorrectly classify special inputs. Because of their con-
cealment, such attacks may have disastrous consequences
[156]. According to the resources owned by the enemy and
whether detection is being carried out, we divide the attack
and defense methods into several categories. We have made
a detailed overview of each kind of attacks compared with
these methods, and evaluated some attack schemes through
experiments.

3) Replay attack defense: Mo and Bruno [157] assume
that the control system is a discrete-time linear time invariant
(LTI) Gaussian system using an infinite level linear quadratic

Gaussian (LQG) controller, which improves the probability of
detecting replay attacks.

In the study of [158], a new method based on an irregular
time interval jamming system to detect replay attacks is
proposed. The advantage of this method is its robustness, and
it can be easily implemented in existing control systems.

IV. SECURITY CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

The development of CPSs has made great changes in
industry, medical care, transportation, and people’ s daily life,
and higher requirements are put forward for quality, security
and privacy. In future research, we will pay more attention to
the limitations of some existing results and propose several
challenging issues on this topic, shedding insightful light on
further research. Through the research on CPSs, we found
that the existing research on CPSs still has some problems,
presented as follows:

A. Security Challenges

• With the development of CPSs, CPSs will inevitably face
multiple attacks at the same time instead of a single
attack. Existing research has done research on multiple
attacks of CPSs, but its security solutions have not been
studied in depth. Therefore, designing a comprehensive
detection and defense strategy is an important goal for
our future research.

• CPSs are a key part of Industry 4.0. They have profoundly
changed the way in which humans interact with the phys-
ical world by integrating the physical environment with
the network world. Therefore, it is particularly important
to study the reliability and availability of the system.
Existing works generally use automata to model when
studying CPSs attacks. We can use stochastic Petri nets
to model system attacks to analyze system availability
and reliability.

• There is nonlinear dynamic behaviors such as time-
varying nodes and time-varying topologies in CPS sys-
tems. From the perspective of cybernetics, the existing
analysis methods for reducing attacks cannot analyze
complex system dynamics.

• When the factors such as communication protocols and
network attacks are considered, the complexity of systems
will be greatly increased, and the conditions required
by typical detection techniques may not be guaranteed.
Therefore, the development of new detection strategies is
important.
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TABLE IV: Cyber-physical attack defense summary

Types Defense References

Trojan attack Use a personal firewall, check registry and startup group or install anti-black master [129]

Backdoor attack Use professional tools to kill, change ports, and disable services [128]

Replay attack Use a challenge-response mechanism and a one-time password mechanism or [126-127]

add a random number, add a time stamp, and add serial number prevention.

• With the continuous development of CPSs, higher re-
quirements are put forward for the security, reliability,
availability and stability of CPSs. Therefore, in a real
CPS, a multi-objective optimization problem arises.

B. Future Research Directions

The size of the CPSs become large and complex, and
enormous amount of data also generated by CPSs. In order
to handle security issue of large and complex CPSs, security
detection of CPS associated with some modern approaches like
bid data and clouding computation technique is a promising
research aspect in the future.

Due to the distributed nature of some CPSs such as smart
grid and intelligent electronic devices, several kinds of attacks
can happen simultaneously in a large scale of distributed
systems. In this sense, how to identify, locate and detect these
attacks in a distributed way is a important research topic in
the future.

For guaranteeing the security of CPSs under attacks, secu-
rity control approaches becomes a possible way. That is to
say, the control policy should satisfy general requirements if
there is no attack in a CPS, and it can still hold validation for
malicious attacks. Consequently, designing a security resilient
controller needs to be studied, which is an encouraging topic
in the future.

With the continuous improvement of CPSs functions and
the maturity of security defense programs, CPSs will be
more widely used in various key system areas. Attacks on
CPSs in recent years have shown that attackers are constantly
carrying out more targeted and destructive attacks based on
CPSs operating mechanisms and defense strategies. Although
some defense mechanisms have been proposed, new defense
strategies for identifying threats and vulnerabilities for specific
systems still need to be updated.

With the deep integration of cyber systems and physi-
cal systems, CPSs may face cyber attacks, physical attacks,
and cyber-physical attacks. Developers construct a security
framework for certain types of attacks, and according to the
framework, effective control strategies can be developed to
defend attacks.

Privacy is another primary consideration in defense strategy.
Context-aware access control can prevent unauthorized access,
and context-aware key management can prevent key leakage
and provide key management mechanism.

CPSs may have an impact on the environment when they are
applied to future smart cities and smart homes. Researchers
need to focus on the environmental impact of CPSs and the
study of green CPSs. It will also be an important issue to

integrate renewable energy in CPSs to make CPSs coexist with
environment friendly.

V. CONCLUSIONS

CPSs are an important part of Industry 4.0. By combining
the physical world with the cyber environment, they change
the way in which that people interact with the physical world.
However, CPSs suffer from many security threats and attacks
that can significantly reduce their reliability, stability and
security. In this paper, we first review the architecture and
security issues of CPSs. Then, possible attacks on CPSs are
classified in three aspects, i.e., physical domain, cyber domain,
and cyber-physical domain. As CPSs inevitably use some
intelligent algorithms, they are vulnerable to artificial intel-
ligence attacks. Therefore, artificial intelligence attacks are
added to the classification and the corresponding defenses are
given. Next, for each of the above classified attacks, we give
the corresponding detection methods and defense measures.
Finally, we present the challenges of the current research and
the future research directions. Compared with the existing
surveys on the security of CPSs that review the security
of CPSs from a single perspective, this paper provides a
comprehensive survey of the security of CPSs, especially from
the cyber-physical domain. Finally, we highlight the challenges
facing CPSs and point out future research directions, which
we hope to stimulate more researchers to be interested in this
field.
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