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ABSTRACT

Title of dissertation: The Effect of Pre-Exposure Prophylaxis (PrEP)
on the Spread of HIV in the Population
of Men Having Sex with Men (MSM)
Sylvia J. Gutowska, Doctor of Philosophy, 2023

Dissertation directed by: Professor Kathleen Hoffman
Department of Mathematics and Statistics, UMBC
Professor Katharine Gurski
Department of Mathematics, Howard University

A deterministic model, with both casual and long-term partnerships, is con-

sidered to describe the spread of human immunodeficiency virus (HIV) in the homo-

geneous population of men having sex with men (MSM). The susceptible-infected

SI model with one or two stages of infection is fully analyzed, and then expanded

to study the impact of a pre-exposure prophylaxis (PrEP) on the disease dynamics.

Assuming the advertised high effectiveness of PrEP, the main parameters control-

ling the model behavior include the rate at which susceptible individuals choose to

initiate and possibly drop PrEP treatment, compliance with the daily dosage of the

pre-exposure prophylaxis, and the frequency of different types of sexual encounters.

The rate of infection in casual partnerships follows the classic mass action model,

while the rate of infection in long-term partnerships is computed using a linearized

expected value as a means for including the nonlocal effects of prolonged and re-

peated exposure to the virus, and, at the same time, maintaining computational

feasibility. The reproduction numbers for all variants of the model, with casual



partnerships, long-term partnerships, and a combination of both, are analytically

computed and global stability of both disease-free and endemic equilibria is dis-

cussed, with explicit proofs given in three of the four cases of the model considered.

Numerical results, including normalized sensitivity and partial rank correlation co-

efficient (PRCC) analysis, suggest that increasing the compliance among the current

PrEP users is a more effective strategy in the fight against the HIV epidemic than

increased coverage with poor compliance. Furthermore, an analysis of the repro-

duction number R shows that models with either casual or monogamous long-term

partnerships can reach the desired R < 1 threshold for high enough levels of com-

pliance and uptake, however, a model with both casual and long-term partnerships

will require additional interventions. Considering the full range of possible values,

as opposed to discrete levels, for all the parameters in the model, especially those

describing PrEP use and partnerships, helps in identifying the conditions needed to

lower the incidence and prevalence of infection in meeting the goals set by the U.S.

Department of Health and Human Services in “Ending the HIV epidemic” campaign.

Methods highlighted in this manuscript are applicable to other incurable diseases

or diseases with imperfect vaccines affected by long-term repeated exposures, such

as tuberculosis, malaria or influenza.
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Chapter 1: Introduction

1.1 State of the HIV epidemic

Since it was first identified in 1981, AIDS has claimed an estimated 35 million

lives. Scientists believe that HIV, the virus that causes AIDS, is likely to have

evolved from a virus found in chimpanzees that was transferred to humans in West

Africa in the 1920s. By the late 20th century, the virus had made its way around

the world. The United States has made enormous strides in HIV treatment, care,

and prevention since the epidemic began 40 years ago. HIV was once the leading

cause of death for young people, but because of scientific advances, fewer people

are becoming infected with HIV, and those who do are living longer and healthier

lives. According to the Center for Disease Control (CDC) [1], the rate of new HIV

infections declined 73% between 1984 and 2019, and the age-adjusted death rate

has dropped more than 80% since its peak in 1995.

The CDC estimates that over 1.2 million adults and adolescents in the USA are

currently living with HIV. Gay, bisexual, and other men who have sex with men are

the population most affected by HIV. In 2019, 86% of the 34,800 new HIV diagnoses

were among males, while gay and bisexual men, in particular, accounted for 69%

1



of overall total [1–3]. In 2019 the U.S. Department of Health and Human Services

(HHS) proposed the Ending the HIV Epidemic: A Plan for America initiative [4]

to end the HIV epidemic in the United States within 10 years. This initiative will

leverage critical scientific advances in HIV prevention, diagnosis, treatment, and

care by coordinating the highly successful programs, resources, and infrastructure

of many HHS agencies and offices.

Figure 1.1: Annual HIV infections in the U.S. from 2015 to 2019 [3]. The
graph shows the number of new HIV infections between 2015 and 2019.
It also shows the target goal, set by the “Ending the HIV Epidemic in
the U.S.” initiative, to decrease this number below 3000 new infections
per year.

Although HIV testing and promotion of condom use will always be core strate-

gies for reducing risk, a more radical approach is needed for people at high risk who

do not have HIV and whose condom use is inconsistent. One such approach is

2



encouraging the use of antiretroviral pre-exposure prophylaxis (PrEP), the FDA-

approved daily oral medication regimen, such as Truvada (approved in 2012), or

Descovy (approved in 2019), designed to protect people from HIV infection. To

qualify for PrEP, a person must be HIV-negative, sexually active, and either 1)

infrequently use condoms during sex with one or more partners of either positive

or unknown HIV status, who are known to be at substantial risk of HIV infection,

or 2) have had a sexually transmitted infection (STI) with syphilis, gonorrhea, or

chlamydia within the past 6 months [5,6]. In the U.S., the CDC estimates that more

than one million people (1,232,000 [1]) are at sufficient risk for HIV to meet PrEP

prescribing guidelines. In contrast, the most recent estimate of people taking PrEP

(based on pharmacy data in the first quarter of 2017) is approximately 120,000,

which means only about 10% of those who could benefit from the prophylaxis [2]

are taking the medication.

A systematic review of PrEP’s effectiveness across different populations of peo-

ple at substantial risk of HIV evaluated the effect of oral PrEP in three observational

studies and 15 randomized controlled trials (RCTs), including iPrEx, PROUD, and

IPERGAY [7]. It has been shown that across different types of sexual exposure,

sexes, PrEP regimens, and dosing schemes, when taken consistently and correctly,

PrEP is effective in reducing risk of HIV acquisition to near-zero [8–10]. This has led

some to describe PrEP as a “game changer” for HIV prevention. The effectiveness

of PrEP is closely linked to adherence - if someone taking PrEP regularly misses

a daily dose, their risk of HIV infection will increase substantially. It is therefore

important that any program offering PrEP provides a combination package of pre-
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vention initiatives, based on an individual’s circumstances - with support and advice

on the importance of PrEP adherence.

In the clinical research world, researchers use the term “men who have sex

with men” (MSM) to describe gay and bisexual men, transgender women, and oth-

ers who were born male and who have sex with men but who may or may not identify

as gay or bisexual. The CDC estimates that MSM make up approximately 2% of

the total U.S. population, but accounted for 66% of new annual HIV infections in

2017. Current guidelines and recommendations for PrEP use include MSM as one

of the priority populations for PrEP implementation. In these guidelines, PrEP

is indicated for MSM who are at “substantial risk” of infection, defined primarily

by three behavioral criteria: unprotected anal intercourse (UAI) in HIV status-

unknown monogamous partnerships, UAI outside of monogamous partnership, and

anal intercourse in a known-serodiscordant (mixed HIV status) partnership [5]. Al-

though approximately 25% of HIV-uninfected MSM aged between 18 and 59 years,

who report past-year sex with a man, meet indications for PrEP use, current PrEP

treatment coverage among MSM is well below the half million who are eligible [11].

Understanding the impact of increased PrEP uptake on population-level HIV inci-

dence should help the public health officials with improving the PrEP awareness,

administration, and adherence.

Although PrEP has potential for averting a considerable proportion of new

infections among the MSM population, it is expensive. The federal government

spends approximately $20 billion in annual direct health expenditures for HIV pre-

vention and care. Direct costs include outpatient visits to HIV specialists, medica-
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tion costs, laboratory costs, hospitalizations, and other health care expenses. The

cost averted by avoiding one new HIV transmission amounts to over $400, 000 in

lifetime costs [12]. However, when patients are prescribed PrEP in line with current

guidelines [5], individuals may use PrEP even if they report fewer risk behaviors,

decreasing its impact on HIV transmission while increasing total costs. It is be-

lieved that targeting MSM at higher risk of infection, rather than the entire MSM

population, would improve the cost-effectiveness of PrEP [13–15].

1.2 Literature review

Mathematical models provide one approach to estimating PrEP impact, but

PrEP models of MSM to date have been limited and their assumptions often differ

from the CDC eligibility guidelines. A variety of methods have been used around the

world to study HIV transmission dynamics in the presence of PrEP. For instance,

Kim et al [16] in South Korea, Punyacharoensin et al [17, 18] in the UK, and Li et

al [19] in China, used compartmental mathematical models with varying number

of compartments based on the stages of disease progression, disease diagnosis and

treatment. Recently, Steinegger et al [20] used network models and data from MSM

communities in 58 countries to demonstrate that the efficacy of PrEP determines

the best strategy to reducing HIV spread, and that targeting those at highest risk

is optimal only if the efficacy of PrEP is above a critical value, determined based

on various factors, such as effective prevalence. Alternatively, Jenness et al [21], in

the US, used an agent-based model in which uniquely identifiable sexual partner-
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ship dyads were simulated and tracked over time. The findings published by all of

the authors confirmed the positive impact of PrEP on HIV dynamics. Jenness et

al [21] estimated the percentage of infections averted and the number of individuals

needed to be treated with PrEP in order to prevent one new infection. Their results

suggested that with 40% coverage of high-risk MSM and 62% high adherence among

those covered, PrEP would eliminate 33% of new infections among MSM in the USA

over the next 10 years. Increasing coverage and adherence jointly raises the percent-

age of infections averted, but reduction to the number of individuals needed to treat

was associated with better adherence only. Across all levels of coverage, increasing

the proportion of MSM receiving PrEP who are highly adherent will strongly affect

the efficiency of PrEP: the number of individuals needed to be treated, in order to

prevent one new infection, could be reduced from approximately 50 individuals with

poor adherence to 20 individuals with optimal adherence [21].

This work focuses on the spread of HIV with implementation of PrEP in a

homogeneous (sexually-active MSM) population, where the transmission of a disease

due to homosexual acts is the highest mode of infection. Unlike the data simulation

models presented above, ours is an analytic model described by an autonomous

system of ordinary differential equations. This approach allows us to understand

the effect of different parameter values on the dynamics of the disease, to explore the

impact of varying conditions associated with PrEP use, and to define the conditions

under which the disease can be eliminated or brought to steady state. The novel

feature of our model is consideration of various partnership scenarios, including

casual and long-term partnerships. Among the many parameters, the presented
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model takes into account rates of acquiring new partners, duration of the long-term

partnerships, rates at which susceptibles start and stop the pre-exposure prophylaxis

program, treatment adherence rate and effectiveness rate of PrEP.

A few of the recent publications have addressed some of these aspects but,

as far as we are aware, none have combined all of them. Simpson and Gumel [22]

presented a model with casual partnerships, stratifying the susceptible population

using PrEP based on two levels (low and high) of treatment adherence. Silva and

Torres [23] focused on the population of Cape Verde in the model that includes rates

of initiating and defaulting on the presumably 100% effective PrEP treatment and

hence not allowing a possibility of disease transmission from that group. Hansson

et al [24] proposed a classic pair-formation model that includes steady and casual

partners among the individuals categorized as sexually high active and low active.

Different mixing patterns are considered but only those highly active sexually are

offered PrEP. In addition, those who begin using PrEP are assumed to stay on it

indefinitely, with no adherence factor present. Our work confirms that considering

only casual partnerships does not provide accurate representation of the disease

progression in the long run. Hence the inclusion of long-term partnerships to show

their significant impact on the spread of HIV.

As reported by Simpson and Gumel [22], we also show that adherence plays a

very important role, possibly even more than just increasing the number of individu-

als starting PrEP. However, while Simpson and Gumel used two levels of compliance,

our adherence parameter q varies continuously between 0 and 1. This adjustment

should help in addressing the potential lack of generalizability of the above men-
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tioned models, as the behavioral and societal factors influencing adherence rates

vary with geography and culture. Even within the same geographic region, different

subpopulations may exhibit different rates of adherence to PrEP, which may make

it difficult to develop a generalized model of adherence [25]. In addition, we are

able to determine the level of compliance necessary to get the reproduction number

R < 1.

Hansson et al’s [24] approach of looking at different types or partnerships

and also the level of sexual activity is interesting but the assumption of individuals

never stopping the strict PrEP regime is rather unrealistic considering the data [1].

Although CDC continues to recommend daily dosing of PrEP and urges people

at substantial risk for HIV infection and their health care providers to continue

to follow current CDC guidelines [5], it is not uncommon for people to view their

sexual behavior as being far from “high risk.” In their work, Whitfield et al [26]

pointed out that the risk perception (i.e. whether the person views themselves as an

appropriate candidate) has been identified as a barrier to increased PrEP uptake. If

individuals do not see themselves as someone for whom PrEP is intended, they are

less likely to start a regimen. Furthermore, a change in risk perception could lead

to discontinuation of the treatment all together, regardless of actual changes in risk

behavior. This suggests that the idea of distinguishing between the high and low

risk behavior might not be enough when trying to come up with the best strategies

to combat poor adherence. An approach with wider spectrum of qualifications for

PrEP is important. For example, Elsesser et al. [27] talked about “seasons of risk,”

noticing that HIV risk among MSM is often episodic, with fewer MSM reporting
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continuous risk over time [28]. Episodic increases in unprotected anal sex have

been reported among MSM who are on vacation or traveling away from home. A

better understanding of how adaptation of the daily PrEP regimen might support

individuals whose risk is episodic, may improve PrEP uptake, adherence, and reduce

HIV incidence. One study, iPERGAY, investigated efficacy of non-daily PrEP, and

suggested that event-driven dosing of PrEP (i.e. ‘on-demand PrEP’) may also be

effective in preventing HIV in MSM population [10].

As evidenced above, researchers around the world have been estimating the

potential impact of PrEP under different intervention scenarios, examining the rela-

tive importance of implementation strategies and individual adherence. One of the

earliest PrEP models, presented by Gomez et al [29] in 2012, shows an important

epidemiological impact of PrEP use, largely driven by the characteristics of the im-

plementation program, such as PrEP conditional efficacy, coverage, prioritization

strategy, and time to scale up, as well as risk compensation behavior. The authors

discussed “functional effectiveness” as a function of the probability of transmission,

the intrinsic efficacy, the adherence to PrEP, and its distribution, affecting only un-

protected sex acts, which in turn are dependent on the number of partners, average

condom use, and number of sex acts per partner. In our work, we address all of the

above with an additional distinction between the “types” of partnerships among the

MSM population.
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1.3 Partnerships

Partnerships play an important role in disease transmission of HIV. In our

work, we consider both casual and long-term partnerships [30]. A casual partnership

constitutes a single instance of a sexual encounter, whereas a long-term partnership

consists of repeated sexual acts between the same two individuals over a longer

period of time τ , that represents the average long-term partnership duration.

In 1992, Watts and May [31] explored concurrency in relationships when mod-

eling HIV, which would allow to account for situations where long-term partners

engage in sexual activity with individuals outside of their long-term partnership.

Since then, the effect of casual partnerships, occurring alongside the long-term part-

nerships, on the transmission of HIV has not been visited by many mathematical

epidemiologists. The importance of concurrency stems from the fact that the rate

of infection is not some constant value per sexual act, compounding independently

and/or randomly (a series of ten sexual acts with one person chosen from a particu-

lar group does not necessarily present the same risk as ten single sexual acts with ten

different people from that group). Inclusion of long-term partnerships while mod-

eling the dynamics of HIV presents a challenge of taking into account a possibility

that an initially uninfected partner of a given susceptible individual may or may

not become infected over the duration of their partnership, which can be described

using concurrency.

A widely-known approach of studying sexually transmitted diseases is a pair-

formation model [24,32–34]. It captures the complex dynamics of partnership dura-
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tion and infection duration but requires explicit description of every combination of

characteristics within pairs. This quickly increases the number of differential equa-

tions needed to describe the dynamics. Another limitation of pair formation models

is that concurrent partnerships can only be added using moment closure methods.

Our goal is to overcome these limitations and propose a novel approach. In [30], we

compared two pair formation models with a long-term partnership model. Numer-

ical simulations showed that the long-term partnership model without concurrency

(transitive infections) mimics the pair formation models. We also concluded that

the corresponding reproduction numbers are comparable, and the overall dynam-

ics of these models are almost identical, even with the low concurrency rate. A

significant advantage of the long-term partnership model is that having fewer equa-

tions allows for analytic calculations in addition to numerical simulations. In this

work, we extend the long-term partnership model by not only adding PrEP, but

also introducing the non-exclusivity parameter and including the non-monogamous

partnerships with the possibility of transitive infection from an initially susceptible

partner. The challenge in this case arises from the fact that before the suscepti-

ble long-term partner can transfer the infection, he must engage in a casual sex

act outside of the partnership and at the same time may start and/or stop PrEP

treatment anytime between the partnership formation and the time they become

infected. Our approach to this scenario involves the use of expected value [35], to

calculate the mean of newly infected individuals. In addition, we apply a continu-

ous Markov Chain model and survival analysis to derive the probability that during

the time between the partnership formation and infection, an initially susceptible
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partner remains in the same long-term partnership, keeps his infection-free status,

while possibly transitioning between the PrEP treatment group and the non-PrEP

group.

The parameters, pertaining to all types of partnerships and considered in our

work, are listed in Table A.1. We will refer to them in later chapters, where we

discuss specific models.

1.4 Outline of Thesis

In Chapter 2, we present and analyze two PrEP-free models that serve as a

foundation of our work and help understand the dynamics of HIV when the long-

term partnerships are added to a traditional model with casual (one-off) partner-

ships. While the model in Section 2.1 is built on a classic SI model with two

groups, susceptible and infected, it is expanded in Section 2.2 to consider two stages

of infection, acute and chronic (latent), that differ in terms of infectivity.

In Chapter 3, we start building our PSI model, which includes additional

group P of individuals using PrEP, and describe a variety of cases based on the

type of partnership(s) each of them includes. We proceed in this chapter with

detailed analysis of the first two cases, involving only one type of partnership each,

calculate the corresponding rates of infection and reproduction numbers, and lastly

prove the existence and global stability of equilibria under appropriate conditions.

The remaining two cases, where casual sexual contacts may take place alongside

long-term partnerships, are studied in Chapter 4, where we include calculations of
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corresponding rates of infection, reproductive numbers, as well as local and global

stability results.

Chapter 5 is devoted to numerical results for all four cases of our PSI model.

Here we discuss the reasoning behind the assumed values of our parameters, the

uncertainty of these estimates and their effect on the sensitivity of reproductive

number, as well as the role that key parameters play in the progression of the

disease.

We conclude with Chapter 6, where we take a look at possible approaches to

ending the HIV epidemic, summarize our work, and mention the limitations of our

model.
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Chapter 2: PrEP-free SI models

Before being able to analyze the dynamics of the disease in a population that

includes individuals receiving PrEP treatment, we develop a more basic SI model,

which does not consider PrEP but does include long-term partnerships. To build

our SI model we follow the work of Gurski [36], who developed an autonomous

population model that accounts for the possibilities of an HIV infection from ei-

ther a long-term partner, infected at the onset of the partnership or newly infected

during the partnership, or from an infected casual sexual partner. This model also

includes different infectiousness levels for the transmission of the disease, which we

are going to consider in Section 2.2, after we fully analyze, in Section 2.1, the case

with only one infected state. In all models developed and analyzed in this work,

we assume that all individuals mix randomly with constant casual and long-term

partner acquisition rates. We further assume that the risk factors are fixed across

time and do not differ among the individuals, meaning that no susceptible person

has a higher chance of contracting HIV than others within the same group, at any

given time.
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2.1 The one-stage infection SI model

We start our work with a classic SI model that includes a single stage of

infection. After brief description of the model in Section 2.1.1, we work through

the calculations of the rate of infection in Section 2.1.2), and of the reproductive

number and equilibria, followed by their stability analysis, in Section 2.1.3.

2.1.1 Description of the model

In this model, illustrated in Fig. 2.1, individuals enter the group S at a rate π,

representing the rate of becoming sexually active, and move from S to I at a rate of

λ, which represents the rate of infection and is dependent on the number of infected

individuals. Due to the chronic nature of HIV disease the infected individual can

never return to group S. Each group can be exited, due to natural death or changes

in sexual behavior, at the total removal rate µ. Additionally, here π = µN0, because

we assume constant population N0. We acknowledge, that the individuals diag-

nosed as HIV positive have ready access to Highly Active AntiRetroviral Therapy

(HAART) treatment. Despite being highly effective, this treatment cannot cure

HIV; it can, however, delay or prevent the onset of symptoms or progression to

AIDS, thereby prolonging survival in people infected with HIV [37]. With that in

mind, we do not consider death or other removal from population due to disease.
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Figure 2.1: Schematic diagram of the SI model with two groups, the
infected individuals in I and the susceptible individuals in S, who may
become infected at a rate λ. The parameters π and µ correspond, re-
spectively, to the recruitment rate and population removal rate.

The SI model presented in Figure 2.1 is described by the system of equations

dS

dt
= π − λS − µS,

dI

dt
= λS − µI,

(2.1)

with parameter descriptions and values, including π = µN0, given in Table A.2. Here

λ denotes the rate of infection, dependent on the number of infected individuals, and

is derived in Section 2.1.2. For the simplicity of work that follows, it is convenient

to transform the system (2.1) into an equivalent model with proportions s = S
N0

,

and i = I
N0

denoting fractions of the classes S, and I in the constant population N0,

and satisfying s+ i = 1:

ds

dt
= π − λs− µs,

di

dt
= λs− µi.

(2.2)

Due to invertibility of the transformation used, the two systems are equivalent, and

the scaled model (2.2) inherits all the properties of the original model (2.1), including

existence and stability of a disease-free equilibrium (DFE) (s∗, i∗) =
(
S∗

N0
, 0
)

and

any endemic equilibria (EE) (s∗∗, i∗∗) =
(
S∗∗

N0
, I
∗∗

N0

)
.
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2.1.2 Rate of infection

We recognize that, since individuals can be infected by either their long-term

or casual partners, the rate of infection, λ, has to be divided into two categories:

λ = λz︸︷︷︸
Infection rate from casual partners

+ λp︸︷︷︸
Infection rate from long-term partners

. (2.3)

We derive each of the terms, λz for the casual and λp for the long-term partnerships,

separately, with the rate λp representing a novel contribution to PrEP modeling.

Rate of infection λz

The infection rate from casual partners, λz, uses the traditional mathematical

model with a zero inherent length infection contact (i.e. duration time of such contact

is perceived as zero since it’s a one-time exposure rather than an extended exposure).

It assumes that the transmission rate from an infected individual in I is zβ, where

z is the rate of casual sexual encounters and β is the transmission probability per

sexual encounter with an infected individual, and is calculated as

λz = zβi. (2.4)

Rate of infection λp

We previously noted in Section 1.3, that the probability of infection from a

long-term partner is not necessarily the same as the probability due to a casual

encounter. We also recognize that a susceptible individual may become infected

through a non-exclusive long-term partnership with an initially susceptible partner.

17



Hence the infection rate from a long-term partner, λp, is broken into two parts:

λIp, when a susceptible individual forms a long-term partnership with an infected

individual; and λSp , when a susceptible individual forms a long-term partnership

with a person who is initially susceptible, but later becomes infected by a casual

sexual encounter outside of this partnership. This is where we will introduce a non-

exclusivity parameter ξ, denoting the chances of a long-term partner engaging in

non-monogamous behavior.

Rate of infection from long-term partner in I

We assume that the rate of transmission of infection within a long-term part-

nership with an infected individual in I is χ. The probability of transmission per

partner depends upon the average number of contacts per partner and the mean

probability of transmission per contact. Just as with the casual sexual partnership,

the infected partner in I can possibly infect the susceptible partner in a single sex-

ual act, at a probability of β. In the case of long-term partnerships with infected

individual, we assume that the partners mitigate the infection risk with condoms

approximately 90% of the time (see parameter cu in Table A.1). However, the

probability of an individual being fully protected also depends on the condom ef-

fectiveness ceff and is hence equal to ceff · cu. If we define the reduction factor

due to condom effectiveness and usage as c = 1 − ceff · cu, then the term cβ is the

transmission probability per sexual contact. Consequently, the probability of not

being infected in a single act is (1 − cβ), and the probability of not being infected

after n sexual acts is (1 − cβ)n. Here, the exponent reflects standard conservative

estimate of two sexual interactions per week and hence n = 104τ is the number of

18



sexual contacts over the duration of long-term partnership τ = 1/(b + 2µ), with µ

being the population removal rate (by death or due to ceasing sexual activity) and

b = 24.7% denoting the annual rate at which long-term partnerships dissolve [38].

In λz, we used the average rate of having casual encounters per year, z. Sim-

ilarly, in λp, we use the rate of acquiring long-term partners per year, p/τ , which

is derived using the number of lifetime long-term partners, M = f/(µ(fτ + 1)),

defined for a pair formation model in [30, 33], where f is the pair formation rate,

τ is the partnership duration, and 1/µ is the lifetime. Thus, the number of long-

term partners per year becomes Mµ = f/(1 + fτ), which is our definition for p/τ .

Following Kretzschmar and Heijne [33], parameter p is a fraction of population in a

long-term partnership but also describes the fraction of his lifetime that an individ-

ual is cumulatively in long-term partnerships. Therefore, the probability that the

susceptible long-term partner will be infected after n sexual acts with the long-term

partner in I is our rate of transmission χ = (p/τ) [1− (1− cβ)n].

When deriving the rate of infection λIp from an infected partner, we assume

that the infected partner has not transmitted the infection before a given time t.

Using the notation “Y (t) ∈ A” to indicate that the “individual Y is in group A

at time t,” the probability that an infected partner Y , who is acquired at time κ,

transmits the infection at a later time t, is given by the product of the following

probabilities, multiplied by the rate of transmission χ:

1. The probability that a partner, acquired at time κ, was already infected:

P (Y (κ) ∈ I) = i(κ).
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This probability corresponds to the proportion of infected individuals in the

population at the time κ.

2. The probability that a partner, acquired at time κ, will still be a partner at

time t: P (Y (t) ∈ Partner) = e−(t−κ)/τ .

We define a random variable T̃ as a time between the start of the long-term part-

nership, κ, and the time of infection t. In our calculations of the rate of infection

from initially infected long-term partners, we account for the changes in the number

of infected individuals by using the expected value of the proportion of infected

individuals, defined in the equation (2.2) as i, and here represented as a function g

of a continuous random variable T̃ ,

λIp ≡ χ · E
[
g(T̃ )

]
,

with the integral definition of the expected value being

E
[
g(T̃ )

]
≡
∫ ∞

0

g(t̃)f(t̃)dt̃, (2.5)

where f(t̃) represents the probability distribution function of the time between the

start of partnership and the time of infection. We can interpret the formula for

E[g(T̃ )] as a weighted integral of the values g(t̃) of a function of a random variable

T̃ , where the weights are the probabilities f(t̃)dt̃.

Due to the fact that we are only considering long-term partners who were

already infected at the time κ of partnership formation and remembering that t̃ =

t− κ, we define g(t̃) = i(κ), which represents only those being in the infected group

at the time κ, regardless of the number of infected individuals in the population at
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the time of infection, and is calculated below by the means of linear approximation.

We assume that the probability (see item 2 above) of the partnership lasting through

time t can be described by a distribution function that is a decaying exponential,

scaled by the average length of a long-term partnership, τ , and expressed as

f(t̃) =
1

τ
e−t̃/τ .

With that in mind, we rewrite the expected value as

E
[
g(T̃ )

]
=

∫ ∞
0

i(κ)

τ
e−t̃/τdt̃. (2.6)

Since we are dealing with a nonlinear and a non-local problem, it is not feasible to

keep track of the number of infected individuals for all time prior to the instant t

at which the infection occurs. To make the calculations tractable, we will define λIp

to be a linear approximation to the expected value, with i(κ) ≈ i(t) + i′(t)(κ − t),

and i′(t) = λs(t)− µi(t) directly from our ODE model equations (2.2), giving us

i(κ) ≈ i(t) + (λs(t)− µi(t))(κ− t)

= i(t)(1 + µ(t− κ))− λs(t)(t− κ)

= (1 + µt̃)i(t)− λt̃s(t)

in the integrand of (2.6), with t̃ = t− κ. In other words, we are approximating the

fraction of infectious individuals i(κ) at time κ as the fraction of infected at time t

plus the fraction of infected who died, (1+µt̃)i(t), and subtracting off the fraction of

the individuals λt̃s(t) who became infected between times κ and t, where t̃ = t− κ.

Therefore

E
[
g(T̃ )

]
≈
∫ ∞

0

(1 + µt̃)i(t)− λt̃s(t)
τ

e−t̃/τdt̃

= (1 + µτ)i(t)− λτs(t).
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Then we can describe the rate of infection from the infected long-term partners as

λIp ≡ χE
[
g(T̃ )

]
≈ χ(1 + µτ)i(t)− χλτs(t). (2.7)

Rate of infection from long-term partner in S

We now derive the rate of infection from long-term partners who were suscep-

tible at the start of the partnership, denoted as λSp . We do not assume that in this

case the long-term partners use condoms to prevent infection. Therefore

λSp = ψ · E [inew] ,

where the right hand side represents the product of the expected value of the fraction

of newly infected (previously susceptible) partners, still in partnership at time t, and

a rate of transmission ψ =
p

τ
β.

We begin with calculation of the probability that a susceptible partner who

is acquired at time κ, becomes infected while still in partnership at time t and

then transmits infection, which is given by the product of the following probabilities

multiplied by the rate of transmission ψ:

1. The probability that a long-term partner acquired at time κ was susceptible

(i.e. was in ): P (Y (κ) ∈ S) = s(κ).

This probability corresponds to the proportion of susceptible individuals in

the population at the time κ.

2. The probability that a partner remains susceptible until time t, given they

were susceptible at time κ: P ((Y (t) ∈ S)|(Y (κ) ∈ S)) = e−λξ(t−κ), where λξ is
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a hazard function, i.e. probability that a long-term partner becomes infected

through an outside-the-partnership sexual encounter.

3. The probability that a partner, acquired at time κ, will still be a partner at

time t: P (Y (t) ∈ Partner) = e−(t−κ)/τ .

4. The probability that the initially susceptible partner becomes infected at time

t: λξ(t− κ), where λ is the rate of infection, t− κ the length of partnership,

and ξ the probability that a partner is engaged in an external (outside this

long-term partnership) sexual act (non-exclusivity factor).

Hence the product of the above probabilities becomes

P (Y (κ) ∈ S) · P ((Y (t) ∈ S)|(Y (κ) ∈ S)) · P (Y (t) ∈ Partner) · λξ(t− κ) =

= s(κ) · e−λξ(t−κ) · e−(t−κ)/τ · λξ(t− κ)

= s(κ) · e−(1+λξτ)(t−κ)/τ · λξ(t− κ).

Now, we use the equation (2.5), to calculate the expected value of the proportion

of newly infected individuals, represented by a function g(t̃) = inew(t̃) = λξt̃s(κ)

of a continuous random variable T̃ , and f(t̃) =
1 + λξτ

τ
e
−

1 + λξτ

τ

t̃
being the

probability density function describe the distribution of T̃ , the time between the

partnership formation κ and the time of infection t:

E [inew] =

∫ ∞
0

λξt̃s(κ)

(
1 + λξτ

τ

)
e
−

1 + λξτ

τ

t̃
dt̃, (2.8)

with t̃ = t−κ. To keep the model memory free we will calculate the linear approxi-

mation to the expected value. To accomplish that, we incorporate the linear approx-
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imation s(κ) ≈ s(t) + s′(t)(κ− t) and use s′(t) = µ−λs(t)−µs(t) = µ− (λ+µ)s(t)

from our ODE model to obtain

s(κ) ≈ s(t) + (µ− (λ+ µ)s(t))(κ− t)

= −µ(t− κ) + s(t)[1 + (λ+ µ)(t− κ)].

(2.9)

Substituting the approximation in (2.9), along with t̃ = t − κ, into the integral

in (2.8) we get

E [inew] ≈ λξ

∫ ∞
0

{−µt̃+ s(t)[1 + (λ+ µ)t̃]}1 + λξτ

τ
e
−

1 + λξτ

τ

t̃
t̃dt̃,

which, after rewriting as a sum of integrals, becomes

E [inew] = λξ


∫ ∞

0

−µt̃2 1 + λξτ

τ
e
−

1 + λξτ

τ

t̃ dt̃

+ s(t)

∫ ∞
0

t̃[1 + (λ+ µ)t̃]
1 + λξτ

τ
e
−

1 + λξτ

τ

t̃
dt̃

 .

After evaluating the integrals, the expression simplifies to

E [inew] = λξ

{
− 2µτ 2

(1 + λξτ)2
+ s(t)

[1 + 2µτ + λτ(2 + ξ)] τ

(1 + λξτ)2

}
= λτξ

[−2µτ + s(t)(1 + 2µτ + 2λτ + λτξ)

(1 + λτξ)2

]
= F (λτξ, t) ≡ F (λt, t),

where F (λt, t) =
λt [−2µτ + s(t)(1 + 2µτ + 2λt/ξ + λt)]

(1 + λt)2
with λt = λτξ. Now, ap-

proximating around λt = 0, we get

F (λt, t) ≈ F (0, t) +
∂F

∂λt

∣∣∣∣
λt=0

· (λt − 0)

= 0 + [s(t)− 2µτ + 2µs(t)τ ]λt

= [−2µτ + s(t)(1 + 2µτ)]λt,
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and thus F (λτξ, t) = [−2µτ + s(t)(1 + 2µτ)]λτξ, which leads to the rate of infection

from a partner acquired while susceptible,

λSp ≡ ψ · E [inew] ≈ ψλτξ[−2µτ + s(t)(1 + 2µτ)]. (2.10)

Having calculated both components of the rate of infection from long-term part-

nerships, equations (2.7) and (2.10), we combine them and solve explicitly for λ to

obtain

λp =
χ(1 + µτ)i

1 + τ [2ψξτµi+ (χ− ξψ)s]
. (2.11)

Finally, combining the rates from casual and long-term partnerships gives us the

final rate of infection for our SI model with one infected state, namely

λ =
[zβ + χ(1 + µτ)]

(1 + 2ψξτ 2µ)i+ τs[χ− ξψ(1 + 2µτ)]
=

[zβ + χ(1 + µτ)]i

1 + 2ψξτ 2µi+ τ(χ− ξψ)s
. (2.12)

The model equations then become

ds

dt
= µ− [zβ + χ(1 + µτ)]is

(1 + 2ψξτ 2µ) + τs[χ− ξψ(1 + 2µτ)]
− µs,

di

dt
=

[zβ + χ(1 + µτ)]is

(1 + 2ψξτ 2µ) + τs[χ− ξψ(1 + 2µτ)]
− µi.

(2.13)

2.1.3 Reproduction number and equilibria

Calculation of R0

Basic reproduction number is calculated using the next generation method explained

in Section B.1 and based on [39,40]. Using our model equations (2.13) we define

F =

 0

[zβ + χ(1 + µτ)]is

(1 + 2ψξτ 2µ) + τs[χ− ξψ(1 + 2µτ)]


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and

V =

−µ+
[zβ + χ(1 + µτ)]is

(1 + 2ψξτ 2µ) + τs[χ− ξψ(1 + 2µτ)]
+ µs

µi

 .

Since equilibrium solution with i = 0 has the form x∗ ≡ (s∗, i∗) = (1, 0), we get

F =
∂F
∂i

(x∗) =
zβ + χ(1 + µτ)

1 + τ(χ− ξψ)
and V =

∂V
∂i

(x∗) = µ, with V −1 =
1

µ
. Hence

FV −1 =
zβ + χ(1 + µτ)

µ [1 + τ(χ− ξψ)]
. Therefore, the reproductive number is calculated as

R0 = ρ(FV −1) =
zβ + χ(1 + µτ)

µ [1 + τ(χ− ξψ)]
. (2.14)

We can assure that R0 is positive, and therefore it makes sense, by showing that,

for our parameter values, the quantity in the denominator in the equation (2.14)

satisfies χ− ξψ > 0.

Lemma 2.1. For the parameters defined in Table A.1, we have χ− ξψ ≥ 0.

Proof. For the simplicity of calculation, let us temporarily denote by β̂ = (1− (1−

cβ)n), the HIV transmission rate after n sexual acts with infected long-term partner.

Since repeated exposure to the virus carries higher chances of transmission, it is safe

to assume that β̂ ≥ β. Since exclusivity parameter satisfies 0 ≤ ξ ≤ 1, we conclude

that β ≥ ξβ ≥ 0 and hence β̂ − ξβ ≥ 0. Therefore χ− ξψ =
p

τ
(β̂ − ξβ) ≥ 0, which

means that the chances of infection from a partner who was initially in S are not

higher than the chances of infection from an initially infected partner in I.

Calculation of DFE and EE

Using the equations (2.13) we start by setting
di

dt
= 0, which yields two cases:

i = 0 and s =
µ(1 + 2ψξτ 2µ)

zβ + χ+ µτξψ(1 + 2µτ)
. Then, setting

ds

dt
= 0 and combining
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it with the expressions above, produces the two equilibria, disease-free equilibrium

(s∗, i∗) = (1, 0), and endemic equilibrium,
s∗∗ =

µ(1 + 2ψξτ 2µ)

zβ + χ+ µτξψ(1 + 2µτ)
,

i∗∗ =
[zβ + χ− µ(1− τξψ)]

zβ + χ+ µτξψ(1 + 2µτ)
.

(2.15)

Stability of equilibria

We analyze the signs of the eigenvalues of the Jacobian for the system (2.13)

and recall that the equilibrium is a stable node if the eigenvalues of Df(x), evaluated

at that equilibrium, are real and negative, and an unstable node if the eigenvalues

are real and positive [40, 41]. Then, we can use the theorem by Lajmanovich and

Yorke [42, Thm.3.1]:

Theorem: For the system
dy

dt
= Ay + N(y), with y ∈ C ⊆ Rn, there

are two possibilities. Either ρ(A) = max16i6nReλi 6 0, and then y = 0
is globally asymptotically stable in C ⊆ Rn, or ρ(A) > 0, and then
there exists a constant solution k ∈ C \ {0} such that k is globally
asymptotically stable in C \ {0}.

to show the following result on global asymptotic stability of the system in the

equations (2.13).

Theorem 2.2. For the system described by equations (2.13):

1. the disease-free equilibrium (s∗, i∗) = (1, 0) always exists and if R0 < 1 then it

is globally asymptotically stable,

2. if R0 > 1 then the endemic equilibrium (s∗∗, i∗∗) (2.15) exists and is globally

asymptotically stable.
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Proof. We rewrite the equation
di

dt
in terms of i, using the fact that s+ i = 1,

di

dt
=

[zβ + χ(1 + µτ)]is

1 + 2ψξτ 2µi+ τ(χ− ξψ)s
− µi

=
[zβ + χ(1 + µτ)]i(1− i)

1 + 2ψξτ 2µi+ τ(χ− ξψ)(1− i) − µi,

and then isolate the linear term to get

di

dt
=
zβ + χ− µ(1− τξψ)

1 + τ(χ− ξψ)
i

+
−[zβ + χ(1 + τµ)](1 + 2µτ 2ξψ)i2

[1 + τ(χ− ξψ)][1 + (1− i)τ(χ− ξψ) + 2ψξτ 2µi]
.

Letting y(t) = i(t) we obtain the desired form of the equation

dy

dt
= Ay +N(y), (2.16)

where A = Df(x∗) =
zβ + χ− µ(1− τξψ)

1 + τ(χ− ξψ)
is a Jacobian evaluated at a disease-free

equilibrium x∗, and N(y) = − [zβ + χ(1 + µτ)](1 + 2µξτ 2ψ)y2

[1 + τ(χ− ξψ)][1 + τ(χ− ξψ)(1− y) + 2ψξτ 2µy]
.

We will now investigate the asymptotic behavior of the solutions. We know that

y = 0 is a constant solution. We shall prove that either y = 0 is globally asymptot-

ically stable in C = [0, 1], or there exists another constant solution y = k 6= 0 that

is globally asymptotically stable in C − {0}. We notice that A is a 1 × 1 matrix

and χ − ξψ ≥ 0 (from Lemma 2.1), so N(y) is negatively-valued and continuously

differentiable in R. We define the Lyapunov function of the type V (y) = ω · dy
dt

and apply the Lyapunov global stability theorem [43], together with the theorem by

Lajmanovich and Yorke [42, Thm. 3.1] mentioned earlier. Our case satisfies all of

the required conditions:

(i) Since y represents the fraction of infected individuals i and s+ i = 1, the com-

pact convex set C = [0, 1] is positively invariant with respect to the equation
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(2.16), and 0 ∈ C;

(ii) The limit is

lim
y→0

|N(y)|
|y| = lim

y→0

|[zβ + χ(1 + µτ)](1 + 2µξτ 2ψ)| · |y|
|[1 + τ(χ− ξψ)][1 + τ(χ− ξψ)(1− y) + 2ψξτ 2µy]| = 0;

(iii) Since A is constant, we get the eigenvector ω = 1, and hence there exists r > 0

such that (ω · y) > r |y| for all y ∈ C ;

(iv) Since N(y) is negatively-valued (ω ·N(y)) = N(y) 6 0 for all y ∈ C;

(v) (ω · N(y)) = N(y) = 0 only when y = 0 so y = 0 is the largest positively

invariant set contained in H = {y ∈ C | (ω ·N(y)) = N(y) = 0}.

We conclude that, either y = 0 is globally asymptotically stable in C, or for any

y0 ∈ C \ {0}, the solution φ(t, y0) of (2.16) satisfies lim inft→∞ |φ(t, y0)| > m for

some m > 0, and independent of y0. Moreover, there exists a constant solution of

the equation (2.16), namely y = k, with k ∈ C \ {0}. Using eigenvalues calculated

for local stability, together with the above mentioned theorem by Lajmanovich and

Yorke [42], we conclude that y = 0 is a globally asymptotically stable DFE in C when

R0 < 1 (i.e. zβ + χ + µτξψ < µ), and y =
N0[zβ + χ− µ(1− τξψ)]

zβ + χ+ µτξψ(1 + 2µτ)
is a globally

asymptotically stable EE in C \ {0} when R0 > 1 (i.e. zβ + χ+ µτξψ > µ).

We have therefore shown, that the SI model with both casual and long-term

partnerships has either a stable disease-free equilibrium, when the reproductive num-

ber satisfies R0 < 1, in which case the disease will eventually die off, or a stable

endemic equilibrium, when R0 > 1, meaning the number of infectives and suscepti-

bles will approach a steady level.
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2.2 The two-stage infection SI1I2 model

The content of this section has already been published as part of the work

comparing multiple partnership models [30].

2.2.1 Description of the model

The SI model analyzed in Section 2.1 can be extended by considering two

stages of infection, denoted by I1 and I2, and two-way transitions between these

stages. Typically, the first stage of infection, I1, reflects a more acute stage where

the infected individual is more infectious and has a higher probability of disease

transmission. The second stage of the disease, I2, is more of a chronic stage, in which

transmission is less likely than in the acute stage. For HIV, the acute phase is seven

to ten times more infectious than chronic stage. In the case of HSV-2, individuals

could return from the latent I2 phase to acute I1 during an active breakout.

Our SI1I2, including two different infectiousness levels, is illustrated in Fig. 2.2,

with parameters listed in Table A.3. Individuals are recruited into the susceptible

population S at a rate π, which represents the rate of joining the sexually active

population. People move from S to I1, the acute stage of infection, at a rate of

λ, which represents the rate of infection. Individuals move from I1 to I2 at a rate

of γ, where 1/γ represents the average length of time an individual is in the acute

phase of infection. Individuals move from the chronic stage I2 to the more acute

stage of infection I1 at a rate of η, where 1/η represents the average length of time

an individual is in the chronic (or latent) phase of infection. While an HIV model
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only needs a transition from acute to chronic, due to its disease characteristics,

a model for HSV-2 needs to incorporate cycling between acute and chronic stages.

Each population can be exited by natural death µ. We assume that the HIV positive

individuals have ready access to HAART and therefore have negligible disease death.

The transitions represented in Fig. 2.2 can be described by the following system

of ordinary differential equations:

dS

dt
= µN0 − λS − µS,

dI1

dt
= λS + ηI2 − (γ + µ) I1,

dI2

dt
= γI1 − (η + µ)I2,

(2.17)

where the total constant population is given by N0 = π/µ. As described above,

S

µ

I1

µ

I2

µ

π λ

γ

η

Figure 2.2: An SI Model with differential infectivity: An SI model with
two stages of infection I1 and I2, where S is the susceptible population, I1

is the acutely infected population, I2 is the chronic or latent population,
is illustrated with transmission rate λ, total removal rate µ, and two-way
transitions between the acute and chronic stages of infection with rates
γ and η, respectively.

we consider a constant population N(t) = N0 with no disease mortality included

in population removal rate. We further assume that all individuals mix randomly

with appropriate partner acquisition rates, and being infected does not influence
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an individual’s propensity to form partnerships or have sexual contact within a

partnership. We also assume that risk factors are fixed across time and high risk

behavior is not clustered in time or within social constraints. In this model we do

not include the reduced transmission benefits of condom use, based on a systematic

review, completed by Yamamoto et al. [44], which verified that greater number of

casual than long-term partners used condoms during sexual contact.

Once again, for the simplicity of the work that follows, it is convenient to

transform the system described by equations (2.17) into an equivalent model with

proportions s = S
N0

, i1 = I1
N0

, and i2 = I2
N0

denoting fractions of the classes S, I1,

and I2 in the constant population N0, and satisfying s+ i1 + i2 = 1:

ds

dt
= µ− λs− µs,

di1
dt

= λs+ ηi2 − (γ + µ) i1,

di2
dt

= γi1 − (η + µ)i2.

(2.18)

2.2.2 Rate of infection

While the main goal of this study is to explore the effect of PrEP on the dy-

namics of HIV, the ultimate goal is to identify avenues for reducing disease spread.

By using a two infection class benchmark with cyclical behavior through the in-

fection stages, we aim to justify the use of a long-term partnership model, which

captures the effects through an expected value rather than following the actual pairs.

This will allow the addition of categories such as the ones with viral suppression and

will increase a system of differential equations from three to four equations rather
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than from nine to fourteen, as it would be the case in a general pair formation

model [30]. In our previous work [30], we compare multiple models. The casual

partnership model describes disease transmission with partnerships of length zero,

whereas the general pair formation model and the reduced pair formation model in-

clude monogamous partnerships, but do not include concurrent relationships, which

is essentially a mixture of partnership models and casual partnerships. To include

concurrent relationships, we introduce the long-term partnership model with con-

currency. To consider long-term partnerships in our model, without following each

pair explicitly, we refer to Gurski [36], who developed an autonomous population

model that accounts for the possibilities of an infection from either a casual sexual

partner or a long-term partner who was either already infected at the start of the

partnership or was newly infected during the partnership. The rate of infection

from long-term partnerships is dominated by the case of a monogamous partner-

ship between an infected (at the start of relationship) and a susceptible partner.

Concurrency in a long-term partnership model occurs when an initially susceptible

partner becomes infected through a sexual contact outside the partnership and then

transmits the infection to the susceptible long-term partner. For this model, the

rate of infection is

λ = λz︸︷︷︸
Infection rate from casual partners

+ λIp + λSp ,︸ ︷︷ ︸
Infection rate from long-term partners

where the total infection rate is the sum of the rate of infection from casual part-

nerships and the rate of infection from long-term partnerships. The rate of infection

from casual partner, λz, was described in Section 2.1.2 by the equation (2.4). Infec-
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tion from the long-term partnership is further separated into the cases of a long-term

partner who was either already infected at the start of the partnership or was newly

infected during the partnership. The impact of the long-term partnerships on the

rate of infection was captured by calculating the expected values of the rate of

infection from these extended contacts.

We assume that the rate of transmission of infection within a long-term part-

nership with an infected partner initially chosen while in stage I1 is χ1. Similarly,

χ2 is the rate of transmission from a long-term partner in I2. In λz we used the

average rate of casual encounters per year, z. However, in λp, following the same

idea as in the model with one infected state described in Section 2.1, we use the rate

of acquiring long-term partners p/τ , where p represents the fraction of population

in long-term partnerships and τ = 1/(b+2µ) represents the average long-term part-

nership duration, with µ being the removal rate and b = 24.7% denoting the rate at

which long-term partnerships dissolve. Then the rates of infection due to long-term

partners are

λIp = E [χ1i1 + χ2i2] and λSp = ψ · E [inew] , (2.19)

where E[·] represents the expected value (details follow below and build on the work

of Gurski [36]).

Similarly to the model with one stage of infection, we follow the work of

Hyman et al. [38] to describe the transmission rates χ1, χ2, and ψ. The term χi

is the transmission rate by a partner in the infected class Ii with i = {1, 2}. Just

as with the casual sexual partnership infection term, the infected partner in Ii can
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possibly infect the susceptible partner in a single sexual act at a probability of βi.

Unlike we did previously, in Section 2.1, here, for simplicity, we do not assume that

the partners mitigate the infection risk with condoms. We will, however, include

the assumption of condom use in the subsequent Chapters, where we return to the

models with one stage of infection. The probability that the susceptible long-term

partner will be infected after ni sexual acts with the long-term partner in Ii is

χi = (p/τ) (1− (1− βi)ni), where the term p/τ is the number of long-term partners

per year, i.e. the rate of acquiring long-term partners. The exponent ni reflects the

number of exposures over the duration of the partnership while the partner is in the

infection class Ii. The transmission rate by a newly infected long-term partner is

ψ = (p/τ)β1.

When deriving the rate of infection λIp from an infected partner, we assume that

the infected partner has not transmitted the infection before time t. We also assume

that the probability of the partnership lasting through time t can be described by a

distribution function that is a decaying exponential function. In short, the rate of

infection by the fraction of infected long-term partners out of the total population

is the expected value of the rate of infection due to partners initially chosen while

infectious. Since keeping track of the number of infected individuals for all time

prior to t is impractical, we actually calculate a linear approximation to this expected

value. Using the integral definition of the expected value of a function of a continuous

random variable, as in equation (2.5), we get

λIp ≡ E [χ1i1 + χ2i2] ≈ χ1Φ1i1(t) + χ2Φ2i2(t)− τχ1λs(t), (2.20)
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where χiΦi = χi + τ [µχi + γ (χ1 − χ2)] for i = 1, 2. The full details of the calcula-

tions can be found in Gurski [36].

In the derivation of the rate of infection λSp from a long-term partner who

was susceptible at the start of the partnership, we calculate the expected value of

the rate of infection due to the fraction of newly infected (chosen while susceptible)

long-term partners per total population, still in partnership at time t and therefore

λSp = ψE [inew] ,

with inew being a function of a continuous random variable T̃ representing the time

between the start of long-term partnership and the instance of infection. We begin

with the calculation of the probability that a susceptible partner who is acquired

at time κ, becomes infected while still in partnership at time t and then transmits

infection. This probability is the product of the following probabilities multiplied

by the rate of transmission ψ:

1. The probability that a partner acquired at time κ was susceptible: P (Y (κ) ∈

S) = s(κ).

2. The probability that a partner is still susceptible at time t, given they were

susceptible at time κ: P ((Y (t) ∈ S)|(Y (κ) ∈ S)) = e−(t−κ)λξ (where λξ is a

hazard function, i.e. probability that a partner has non-monogamous sexual

encounter).

3. The probability that a partner, acquired at time κ, will still be a partner at

time t: P (Y (t) ∈ Partner) = e−(t−κ)/τ .
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4. The probability that the initially susceptible partner becomes infected at time

t: λξ(t− κ), where λ is the rate of infection, t− κ the length of partnership,

and ξ the probability that a partner is engaged in an external (outside this

long-term partnership) sexual act (i.e. non-exclusivity factor).

Hence, using the product of these probabilities,

s(κ) · e
−

1 + λξτ

τ

(t−κ)

· λξ(t− κ) (2.21)

combined with the definition of the expected value in equation (2.5), transmission

rate ψ, and the corresponding probability density function

f(t̃) =
1 + λξτ

τ
e
−

1 + λξτ

τ

t̃
,

we can express the rate of infection from initially susceptible partner as

λSp = ψ

∫ ∞
0

λξs(κ) (1 + λξτ) t̃

τ
· e
−

(1 + λξτ)

τ

t̃
dt̃. (2.22)

Once again, to keep the model memory-free, we will calculate the linear approxima-

tion to the above expected value. To this end, we incorporate in our integral the

linear approximation of s(κ) ≈ s(t) + s′(t)(κ− t), using s′(t) = µ− (λ+µ)s(t) from

our ODE model. Then

s(κ) ≈ −µ(t− κ) + s(t)[1 + (λ+ µ)(t− κ)], (2.23)

which, together with substitution t̃ = t− κ and integral evaluation, gives

λSp ≈ ψF (λτξ, t), (2.24)
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where

F (λt, t) =
λt [−2µτ + s(t)(1 + 2µτ + 2λt/ξ + λt)]

(1 + λt)2

with λt = λτξ. Now

F (λt, t) ≈ F (0, t) +
∂F

∂λt

∣∣∣∣
λt=0

λt = [−2µτ + s(t)(1 + 2µτ)]λt. (2.25)

Thus the rate of infection from a partner acquired while susceptible is

λSp ≡ ψE [inew] ≈ ψξλτ [−2µτ + s(t)(1 + 2µτ)] (2.26)

and the total rate of infection for a constant population becomes

λ =
[zβ1 + χ1Φ1] i1 + [zβ2 + χ2Φ2] i2

(1 + 2µτ 2ψξ) + τ(χ1 − ξψ − 2µτψξ)s
. (2.27)

The SI1I2 model shown in Figure 2.2, accounting for concurrency of both

casual and long-term partnerships, is described by the system

ds

dt
= µ−

(
[zβ1 + χ1Φ1] i1 + [zβ2 + χ2Φ2] i2

(1 + 2µτ 2ψξ) + τ(χ1 − ξψ − 2µτψξ)s

)
s− µs, (2.28)

di1
dt

=

(
[zβ1 + χ1Φ1] i1 + [zβ2 + χ2Φ2] i2

(1 + 2µτ 2ψξ) + τ(χ1 − ξψ − 2µτψξ)s

)
s+ ηi2 − (γ + µ) i1,

di2
dt

= γi1 − (η + µ)i2,

with parameters listed in Table A.3.

2.2.3 Reproduction number and equilibria

The reproduction number for this model, calculated using the next generation

method described by Castillo-Chavez [40], is:

R`
0 =

(η + µ) [zβ1 + χ1Φ1] + γ [zβ2 + χ2Φ2]

µ(η + γ + µ) [1 + τ(χ1 − ξψ)]
, (2.29)
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with the superscript ` used to distinguish between this two-staged SI1I2 model from

the SI model analyzed in Section 2.1.

The scaled long-term partnership model always has a disease-free equilibrium (s∗` , i
∗
1,`, i

∗
2,`) =

(1, 0, 0) and when R`
0 > 1 it also has a unique endemic equilibrium:

s∗∗` =
µbd

a1(η + µ) + a2γ − µcd
,

i∗∗1,` =
(η + µ)[a1(η + µ) + a2γ − µd(b+ c)]

d[a1(η + µ) + a2γ − µcd]
, (2.30)

i∗∗2,` =
γ[a1(η + µ) + a2γ − µd(b+ c)]

d[a1(η + µ) + a2γ − µcd]
,

with the following substitutions for clarity

ai = zβi + χiΦi, i = 1, 2 b = 1 + 2µξτ 2ψ,

c = τ(χ1 − ξψ − 2µξτψ), d = η + µ+ γ.

(2.31)

Theorem 2.3. If R`
0 < 1, then the DFE is globally asymptotically stable.

Proof. We consider the following Lyapunov function:

V (~x) = (η + µ)i1 +

(
a2

b+ c
+ η

)
i2, (2.32)

with ~x = (i1, i2) and the property that V (~x) > 0, for all ~x 6= ~0 and V (~0) = 0. The

derivative of V is

V̇ = (η + µ)

[
a1i1s

b+ cs
+

a2i2s

b+ cs
+ ηi2 − (γ + µ)i1

]
+(

a2

b+ c
+ η

)
[γi1 − (η + µ)i2]. (2.33)

Since b ≥ bs implies 1
b+cs
≤ 1

(b+c)s
, we have

V̇ ≤ (η + µ)

[
a1i1
b+ c

+
a2i2
b+ c

+ ηi2 − (γ + µ)i1

]
+

a2

b+ c
[γi1 − (η + µ)i2]

≤ (η + µ)a1i1
b+ c

− (η + µ)(γ + µ)i1 +
a2γi1
b+ c

+ ηγi1 (2.34)

≤ µd
[
R`

0 − 1
]
i1.
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Therefore, V̇ is negative definite when R`
0 < 1. Since V (~x) → ∞ when ~x → ∞,

using the LaSalle’s invariance principle, we conclude the global asymptotic stability

of the DFE.

This concludes the development of the foundation for the model that takes into

account the presence of pre-exposure prophylaxis (PrEP) treatment as the means

to prevention against the HIV infection through sexual contact.
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Chapter 3: PSI models with PrEP and one type of partner-

ship

3.1 Overview of the PSI model

Having analyzed the SI model, the backbone of our work, we extend it by

adding new group of susceptibles, P , namely the individuals who are using PrEP.

The population being modeled here consists of sexually active MSM individuals (18

to 65 years old), regardless of their HIV status or qualifications for PrEP. We divide

the total population, assumed to be constant N0, into two susceptible groups and one

infected group. The susceptible individual cannot spread the disease and is either

currently taking PrEP (group P ) or is not taking PrEP but might be a possible

candidate for it (group S). The infected individual (group I) contracted HIV, and

can spread the disease. There is only one infectiousness group because we do not

distinguish between acute and chronic/latent phases of infection. To maintain a

system that is easier to analyze, we currently do not account for differences based

on race, age or other demographic factors within the population. In order to explore

the possible effect of introducing PrEP to susceptible population before they become

sexually active, we introduce a parameter α. Individuals join the sexually active
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Figure 3.1: Schematic diagram of the PSI model with three groups, the
infected individuals in I, the susceptible individuals in S who are not
currently using PrEP and may become infected at a rate λ, and the
PrEP users in group P who may become infected at a modulated rate
(1−qr)λ. The reduction in infectivity of P is due to effectiveness of PrEP
treatment r, and an adherence to the treatment q. The parameters θ,
σ, and µ correspond to the PrEP uptake rate, PrEP drop rate, and
population removal rate, respectively.

population at a rate π. Assuming α is a proportion of those starting PrEP before

they become sexually active, the individuals enter the model (Figure 3.1) either

through the group P , at a rate πα, or the group S, at a rate π(1−α). People move

from S to I at a rate of infection λ. However, the rate of infection at which people

move from P to I is modulated by a factor (1 − qr), which represents the degree

of protection of PrEP users who adhere to the treatment at the level q, with the

treatment effectiveness r. In addition, the susceptible individual in S who qualifies
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for and starts the PrEP treatment moves to P at a rate of θ. At the same time,

the people in P who stop the treatment move back to S at the rate of σ. Each

group can be exited due to natural death, migration, or changes in sexual behavior,

at a combined removal rate µ. As with the SI model in Section 2.1, we assume

that the individuals diagnosed as HIV positive have ready access to the Highly

Active AntiRetroviral Therapy (HAART) treatment. The highly effective HAART

treatment cannot cure HIV; it can, however, delay or prevent the onset of symptoms

or progression to AIDS, thereby prolonging survival in people infected with HIV [37].

With that in mind, we do not consider death or other removal from population due

to disease.

The equations governing the model in Figure 3.1 are given by

dP

dt
= πα + θS − (1− qr)λP − (σ + µ)P,

dS

dt
= π(1− α) + σP − λS − (θ + µ)S,

dI

dt
= λS + (1− qr)λP − µI.

(3.1)

The parameters present in the Figure 3.1 and in the model equations (3.1) are listed

in Tables A.1 and A.4. The chosen values for the rates of starting (θ), stopping (σ),

and adherence (q) to the PrEP treatment, are addressed in Section 5.1, where we

discuss all parameters in the light of current literature.

For the simplicity of work that follows, it is convenient to transform the system

(3.1) into an equivalent model with proportions v = P
N0

, s = S
N0

, and i = I
N0

denoting

fractions of the classes P , S, and I in the constant population N0, and satisfying
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v + s+ i = 1:
dv

dt
= µα + θs− (1− qr)λv − (σ + µ)v,

ds

dt
= µ(1− α) + σv − λs− (θ + µ)s,

di

dt
= λs+ (1− qr)λv − µi.

(3.2)

Due to invertibility of the transformation used, the two systems are equivalent, and

the scaled model (3.2) inherits all the properties of the original model (3.1), including

existence and stability of a disease-free equilibrium (DFE) (v∗, s∗, 0) =
(
P ∗

N0
, S
∗

N0
, 0
)

and any endemic equilibria (EE) (v∗∗, s∗∗, i∗∗) =
(
P ∗∗

N0
, S
∗∗

N0
, I
∗∗

N0

)
.

To account for the presence of either casual partnerships, long-term partner-

ships, or both, the following cases of PSI model will be described and analyzed:

• Case I: Casual-only partnerships : susceptible individual of interest, X, is not

in any long-term partnership but engages only in casual sexual behavior.

• Case II: Monogamous long-term partnerships : susceptible individual of inter-

est, X, is in a monogamous long-term partnership with infected individual Y.

The individual X does not engage in any casual sexual behavior outside of

this partnership.

• Case III: Casual and long-term partnerships with infected individual : sus-

ceptible individual of interest, X, is in a long-term partnership with infected

individual Y but at the same time X may have a casual sexual encounter with

another infected individual, outside of the long-term partnership.

• Case IV: Casual and non-monogamous long-term partnerships : susceptible

individual of interest, X, is in a long-term partnership with individual Y but
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at the same time both X and Y may have casual sexual encounters with other

infected individuals, outside of their long-term partnership. Here, X can get

infected through casual encounter or from his long-term partner Y. This long-

term partnership may be formed when Y is already infected, or both X and

Y are susceptible. However, if partner Y is initially susceptible, he may get

infected through an outside-the-partnership casual sexual encounter and then,

subsequently, Y may infect his susceptible long-term partner X.

In this chapter, we will focus on the first two cases that assume the presence of

only one type of partnership: either casual (Case I in Section 3.2) or long-term

partnership with an infected individual (Case II in Section 3.3). Chapter 4 will

cover the remaining two cases, with non-monogamous long-term partnerships; Case

III in Section 4.1 and Case IV in Section 4.2.

3.2 Case I: PSI model with casual partnerships

This case assumes the presence of ONLY casual partnerships. Therefore, the

susceptible individual X does not have any long-term partners, but engages in casual

sexual acts.

3.2.1 Rate of infection

The infection rate from casual partners, denoted λz, follows the classic law

of mass action with a zero inherent length infection contact. It assumes that the

transmission rate from an infected individual in I is zβ, where z is the rate of casual
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sexual encounters and β is the transmission probability per sexual encounter with

an infected individual, and is calculated as

λ = λz = zβi, (3.3)

where i denotes the “infected” fraction of population. Parameters present in the

rate of infection for this case are included in Table A.4.

3.2.2 Reproduction number and equilibria

Calculation of R0

The reproduction number is once again calculated using the next generation

method [40]. Based on the equations (3.2), with the rate of infection (3.3), we have

F =


0

0

zβis+ (1− qr)zβiv


and

V =


−µα− σs+ (1− qr)zβiv + (σ + µ)s

−µ(1− α)− σv + zβis+ (θ + µ)s

µI

 .

Since equilibrium solution with i = 0 has the form x∗ = (v∗, s∗, 0)T , we get

F =
∂F
∂i

(x∗) = zβs∗ + (1− qr)zβv∗ =
zβ[(σ + µ− αµ) + (1− qr)(θ + µα)]

(σ + µ+ θ)
,

V =
∂V
∂i

(x∗) = µ , with V −1 =
1

µ
,

and the next generation matrix FV −1 =
zβ[(σ + µ− αµ) + (1− qr)(θ + µα)]

µ(σ + µ+ θ)
.

Reproductive number R is the dominant eigenvalue of the above matrix. In the
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absence of PrEP (i.e. σ = θ = α = 0), the basic reproduction number is Rz
0 =

zβ

µ
.

When PrEP is present, we obtain the threshold parameter, sometimes referred to

as a ‘vaccine’ reproduction number,

Rz = Rz
θ = ρ(FV −1) =

zβ

µ

[
1− qr(θ + µα)

σ + µ+ θ

]
= Rz

0

[
1− qr(θ + µα)

σ + µ+ θ

]
. (3.4)

We use subscript θ to emphasize the role of the PrEP treatment uptake, θ, in control-

ling the spread of the disease, and a superscript z to indicate that the reproduction

number was calculated for the casual partnerships case. It is worth noting that, as

expected, Rz
θ ≤ Rz

0.

Calculation of DFE and EE

We calculate disease-free and endemic equilibria using standard procedure of

setting
di

dt
= 0, to get zβis + (1 − qr)zβiv − µi = i [zβs+ (1− qr)zβv − µ] = 0,

which yields two cases, i = 0 and zβs+(1−qr)zβv−µ = 0. We first look at the case

when i = 0, which will lead to the disease-free equilibrium (DFE). Setting
ds

dt
= 0

and substituting i = 0 gives us µ(1 − α) + σv − (θ + µ)s = 0, which can be solved

for v, to obtain v =
(θ + µ)s− µ(1− α)

σ
. Then, setting

dv

dt
= 0 and substituting

both i = 0 and above v, we arrive at

µα + θs− (σ + µ) [(θ + µ)s− µ(1− α)]

σ
= 0,

which can be solved for s to give s =
σ + µ− αµ
σ + µ+ θ

. Finally, substituting s into

previously found v we get v =
θ + αµ

σ + µ+ θ
. Combining all three expressions above,
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produces the disease-free equilibrium DFE:

(v∗, s∗, i∗) =

(
θ + αµ

σ + µ+ θ
,
σ + µ− αµ
σ + µ+ θ

, 0

)
. (3.5)

The second case, when zβs + (1 − qr)zβv − µ = 0, gives us s + (1 − qr)v =
µ

zβ
.

Setting
dv

dt
= 0 and

ds

dt
= 0, while using the derived expression for s, we get

v =

µα +
µθ

zβ

θ(1− qr) + (1− qr)zβi+ σ + µ

and

v =

µi− µ(1− α) +
(θ + µ)µ

zβ

(θ + µ)(1− qr) + (1− qr)zβi+ σ
.

Now, setting both expressions for v equal to each other, we get a quadratic equation

(zβ)2 (1− qr)i2 + zβ [(1− qr)(µ+ θ − zβ) + σ + µ] i +

+ µ (σ + θ + µ)− (1− qr)zβ(θ + αµ)− zβ (σ + µ− αµ) = 0,

(3.6)

which only makes sense if qr 6= 1. Using Mathematica, with the assumption that

qr 6= 1, we get two potential solutions to this equation, but we later show that only

one is a valid endemic equilibrium (EE), namely

v∗∗ =
1

2zβqr(1− qr)) {µ+ σ + (1− qr)(θ − µ+ zβ)

−
√

[(1− qr)(θ + zβ) + µqr + σ]2 − 4µqr(θ + αzβ)(1− qr)
}
,

s∗∗ =
1

2zβqr
{µ− σ − (1− qr)(θ + µ+ zβ)

+
√

[(1− qr)(θ + zβ) + µqr + σ]2 − 4µqr(θ + αzβ)(1− qr)
}
,

i∗∗ = − 1

2zβ(1− qr) {µ+ σ + (1− qr)(θ + µ− zβ)

−
√

[(1− qr)(θ + zβ) + µqr + σ]2 − 4µqr(θ + αzβ)(1− qr)
}
.

(3.7)
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Since the effectiveness of PrEP, r, is approximately 95% [4] and it is unlikely we get

adherence to daily dosages, q, to be 100%, we assume that qr 6= 1. The unlikely

case of qr = 1 would correspond to having a perfect vaccine.

Existence and uniqueness of equilibria

Before proving stability, we will show the existence and uniqueness of equilibria

when Rz > 1. Substituting s = 1− v − i into the last two equations in (3.2), gives

a reduced system

dv

dt
= µα + θ − θi− (σ + µ+ θ)v − (1− qr)zβiv,

di

dt
= i(zβ − µ− zβi− zβqrv).

(3.8)

It is straightforward to check that (v∗, 0) from (3.5) is always a disease-free equilib-

rium of (3.8). The positive (endemic) equilibria are determined by equations:

zβi+ zβqrv = zβ − µ,

θi+ (σ + µ+ θ)v + (1− qr)zβiv = µα + θ.

(3.9)

We begin investigation of endemic equilibria for our model (3.8) by considering two

extreme special cases. First, suppose that 1−qr = 1, i.e., the PrEP treatment is com-

pletely ineffective. This reduces Rz to R0 = zβ
µ

. Now, with R0 > 1, i asymptotically

approaches
(

1− 1
R0

)
and, consequently, v approaches

µα + θ 1
R0

θ + µ+ σ + zβ
(

1− 1
R0

) .

Here we observe classical R0 threshold behavior. If instead, we have 1 − qr = 0,

meaning that the PrEP is completely effective and with full adherence, then we find

one (stable) endemic equilibrium, which also exists only for Rz > 1.

Now we want to address the existence of endemic equilibria for 0 < 1−qr < 1.
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Eliminating v from the system (3.9) gives: h(i) := Ai2 +Bi+ C = 0 where

A = −zβ(1− qr) < 0,

B = (zβ − µ− θ)(1− qr)− (µ+ σ),

C =
zβ − µ
zβ

(θ + µ+ σ)− qr(µα + θ) =
µ

zβ
(µ+ θ + σ)(Rz − 1).

(3.10)

Note that h(0) = C, h(1) = A+B+C = −µ[1− qr(1−α)]− µ
zβ

(σ+µ+ θ) < 0, and

that the vertex of h lies to the left of i = 1 at i = − B
2A

< zβ(1−qr)
2zβ(1−qr) = 1

2
. Since an

endemic equilibrium corresponds to a solution of h(i) = 0 on the unit interval [0, 1],

by examining the quadratic h, we can see that when Rz > 1 there is exactly one

such i, indicating that there is a unique endemic equilibrium (i∗∗, v∗∗), as in (3.7)

whenever Rz > 1.

We now look at the case when Rz < 1, which means C < 0. If at the same

time B < 0 then the quadratic function has no real roots. Therefore we are left

with the last case, namely B > 0 (i.e., 0 < − B
2A

= 1
2
− (µ+θ)(1−qr)+(µ+σ)

2zβ(1−qr) < 1
2
, and

abscissa of a vertex is 0 < i < 1) and B2 − 4AC > 0 (i.e. h(i) has two real zeros),

which, together with C < 0, would guarantee two real solutions of h(i) = 0 on the

unit interval [0, 1]. The condition B2− 4AC > 0 is quadratic, but can be simplified

to B > 2
√
AC using the condition B > 0. The two conditions cannot, however, be

reduced to one, but can be written in terms of zβ, which is linearly correlated with

Rz. The condition B > 0 is satisfied when zβ > µ+θ+
µ+ σ

1− qr , while B2−4AC > 0

requires

zβ > µ+ θ +
µ+ σ

1− qr +
2

1− qr
√
µ(1− qr)(θ + µ+ σ)(1−Rz). (3.11)

Notice that as Rz → 1− , the square root in (3.11) approaches 0+. Using parameter
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values in Tables A.1 and A.4, we see that zβ ≈ 0.0548, µ+ θ+
µ+ σ

1− qr > 0.0878 + θ,

which forces θ to be negative in order to satisfy condition (3.11). Therefore, we have

just shown the following result.

Theorem 3.1. For the system (3.8), with Rz as defined previously,

1. When Rz > 1, there exists a unique endemic equilibrium (i∗∗, v∗∗).

2. When Rz < 1, there does not exist any endemic equilibrium.

Global stability

To prove the global stability of equilibria, we will use the method of Lyapunov

functions, but first we will state and prove few necessary and helpful results.

Lemma 3.2. The closed set D = {(v, s, i) ∈ R3
+ : 0 ≤ v + s + i ≤ 1} is positively

invariant with respect to model (3.2).

Proof. Define x = v + s + i. It follows from the model (3.2) that
dx

dt
= µ − µx,

which gives x(t) = 1 − (1 − x(0))e−µt. Thus, 0 ≤ x(t) ≤ 1 for all values of t > 0,

if 0 ≤ x(0) ≤ 1 (i.e. x(t) ∈ D for all t > 0 if x(0) ∈ D). Hence, D is positively

invariant.

Lemma 3.3. Suppose x1, . . . , xn > 0 and
∏n

j=1 xj = 1. Then

n− x1 − · · · − xn ≤ 0.

Proof. Consider the Volterra function g(x) = x − 1 − lnx, with g(x) ≥ 0 for all

x > 0. Note that

ln(x1) + · · ·+ ln(xn) = ln

(
n∏
j=1

xj

)
= ln 1 = 0.
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Then

n− x1 − · · · − xn = n− x1 − · · · − xn + ln(x1) + · · ·+ ln(xn)

= −
n∑
j=1

[xj − 1− ln(xj)] = −
n∑
j=1

g(xj) ≤ 0.

Corollary 3.4. Let (v, s, i), (v̂, ŝ, î) ∈ D. Since
v̂

v
· v
v̂

=
ŝ

s
· s
ŝ

=
v̂

v
· s
ŝ
· vŝ
sv̂

= 1, by

Lemma 3.3,

2− ŝ

s
− s

ŝ
≤ 0, 2− v̂

v
− v

v̂
≤ 0 and 3− v̂

v
− s

ŝ
− vŝ

v̂s
≤ 0.

Lemma 3.5. Given (v, s, i), (v̂, ŝ, î) ∈ D such that v + s + i = v̂ + ŝ + î, we have

(v − v̂)(s− ŝ) ≤ 0.

Proof. We can write (s− ŝ) = (v̂ − v) + (̂i− i) and (ŝ− s) = (v − v̂) + (i− î), then

consider two cases:

If i > î then (s− ŝ) < (v̂ − v) and (v − v̂)(s− ŝ) ≤ (v − v̂)(v̂ − v) = −(v − v̂)2 ≤ 0.

If i < î then (ŝ−s) < (v−v̂) and (v−v̂)(s−ŝ) = −(v−v̂)(ŝ−s) ≤ −(v−v̂)2 ≤ 0.

Theorem 3.6. The DFE of the transformed model (3.2), given by (v∗, s∗, 0) in (3.5),

is globally asymptotically stable in D whenever Rz ≤ 1 and qr 6= 1.

Proof. Define the nonlinear Lyapunov function of Goh-Volterra type [45,46]

L = s− s∗ − s∗ ln
s

s∗
+ v − v∗ − v∗ ln

v

v∗
+ i,

with Lyapunov derivative given by

L̇ =

(
1− s∗

s

)
ṡ+

(
1− v∗

v

)
v̇ + i̇,
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where a dot represents differentiation with respect to time. Substituting equa-

tions (3.2) gives

L̇ =

(
1− s∗

s

)
[µ(1− α) + σv − λs− (θ + µ)s]+

+

(
1− v∗

v

)
[µα + θs− (1− qr)λv − (σ + µ)v] + λs+ (1− qr)λv − µi

= µ(1− α)

(
1− s∗

s

)
+ σv

(
1− s∗

s

)
− λs+ λs∗ + (θ + µ)s∗

(
1− s

s∗

)
+

+

(
1− v∗

v

)
(µα + θs)− λv(1− qr) + λv∗(1− qr) + (σ + µ)v∗

(
1− v

v∗

)
+

+ λs+ (1− qr)λv − µi.

After extensive simplifying, using the facts that µ(1−α) + σv∗− (θ+ µ)s∗ = 0 and

µα + θs∗ − (σ + µ)v∗ = 0, obtained from evaluating the equilibrium equations at

DFE, we get

L̇ = µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ λs∗ + (1− qr)λv∗ − µi+
θ

v
(v − v∗)(s− s∗).

Now, considering that i > i∗ = 0, using Lemma 3.5 together with the identity

s∗ + (1− qr)p∗ = 1− qr(θ + µα)

σ + µ+ θ
, we can write

L̇ ≤ µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ µi

[
zβ

µ

[
1− qr(θ + µα)

σ + µ+ θ

]
− 1

]
= µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ µi [Rz − 1] .

Using the results from the Corollary 3.4 we can finally conclude that L̇ ≤ 0 when

Rz ≤ 1. Thus, by Lyapunov stability theorem, and LaSalle’s Invariance Principle,
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every solution (in D) to the equations of the transformed model (3.2) approaches

the DFE as t→∞ for Rz ≤ 1 and qr 6= 1.

It follows that the use of PrEP will lead to the elimination of the disease from the

community whenever Rz ≤ 1 and qr 6= 1.

Theorem 3.7. The unique EE of the model (3.2), given by (v∗∗, s∗∗, i∗∗) in (3.7),

is globally asymptotically stable in D whenever Rz > 1 and qr 6= 1.

Proof. Define the non-linear Lyapunov function of Goh-Volterra type [45,46] (similar

to the proof of Theorem 3.6)

M = s− s∗∗ − s∗∗ ln
s

s∗∗
+ v − v∗∗ − v∗∗ ln

v

v∗∗
+ i− i∗∗ − i∗∗ ln

i

i∗∗
.

The proof here follows the same ideas as in the proof of Theorem 3.6, where we show

Ṁ ≤ 0 using the equation (3.2), identities obtained from evaluating the equilibrium

equations at EE, and the results of the Corollary 3.4 and the Lemma 3.5.

Hence, by Lyapunov stability theorem, and LaSalle’s Invariance Principle, every

solution (in D) to the equations of the transformed model (3.2) approaches the

unique EE as t→∞ for Rz > 1 (and qr 6= 1).

As evidenced above, the equilibria of the model (3.2) collide and exchange the

stability when Rz = 1, meaning the (transcritical) bifurcation occurs at Rz = 1.

Under certain conditions, to be determined below, this could potentially become

a ‘backward’ (subcritical) bifurcation, which would mean the endemic equilibria

exist for Rz < 1 as well as for Rz > 1. In that case, there would be some critical

value of Rz below 1, where a pair of endemic equilibria would be created at a
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second, saddle-node type bifurcation point. We would find this bifurcation point

for Rz, by solving B2 − 4AC = 0 [47], obtained earlier using (3.10). Recalling that

C =
µ

zβ
(µ+ θ + σ)(Rz − 1), the equation B2 − 4AC = 0 would become

B2 + 4µ(1− qr)(1−Rz)(µ+ θ + σ) = 0, or Rz = 1− B2

4µ(1− qr)(µ+ θ + σ)
,

which, similarly to (3.11), cannot be satisfied without forcing θ to be negative. Using

the same technique as before, we could also try to identify the bifurcation point in

terms of zβ by rewriting B2 − 4AC = 0 as

zβ = −θ(1− qr) + µqr + σ − 2µqrα

1− qr

+
2

1− qr
√
µqr[(1− α)(1− qr)(θ + µα)− µα(1− α)− ασ] .

However, the conclusion would still be the same, namely, with feasible values of the

parameters present in the model, there is no backward bifurcation and the unique

endemic equilibrium exists only when Rz > 1.

3.3 Case II: PSI model with monogamous serodiscordant long-term

partnerships

This case considers ONLY monogamous long-term partnerships. Since the

virus transmission requires contact with an infected individual, the monogamous

partnerships between two susceptible individuals do not contribute to the spread

of disease, and hence are not included in the calculations. We assume that the

susceptible individual X and his infected long-term partner Y are exclusive with

each other and do not engage in any sexual acts outside of their partnership.
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3.3.1 Rate of infection

Since there are no casual sexual acts, the susceptible individual can only be-

come infected through his infected long-term partner, at a rate λp. We assume that

the rate of transmission of infection within a long-term partnership with an infected

individual in I is χ. Unlike with the casual sexual partnership, where the status of

infection is unknown, the infected partner in I is most likely using widely available

HAART treatment [37]. The precise level of viral suppression due to HAART in

MSM has not been established but is estimated to lower the transmission rate by at

least 80% [48, 49], and hence the probability of infecting his susceptible partner in

a single sexual act is 0.2β. We assume that the HIV-positive partners also mitigate

the infection risk with condoms approximately 90% of the time. We introduce the

transmission reduction factor term due to condom use, c = 1− ceff · cu, where ceff

is a condom effectiveness and cu = 90% is the probability of a condom being used.

The term 0.2cβ is then the transmission per sexual act, that includes the reduc-

tion from condom effectiveness and usage. The probability of not being infected

in a single act is then (1 − 0.2cβ), and the probability of not being infected after

n sexual acts with the infected long-term partner is (1 − 0.2cβ)n. The exponent n

reflects the number of exposures over the duration of the long-term partnership with

infected partner. In λz we used the average rate of casual encounters per year, z.

However, in λp we use the rate of acquiring long-term partners p/τ (per partnership

duration), where p represents the average of the total number of long-term partners

and τ = 1/(b + 2µ) represents the average long-term partnership duration, with µ
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being the natural death rate and b denoting the rate at which long-term partner-

ships dissolve. Then the probability that the susceptible long-term partner will be

infected after n sexual acts with the long-term partner in I is our rate of transmis-

sion χ = (p/τ) (1− (1− 0.2cβ)n). The parameters included in the derivation of the

rate of infection for this case are listed in Tables A.1 and A.4.

When deriving the rate of infection λp from an infected partner, we assume

that the infected partner has not transmitted the infection before a given time t.

In short, the rate of infection by the fraction of infected long-term partners out of

the total population is the expected value of the rate of infection due to partners

initially chosen while infectious,

λ = λp = E [χi] .

The probability that an infected partner, who is acquired at time κ, transmits

the infection at a later time t, is given by the product of the following probabilities,

multiplied by the rate of transmission χ:

1. The probability that a partner acquired at time κ was already infected: P (Y (κ) ∈

I) = i(κ).

2. The probability that a partner acquired at time κ will still be a partner at

time t: P (Y (t) ∈ Partner).

In our calculations, we use the equation (2.5), which defines the expected value

of a function g(T̃ ) of a continuous random variable T̃ and probability distribution

function f(t̃), with t̃ = t − κ denoting the time between the long-term partnership
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formation and the time of infection transmission. We assume that the probability

of the partnership lasting through time t can be described by a distribution func-

tion that is a decaying exponential scaled by the length of an average long-term

partnership, τ ,

P (Y (t) ∈ Partner) = f(t̃) ≡ 1

τ
e−t̃/τ).

With that in mind, our expected value of the rate of infection is

E [χi] = χ

∫ ∞
0

i(κ)

τ
e−t̃/τdt̃. (3.12)

Since we are dealing with nonlinear and non-local problem, it is not feasible to keep

track of the number of infected individuals for all time prior to the instant t at

which the infection occurs. To make calculations tractable, we will define λp to be

a linear approximation to the expected value, with i(κ) ≈ i(t) + i′(t)(κ − t), and

i′(t) = λs(t) + (1 − qr)λv(t) − µi(t) directly from our ODE model equations (3.2),

giving us i(κ) ≈ (1 + µt̃)i(t) − λt̃s(t) − λt̃(1 − qr)v(t) in the integrand of (3.12).

In other words, we are approximating the fraction of infectious individuals i(κ) at

time κ as the fraction of infected at time t plus the fraction of infected who died,

(1+µt̃)i(t), and subtracting off the fraction of the individuals, λt̃[s(t)+(1−qr)v(t)],

who became infected between times κ and t, with t̃ = t − κ denoting the period

between the start of long-term partnership and the time of infection. Therefore, we

can write (3.12) as

E [χi] ≈ χ

τ

∫ ∞
0

[(1 + µt̃)i(t)− λt̃s(t)− λt̃(1− qr)v(t)]e−t̃/τ)dt̃,

which, when evaluated, gives the rate of infection from the infected long-term partner
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as

λ = λp ≡ E [χi] ≈ χ(1 + µτ)i(t)− χλτ [s(t) + (1− qr)v(t)].

After solving explicitly for λ we obtain

λ =
χ(1 + µτ)i(t)

1 + χτ [s(t) + (1− qr)v(t)]
. (3.13)

3.3.2 Reproduction number and equilibria

Calculation of R0

As in Case I (Section 3.2.2), the reproduction number is calculated using the

next generation method. In the absence of PrEP (i.e. σ = θ = α = 0) we get

the basic reproduction number, Rp
0 = χ(1+µτ)

µ(1+χτ)
. When PrEP is present, we once

again obtain the so-called threshold parameter, sometimes referred to as ‘vaccine’

reproduction number,

Rp = Rp
θ =

χ(1 + µτ)

µ(1 + χτ)

[
1− qr(θ + µα)

(σ + µ+ θ)(1 + χτ)− qr(θ + µα)χτ

]
= Rp

0

[
1− qr(θ + µα)

(σ + µ+ θ)(1 + χτ)− qr(θ + µα)χτ

]
,

(3.14)

which only makes sense (i.e. is positive) when σ + µ + θ > qr(θ + µα). It is also

straightforward to check that Rp < 1 + 1
µτ

.

Calculation of DFE and EE

The disease-free equilibrium is once again calculated to be

(v∗, s∗, i∗) =

(
θ + αµ

σ + µ+ θ
,
σ + µ− αµ
σ + µ+ θ

, 0

)
, (3.15)
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and, with help of Mathematica, the endemic equilibrium is

v∗∗ =
1

2χqr(1− qr)) {µ+ σ + (1− qr)(θ − µ+ χ)

−
√

[(1− qr)(θ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1− qr)
}
,

s∗∗ =
1

2χqr
{µ− σ − (1− qr)(θ + µ+ χ)

+
√

[(1− qr)(θ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1− qr)
}
,

i∗∗ = − 1

2χ(1− qr) {µ+ σ + (1− qr)(θ + µ− χ)

−
√

[(1− qr)(θ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1− qr)
}
.

(3.16)

Existence and uniqueness of equilibria

Before we prove global stability of both equilibria we will examine the existence

and uniqueness of the EE. It is again convenient to work with the simplified system,

as in (3.8), but now with the rate of infection from (3.13)

dv

dt
= µα + θ − (σ + µ+ θ)v −

(
θ +

χ(1− qr)(1 + µτ)v

1 + χτ [1− i− qrv]

)
i

di

dt
= i

(
χ(1 + µτ)(1− i− qrv)

1 + χτ [1− i− qrv]
− µ

)
.

(3.17)

It is straightforward to check that (v∗, 0) from (3.15) is always a disease-free equi-

librium of (3.17). The positive (endemic) equilibria in the interior of D, defined in

Lemma 3.2, are determined by setting the right-hand sides of equations (3.17) to 0

and simplifying to

µ

χ
= 1− i− qrv,

µα + θ = (σ + µ+ θ)v + θi+ (1− qr)χvi.
(3.18)

Note, that in order for the above to make sense we must have µ < χ, which is the

case with our chosen parameter values (see Tables A.1 and A.4).
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We begin our investigation of endemic equilibria for model (3.17) by consid-

ering two extreme special cases. First, suppose that 1 − qr = 1, i.e., the PrEP

treatment is completely ineffective. This reduces Rp to R0 = χ(1+µτ)
µ(1+χτ)

. Now, if

R0 > 1, then µ < χ, and i approaches

(
1− µ

χ

)
while v approaches

µ(χα + θ)

χ(θ + χ+ σ)
.

Here we observe classical R0 threshold behavior since endemic equilibrium does not

exist if R0 < 1 (i.e. µ > χ). If instead, we suppose that 1 − qr = 0, meaning

the PrEP is completely effective and with full adherence, then we find one (stable)

endemic equilibrium, which exists only for Rp > 1:
v∗∗ =

µ(χα + θ)

σ + µ
,

i∗∗ = 1− µ

χ
− µ(χα + θ)

σ + µ
.

(3.19)

Now we want to address the existence of endemic equilibria for 0 < 1 − qr < 1.

Eliminating v from the system (3.18) gives: h(i) := Ai2 +Bi+ C = 0 where

A = −χ2(1− qr) < 0,

B = −χ[σ + µ+ (θ − χ+ µ)(1− qr)],

C = (χ− µ)(θ + µ+ σ)− χqr(µα + θ).

(3.20)

Using series of algebraic manipulations we obtain the following helpful result.

Lemma 3.8. Given Rp and C as stated before, we can write

Rp − 1 =
C

µ[Cτ + (1 + µτ)(θ + µ+ σ)]
or, equivalently, C =

µ(1 + µτ)(θ + µ+ σ)
1

Rp−1
− µτ ,

and deduce that when Rp < 1 then C < 0, and if 1 < Rp < 1 + 1
µτ

then C > 0.

The rest of the existence and uniqueness analysis is summarized in the theorem

below.
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Theorem 3.9. For the system (3.17), with 0 < 1 − qr < 1 and Rp as defined

in (3.14),

1. When 1 < Rp < 1 + 1
µτ

., there exists a unique endemic equilibrium (v∗∗, i∗∗).

2. When Rp < 1, there does not exist any endemic equilibrium.

Proof. We start with part 1, namely the case of 1 < Rp < 1 + 1
µτ

. By Lemma 3.8,

C > 0 which, together with A < 0, gives B2 − 4AC > 0. Recalling that h(1) < 0,

we can conclude that h has exactly one zero in (0, 1) and therefore the system (3.17)

has a unique EE when 1 < Rp < 1 + 1
µτ

.

To prove part 2, we consider Rp < 1, and note that, from Lemma 3.8, h(0) =

C < 0 and h(1) = A + B + C = −µ[χ(1 − qr) + χqrα + θ + σ + µ] < 0. If, in

addition, we assume θ > χ − µ, which with our parameters, translates to PrEP

uptake rate θ of more that 8.8%, then B < 0. In that case it follows that h’s vertex

at i = − B

2A
= −1

2

µ+ σ + (θ − χ+ µ)(1− qr)
χ(1− qr) < 0 lies to the left of i = 0. Since an

endemic equilibrium corresponds to a solution of h(i) = 0 on the unit interval [0, 1],

by examining the quadratic h, we can see that there is no such i. If, alternatively,

we consider θ < χ− µ, but keep 1− qr < − µ+ σ

θ − χ+ µ
, which with our parameters

and advertised PrEP effectiveness would call for treatment adherence q of at least

70%, then we still have vertex of h to the left of i = 0, and hence no possible zeros

in the interval (0, 1).

Now, we look at the case when A < 0, C < 0, B > 0 (i.e. 0 < − B
2A

< 1
2

since
B

A
=

µ+ σ + (θ + µ)(1− qr)
χ(1− qr) − 1 > −1) and B2 − 4AC ≥ 0, which would

collectively indicate real solutions of h(i) = 0 on the unit interval (0, 1) when Rp < 1.
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The condition B2− 4AC ≥ 0 is quadratic, but can be simplified using the condition

B > 0. The two conditions cannot, however, be reduced to one, but can be written

in terms of χ, which is linearly correlated with Rp. The condition B > 0 is satisfied

when χ > µ+ θ+
µ+ σ

1− qr while B2− 4AC ≥ 0, simplified using Lemma 3.8, requires

χ ≥ µ+ θ +
µ+ σ

1− qr + 2

√
(1 + µτ)(θ + µ+ σ)

(1− qr)τ

(
1− 1

1 + µτ(1−Rp)

)
. (3.21)

Notice that as Rp → 1− , the square root in (3.21) heads to 0+. Using parameter

values in Tables A.1 and A.4, we see that χ ≈ 0.0883 and 0.0428 + θ < µ + θ +

µ+ σ

1− qr < 0.2586 + θ, depending on q. With all that in mind, combined with the

relationship in Lemma 3.8, we can conclude that even undesirably low adherence rate

of 50% would force θ to be negative, in order for the condition (3.21) to be satisfied.

Hence, we can now conclude that there is no endemic equilibrium (v∗∗, i∗∗), whenever

Rp < 1.

Global stability

The global stability proofs are very similar to the previous case with casual

partnerships (see Section 3.2) and hence we will omit some of the steps.

Theorem 3.10. The DFE of the transformed model (3.2), given by (v∗, s∗, 0) in (3.15),

is globally asymptotically stable in D, defined in Lemma 3.2, whenever Rp ≤ 1 and

qr 6= 1.

Proof. Define the nonlinear Lyapunov function of Goh-Volterra type [45,46]

L = s− s∗ − s∗ ln
s

s∗
+ v − v∗ − v∗ ln

v

v∗
+ i,
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with Lyapunov derivative L̇. Substituting equations (3.2), as well as using the facts

that µ(1− α) + σv∗ − (θ + µ)s∗ = 0 and µα + θs∗ − (σ + µ)v∗ = 0, while rewriting

the reproduction number (3.14) as Rp =
χ(1 + µτ)[s∗ + (1− qr)v∗]
µ[1 + χτ [s∗ + (1− qr)v∗]] , we obtain

L̇ ≤ µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ iµ

[
χ(1 + µτ)

1 + χτ(s+ (1− qr)v)
· Rp

χ[1 + µτ(1−Rp)]
− 1

]
.

Finally, noticing that the rate of infection cannot be greater than the fraction of

those infected (i.e. transmission factor
χ(1 + µτ)i

1 + χτ(s+ (1− qr)v)
≤ 1) and recalling

that χ > µ, we can write

L̇ ≤ µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ i

[
Rp

1 + µτ(1−Rp)
− 1

]
.

Since Rp ≤ 1, using the results in Corollary 3.4 we can finally conclude that L̇ ≤

0. Thus, by Lyapunov stability theorem, and LaSalle’s Invariance Principle, every

solution (in D) to the equations of the transformed model (3.2) approaches the DFE

as t→∞ for Rp ≤ 1 and qr 6= 1.

It follows that, in the presence of only long-term partnerships with infected

partners, the use of PrEP will lead to the elimination of disease from the population,

whenever Rp ≤ 1 and qr 6= 1.

Theorem 3.11. The unique EE of the transformed model (3.2), given by (v∗∗, s∗∗, i∗∗)

in (3.16), is globally asymptotically stable in D, defined in Lemma 3.2, whenever

Rp > 1 and qr 6= 1.
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Proof. The proof here is analogous to the proof of Theorem 3.7 in the casual-only

case, but with rate of infection (3.13), where we define the non-linear Lyapunov

function of Goh-Volterra type

M = s− s∗∗ − s∗∗ ln
s

s∗∗
+ v − v∗∗ − v∗∗ ln

v

v∗∗
+ i− i∗∗ − i∗∗ ln

i

i∗∗
,

and show Ṁ ≤ 0.

As evidenced above, when Rp = 1 the equilibria collide and their stability is

exchanged, which means that our model has the usual (transcritical) bifurcation at

Rp = 1. Under certain conditions, to be determined below, this could potentially

become a “backward” (subcritical) bifurcation, which would mean the endemic equi-

libria exist for Rp < 1 as well as for Rp > 1. In that case there would be some critical

value of Rp below 1, where a pair of endemic equilibria would be created at a sec-

ond, saddle-node type bifurcation. We would find this bifurcation point by solving

B2 − 4AC = 0 [47]. Using Lemma 3.8 and the expressions (3.20) we can write the

equation B2 − 4AC = 0 as

B2 +
4µ(1− qr)(1 + µτ)(µ+ θ + σ)

1
Rp−1

− µτ = 0

and then solve it for Rp to get

Rp = 1 +
B2

B2µτ − 4µ(1− qr)(1 + µτ)(µ+ θ + σ)
,

which, together with Rp < 1, would require B2µτ < 4µ(1− qr)(1 + µτ)(µ+ θ + σ).

With the parameters in Tables A.1 and A.4, the above condition cannot be satisfied

without forcing θ to be negative. Our conclusion is that with feasible values of the
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parameters present in this model, there is no backward bifurcation and the unique

endemic equilibrium exists only when 1 < Rp < 1 + 1
µτ

.

So far we looked at the cases in which there is only one type of partnership

among the individuals in MSM population, either casual, sometimes referred to as

“one-off” or “one-time” partnerships, or monogamous long-term partnerships with

an infected partner. In reality, however, we should expect some kind of combination

of the two cases, which is what we consider in the next chapter.
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Chapter 4: PSI models with PrEP and combination of part-

nerships

In Chapter 3 we focused on the scenarios where either only casual partner-

ships or only long-term partnerships with infected individual were considered. In

this chapter, we extend our model to include a possibility of multiple types of part-

nerships among the individuals in a population.

4.1 Case III: PSI model with non-monogamous serodiscordant long-

term partnerships

This case assumes the presence of both casual and monogamous long-term

partnerships with infected individual. The susceptible individual of interest, X, is

in a long-term partnership with infected individual, Y, but at the same time X may

have a casual sexual encounter with another infected individual, outside of the long-

term partnership. In essence, this is a combination of the casual only (Section 3.2)

and the monogamous long-term (Section 3.3) cases of our model in the equations 3.1.
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4.1.1 Rate of infection

The susceptible individual may become infected only once, meaning that the

instances of virus transmission from an infected long-term partner and an infected

casual partner are mutually exclusive, and hence cannot both take place at the same

time. Therefore, the rate, at which an individual X becomes infected, is a sum of

previously calculated rates, λz (3.3) in Section 3.2, and λIp (3.13) in Section 3.3, and

can be written as

λ = λz + λp = zβi(t) + χ(1 + µτ)i(t)− λχτ [s(t) + (1− qr)v(t)].

Solving the above equation explicitly for λ, we obtain

λ =
[zβ + χ(1 + µτ)]i(t)

1 + χτ [s(t) + (1− qr)v(t)]
, (4.1)

as the rate of infection for this case.

4.1.2 Reproduction number and equilibria

Calculation of R0

Once again, the reproduction number is calculated using the next generation

method and is expressed as

Rzp = Rzp
θ =

zβ + χ(1 + µτ)

µ(1 + χτ)

[
1− qr(θ + µα)

(σ + µ+ θ)(1 + χτ)− qr(θ + µα)χτ

]
, (4.2)

with Rzp
0 = zβ+χ(1+µτ)

µ(1+χτ)
being the basic reproduction number in the absence of PrEP.
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Calculation of DFE and EE

The disease-free equilibrium and endemic equilibrium are calculated, respec-

tively, as

(v∗, s∗, i∗) =

(
θ + αµ

σ + µ+ θ
,
σ + µ− αµ
σ + µ+ θ

, 0

)
(4.3)

and

v∗∗ =
1

2(zβ + χ)qr(1− qr)) {µ+ σ + (1− qr)(θ − µ+ zβ + χ)−

−
√

[(1− qr)(θ + zβ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1− qr)
}
,

s∗∗ =
1

2(zβ + χ)qr
{µ− σ − (1− qr)(θ + µ+ zβ + χ)+

+
√

[(1− qr)(θ + zβ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1− qr)
}
,

i∗∗ = − 1

2(zβ + χ)(1− qr) {µ+ σ + (1− qr)(θ + µ− (zβ + χ))−

−
√

[(1− qr)(θ + zβ + χ) + µqr + σ]2 − 4µqr(θ + αχ)(1− qr)
}
.

(4.4)

Existence and uniqueness of equilibria

Similarly to previous cases, before we prove global stability of both equilibria,

we will examine the existence and uniqueness of EE, all using the simplified model

equations with the rate of infection λ =
[zβ + χ(1 + µτ)]i

1 + χτ [s+ (1− qr)v]
derived in (4.1)

di

dt
= i

[
[zβ + χ(1 + µτ)](1− i− qrv)

1 + χτ [1− i− qrv]
− µ

]
,

dv

dt
= µα + θ − (σ + µ+ θ)v −

[
θ +

(1− qr)[zβ + χ(1 + µτ)]v

1 + χτ [1− i− qrv]

]
i.

(4.5)

It is straightforward to check that (0, v∗) from (4.3) is always a disease-free equi-

librium of (4.5). The positive (endemic) equilibria in the interior of D, defined in
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Lemma 3.2, are determined by setting the right-hand sides of the equations (4.5) to

zero and simplifying to

µ

zβ + χ
= 1− i− qrv,

µα + θ = (σ + µ+ θ)v + θi+ (1− qr)(zβ + χ)vi.

(4.6)

Note, that in order for the above to make sense, we must have µ < zβ+χ, meaning

that the total population removal rate is less than total infection transmission rate,

which, as in earlier cases in Chapter 3, is satisfied with our assumed parameter values

in Tables A.1 and A.4. Since this case is a combination of Case I (Section 3.2) and

Case II (Section 3.3), the analysis of existence and stability of equilibria is very

similar to the case with monogamous long-term partnerships. Therefore, we will

state the main results while omitting some details in the calculations as well as in

the proofs of the theorems.

Assuming 0 < 1 − qr < 1 and eliminating v from the equation (4.6) gives

h(i) := Ai2 +Bi+ C = 0, where

A = −(zβ + χ)2(1− qr) < 0,

B = −(zβ + χ)[σ + µ+ (θ + µ− zβ − χ)(1− qr)],

C = (zβ + χ− µ)(θ + µ+ σ)− (zβ + χ)qr(µα + θ),

(4.7)

with h(0) = C and h(1) = A + B + C = −µ[χ(1 − qr) + χqrα + θ + σ + µ] < 0.

Thus the number of zeros of h will depend on the signs of C and the discriminant.

Lemma 4.1. We can write Rθ − 1 =
(zβ + χ)C

µ[Cχτ + (zβ + χ+ µχτ)(θ + µ+ σ)]
or,

equivalently, C = −(zβ + χ+ µχτ)(θ + µ+ σ)

µχτ + zβ+χ
1−Rθ

and deduce the following:

1. If Rθ < 1 then C < 0 and if 1 < Rθ < 1 + zβ+χ
µχτ

then C > 0.
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2. When 1 < Rθ < 1 + zβ+χ
µχτ

then h(0) > 0 and hence, by the intermediate value

theorem, h(i) = 0 has exactly one real solution in (0, 1).

3. When Rθ < 1 and zβ + χ < θ + µ then

• h(0) < 0 and B < 0,

• the vertex of h lies to the left of i = 0 since − B
2A
< 0

and hence h(i) = 0 has no real solutions in (0, 1).

4. When Rθ < 1 and B > 0 then

• h(0) = C < 0, h(1) < 0,

• the vertex of h lies to the left of i = 1
2

since B
A

= µ+σ+(θ+µ)(1−qr)
(zβ+χ)(1−qr) −1 > −1

and 0 < − B
2A

< 1
2
, and hence h(i) = 0 will have real solutions in (0, 1)

only if B2 − 4AC > 0. However, B2 − 4AC > 0 requires

zβ+χ ≥ µ+θ+
µ+ σ

1− qr+2

√
(θ + µ+ σ)

(1− qr)

(
1− (zβ + χ)Rθ

zβ + χ+ µχτ(1−Rθ)

)
,

which cannot be satisfied with parameters µ, θ, β, σ, χ, q, r ∈ [0, 1].

Now we can state the main result that follows from the above stated Lemma 4.1.

Theorem 4.2. For the system in (4.5), with Rθ as defined previously,

1. when 1 < Rθ < 1 + zβ+χ
µχτ

, there exists a unique endemic equilibrium (i∗∗, v∗∗),

2. when Rθ < 1, there does not exist any endemic equilibrium.
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Global stability

Following the stability proofs in previous cases (Chapter 3) we can prove the

analogous results for this case.

Theorem 4.3. The DFE of the transformed model in equation (3.2), given by

(v∗, s∗, i∗) in (4.3), is globally asymptotically stable in D whenever Rθ ≤ 1 and

qr 6= 1.

Proof. Defining the non-linear Lyapunov function of Goh-Volterra type [45,46]

L = s− s∗ − s∗ ln
s

s∗
+ v − v∗ − v∗ ln

v

v∗
+ i,

with corresponding Lyapunov derivative, after substituting model equations (3.2)

and extensively simplifying, using the facts that µ(1 − α) + σv∗ − (θ + µ)s∗ = 0

and µα + θs∗ − (σ + µ)v∗ = 0, and rewriting the reproduction number (4.2) as

Rθ =
[zβ + χ(1 + µτ)][s∗ + (1− qr)v∗]

µ[1 + χτ [s∗ + (1− qr)v∗]] , we obtain

L̇ ≤ µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+ iµ

[
zβ + χ(1 + µτ)

1 + χτ [s+ (1− qr)v]
· Rθ

zβ + χ[1 + µτ(1−Rθ)]
− 1

]
.

Then, noticing that the rate of infection cannot be greater than the fraction of

infected individuals (i.e. transmission factor [zβ+χ(1+µτ)]
1+χτ(s+(1−qr)v)

≤ 1), and recalling that

zβ + χ > µ, we can write

L̇ ≤ µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ iµ

[
Rθ

µ[1 + χτ(1−Rθ)]
− 1

]
.
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Since 1 + χτ(1−Rθ) ≥ 1, the last term can be further simplified to give

L̇ ≤ µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ iµ

[
(zβ + χ)Rθ

zβ + χ
− 1

]
= µ(1− α)

(
2− s∗

s
− s

s∗

)
+ µv∗

(
2− v∗

v
− v

v∗

)
+ σv∗

(
3− v∗

v
− vs∗

v∗s
− s

s∗

)
+

+ i(Rθ − 1).

Using the results in Corollary 3.4 we can finally conclude that L̇ ≤ 0. Thus, by

Lyapunov stability theorem, and LaSalle’s Invariance Principle, every solution (in

D) to the equations of the transformed model (3.2) approaches the DFE as t→∞

for Rθ ≤ 1 and qr 6= 1.

It follows that the use of PrEP will lead to the elimination of the disease from

the population with both casual and long-term partnerships with infected partners

whenever Rθ ≤ 1 and qr 6= 1.

Theorem 4.4. The unique EE of the transformed model in equation (3.2), given by

(v∗∗, s∗∗, i∗∗) in (4.4), is globally asymptotically stable in D, defined in Lemma 3.2,

whenever 1 < Rθ < 1 + zβ+χ
µχτ

and qr 6= 1.

Proof. Once again, we define the non-linear Lyapunov function of Goh-Volterra

type [45,46]

M = s− s∗∗ − s∗∗ ln
s

s∗∗
+ v − v∗∗ − v∗∗ ln

v

v∗∗
+ i− i∗∗ − i∗∗ ln

i

i∗∗
,

and follow the same steps as in the proofs of Theorems 3.7 and 3.11, to conclude that

Ṁ ≤ 0. Thus, by Lyapunov stability theorem, and LaSalle’s Invariance Principle,
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every solution (in D) to the equations (3.2) of the transformed model approaches

the unique EE as t→∞ for Rθ > 1 (and qr 6= 1).

Similarly to what was shown in the previous cases, here we can also conclude

that with feasible values of the parameters present in the model, we observe the

usual (transcritical) bifurcation at Rθ = 1 and no backward bifurcation, with the

unique endemic equilibrium existing only when 1 < Rθ < 1 + zβ+χ
µχτ

.

So far we only considered infections in serodiscordant partnerships (HIV-

negative individual with an HIV-positive partner). In Chapter 3 we analyzed mod-

els for MSM population with either casual or long-term partnerships, but not both.

Then, in this Section 4.1, we combined two models to allow the possibility of a

susceptible individual being involved concurrently in the long-term and casual part-

nership with infected individuals. Now we are going to add the last scenario, namely

long-term partnerships between two susceptible (HIV-negative) individuals and pos-

sible transitivity of infection, initiated through casual sexual encounter with an in-

fected person outside of a long-term partnership.

4.2 Case IV: PSI model with non-monogamous seroconcordant and

serodiscordant long-term partnerships

In this case we consider all possible partnership scenarios, including the pres-

ence of long-term partnership between two susceptible individuals. Here, a sus-

ceptible individual of interest, X, is in a long-term partnership with either already

infected or initially susceptible (uninfected) individual Y. Both X and Y may en-
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gage in casual sexual behavior outside of their partnership. If Y is susceptible at

the time the long-term partnership is formed, then Y may become infected through

casual encounters with other infected individuals and, subsequently, may infect X.

4.2.1 Rate of infection

Analogously to the previous cases (Sections 3.2, 3.3, 4.1), our first task is to

calculate the rate at which the individual X becomes infected. In the current sce-

nario, considering both casual and long-term partnerships, there are three mutually

exclusive ways for X to acquire the virus: from an infected casual partner, from a

long-term partner who was already infected when this partnership started, or from

a long-term partner who was initially susceptible but became infected, while still

in the long-term partnership, through a casual sexual contact outside that partner-

ship. Since the rates of infection from a casual contact, as well as from a long-term

partnership with infected individual were calculated as part of previously described

cases (see Sections 3.2 and 3.3 in Chapter 3), we will focus on the last piece, namely,

the rate of infection due to the initially susceptible long-term partner Y, denoted

by λ
S/P
p . The parameters used in this most comprehensive case are included in Ta-

bles A.1 and A.4. We define λ
S/P
p as a product of the transmission rate ψ and the

fraction of the newly infected (i.e. susceptible at the time of partnership formation,

κ) individuals inew at time t. To account for the changes in the number of infected

individuals during the time between the start of the long-term partnership κ and the

time of infection t, we will use the expected value of the fraction of newly infected
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individuals, represented as a function of a continuous random variable T̃ ,

λS/Pp ≡ ψE
[
inew(T̃ )

]
. (4.8)

We will break up the work into four possible scenarios to account for the fact that

we have two uninfected groups, namely susceptibles S, who are not in treatment,

and susceptible PrEP users P . The individual Y may start in one of these groups

but possibly transition to the other one before actually becoming infected. We will

determine the rates of infection for each scenario before combining them to obtain

the total rate of infection from initially susceptible partner. The calculation of the

expected value of the fraction of newly infected individuals in each of the scenarios

will consist of calculating the following probabilities:

1. Probability that Y was susceptible at time κ.

This probability is expressed as a fraction of individuals in group j ∈ S, P at

the start of long-term partnership, namely v(κ) = P (κ)
N0

if j = P , or s(κ) = S(κ)
N0

if j = S.

2. Probability that an uninfected long-term partner Y “survives” as such through

time period between κ and t.

This probability is a product of two probabilities, since staying in the part-

nership and avoiding infection are two independent events:

(a) Probability that Y is in state k at time t, given Y was in state j at time

κ: Pjk(t− κ) = P {Y (t) = k|Y (κ) = j}, where j, k ∈ P, S.
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This probability, of not getting infected during the (κ, t) time period,

is represented by a survival function, later defined and calculated, in

Section 4.2.1, as a transition probability in a multi-state model.

(b) Probability that Y is still a partner at time t.

This probability, of staying in the partnership during (κ, t) time period,

is represented using continuous distribution e−
(t−κ)
τ , with τ being the

duration of a long-term partnership.

3. Probability that initially susceptible partner Y becomes infected at time t, while

being in group j ∈ P, S.

This probability is a transition rate (time-constant hazard) from j to I, de-

noted by ρjI , with j ∈ P, S (see detailed explanation in Section 4.2.1).

We begin with a calculation of the probability that an uninfected partner,

who is acquired at time κ, remains uninfected (see item 2(a) on page 76) and then

combine it with the already stated probability of staying in that partnership until

the later time of infection t (see item 2(b) on page 77). Our goal here is to calculate

the probabilities of staying clear of infection during the time between κ and t, and,

at the same time, to account for the possibility of a susceptible long-term partner

either starting or stopping the PrEP treatment. To accomplish our goal, we will

turn to Markov chain theory and, more specifically, apply a multi-state illness-death

model with time-constant hazards to our situation. Using stochastic processes to

model disease dynamics has been widely used. In the last few decades, researchers

around the world have used state-based models and discrete Markov chains to study
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progression of HIV, both without [50–52] and with PrEP [53]. We are going to utilize

the continuous-time Markov chain to help us derive the rate of infection, and then we

will return back to our deterministic model for further analysis, similar to previous

cases in Sections 3.2, 3.3, and 4.1.

Overview of continuous-time Markov chain theory

A multi-state model is defined as a model for a stochastic process, which, at

any time point, occupies one of the discrete states [54]. In medicine, the states

can describe conditions such as healthy, diseased, under treatment, and dead. A

change of state is called a transition, which corresponds to outbreak of disease,

starting of the treatment, or death. The state structure specifies the states and

the possible transitions between these states. The full statistical model specifies

the state structure and the form of the hazard function for each possible transition.

Among the many standard state structures, there is the disability model, also called

the illness-death model (with states of healthy, ill, and dead, as in Figure 4.1), which

is relevant for irreversible diseases, in particular when the disease greatly increases

the risk of death [55].

The transition-specific hazard functions reflect the trigger (“hazard”) of the

next transition. There is one hazard function for each possible transition. From

the hazard function, defined as instantaneous rate of occurrence of the event, it is

possible to evaluate the probability of no events during an interval. However, in

order to look several steps (state transitions) ahead, we must consider the transition
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(0)

Dead
(2)
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ρ02

ρ12

ρ01ρ10

Figure 4.1: Schematic diagram of the illness-death model with arrows in-
dicating the transitions between the three states: Healthy (0), Ill (1), and
Dead (2), and quantities ρjk, denoting transition-specific time-constant
hazard rates from state j to state k.

probability, that is, the probability of being in a given state at a given time, possibly

conditioned on what has happened until some time point. Therefore, the transition

probabilities are the keys to making long-term predictions. A complete multi-state

model analysis includes an investigation of the hazard rates and the transition prob-

abilities. In this work we discuss these quantities in a time-constant hazard setting,

which makes derivation of closed mathematical forms for the transition probabilities

feasible [55].

One of the most widely studied stochastic models are Markov chains. The

idea behind them can be summarized as follows: “conditioned on the current state,

the past and the future states are independent” [56]. Thus, the time that the

process spends in each state must have a “memory-less” property, called the Markov

property. In short, the Markov assumption implies that the past and the future are
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conditionally independent given the present.

In a continuous-time Markov chain, the time spent in each state is a continuous

random variable. More specifically, let us consider a continuous-time random process

{X(t), t ∈ [0,∞)} and assume that we have a countable state space C ⊂ {0, 1, 2, . . . },

with X(t) denoting the location (state) of an individual X at time t. If X(0) =

j, then X starts in state j for a random amount of time, say T1, where T1 is a

continuous random variable. At time T1, the process jumps to a new state k and will

spend a random amount of time T2 in that state, and so on. The random variables

T1, T2, . . . have exponential distributions, because the exponential distribution is

the only continuous distribution with the Markov “memory-less” property. This

random process {X(t), t ∈ [0,∞)} is then called a continuous-time Markov chain.

The probability of going from state j to state k is called the transition probability

and is denoted by Pjk. We assume Pjj = 0, for all non-absorbing states j, and if,

on the other hand, j is an absorbing state then Pjj = 1 and Pjk = 0 for all j 6= k.

We can define the transition probability [57], for all κ, t ∈ [0,∞) and j, k ∈ C, as

Pjk(t− κ) = P {X(t) = k|X(κ) = j} = P {X(t− κ) = k|X(0) = j} , (4.9)

namely the probability that, if X is in a state j at time κ, then X stays in this state j

for the random amount of time t−κ, before it transitions to a state k. Subsequently,

we can form the transition state probability matrix as P(t − κ) = [Pjk(t− κ)].

In continuous-time Markov chain models, with our assumption of time-constant

hazards, the transition probabilities Pjk(t−κ) can be calculated from the transition-

specific hazard rates [56], so-called intensities ρjk, from state j to state k (indicated
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in Figure 4.1), by solving the forward Kolmogorov differential equations [58]

P′(t− κ) = P(t− κ)G. (4.10)

In other words, the equations (4.10) state that the rate of change of the probability

of transition is equal to the product of the probability of transition and the time-

constant hazard rate. The matrix G is called the (infinitesimal) generator of the

Markov chain and its entries, Gjk, are the time-constant hazard rates ρjk with

j, k ∈ C [59]. The above differential equations can be written in coordinates as

P ′jk(t− κ) =
∑
m∈C

Pjm(t− κ)Gmk. (4.11)

The solution to (4.10) can be elegantly described by means of the matrix exponential

function, where the matrix of transition probabilities satisfies

P(t− κ) = e(t−κ)G =
∞∑
r=0

(t− κ)rGr

r!
= I + (t− κ)G +

[(t− κ)G]2

2
+ . . . . (4.12)

In practice, G needs to be decomposed in such a way that we have fast convergence

of this Taylor sum [60] in (4.12). Being the matrix of probabilities, the transition

matrix P(t− κ) must satisfy the following properties:

• P(0) is equal to the identity matrix, i.e. P(0) = I;

• the rows of the transition matrix must sum to 1, i.e.
∑

k∈C Pjk(t− κ) = 1, for

all t ≥ κ;

• for all t1, t2 ≥ 0, P(t1 + t2) = P(t1) · P(t2), as per Chapman-Kolmogorov

equation [61] (not to be confused with Kolmogorov equations); in particular,

for all κ, t ≥ 0, P(κ+ (t− κ)) = P(κ) · P(t− κ).
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With that in mind, for some δ ≥ 0, we can write

P((t− κ) + δ)− P(t− κ) = P(t− κ) · P(δ)− P(t− κ)

= P(t− κ)[P(δ)− I],

(4.13)

which suggests that, if 1
δ
[P(δ)− I] converges to matrix G as δ decreases to zero, then

we obtain the forward Kolmogorov equations in (4.10). We can now establish the

structure of G, with entries Gjk = ρjk. Since, according to properties above, P(δ)

and the identity matrix I both have all their row sums equal to 1, it follows that the

row sums of their difference P(δ) − I, and hence of G, must all be zero. Moreover,

all off-diagonal terms in P(δ) are non-negative and those in I are zero, so G must

have non-negative off-diagonal terms. Thus, in general, we must have Gjk = ρjk ≥ 0

when j 6= k and Gjj = ρjj = −ρj, where the parameter ρj, called the transition rate

(or total hazard) out of state j, is defined as ρj =
∑

k 6=j ρjk for j, k ∈ C.

The evolution of a Markov chain can be described in terms of its matrix G

as follows. Suppose the Markov chain is currently in state j. Then it remains

in state j for a random time, which is exponentially distributed with parameter

ρj. In particular, knowing how long the Markov chain has been in this state gives

us no information about how much longer it will do so (memory-less property of

the exponential distribution). At the end of this time spent in state j, the chain

jumps to one of the other states; the probability of jumping to state k is given by

ρjk
ρj

=
ρjk∑

m 6=j ρmj
, and is independent of how long the Markov chain spent in this state,

and of everything else in the past.

From the properties of matrix exponentials [62], we know that, if υ is an

eigenvector for an eigenvalue ω of matrix G, then eGtυ = eωtυ. If G has only one

82



eigenvalue ω, with algebraic multiplicity m for 0 < m ≤ n, then (G− ωI)m = 0 and

hence only m terms of exponential series expansion in (4.12) are required. If the

eigenvalues of G are distinct, as it happens in most cases, then the solutions for the

transition probabilities are sums of exponential functions,

Pij(t− κ) =
∑
r

αjkre
−ωr(t−κ), (4.14)

where the rate constants, −ωr, are the eigenvalues of G. However, as stated

above, the solution is only valid, when the eigenvalues are distinct. The eigenval-

ues in (4.14) are found as the solutions to the general matrix determinant equation

|G − (−ωr)I| = |G + ωrI| = 0, where I is the identity matrix (notice the change of

sign). The constants αjkr are found for each r, an index of distinct eigenvalues, from

the corresponding eigenvectors, or alternatively by knowing that they are required

to satisfy a set of boundary conditions and a set of balance equations. These equa-

tions are all linear, and therefore straightforward to solve. The boundary conditions

come from previously mentioned condition, P(0) = I, and can be expressed as

∑
r

αjjr = 1,
∑
r

αjkr = 0, j 6= k. (4.15)

The balance equations specify that the solutions (4.14) have to satisfy the forward

Kolmogorov equation in (4.10) as well as the sum property
∑

k∈C Pjk(t) = 1, for all

t ≥ 0. They can generally be written as

− αjkrωr =
∑
m∈C

αjmrρmk, (4.16)

for each r and describe the fact that when the process becomes stationary as t→∞,

there must be a balance between the incoming rates to the state and outgoing rates
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to the state.

Calculation of transition probabilities

We will now apply the above theory to our case of an initially susceptible

long-term partner Y and use the three-state Markov chain model to calculate the

transition probabilities between the states, corresponding to the movement of Y

among the groups P, S, and I. Given two time points κ and t, with κ < t, we write

the transition probabilities, defined in (4.9), as

Pjk(t− κ) = P {Y (t) = k|Y (κ) = j} , (4.17)

with j, k indicating possible states {P, S, I}, as well as the transition matrix, P(t−κ),

P(t− κ) =


PPP (t− κ) PPS(t− κ) PPI(t− κ)

PSP (t− κ) PSS(t− κ) PSI(t− κ)

PIP (t− κ) PIS(t− κ) PII(t− κ)

 , (4.18)

with each Pjk(t−κ) defined in (4.17). Since, according to properties of probabilities,

previously mentioned on page 81, the rows of P must sum to 1, and there is no

transition out of the absorbing state I, we can write the identities PIP = 0,PIS = 0,

PII = 1, PPP + PPS + PPI = 1, and PSS + PSP + PSI = 1. Therefore, out of the

six non-zero transition probabilities left to estimate, only four of them are needed,

since the remaining two can be obtained using the four identities listed above.

We recall that one way to calculate the transition properties explicitly is using

the equation in (4.14). This requires knowing the eigenvalues of a generating matrix

G, formed by the time-constant transition rates (hazards) ρjk from state j to state
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Figure 4.2: Schematic diagram of the three-state Markov chain model
with time-constant transition-specific hazard rates ρjk for j, k ∈ P, S, I.

k, and expressed as

G =


ρPP ρPS ρPI

ρSP ρSS ρSI

ρIP ρIS ρII

 . (4.19)

In our situation, as shown in Figure 4.2, since there is no “return” from infected state

to any susceptible state, we have ρIP = ρIS = 0, and hence the only non-zero off-

diagonal entries are ρPS = σ, ρSP = θ, ρPI = λ̄ξ(1−qr), and ρSI = λ̄ξ. The first two

quantities correspond to the transitions between the two susceptible groups, namely

the rates of starting and stopping the PrEP treatment, as described in our model

equations (3.1) and illustrated in Figure 3.1. The latter two, ρPI and ρSI , are the

hazard rates corresponding to the transitions into infected state I, and represent the

previously mentioned probabilities (item 3 on page 77 in Section 4.2.1), that initially

susceptible partner Y becomes infected, and will also be used in the calculation of a
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total rate of infection. In both ρPI and ρSI , it is important to point out the presence

of the non-exclusivity parameter, ξ, as well as different rate of infection, denoted

here by λ̄. This is due to the fact that an initially susceptible long-term partner

Y can only get infected by engaging in the casual sexual activity outside of the

long-term partnership, and the chances of that activity taking place are precisely ξ.

The rate of infection from such activity depends on its frequency, and hence includes

parameter z̄, denoting the average annual number of casual partners of Y , outside

of the long-term partnership. We emphasize that z̄ is not necessarily the same as z,

which refers to the average number of casual partners of X, per year. In addition,

since the row sums of G are all zero, the diagonal entries, as defined before, are

Gjj = ρjj = −ρj = −∑k 6=j ρjk for j, k ∈ P, S, I. Hence, we get the generating

matrix

G =


−(σ + λ̄ξ(1− qr)) σ λ̄ξ(1− qr)

θ −(θ + λ̄ξ) λ̄ξ

0 0 0

 . (4.20)

As pointed out before, the transition probabilities, PPI and PSI , into absorbing

state I can be calculated from the four transition probabilities between the non-

absorbing states. Since the exponential terms in the equation (4.14) correspond to

non-zero eigenvalues of the generating matrix G, we simplify the model by deleting

the absorbing state I, and hence eliminating the zero eigenvalue. This results in a

defective model, where the rows of the reduced generating matrix G̃ do not sum to
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0, and

G̃ =

−(σ + λ̄ξ(1− qr)) σ

θ −(θ + λ̄ξ)

 . (4.21)

This approach reduces the equation in (4.14) from three to two dimensions, but,

since the eigenvalues of G̃ are the same as the non-zero eigenvalues of G, it still

allows us to find PPP ,PPS,PSP , and PSS for our model. Upon solving the resulting

system of four linear differential equations in (4.11), these transition probabilities

can be written as

Pjk(t− κ) = αjk1e
−ω1(t−κ) + αjk2e

−ω2(t−κ), (4.22)

with constants αjk1 and αjk2 to be determined. The positive values −ω1,2 =

−1
2

(
2λ̄ξ + (θ + σ − λ̄ξqr)±

√
(θ + σ − λ̄ξqr)2 + 4λ̄ξqrθ

)
are the eigenvalues of the

2× 2 matrix G̃ as well as the non-zero eigenvalues of the 3× 3 matrix G. Note that

an alternate simplification is

−ω1,2 = −1
2

(
2λ̄ξ + (θ + σ − λ̄ξqr)∓

√
(θ − σ + λ̄ξqr)2 + 4θσ

)
.

Based on the previously defined boundary conditions in (4.15) and balance equations

in (4.16) we form the system of six linear equations with four unknowns

αPP1 + αPP2 = 1,

αPS1 + αPS2 = 0,

− αPP1 ω1 = αPP1 ρPP + αPS1 ρSP ,

− αPP2 ω2 = αPP2 ρPP + αPS2 ρSP ,

− αPS1 ω1 = αPP1 ρPS + αPS1 ρSS,

− αPS2 ω2 = αPP2 ρPS + αPS2 ρSS,

(4.23)
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where the first two are boundary conditions and remaining four are balance equa-

tions for PPP and PPS. This is sufficient to determine the values of αPjr as

αPS1 = −(ρPP + ω1)(ρPP + ω2)

ρSP (ω2 − ω1)
,

αPS2 =
(ρPP + ω1)(ρPP + ω2)

ρSP (ω2 − ω1)
,

αPP1 =
ρPP + ω2

ω2 − ω1

,

αPP2 = −ρPP + ω1

ω2 − ω1

.

(4.24)

Similarly, from the following six equations,

αSS1 + αSS2 = 1,

αSP1 + αSP2 = 0,

− αSS1 ω1 = αSS1 ρSS + αSP1 ρPS,

− αSS2 ω2 = αSS2 ρSS + αSP2 ρPS,

− αSP1 ω1 = αSS1 ρSP + αSP1 ρPP ,

− αSP2 ω2 = αSS2 ρSP + αSP2 ρPP ,

(4.25)

with the first two being boundary conditions and remaining four being balance

equations for PSS and PSP , we determine αSkr as

αSP1 = −(ρSS + ω1)(ρSS + ω2)

ρPS(ω2 − ω1)
,

αSP2 =
(ρSS + ω1)(ρSS + ω2)

ρPS(ω2 − ω1)
,

αSS1 =
ρSS + ω2

ω2 − ω1

,

αSS2 = −ρSS + ω1

ω2 − ω1

.

(4.26)
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Putting expressions in (4.22), (4.24), and (4.26) together, we get

PPP (t− κ) =
ρPP + ω2

ω2 − ω1

e−ω1(t−κ) − ρPP + ω1

ω2 − ω1

e−ω2(t−κ),

PSS(t− κ) =
ρSS + ω2

ω2 − ω1

e−ω1(t−κ) − ρSS + ω1

ω2 − ω1

e−ω2(t−κ),

PPS(t− κ) =
(ρPP + ω1)(ρPP + ω2)

ρSP (ω2 − ω1)

(
e−ω2(t−κ) − e−ω1(t−κ)

)
,

PSP (t− κ) =
(ρSS + ω1)(ρSS + ω2)

ρPS(ω2 − ω1)

(
e−ω2(t−κ) − e−ω1(t−κ)

)
.

(4.27)

The remaining transition probabilities, PPI and PSI , in the full three-state model

(Figure 4.2), are easily determined from the facts that PPI = 1 − PPP − PPS and

PSI = 1 − PSP − PSS. Note, that the term ′′1” corresponds to the zero eigenvalue

of a 3× 3 matrix G.

Our next step is a discussion of the previously mentioned (see item 2 on

page 76) survivability, which will incorporate the transition probabilities derived

above in (4.27), as well as the expected value needed to derive the rate of infection

from initially susceptible partner.

Survival function and expected value

A survival function of a continuous random variable T̃ , denoting the time

before a certain event occurs, gives the probability that such event has not occurred

by the time t̃, and is defined as S(t̃) = P(T̃ ≥ t̃) [63, 64]. In our case, we have

two independent events (staying in a partnership and not getting infected) with

corresponding survival times, hence we need two continuous random variables, T̃1

and T̃2. Let T̃1 denote a length of the long-term partnership and assume it to be an

exponential random variable with mean τ . Define T̃2 as a time between the start of
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the long-term partnership, κ, and the time of infection t. The joint survival function,

S(t̃) = P(T̃ ≥ t̃), with T̃ = min{T̃1, T̃2}, is therefore a product of the probability

of still being a partner after t̃ years (item 2(b) on page 77 in Section 4.2.1) and

the probability of not getting infected within t̃ years of the start of a long-term

partnership (item 2(a) on page 76 in Section 4.2.1), and can be expressed as

Sjk(t̃) = e−
t̃
τ · Pjk(t̃), (4.28)

with t̃ = (t − κ) and j, k = P, S, indicating that the long-term partner Y was in

state j at time κ and in state k at time t [63]. The hazard, denoted h(t̃), is defined

as the instantaneous rate of occurrence of the event by the time t̃ and is expressed

as a ratio of the probability f(t̃) of an event occurring to the survival function S(t̃),

both by the time t̃, i.e. h(t̃) =
f(t̃)

S(t̃)
. With a bivariate survival function, as in our

situation, the total hazard is a sum of the hazards for both events [63]. Now, we

have everything we need to calculate the expected value of the proportion of newly

infected individuals defined as the expected value (or mean) of a function g(T̃ ) of a

continuous random variable T̃ ,

E
[
inew(t̃)

]
= E[g(T̃ )] ≡

∫
Ω

g(u)f(u)du, (4.29)

with g(T̃ ) being represented here by a function

gjk(t̃) =


v(κ)ρkI t̃, k = P

s(κ)ρkI t̃, k = S,

where ρkI is a transition hazard from state k to infected group I, and f(t̃) denoting

a probability density (distribution) function of T̃ on a domain Ω = [0,∞), related
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to the survival function through identity −f(t̃) = d
dt̃
S(t̃). In our case, we get

f(t̃) = − d

d(t̃)

[
e−

t̃
τ · Pjk(t̃)

]
, (4.30)

with transition probabilities Pjk(t̃) obtained in (4.27).

Rate of infection from initially susceptible partner

Now we can use the survival functions in (4.28) to derive the correspond-

ing probability density functions (4.30) and, combined with the appropriate tran-

sition hazards (ρjk in (4.20)), apply them in the integral definition of the expected

value (4.29) to determine the expressions for the rates of infection in all four sce-

narios:

1. Individual Y is in S at the start of the long-term relationship (time

κ) and remains in S until the time of infection t.

The following probability density function

f(t̃) = − d

d(t̃)

[
e−

t̃
τ · PSS(t̃)

]
=

1

(ω1 − ω2)τ
e−

t̃
τ

[
(ρSS + ω1)(1 + ω2τ)e−ω2 t̃ − (ρSS + ω2)(1 + ω1τ)e−ω1 t̃

]
,

(4.31)

is used in calculation of the rate of infection

λSSp = ψ

∫ ∞
0

gSS(t̃)f(t̃)dt̃ =

∫ ∞
0

ψλ̄ξt̃s(κ) · f(t̃)dt̃. (4.32)

2. Individual Y is in P at the start of the long-term relationship (time

κ) but stops PrEP and transitions to S, and remains in S until the

time of infection t.
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The following probability density function

f(t̃) = − d

d(t̃)

[
e−

(t̃)
τ · PPS(t̃)

]
=

(ρP + ω1)(ρP + ω2)

(ω1 − ω2)ρSP τ
e−

t̃
τ

[
(1 + ω1τ)e−ω1 t̃ − (1 + ω2τ)e−ω2 t̃

]
,

(4.33)

is used in a calculation of the rate of infection

λPSp = ψ

∫ ∞
0

gPS(t̃)f(t̃)dt̃ =

∫ ∞
0

ψλ̄ξt̃v(κ) · f(t̃)dt̃. (4.34)

3. Individual Y is in P at the start of the long-term relationship (time

κ) and remains in P until the time of infection t.

The following probability density function

f(t̃) = − d

d(t̃)

[
e−

(t̃)
τ · PPP (t̃)

]
=

1

(ω1 − ω2)τ
e−

t̃
τ

[
(ρP + ω1)(1 + ω2τ)e−ω2 t̃ − (ρP + ω2)(1 + ω1τ)e−ω1 t̃

]
,

(4.35)

is used in a calculation of the rate of infection

λPPp = ψ

∫ ∞
0

gPP (t̃)f(t̃)dt̃ =

∫ ∞
0

ψλ̄ξ(1− qr)t̃v(κ) · f(t̃)dt̃. (4.36)

4. Individual Y is in S at the start of the long-term relationship (κ)

but starts PrEP and transitions to P , and remains in P until the

time of infection (t)

The following probability density function

f(t̃) = − d

d(t̃)

[
e−

(t̃)
τ · PSP (t̃)

]
=

(ρSS + ω1)(ρSS + ω2)

(ω1 − ω2)ρPSτ
e−

t̃
τ

[
(1 + ω1τ)e−ω1 t̃ − (1 + ω2τ)e−ω2 t̃

]
,

(4.37)
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is used in a calculation of the rate of infection

λSPp = ψ

∫ ∞
0

gSP (t̃)f(t̃)dt̃ =

∫ ∞
0

ψλ̄ξ(1− qr)t̃s(κ) · f(t̃)dt̃. (4.38)

We combine the four scenarios to obtain the total rate of infection from initially

susceptible partner in either P or S as

λS/Pp = λSSp + λSPp + λPPp + λPSp

=
ψλ̄ξ

(ω1 − ω2)ρSPρPSτ

∫ ∞
0

e−
1
τ
t̃
{
e−ω1 t̃(1 + ω1τ)Υ12 − e−ω2 t̃(1 + ω2τ)Υ21

}
t̃dt̃,

where

Υjk = ρSP (ωk + ρSS)[(ωj + ρSS)(1− qr)− ρPS]s(κ)+

+ ρPS(ωk + ρPP )[ωj + ρPP − ρSP (1− qr)]v(κ).

Using the linear approximations of v(κ) and s(κ), representing the fractions of the

individuals in the groups P and S, respectively:

v(κ) ≈ v(t) + (κ− t)[µα + θs(t)− (1− qr)λ̄v(t)− (σ + µ)v(t)]

= −µαt̃− θt̃s(t) + v(t)[1 + (σ + µ+ λ̄(1− qr))t̃],

s(κ) ≈ s(t) + (κ− t)[µ(1− α) + σv(t)− λ̄s(t)− (θ + µ)s(t)]

= −µ(1− α)t̃− σv(t)t̃+ s(t)[1 + (λ̄+ θ + µ)t̃],

(4.39)

and evaluating the integral with the help of Mathematica, we get

λS/Pp = ψ · F (λ̄τξ, t),
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where

F (λ̄τξ, t) = λ̄ξτ

{
− 2µτ [1− qrα +Bτ [2 + τ(B + qr(θ + αλ̄ξ))]

[(θτ + 1 + λ̄ξτ)(1 + λ̄ξτ(1− qr)) + στ(1 + λ̄ξτ)]2
+

+ s(t)
1 + τ(A+ 2B + 3θqr) +Bτ 2(2A+B + θqr) +Bτ 3[(A+ λ̄ξ)θqr + AB]

[(θτ + 1 + λ̄ξτ)(1 + λ̄ξτ(1− qr)) + στ(1 + λ̄ξτ)]2
+

+ v(t)
(1− qr)(1 + τ [A+ 2B + (2θ − λ̄ξ − 2σ)qr])− στqr
[(θτ + 1 + λ̄ξτ)(1 + λ̄ξτ(1− qr)) + στ(1 + λ̄ξτ)]2

+

+ v(t)
Bτ 2[2A+B + qr(θ − 4λ̄− λ̄ξ)] +Bτ 3[AB + 2qr[µ(θ + λ̄ξ)− σλ̄+ σλ̄ξ]

[(θτ + 1 + λ̄ξτ)(1 + λ̄ξτ(1− qr)) + στ(1 + λ̄ξτ)]2

}
,

A = 2µ+ 2λ̄+ λ̄ξ,

B = σ + (1− qr)(θ + λ̄ξ).

Now, the linear approximation around λ̄ = 0 gives

F (λ̄τξ, t) ≈ F (0, t) +
∂F

∂λ̄

∣∣∣∣
λ̄=0

· (λ̄− 0) =

=
λ̄τξ

(1 + θτ + στ)2

{
−2µτ [(1 + θτ + στ)2 − qr(α + θτ(2 + θτ + στ))] +

+ [1 + 2τ(θ + µ+ σ)][s(t) + (1− qr)v(t)] + τqr[θs(t)− σv(t)]+

+ τ 2[θ(1− qr) + σ][(θ + σ)(1 + 2µτ) + 4µ][s(t) + v(t)]
}
,

and hence the rate of infection from a partner acquired while susceptible is calculated

to be

λS/Pp ≡ ψE [inew]

≈ ψλ̄τξ

(1 + θτ + στ)2

{
−2µτ [(1 + θτ + στ)2 − qr(α + θτ(2 + θτ + στ))] +

+ [1 + 2τ(θ + µ+ σ)][s(t) + (1− qr)v(t)] + τqr[θs(t)− σv(t)]+

+ τ 2[θ(1− qr) + σ][(θ + σ)(1 + 2µτ) + 4µ][s(t) + v(t)]
}
.

(4.40)

As mentioned at the beginning of this Section 4.2, on page 75, this case consid-

ers casual as well as long-term partnerships with both infected and initially suscepti-
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ble individuals. Therefore, we can describe the rate of infection as λ = λz+λ
I
p+λ

S/P
p .

Using the expressions obtained in equations (3.3), (3.13), and (4.40), and solving

the resulting equation explicitly, we obtain the rate of infection for the most com-

prehensive non-monogamous long-term case of PSI model,

λ =
(K + Ls+Mv)i

D2{1 + χτ [s+ (1− qr)v]} , (4.41)

where

D = 1 + θτ + στ,

N = D2 − qrθτ(D + 1),

K = D2[zβ + χ(1 + µτ)]− 2z̄βξµτ 2ψ(N − qrα),

L = βτ{D2zχ+ z̄ξψ[N (1 + 2µτ) + 3qrθτ ]},

M = βτ{D2(1− qr)zχ+ z̄ξψ[(1 + 2µτ)(N − qr)− 3qrστ ]}.

(4.42)

4.2.2 Reproduction number and equilibria

Calculation of R0

The reproduction number is once again calculated using the next generation

method (with help of Python in this case) and expressed as

Rθ =
[K(µ+ θ + σ) + L(µ(1− α) + σ) +M(θ + µα)][(µ+ θ + σ)− qr(θ + µα)]

D2µ(µ+ θ + σ)[(µ+ θ + σ)(1 + χτ)− qrχτ(θ + µα)]
,

(4.43)

with R0 =
zβ + χ(1 + µτ) + βτ(zχ+ z̄ξψ)

µ(1 + χ(1 + µτ)
being the basic reproduction number in

the absence of PrEP.
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Calculation of DFE and EE

The disease-free equilibrium is calculated to be the same as previously, in

equation (4.3),

(v∗, s∗, i∗) =

(
θ + αµ

σ + µ+ θ
,
σ + µ− αµ
σ + µ+ θ

, 0

)
. (4.44)

However, due to the complex form of the rate of infection in equation (4.41), the

endemic equilibrium cannot be written in explicit form, but is defined as the implicit

solution to the system of nonlinear equations.

Local stability of DFE

We establish the local stability of the DFE by analyzing the eigenvalues of the

Jacobian for the system in (3.2), with the rate of infection in (4.41). The associated

characteristic equation, evaluated at the DFE (4.44), is given by

p(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ− σ θ − J (1− qr)(θ + µα)

D2(µ+ θ + σ)[(µ+ θ + σ)(1 + χτ)− qrχτ(θ + µα)]

σ −µ− θ − J [µ(1− α) + σ]

D2(µ+ θ + σ)[(µ+ θ + σ)(1 + χτ)− qrχτ(θ + µα)]

0 0
J [θ + µ+ σ − qr(θ + µα)]

D2(µ+ θ + σ)[(µ+ θ + σ)(1 + χτ)− qrχτ(θ + µα)]
− µ

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where J = K(µ+ θ + σ) +L(µ(1− α) + σ) +M(θ + µα), with K,L,M as defined

in (4.42). The three real zeros of p(λ) are the eigenvalues of the Jacobian. The

first two, λ1 = −µ and λ2 = −(µ + θ + σ), are always negative, and the third

one, simplified to λ3 = µ(Rθ − 1), is negative only when the reproduction number,

previously calculated in (4.43), satisfies Rθ < 1. We therefore conclude the classic

result from Castillo-Chavez [40] that DFE is locally asymptotically stable when the
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reproductive number satisfies Rθ < 1 and it is unstable when Rθ > 1.

In the previous cases of our PSI model (Sections 3.2, 3.3, 4.1) we were able

to not only derive the expression for the endemic equilibrium, but also prove its ex-

istence and uniqueness. We were also successful in proving global stability of both,

disease-free and endemic equilibria. Unfortunately, the complexity of the rate of in-

fection obtained in this case in (4.41) makes it very difficult to proceed analytically.

However, even without formal proof, we believe our model exhibits similar behav-

ior, namely it has a globally asymptotically stable disease-free equilibrium when the

reproductive number Rθ < 1, and a unique endemic equilibrium when Rθ > 1. We

base our belief on the work by Sharomi et al [65], who suggest that the presence or

absence of standard incidence may be crucial to the presence or absence of back-

ward bifurcation in vaccination models. They address multiple model structures and

prove that the mass action model has a globally asymptotically stable disease-free

equilibrium and no endemic equilibrium when R < 1, and a unique endemic equi-

librium when R > 1. On the other hand, the model with differential infectivity and

standard incidence may exhibit, according to the authors, vaccine-induced backward

bifurcation [65]. Then again, the mass action differential infectivity model (with or

without staged-progression) is proven to have no endemic equilibrium when R < 1,

and a unique endemic equilibrium otherwise, and, subsequently, no possibility of

backward bifurcation. The above findings apply to our work because, as reminded

by Sharomi et al [65], the standard incidence models with constant total population,

like ours, are essentially mass action models. With all that in mind, it is rather safe

to conclude that our model, with the current assumption of constant population,
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would not exhibit backward bifurcation, regardless of the partnerships or type of

incidence formulation considered.

Having completed the analytic part of our work, we now turn our attention

to the numerical findings. In the next chapter we will study the effects of various

conditions, such as a change in one of the parameter values, on the overall dynamics

of HIV.
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Chapter 5: Numerical results for PSI models

In this chapter, we investigate the impact of PrEP on the reduction of HIV

transmission in all of the previously analyzed cases, differing from each other based

on the types of partnerships involved.

5.1 Estimating the parameter values

We assume that the total population is a constant N0, with recruitment rate

π = µN0, and population removal rate µ = 1/61, as stated in Table A.4. The

initial conditions (in millions) are given by P (0) = 0.2, S(0) = 6.4, I(0) = 0.5

and N0 = P (t) + S(t) + I(t) = 7.1 [1, 2, 66]. We start our numerical simulations

assuming that 1% of the individuals entering the population of sexually active MSM

are already using PrEP. We must keep in mind that, as of 2022, PrEP has only been

prescribed to HIV-negative and sexually active individuals who are at the high risk

of infection. Despite current guidelines, we introduce in our models the parameter α

to explore possible benefits, if any, of administering PrEP as preemptive measure to

those who have not been exposed to the virus, yet. We choose α = 0.01 to indicate

the fraction of individuals who begin PrEP treatment before becoming sexually

active and entering the susceptible population.
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Nationwide data on PrEP initiation and persistence are very limited. When

choosing the baseline values for the parameters related to PrEP use, we relied on the

CDC reports [3] and on the published findings based on various studies and PrEP

trials in different parts of the world. In their 2019 surveillance report, CDC stated

that approximately 25% of roughly 0.8 million eligible MSM have started PrEP,

which represents only 3% of the estimated number of MSM in the United States. A

similar estimate was given in 2020 by Koss et al [67], who did an interim analysis

of observational data from the ongoing SEARCH (Sustainable East Africa Research

in Community Health) study and noted that only one-quarter of the individuals

assessed as being at elevated risk initiated PrEP within 90 days, with even lower

uptake among young adults. In 2016, Parsons et al [68] analyzed data from 995

men in One Thousand Strong, a longitudinal study of a national panel of HIV-

negative gay and bisexual men in the United States, and found that a large majority

of participants were appropriate candidates for PrEP, yet fewer than 1 in 10 were

using PrEP. On the other hand, Dean et al [69] analyzed PrEP pharmacy claims and

HIV diagnoses from a Symphony Health Solutions dataset across all US states from

October 1, 2015 to September 30, 2019, and calculated the percentage of individuals,

who were newly prescribed PrEP but either reversed, delayed, or abandoned it in

the next 365 days, to be about 17%. Our chosen baseline values of θ = 0.05 and

σ = 0.2 are consistent with the literature and correspond to having 5% of all the

susceptible individuals start PrEP, with 20% of them stopping it within a year.

Data from trials, open label extension studies, and demonstration studies have

shown that oral PrEP is effective in preventing HIV infection in cisgender men who
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have sex with men, and, when used consistently, it may reduce the risk of infection

by up to 99% [5, 6]. This brings up an important aspect to consider, namely PrEP

adherence. It is a rather common knowledge that greater adherence is associated

with greater efficacy of PrEP. Nevertheless, the levels of compliance with daily

dosages vary greatly across different regions, age groups of patients, and their race

or economic status. In 2019, Chou et al [70] published PrEP uptake and adherence

review of previously conducted studies. Three observational studies of adult US

men who have sex with men found adherence to PrEP of 66% to 90%, based on

the level of tenofovir in dried blood sampling (consistent with 4 doses per week).

Using the same measure, two observational studies of younger US men who have sex

with men found adherence to PrEP of approximately 50% at 12 weeks and 22% to

34% at 48 weeks. A randomized controlled clinical trial (RCT) of primarily (97%)

US men who have sex with men found that adherence was higher with daily (48%)

than with intermittent (31%) or event-driven (17%) PrEP during weeks in which

sex was reported. Based on their analysis of a study in East Africa, Koss et al [67]

concluded that one-third of participants reporting HIV risk and adherence during

follow-up had concentrations of tenofovir in the hair that were consistent with poor

adherence (fewer than four PrEP doses per week). Using the results published in

literature we assume a 50% adherence and set the corresponding parameter q = 0.5

as our baseline value.

Later in this chapter we will show that, among all of the parameters in our

model, the estimate for β, which describes per-act transmission risk, comes with the

highest level of uncertainty. Accurate estimates of per-act HIV transmission risk

101



from various exposures are necessary for individuals and public health programs to

prevent infection. When the Centers for Disease Control and Prevention (CDC)

produced estimates in 2005 [71], many per-act transmission probabilities for sexual

exposures relied heavily on estimates derived from a single study of heterosexual

couples [72]. Since 2005, new data have been reported from cohort studies of het-

erosexuals and of MSM [7], and new systematic reviews and attempts at analyses

of certain transmission risks have been published [73]. Additionally, the published

literature quantifying the effects of modifying factors known to either increase or

decrease transmission risk has expanded substantially. One of the most recent, and

most frequently cited, sources for the estimates of per-act HIV transmission risks

from an infected source to an HIV-uninfected person through various means of ex-

posure, was published in 2014 by Patel et al [48], who completed a thorough review

of all relevant, and at that time available, data, research studies, and literature, to

come up with their transmission estimates. They do, however, admit that these

estimates may not reflect true infectivity and may obscure important differences as-

sociated with factors that may modify transmission risk. They also summarized the

relative effects of factors that modify per-act transmission risks, such as condom use

and antiretroviral therapy, and examined their individual and combined effects on

per-act infectivity for high-risk sexual exposures. Remembering that MSM account

for the majority (60–70%) of prevalent and incident HIV infections in the United

States, Patel et al [48] report that, in this population, most infections are transmit-

ted through unprotected receptive anal intercourse (URAI), at the rate of 138 per

10, 000 exposures (95% CI 102–186 per 10, 000). Their estimate of the transmission
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risk for unprotected insertive anal intercourse (UIAI) is 11 per 10, 000 exposures

(95% CI 4–28 per 10, 000) [48]. Furthermore, they pointed out that estimating per-

act transmission risk for low-risk acts, such as oral sex, is often confounded by the

complex patterns of sexual exposure where higher-risk exposures occur during the

same sexual encounter. Given these limitations, they stated that, although HIV

transmission via oral sex is biologically plausible, it is not possible to provide a

precise numeric estimate per-act transmission risk for low-risk sexual acts. Since

our model does not differentiate between the types of sexual acts, we assume that

the rate of transmission for HIV per one condomless sexual act is β = 0.0075, cor-

responding to 75 infections per 10, 000 exposures. In Section 3.3 we also explained

our approach to accounting for reduction in the transmission risk due to condom

use (parameter c) and undergoing antiretroviral treatment HAART by long-term

partners with known HIV-positive diagnosis.

Although the underlying drivers of HIV transmission among MSM may vary

based on main (long-term) and casual partner types, little is known about how

the number and composition of sex partner types has changed nationally in recent

history, and, thus, which relationship contexts should be prioritized for HIV pre-

vention. Rosenberg et al [74] analyzed data from the first MSM cycle of the CDC

National HIV Behavioral Surveillance system, conducted from 2003 to 2005, and

concluded that among 11,191 sexually active MSM, 32% reported having only male

casual partners, 44% had main (long-term) and casual partners, and 24% had main

partners exclusively. Those who had no long-term male partners during the previ-

ous year had a median of 5 casual male partners, while those with a long-term male
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partner had a median of 2 casual male partners. The updated results were published

by Chapin-Bardales et al [75], who used CDC’s National HIV Behavioral Surveil-

lance data from 2008, 2011, and 2014, to study trends in the number and partner

type composition (long-term/casual) of male sex partners among 28,061 US MSM.

According to their reports, the adjusted mean total number of male sex partners in

the past 12 months increased among MSM to 7.7 in 2014. The parameters we chose

for our model: z = 7.31, average number of casual partners, and z̄ = 2, average

number of casual partners outside of long-term partnership, are consistent with the

above findings.

The remaining parameters, including: τ , the mean duration of long-term part-

nership, p/τ the average number of long-term partners per year, n the number of

sexual acts over the duration of long-term partnership, as well as ψ and χ de-

noting the transmission rates from the susceptible and infected long-term partner,

respectively, were already discussed in Sections 2.1.2 and 3.3. The tables with all

parameters and their values are included in Appendix A.

5.2 Uncertainty and sensitivity analysis

Uncertainty and sensitivity analysis are necessary to explore the behavior of

the epidemiological models because their structural complexity comes with a high

degree of uncertainty in estimating the values of many of the input parameters.

Uncertainty analysis may be used to assess the variability in the outcome variable

that is due to the uncertainty in estimating the values of the input parameters. A
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sensitivity analysis can extend an uncertainty analysis by identifying which input

parameters are important (due to their estimation uncertainty) in contributing to

the prediction imprecision of the outcome variable [76]. However, sensitivity analysis

does not say that a given parameter is more important than other parameters. It

only tells us whether the output is sensitive to changes/perturbations of the given

parameter. It could also be a specific combination of parameters that causes the

sensitivity. Sensitivity analysis can be used for:

• Ranking parameters in terms of their importance relative to the uncertainty

in the output.

• Verification and validation of the model. It is a powerful tool to check whether

the system performs as expected.

• Leading further uncertainty quantification towards the parameters that really

matter in an iterative process.

Sensitivity is usually not used for:

• Prediction. The purpose is not to construct a meta-model, a simplified model

of an actual model.

• Determining the importance of one parameter or one feature of the system to

the response. It only looks at the influence of the uncertainty in the input on

the uncertainty of the output.
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5.2.1 Normalized forward sensitivity of R0

Knowledge of the relative importance of the different factors responsible for

transmission is useful to determine best control measures. Initially disease transmis-

sion is related to reproduction number R and sensitivity predicts which parameters

have a high impact on its value. The sensitivity index of R with respect to a pa-

rameter ω is
∂R

∂ω
. Another measure is the elasticity index (normalized sensitivity

index) that measures the relative change of R with respect to ω, denoted by FRω ,

and defined as

FRω =
∂R

∂ω
× ω

R
.

The sign of the elasticity index specifies whether R increases (positive sign) or

decreases (negative sign) with the parameter; whereas the magnitude determines the

relative importance of the parameter. If R is known explicitly, then the elasticity

index for each parameter can be computed explicitly, and evaluated for a given set

of parameters. The magnitude of the elasticity indices depends on these parameter

values, which are often only estimates.

For our model, we will start by calculating elasticity indices of 11 control

parameters, but we will plot only the most relevant ones (F ≥ 0.05): the average

number of casual partners, z, HIV transmission rate per sexual encounter, β, fraction

of population in long-term partnership, p, rate of starting PrEP, θ, rate of stopping

PrEP, σ, and the level of adherence to daily PrEP regime, q. We use previously

calculated expressions for the reproduction number R in each of the cases, as well

as the values of parameters, given in Tables A.1 and A.4, as our baseline parameter
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values to obtain and present the results in Table 5.1 and Figure 5.1.

Table 5.1: Elasticity indices measuring relative change of Rθ with respect
to selected control parameters in PSI model, listed by case.

Case I Case II Case III Case IV

Rθ 3.0314 0.9047 3.7844 3.9368

α -0.0003 -0.0003 -0.0003 -0.0003

z 1.0000 – 0.7609 0.7700

β 1.0000 0.9109 0.9422 0.9798

θ -0.0832 -0.0790 -0.0790 -0.0822

σ 0.0772 0.0733 0.0733 0.0763

q -0.1028 -0.0976 -0.0976 -0.1016

τ – -0.0339 -0.0446 -0.0078

ξ – – – 0.0003

p – 0.950 0.1890 0.2185

cu – -5.1620 -1.0271 -1.1861

z̄ – – – 0.0003

Table 5.1 displays the values of the normalized sensitivity indices in all four

cases, calculated for all of the control parameters, and assuming the baseline pa-

rameter values listed in Tables A.1 and A.4. Each index value can be considered the

effective change in the reproduction number with respect to the applied change in

the given parameter. For example, when we look at Case IV, for every 10% increase

in the fraction of population in long-term partnerships, p, the reproduction number

will increase by 2.185%. However, it will decrease by 1.016% for every 10% increase

in the PrEP use adherence, q.

The plot in Figure 5.1 is a visual comparison of some of the values listed in
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(a) Parameters with most significant impact

(b) PrEP-specific parameters

Figure 5.1: Normalized forward sensitivity of reproduction number R
with respect to (a) select control parameters z, β, p, θ, σ, q, and (b) with
focus on PrEP-specific parameters θ, σ, q. Elasticity (sensitivity) indices
were calculated assuming the baseline parameter values listed in Ta-
bles A.1 and A.4.

Table 5.1. We note that the fraction of incoming PrEP users α, average length of a

long-term partnership τ , the non-exclusivity parameter ξ, and the average number

of casual partners outside of long-term partnership z̄, were omitted due to their in-
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significant impact on reproductive number. On the other hand, the probability cu,

that the infected long-term partners use condom protection, was not plotted since

it seems to have the unusually high impact. This is in part due to its high baseline

value of 0.90, and the fact that a single 10% increase in value would already raise

it to the maximum level of 0.99. We observe, that, in the case with only casual

partnerships (yellow bars in Figure 5.1(a)), the reproduction number R is very sen-

sitive to changes in the average number of casual partners per year, z. However,

once long-term partnerships are considered, then the proportion of individuals in

long-term partnerships, p, takes over part of that impact on the reproduction num-

ber. When looking at all four cases in Figure 5.1(b), it is important to point out

the commonality, and significance of the difference, in the impact that both PrEP

uptake rate, θ, and the adherence to the PrEP treatment, q, have on the value

of R. The magnitude of q is roughly 20% higher than the magnitude of θ, which

might suggest that enforcing a strict regime of the daily medication among those

already in treatment could potentially slow down the disease progression faster than

increasing the number of new PrEP users without perfect adherence. This is more

evident when we consider different values of PrEP uptake and/or default rates.

In Figure 5.2, we compare the sensitivity of the parameters in four different

scenarios of the most comprehensive Case IV. One by one, we either decrease PrEP

default rate σ by half (from 0.2 to 0.1) or double PrEP uptake rate θ (from 0.05

to 0.1, and then from 0.1 to 0.2). At every step of these adjustments, we notice

the most significant increase, by 70%, in the magnitude of index corresponding to

adherence q, while indices for θ and σ change by, at most, 20 − 30%. This result
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Figure 5.2: Normalized forward sensitivity of reproduction number R
in Case IV, with respect to PrEP-specific control parameters: θ, σ, q.
Elasticity (sensitivity) indices were calculated for 4 different scenarios of
PrEP uptake and default rates, specifically the baseline with θ = 0.05
and σ = 0.2 (yellow), decreased rate of stopping treatment σ = 0.1
(green), and the increased uptake θ = 0.1 (teal) and θ = 0.2 (violet).
The rest of the parameters, including PrEP adherence q, are assumed to
have values listed in Tables A.1 and A.4.

confirms, that the adherence becomes especially important when the proportion of

those starting the treatment goes up and the proportion of those stopping PrEP

drops. Our observations agree with the argument of van der Straten et al [77] that

low population uptake and suboptimal adherence can undermine the impact of PrEP

at the population level.

Therefore, it seems, not surprisingly, that the best and fastest way to decrease

the value of reproductive number R would be keeping PrEP uptake high, default rate

low, and at the same time increasing the adherence to the treatment. As mentioned

at the beginning of this section, normalized forward sensitivity is a local measure

of impact that the parameters have on the dynamics of the disease, and depends
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highly on the baseline estimates of these parameters. We now turn our attention to

global uncertainty.

5.2.2 Global uncertainty analysis

In the deterministic model, the output is completely determined by the in-

put parameters and structure of the model. The same input will produce the same

output if the model were simulated multiple times. Therefore, the only uncertainty

affecting the output is generated by input variation. Input factors for most math-

ematical models consist of parameters and initial conditions for independent and

dependent model variables. These, however, are not always known with a suffi-

cient degree of certainty because of natural variations, errors in measurements, or

simply a lack of current techniques to measure them. The purpose of uncertainty

analysis is to quantify the degree of confidence in the existing experimental data

and parameter estimates [78]. To consider the implications of our model in a more

comprehensive manner, in this section we conduct global uncertainty and sensitivity

analysis through Latin Hypercube Sampling (LHS) and Partial Rank Correlation

Coefficients (PRCC). This enables a better understanding of the effects of parameter

values on the amplification patterns we observe across our model simulations. In

our analysis we include six most uncertain model parameters and assign a uniform

probability density function (pdf) to each [79]. The Latin Hypercube Sampling

(LHS) is one of the more sophisticated uncertainty analysis techniques as it allows

for the simultaneous variation of the values of all the input parameters. In LHS the
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estimation uncertainty for each input parameter is modeled by treating each input

parameter as a random variable. Probability distribution functions are defined for

each parameter, marginal distributions are stratified and the value of each input

parameter is then randomly chosen. LHS is an extremely efficient sampling design

because each value of each parameter is used only once in the analysis. A sensi-

tivity analysis is then performed by calculating partial rank correlation coefficients

(PRCC) for each input parameter (sampled by the LHS scheme) and each out-

come variable. Correlation is a statistical technique used to measure the strength

of the relationship between the outcome variables and the input parameters in a

model. Using the residuals obtained from the regression procedure, Partial Cor-

relation characterizes the linear relationship between the LHS parameters and the

outcome variable after discounting the linear effects of the LHS parameters on the

outcome variable (output). PRCC is a robust sensitivity measure for nonlinear but

monotonic relationships between parameters and outputs. This procedure enables

the independent effects of each parameter to be determined, even when the param-

eters are correlated. The sign of the PRCC indicates the qualitative relationship

between each input variable and each output variable. The magnitude of the PRCC

indicates the importance of the uncertainty in estimating the value of the input

variable in contributing to the imprecision in predicting the value of the outcome

variable. The relative importance of the input variables can be directly evaluated by

comparing the values of the PRCC. PRCC is usually the first step in assessing the

global sensitivity of a model on the uncertainties in its parameters. The local analy-

sis (done mainly through calculating/approximating the derivatives with respect to
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the parameters), such as the normalized forward sensitivity discussed earlier, pro-

vides direct information on the effect of small parameter perturbations about their

nominal values, but it does not indicate the effect of concurrent, large perturbations

in all model parameters (in bio-mathematics that is almost always the case). In or-

der to calculate PRCC we simulate exactly those simultaneous large perturbations

in model parameters. The PRCC provides good insight on global sensitivity, that is

which parameters are most influential even if other parameters are simultaneously

perturbed [80].

Table 5.2: PRCC values for control parameters in the PSI model,
grouped by case.

Case I Case II Case III Case IV

z ∈ (3, 10) 0.9972 – 0.8761 0.8765

β ∈ (0.001, 0.015) 0.9801 0.4867 0.9729 0.9725

θ ∈ (0.01, 0.1) -0.8592 -0.1130 -0.2902 -0.2661

σ ∈ (0.1, 0.3) 0.6629 0.0701 0.3182 0.3327

q ∈ (0.3, 0.7) -0.7336 -0.0366 -0.1761 -0.2095

τ ∈ (0.5, 7) – -0.0531 -0.0376 -0.0221

p ∈ (0.35, 0.9) – 0.2729 0.3726 0.3629

ξ ∈ (0.01, 0.5) – – – 0.0042

z̄ ∈ (0.01, 5) – – – 0.0218

Table 5.2 displays the PRCC values in all four cases, for the specified control

parameters, calculated using Latin Hypercube Sampling (LHS) technique on given

intervals around the parameter baseline values listed in the Tables A.1 and A.4.

In Figure 5.3 we plot the same results but only for statistically relevant (p-values

< 0.05) parameters which, based on the magnitude of PRCC being at least 0.3, are
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Figure 5.3: PRCC values for the fraction of infected individuals, calcu-
lated using the LHS method on given intervals of parameter values. The
bars indicate the magnitude and the sign of correlation coefficients for
the selected parameters (labeled below the bars) in each of the cases.
The baseline parameter values (approximately at midpoints of specified
intervals) are given in Tables A.1 and A.4.

classified to be the most influential parameters for the model and highly significant in

the prediction of disease dynamics. The closer the PRCC value is to ±1, the more

strongly the LHS parameter influences the outcome measure. The sign indicates

the qualitative relationship between the input variable and the output variable.

A negative sign indicates that the LHS parameter is negatively correlated with

the outcome measure (fraction of infected individuals i in our case). From the

Table 5.2 and plots in Figure 5.3 we could conclude that in all four cases of our

model, parameters z, the average number of casual partners per year, and β, virus

transmission rate per contact, are the most likely contributors to uncertainty (PRCC

values: 0.8 to 0.99 or −0.8 to −0.99). However, the effect of the remaining, and

statistically relevant parameters illustrated in Figure 5.3, seems to be dependent on
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the case considered. We want to examine more closely the impact that the three

parameters (θ, σ, q) pertaining to PrEP have on the fraction of infected individuals

in the population in Case IV of our PSI model.

Figure 5.4: Comparison of PRCC values for the fraction of infected in-
dividuals in four scenarios of Case IV. The bars indicate the magnitude
and the sign of correlation coefficients for the selected parameters (la-
beled below the bars), calculated after a gradual change of interval for
either PrEP uptake or default rate. The four scenarios include: the base-
line, with θ = 0.05 and σ = 0.2 (yellow), increased uptake rate θ = 0.2
(green), then decreased rate of stopping the treatment σ = 0.1 (teal),
and finally another increase in the rate of starting PrEP θ = 0.4 (violet).
The rest of the parameters are assumed to have values in the intervals
specified in Table 5.2.

Figure 5.4 compares the previously calculated, and listed in Table 5.2, PRCC

values for θ, σ, and q, to the coefficients calculated when the intervals for θ and

σ, with base values as midpoints, are gradually modified before their application in

LHS. The three staggered changes considered are: the increase of the rate of starting

the treatment θ, from 0.05 to 0.2, then decreasing the rate of stopping the treatment

σ, from 0.2 to 0.1, and finally, even more significant increase of the uptake rate to
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θ = 0.4. Even though we did not modify the interval of values for the adherence rate

q, this is the only parameter for which, with each scenario, we observe significant

increase in the PRCC value. This could indicate that the more people start and

continue using PrEP, the more influential the compliance with treatment becomes.

Our conclusion here is consistent with the observation made based on Figure 5.2

in Section 5.2.1, namely that, with low PrEP coverage and high stopping rate, the

small changes in adherence do not significantly affect the dynamics of the disease,

and the benefits of PrEP are not as apparent.

5.3 PrEP uptake and adherence

Sensitivity analysis revealed the degree to which each parameter affects our

model. We confirmed, that the level of adherence q to a daily regime of PrEP

medication (assumed to be 99% effective) and the rate θ of starting the treatment,

both play a significant role in the HIV transmission dynamics. It is important to

acknowledge that pre-exposure prophylaxis adherence is complex and should be un-

derstood within the context of variable risk for HIV infection as well as use of other

HIV prevention methods. Different levels of adherence may be needed in different

populations to achieve HIV prevention, however, the optimal methods for achiev-

ing the necessary adherence for both individual and public health benefits are still

unknown. Because an individual’s risk for HIV acquisition changes over time and

alternative prevention strategies may be used, the indication for PrEP also changes

overtime. PrEP use, for example, may not be indicated if sexual activity is restricted
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to a monogamous relationship with a confirmed HIV-negative partner without other

risk exposures, or if another effective HIV-prevention tool (e.g. condoms) is con-

sistently used. Haberer et al [81] proposed a new approach to understanding and

measuring PrEP adherence, namely prevention-effective adherence, which means

the use of PrEP only during periods of risk exposure such that it leads to effective

protection against HIV acquisition. Understanding this concept may help in identi-

fying otherwise missed opportunities for HIV prevention. For example, individuals

who struggle to use PrEP at certain times in their lives may be able to use it at

others if they are guided through the process of understanding risk and choice of

effective prevention options. Moreover, this concept can lead to efficient PrEP use

that will limit adverse events and costs, and potentially widen availability.

Our model assumes that PrEP adherence q and uptake θ are continuous pa-

rameters, which allows us to analyze a wide range of scenarios that could be applied

to address the needs of a particular population or specific situation. Figure 5.5 il-

lustrates the effect of q and θ on the value of the reproduction number R in each

of the four cases, while all other parameter values in Tables A.1 and A.4 remain

unchanged. The thicker contour line, present on some of the plots, denotes the

threshold value of reproduction number, i.e. R = 1. Absence of such line means

that either the threshold value cannot be reached with the given parameter values

or that the reproductive number is always below one (as in (b) Case II). We ob-

serve that, when only casual partnerships are considered (Figure 5.5(a)), then, if

the rate of starting PrEP is above 0.5, we can always pinpoint the rate of compli-

ance needed to reach R < 1, and eventually eliminate the disease. However, the
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 5.5: Contours of reproduction number R plotted as a function
of θ, the rate of starting PrEP, and q, the level of adherence, assuming
the baseline parameter values listed in Tables A.1 and A.4, and PrEP
effectiveness of 99%. Each region shows the PrEP uptake rates and levels
of compliance needed to reach values of R between the corresponding
contour curves.

minimum level of compliance needed in this case ranges from 85%, when θ ≈ 1, to

100%, when θ ' 0.5. In a population with only monogamous long-term partner-

ships (Figure 5.5(b)), regardless of the PrEP uptake rate and patients’ compliance

level, the reproductive number R is always less than one, likely due to high condom
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use and HAART treatment. Lastly, when we look at the cases with both casual

and long-term partnerships (Figure 5.5(c,d)), we notice that only with very high

values of the rate of starting PrEP, 0.8 < θ ≤ 1, we can find the adherence level

q > 0.95, needed to lower the reproductive number below unity, all while assuming

the remaining parameters stay at the baseline values listed in Tables A.1 and A.4.

In Figure 5.6 we concentrate on Case IV and explore the impact of changes in

the treatment default rate σ on the value of the reproduction number. Figure 5.6(a)

shows that if the number of PrEP users who stop the treatment is cut in half (σ

lowered from 0.2 to 0.1), then, with sufficiently high (above 88%) compliance, it

would be possible to cross R = 1, even when only 40% of susceptibles start using

PrEP (θ ≥ 0.4). If the default rate σ is lowered even more, to 0.05 (Figure 5.6(b)),

then, without changing the level of treatment adherence, the minimum uptake rate

needed to reach R = 1, would go down to approximately θ = 0.25. However, if

the condom usage among all partners, and not just infected long-term partners, is

increased to 50%, then reaching the reproduction number needed to eliminate the

disease, would be possible even with the uptake rate as low as θ = 0.2, provided

that the PrEP compliance q is sufficiently high (see Figure 5.6(c) and (d)).

Another noteworthy observation is the minimal (approximately 5%) decrease

in the adherence needed to lower the reproduction number to less than 1, when the

rate of starting PrEP θ more than doubles. Specifically, in the case with σ = 0.01

and 50% across-the-board condom usage (Figure 5.6(d)), when PrEP uptake rate θ

is 30%, then 85% compliance is sufficient, but it cannot be lower than 80%, when

the percent of susceptible individuals starting the treatment is doubled and equal
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(a) σ = 0.1 (b) σ = 0.05

(c) σ = 0.1 and 50% condom users (d) σ = 0.05 and 50% condom users

Figure 5.6: Impact of the changes in the the rate of stopping PrEP, σ,
on the reproduction number R in Case IV. The contours represent the
values of reproduction number R, plotted as a function of θ, the rate of
starting PrEP, and q, the level of adherence. The plots (a) and (b) do
not consider any changes other than lowered treatment default rate, as
indicated under each plot. Plots (c) and (d) include additional change,
namely assumption that in 50% of all sexual encounters the partners
use condoms to lower their chances of infection. So far our assumption
was that only those in long-term partnerships with an infected individual
use condoms as protection. All the remaining parameters are set at their
baseline values listed in Tables A.1 and A.4.

60%. This, once again, suggests that focusing on increasing the level of adherence

to treatment among those already using PrEP could possibly be a better strategy
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than recruiting more patients into treatment.

Table 5.3: PrEP uptake and adherence needed to reach the reproduction
number R < 1 in Case IV with σ = 0.01.

θ q β R

0.70 0.81 0.0075 0.994

0.30 0.85 0.0075 0.990

0.15 0.92 0.0075 0.984

0.10 0.99 0.0075 0.978

0.10 0.80 0.0045 0.982

Following our last observation and focusing on Case IV, we identify, and list

in Table 5.3, five different sets of PrEP uptake rate and adherence values, needed to

reach the reproductive number R < 1. The rate of stopping PrEP is assumed to be

σ = 0.01, and the remaining parameters are kept at their baseline values listed in

Tables A.1 and A.4. The examples listed are consistent with our earlier observation,

that regardless of the PrEP uptake rate, the focus should certainly be on making

sure nearly all PrEP users are following the treatment plan and not missing any

doses. It is possible to end the epidemic with only 10% coverage but that requires

nearly perfect adherence. If that is not feasible, and if we want to account for

occasional missed dose (missing one dose per week is equivalent to q = 0.85), the

coverage would need to be increased to 30%. The exception is the last scenario,

where we additionally assume that 60% of all sex acts involve condom use, lowering

the transmission rate β from 0.0075 to 0.0045. In that case, the rate of starting

PrEP θ = 0.1 will suffice as long as the compliance stays above 80%.
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The degree of the trade-off between θ and q in Case IV is illustrated in Fig-

ure 5.7, where we plot sensitivity of the reproductive number to the perturbations

of these two parameters. We pointed out in Section 5.2.1 that normalized sensitiv-

ity often depends on the assumed starting values of the parameters. The contour

plots allow us to determine how sensitive R is to changes in θ (Figure 5.7(a,b))

and q (Figure 5.7(c,d)), for different baseline values of both, while at the same time

assuming two different values for the rate of stopping PrEP, σ = 0.2 (our current

estimate in Table A.4) and much lower σ = 0.01. The regions between the curves

correspond to the values of an elasticity index, as defined in Section 5.2.1, where

the higher magnitude indicates more significant impact. For example, looking at

Figure 5.7(a), in particular the region corresponding to θ < 0.1 (which includes our

estimate in Table A.4), we can see that the magnitude of index FRq stays below 0.3,

regardless of the value of q, which means that for every 10% increase in adherence

q, the reproductive number decreases by less than 3%. However, if we assume that

only 1% of PrEP users stop the treatment (i.e. σ = 0.01), then with θ = 0.1, the

significance of q rises very fast; assuming q = 0.5, its 10% increase will result in

roughly 6% drop in the value of R; whereas assuming q = 0.7, R will decrease by

12− 15% for every 10% increase in the value of q. In a nutshell, we can say that the

reproductive number is the most sensitive to changes in q for higher PrEP uptake

rates, and to changes in θ, when treatment adherence is nearly perfect.
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(a) Elasticity index FRq when σ = 0.2 (b) Elasticity index FRq when σ = 0.01

(c) Elasticity index FRθ when σ = 0.2 (d) Elasticity index FRθ when σ = 0.01

Figure 5.7: Changes in elasticity of Case IV reproductive number R with
respect to PrEP uptake rate θ and treatment adherence q. The contours
indicate the values of elasticity indices FRq , in (a)-(b), and FRθ , in (c)-(d),
for the full range of starting values of these parameters. Sensitivity to
each parameter is calculated assuming PrEP default rates σ = 0.2 and
σ = 0.01 and the remaining parameter values as listed in Tables A.1
and A.4.

5.4 Time series

Time series analysis has proven to be very useful within environmental epi-

demiology studies particularly with understanding the effect of common exposures to
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health outcomes across time. Such common exposures can include, but are not lim-

ited to, pollen, air pollution, weather, drinking water quality, walking, or any other

time-varying environmental agent. Researchers have also demonstrated the util-

ity of time series regression analysis towards understanding short-term association

between time-varying exposures with outcomes. However, a number of measured

and unmeasured time-varying confounders (i.e. extraneous variables whose presence

affects both the independent and dependent variables being studied) can bias the

relationship between the main exposure and an outcome (i.e. the results may not re-

flect the actual relationship between the variables under study). While unmeasured

confounders cannot directly be included as explanatory variables into a time series

regression, approaches to overcome their confounding effect can include smoothing

functions into the model. The approach can be computationally complex and diffi-

cult to interpret, but generally helps in capturing longer-term variation inherent to

unmeasured or unforeseen covariates that were not directly measured [82].

Our model, as is usually the case, has its limitations, which we discuss in detail

in Section 6.2, and hence the time series may not necessarily reflect accurate long-

term behavior. All parameters included in our model are assumed to be constant

and independent of each other. In reality, however, many of them would likely

depend on factors such as time and place, age and race of an individual, possible

viral suppression lowering the infectivity, or newly developed preventive strategies

put into place. In addition, we showed in previous sections the impact of the change

in one parameter on some other parameters, as well as on the reproductive number

or the fraction of infected individuals. With that in mind, time series plots should
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be treated as an illustration of the future behavior of the disease, provided that the

current conditions were to stay unchanged over time. We use time series mainly to

demonstrate the differences (and similarities) between our four cases of PSI model,

and the disease dynamics in the first 5− 10 years.

Figure 5.8 illustrates the disease progression in all four cases analyzed in earlier

chapters: (a) only casual partnerships; (b) only long-term partnerships with infected

individuals; (c) combination of both casual and long term partnerships with infected

individuals; and lastly (d) non-monogamous long-term partnerships. For each of the

cases, we plot (bold curves) the fractions of population in the three groups over time

(in years) to show the long-term effect of PrEP on the number of susceptible and

infected individuals, with thin lines illustrating the steady states. Solid green “—

” represents susceptible PrEP users (P ), dashed blue “- -” refers to susceptibles

not using PrEP (S), and dotted red “···” indicates infected (I). It is important to

note that the shown results are based on assumed values for the average number of

casual partners per year z, fraction of population in long-term partnerships p, mean

duration of a long-term partnership τ , and other parameters listed in Tables A.1

and A.4.

We observe a very different behavior in the case when only long-term partner-

ships with infected individuals are considered. With the values of parameters chosen

as listed in Tables A.1 and A.4, the model in Case II approaches the disease-free

equilibrium. The remaining three cases, all exhibit very similar behavior, with the

susceptible group S (dashed blue “- -” curve) decreasing and the infected group

I (dotted red “···” curve) increasing before eventually reaching the endemic equi-
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(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 5.8: Time series comparison of all the cases including (a) Case I:
casual-only, (b) Case II: long-term only, (c) Case III: casual with infected
long-term, and (d) Case IV: all partnerships combined. Corresponding
graphs show all three groups as fractions of population (bold curves)
over 200 years to illustrate the differences in the disease dynamics as
well as time needed to reach the endemic equilibria (thin lines). The line
style helps distinguish between the groups: solid green “—” illustrates
susceptible PrEP users (P ), dashed blue “- -” refers to susceptibles not
using PrEP (S), and dotted red “···” indicates infected (I).

librium. When comparing the long-term behavior of these three graphs, it is evi-

dent that the time to equilibration varies, with the longest being when only casual
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partnerships are considered and the shortest when both casual and long-term are

included. The equilibrium value of the fraction of infected individuals (indicated

by the thin dotted red lines “···” on each graph) is the lowest in the casual-only

case and roughly 10% higher in the combined cases. This confirms the importance

of considering long-term partnerships, suggesting that when long-term partnerships

are taken into account then the effect of PrEP on curbing the spread of the disease

and lowering the number of infected individuals is not as evident as when only casual

partnerships are included in the model. This observation is, of course, based on the

assumed parameter values listed in Tables A.1 and A.4.

It is hard not to miss the startling similarity of the plots in Figure 5.8(c,d)

corresponding to Case III and Case IV. One might even think that they are the same.

However, we need to keep in mind that Case IV is the only model accounting for

the presence of non-monogamous long-term partnerships with initially susceptible

individuals, which is a difference worth exploring.

In Table 5.3, we listed few possible combinations of values for parameters θ

and q in Case IV, needed to lower the reproductive number R below unity, and

ensure that the model eventually reaches disease-free equilibrium. In Figure 5.9

we plot time series curves over 20-year period for the top four scenarios (all with

β = 0.0075) in Table 5.3. We observe that, as the uptake rate θ goes down from 0.7

to 0.1, by 33− 57% each time, the fraction of infected individuals in the population

still decreases towards 0 in every scenario, and at roughly the same slow rate, even

though the compliance q is increased by only 5− 8% at the time.
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(a) θ = 0.7, q = 0.81, R = 0.994 (b) θ = 0.3, q = 0.85, R = 0.990

(c) θ = 0.15, q = 0.92, R = 0.984 (d) θ = 0.1, q = 0.99, R = 0.978

Figure 5.9: Time series of a model in Case IV with reproduction number
R < 1. Each plot corresponds to a different set of possible parameter
values (listed in Table 5.3, needed for the model to reach DFE. The
values of changing parameters θ and q, as well as the resulting R, are
specified in captions. The remaining parameters have the values listed
in Tables A.1 and A.4.

5.5 Comparison of the rates of infection

We noticed in Figure 5.8 that the plots in Cases III and IV are nearly identical,

but we also pointed out the one specific, and very important, difference between the

corresponding models, namely the presence of long-term partnerships with initially
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susceptible individuals. The effect of this added scenario is reflected in the rate of

infection in Case IV, specifically in the λ
S/P
p part (4.40), derived in Section 4.2. In

a nutshell, to contribute to the spread of disease, an initially susceptible long-term

partner has to first become infected. The percent of initially susceptible long-term

partners, who engage in a casual sexual act with an infected individual, outside of the

long-term partnership, is reflected in the non-exclusivity parameter ξ, assumed here

to be 26.2% . The chances of transmission from one sexual encounter are assumed to

be 0.75% (value of parameter β). Combined, these two quantities suggest that the

probability of the initially susceptible long-term partner getting infected is less than

0.2% per sexual act. Adding to the mix the pre-exposure prophylaxis for susceptible

individuals as well as widely available HAART treatment for potential HIV-positive

casual partners, the probability of becoming infected through an initially susceptible

long-term partner is, as should be expected, very low. Nevertheless, despite being

less significant, the long-term partnerships with initially susceptible partner are still

important to acknowledge in the model calculations and analysis.

Figure 5.10 is a visual comparison of the rates of infection λ in all four cases

of our model, calculated as disease progresses with time. When we look at all the

curves, we notice a significant difference in the rates of infection for the Cases I,

II, and III. The curve for Case II (dashed green “- -”), corresponds to long-term

partnerships with infected individual, and is consistent with the time series plot in

Figure 5.8(b), where we observe slow decrease in the fraction of infectives, leading

to eventual eradication of the disease. We recall our assumption that majority of

infected MSM are getting HAART treatment and use condom protection, which
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Figure 5.10: Comparison of the rates of infection λ in all four cases of
PSI model. Values of λ in each case were calculated for the period of
100 years, using the parameter values listed in Tables A.1 and A.4.

together greatly minimize the risk of virus transmission. The curve corresponding

to Case I (dotted red “···”) reflects the constant annual change (increase) in the rate

of infection λz, derived in equation (3.3) in Section 3.2. When casual partnerships

and long-term partnerships with infected individuals are combined in Case III (solid

blue “—”) in Figure 5.10, the rate of infection increases even faster than in Case I,

due to the possibility of both types of behaviors taking place during the same year

(our unit of time). The risk of infection in Case III comes from frequent exposure

to the virus through repeated sex with the same infected long-term partner and

is additionally increased by likely condom-less casual encounters. Finally, we can

see that the curves corresponding to Case III and Case IV are very similar, but

not identical, which lets us conclude that, despite the nearly identical time series

plots in Figure 5.8(c,d), the addition of non-exclusive long-term partnerships with
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initially susceptible individuals in Case IV does affect the overall rate of infection

for the model.

Figure 5.11: The absolute and relative differences between the rates of
infection in Case III and Case IV of PSI model. Differences in the
values of λ were calculated over time, using the parameter values listed
in Tables A.1 and A.4. Relative differences indicate the percent by which
λ in Case IV is greater than λ in Case III.

In order to quantify the impact of adding the non-monogamous long-term

partnerships with initially susceptible individuals to our model, we plot both the

absolute and relative differences between the rates of infection in Case III and Case

IV for the period of 100 years. Figure 5.11 shows that, as disease progresses, the

infectivity in Case IV is, at all times, approximately 4− 9% higher than in Case III.

So far we have been using our model, with 2019 data as initial conditions, to

get the estimates about the future of the epidemic. Changing the initial conditions

in our model to reflect 2012 prevalence estimated by CDC lets us test the model in

predicting the total number of MSM individuals living with HIV, every year till 2022.

Figure 5.12 illustrates how these predictions compare to 2012-2019 data reported by
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CDC [3]. We notice that calculated 2012-2015 prevalence values fit relatively well

with data, but beginning with year 2016 the difference between modeled values and

CDC’s estimates starts increasing.

Figure 5.12: Comparison of the total number of MSM living with HIV
(prevalence) estimated by CDC [3] and calculated using Cases III and IV
of our PSI model. CDC data is marked with blue × (×), while values
obtained by us for Case III and Case IV are marked with red triangle
(I) and green circle (•), respectively.

There are many possible explanations for the disparity between our results and

data from HIV Surveillance report [3]. One of them is the reliability of available data.

CDC warns us to use caution when interpreting data on diagnoses of HIV infection.

HIV surveillance reports may not be representative of all persons with HIV because

not all infected individuals have been tested or diagnosed. In addition, the results of

anonymous tests, allowed in some states, are not reported to the confidential name-

based HIV registries of state and local health departments. Therefore, reports of

confidential test results may not represent all persons who tested positive for HIV
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infection. The data presented in the report provide minimum counts of persons for

whom HIV infection has been diagnosed and reported to the surveillance system.
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Chapter 6: Conclusions

6.1 Summary

The focus of this work was the development of a deterministic PSI model to

study the effects of pre-exposure prophylaxis (PrEP) on HIV transmission among

MSM. We assumed that PrEP does not provide full protection but lowers the prob-

ability of becoming infected by a factor of (1− qr), with q and r denoting treatment

adherence and effectiveness, respectively. In our model the susceptible population

is separated into two groups, those who are using daily pre-exposure prophylaxis

pills and those who are not. Individuals may transition between the two groups at

the corresponding rates of starting and stopping PrEP. The rate at which suscep-

tible individuals start using PrEP is an important aspect of the fight against HIV,

hence increasing the PrEP coverage may seem like a logical intervention. However,

the most common concerns among the health professionals and policy makers are

the high cost of the treatment per individual and the lowered effectiveness of PrEP

when daily medication regime is not strictly followed. With that in mind, proper

estimates of PrEP uptake and adherence are very important. We relied on the most

recent estimates to select the baseline parameter values, listed in Tables A.4 and A.1,
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that are consistent with current literature [67–69]. We then used our deterministic

model, with its unique, as far as we know, feature of having all continuously-valued

parameters related to PrEP use, to look closely at the effects of varying the up-

take rate θ, default rate σ, and the degree of compliance q on the disease dynamics

(Figures 5.5, 5.6, and 5.2). The standard approach is to either stratify the popula-

tion, based on one or more of the characteristics, and compare the outcomes within

the respective groups, or roll the estimated value into another parameter [17, 83].

For example, many researchers distinguish between low and high levels of adher-

ence [13, 22], or high and low-risk sexual activity [84], by using different infectivity

rates for each group, while others assume the same level of compliance or number

of sexual partners for the whole population and adjust the transmission rate [23]

or PrEP efficacy [29, 84] accordingly. Our parameters can take on any value in the

feasible range to allow for simultaneous changes to any number of these parameters

and drawing conclusions about various aspects (parameter correlation, reproductive

number, incidence, prevalence, etc) of the model behavior in general.

An important consideration in the study of communicable disease dynamics

is the role of long-term partnerships in the spread of incurable illness [31, 85]. Our

previous work [30] compared the long-term partnership model, described here in

Chapter 2.2, to traditional partnership models that explicitly track partnerships for

HIV and HSV-2, both incurable diseases affected by long-term partnerships. The

techniques presented there are applicable to a wide range of other incurable diseases

affected by long-term partnerships. In the model described in this work, we con-

sidered both casual (one-time) and long-term (steady) partnerships, alongside the
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pre-exposure prophylaxis, and derived the rates of infection, calculated the repro-

duction numbers, addressed the uniqueness of the endemic equilibrium, and proved

local and/or global stability of disease-free and endemic equilibria in four different

cases of our PSI model. It is important to note that, when long-term partnerships

are considered, the conditions that imply stability of the equilibrium are more dif-

ficult to achieve. The main issue, to our knowledge never addressed before, was

acknowledging the presence of long-term partnerships between the initially sero-

concordant and HIV negative individuals, who are not only able to start or stop

PrEP treatment anytime during their long-term partnership, but may also engage

in outside-the-partnership casual sexual behavior, become infected, and transmit

the virus to their long-term partner. The derivation of the rate of infection in this

challenging situation involved applying a combination of Markov Chains, survival

functions, and linear approximation to the expected value of infected individuals. In

the end, through extensive analysis and numerical simulations, we were able to show

that the disease dynamics differed based on the types of partnerships considered.

Time series plots (5.8) provide a good overview of the differences in the disease

progression among the four analyzed cases, where we can see varied time to equili-

bration as well as a range of endemic values for the fraction of infected individuals,

between 68%, in casual-only case, to 75%, when both casual and long-term part-

nerships are taken into account. To further show the differences between the cases,

the explicitly derived rates of infection in each of the four cases, evaluated at our

baseline parameter values listed in Tables A.1 and A.4, are compared in Figure 5.10

to help visualize the impact of adding more partnership options into the model.
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The addition of an imperfect vaccine into epidemiological model with death

due to disease is believed to cause a phenomenon of backward bifurcation. Simpson

and Gumel [22] indicated the possibility of backward bifurcation when PrEP is

introduced to their model, even with no disease mortality. Using the techniques

of Martcheva [47], we derived the conditions needed to investigate the existence of

backward bifurcation when R < 1 in our model. Our continuum of the rate of

PrEP adherence, rather than two distinct levels used by Simpson and Gumel [22],

allowed us to go further and carefully show that the bifurcation conditions could

not be satisfied within the feasible ranges of parameter values. We were able to

conclude the lack of backward bifurcation in three out of the four cases, which

was also supported with the proofs of global stability of disease-free and endemic

equilibria. As mentioned above, the complexity of derived quantities in the most

general and complicated of our four cases, Case IV in 4.2, made the analytical

proof of global stability of equilibria unfeasible. Instead, we showed local stability

of DFE and, based on the work of Sharomi et al [65] and our extensive numerical

simulations, we expressed our belief in the high likelihood of global stability and a

lack of backward bifurcation. Sharomi et al [65] proved that the mass action model

(with or without differential infectivity and/or staged-progression) has a globally

asymptotically stable disease-free equilibrium with no endemic equilibrium when

R < 1, and a unique endemic equilibrium when R > 1. According to them, this

result also applies to models like ours, with standard incidence and constant total

population, which are essentially mass action models.

Our sensitivity analysis (Figure 5.1) showed minimal impact of uptake and
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adherence to daily PrEP regime on the reproduction number. With the base values

of θ = 0.05 and q = 0.5, we observed that increasing q or θ by 10% would decrease

R by roughly 1%, regardless of the types of partnerships considered. On the other

hand, assuming the starting value of θ = 0.2 (Figure 5.2), the reproductive number

R would drop by over 4%, for every 10% increase in q. Related to that are the

conclusions we made based on Figures 5.5 and 5.6 when looking for the values of

parameters that would help eliminate the disease. We noticed a very small differ-

ence in the PrEP adherence needed among the users, even when the uptake rate is

doubled.

Even though we were not able to find in the current literature any models

that contained all of the same aspects as our model, through the simulations and

hypothetical conditions, we managed to obtain the results that are consistent with

the work of others. For example, Nsuami et al [83] assumed in their model, describing

the population dynamics of HIV/AIDS in the context of South Africa, that 1%

of the susceptible individuals take PrEP and then suggested that increasing it to

3% will lower the reproduction number below unity. However, Nsuami et al [83]

also assumed 100% efficacy of PrEP, a very low stopping rate equal to 0.001, and

no consideration for PrEP treatment adherence. Our simulations in Section 5.3

revealed that under similar conditions (low default rate σ = 0.05 and nearly perfect

compliance q), even with low 10% uptake rate (see Table 5.3) we can reach R < 1.

Furthermore, if we lower our estimated rate of virus transmission, β = 0.0075, to be

closer to Nsuami et al’s [83] value of 0.00058, then the rate of stopping PrEP could be

decreased significantly more. On the other hand, Jenness et al [21] used agent-based
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model simulations to make a conclusion similar to ours, that lower PrEP coverage

with optimal adherence is more effective than increased coverage with poor overall

adherence. However, our numerical calculations do not support their estimates that

treating 40% of those eligible for PrEP (equivalent to our θ = 0.05), with only 62%

compliance to treatment, is enough to bring the end to the epidemic. We believe a

much higher adherence to daily medication, or possibly an introduction of a single-

dose alternative, would be needed to reach the goal set by the Ending the HIV

Epidemic campaign [4].

6.2 Limitations

We recognize that the presented results come with certain limitations. In

Chapter 2.2, and in our previous work [30], we acknowledged the differences in the

levels of infectivity among those in the acute and chronic stages of infection, but

in the PSI model presented in Chapters 3.1 through 4.2, we instead focused on

the effects of PrEP and hence included only one infected group. In addition, when

considering long-term partnerships, we distinguished between those with already in-

fected individuals and those with initially susceptible individuals (only included in

Case IV). Introduction of the exclusivity parameter allowed us to study all possible

partnership formation scenarios in the model but added significant level of diffi-

culty when calculating the corresponding rate of infection and then performing the

analysis of the disease transmission. However, when comparing the results obtained

in Cases III and IV, despite having introduced additional means of the spread of
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disease through non-monogamous long-term partners, we observed very small differ-

ences resulting from the presence of this scenario. This could mean that the model

in Case III is a sufficient alternative to the model in Case IV, which considers all

possible partnership scenarios.

As mentioned before, proper estimates of parameters related to pre-exposure

prophylaxis, such as PrEP uptake, default, and adherence rates, are very important.

Unfortunately, the values of these parameters vary widely in the literature. Puny-

acharoensin et al [18] used 0.0252 and 2.7×10−7 as the respective rates of initiating

and terminating the PrEP treatment in the UK. Simpson and Gumel [22] assumed

0.01 overall rate of administration and 0.005 (0.0001) rate of cessation of PrEP by

low-adherent (high-adherent) users in Minnesota, USA. On the other hand, in the

number of different studies across USA, the PrEP discontinuation rate was observed

to be 38% (Hojilla et al [86]) and 40% (Chan et al [87]). The estimates of the PrEP

adherence rate in the literature also vary, with researchers assuming it to range from

20% to 100% [21,22,67], and possibly including over-reporting [88].

Another issue affecting our results is the assumption of all parameters be-

ing constant over the years. Extensive ongoing research on different aspects of

HIV/AIDS epidemic means more reliable data, new findings, improvement of treat-

ment and prevention methods, as well as higher awareness of the resources available

to those who are infected and those at risk of infection. These suggest that certain

parameters used in the model should be at the very least time-dependent. For ex-

ample, Tan et al [50] pointed out that due to the awareness of AIDS, people may

reduce their numbers of different sexual partners per month as time increases. To
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account for this, they let the average number of different sexual partners per unit

time be a function of time. Similarly, the condom use, PrEP uptake rate, and ad-

herence have changed significantly over the years. CDC states that in 2020 about

25% of the 1.2 million people for whom PrEP is recommended were prescribed it,

compared to only about 3% in 2015 [1]. Unfortunately, an increase in PrEP use

by gay and bisexual men was accompanied by a significant decrease in consistent

condom use. In their work, Holt et al [89] concluded that in 2013 1% of MSM re-

ported condomless anal intercourse with casual partners (CAIC), compared to 5%

in 2016 and 16% in 2017. Another study, done by Ayerdi Aguirrebengoa et al [90],

analyzed the data from multiple PrEP trials involving MSM population, and found

that before PrEP, 85.4% of participants used condoms usually (> 50%) in anal in-

tercourse; 10.0% occasionally and 4.5% never. In contrast, after PrEP, only 30.0%

of participants used condoms usually, 50.0% occasionally and 20.0% never.

It is also important to note that not all susceptible MSM individuals are eligible

for PrEP, so the uptake rate should not be applied to our whole group S, and it

might be beneficial to include in the model a subgroup of susceptibles who are

approved to try PrEP. Added benefits of this adjustment could be more accurate

model estimates of the number of PrEP users over time, and the infectivity rate

among them due to regular HIV testing requirements.
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6.3 Ending the epidemic

We have done a significant amount of analysis, both from algebraic and nu-

merical point of view, but there is still one question to be answered: “What will it

take to end the HIV epidemic?”

The United States, along with other United Nations member states, have set

the goal of ending HIV as a global health threat by 2030. Here in the United States,

the Ending the HIV Epidemic [4] initiative aims to reduce HIV incidence by 90% by

that same deadline. Over the past 20 years, there has been an enormous progress

made against HIV/AIDS. Today, 28.2 million more people are accessing life-saving

treatment that did not exist 30 years ago. New HIV infections have declined by

31% since 2010. HIV incidence declined by 8% from 2015 to 2019 [3]. However, the

epidemic persists. In 2019, the estimated number of HIV infections in the U.S. was

34, 800 and the rate was 12.6 (per 100, 000 people). According to the most recent

report from UNAIDS [91], of the 38 million people living with HIV, 10 million lack

access to the medicines they need to live healthy lives. Prevention also remains a

key challenge and an unmet target, with 1.5 million new HIV infections around the

world in 2020 alone. The US President’s Budget for 2023 includes a proposal of

$237 million - $9.8 billion over 10 years - to increase access to PrEP [92]. These

resources would help address racial, ethnic, and gender health disparities in PrEP

uptake, which is a key goal of the National HIV/AIDS Strategy.

Through extensive numerical simulations of our model, we have shown that

with low PrEP uptake rates and the current lack of patients’ consistency in keeping
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up with daily medication, as well as the present rates of treatment discontinuation,

the benefits of PrEP are not as apparent as they should be, considering the very high

efficacy of the drug. We believe that, in order to maximize the potential of PrEP

and start seeing significant decrease in the HIV incidence among MSM, we would

need to reach and maintain nearly perfect overall compliance with the full treatment

plan. A game changer in the fight against HIV could potentially come from exciting

biomedical innovations currently in development. For example, injectable prevention

and treatment, Apretude, is newly available [93]. However, the funding and systems

of healthcare delivery are not fully evolved to support the full implementation of it

to the general public. Since this type of pre-exposure prophylaxis would eliminate

the need for daily pill, the problem of low adherence would be nearly non-existent,

and therefore, as shown in Figure 5.6(d) and the fourth scenario in Table 5.3, even

relatively low rate of initiating PrEP treatment would make it possible to end the

epidemic, especially if the overall condom use increased.
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Appendix A: Tables

A.1 Partnerships parameters

A.2 SI model without PrEP

A.3 SI1I2 model without PrEP

A.4 PSI model with PrEP
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Table A.1: Parameters pertaining to partnerships and included in the models.

Parameter Description Value Ref

z Average number of casual partners per year 7.31 (1/year) [36]

β Transmission rate per one sexual act 0.0075 [48]

τ Mean duration of long-term partnership 3.57 (years) [36]

p

τ
Average number of long-term partners per year 0.203 (1/year) Sec. 2.1.2

n Number of sexual acts over the duration of long-
term partnership

104τ [36]

ceff Condom effectiveness 95% [36]

cu Condom usage by infected long-term partners 90% [36]

c Transmission rate adjustment factor due to con-
dom use

(1− cuceff ) Sec. 2.1.2

χ Transmission rate from the infected long-term
partner per year

p

τ
[1− (1− 0.2cβ)n] Sec. 3.3

ψ Transmission rate from the initially susceptible
partner

p

τ
β Sec. 2.1.2

ξ Average probability of outside-partnership casual
sexual act (non-exclusivity)

0.262 [36]

z̄ Average number of outside-partnership casual sex-
ual acts

2 (1/year) assumed
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Table A.2: General parameters included in SI model illustrated in Figure 2.1 and
described by equations (2.1)

Parameter/variable Description Value Ref

N0 Estimated total MSM population 7.10 (million) [66]

S Susceptible population 6.57 (million) [1]

I Infected population 0.53 (million) [3]

µ Population removal rate 1/61 (1/years) [1]

π Population recruitment rate µN0 assumed constant

λ Rate of infection derived model-specific
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Table A.3: General parameters included in SI1I2 model illustrated in Figure 2.2
and described by equations (2.17)

Parameter/variable Description Ref

N0 Total population [66]

S Susceptible population -

I1 Acutely infected population -

I2 Chronic (latent) population -

µ Population removal rate [1]

π Population recruitment rate µN0

γ Rate of transition from I1 to I2 [30]

η Rate of transition from I2 to I1 [30]

λ Rate of infection model-specific
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Table A.4: General parameters included in PSI model illustrated in Figure 3.1 and
described by equations (3.1).

Parameter Description Value Ref

N0 Estimated total MSM population 7.1 (million) [66]

P0 Estimated number of MSM PrEP users 0.2 (million) [3]

S0 Estimated size of susceptible MSM group not
using PrEP

6.4 (million) [3]

I0 Estimated size of infected MSM group 0.5 (million) [3]

µ Population removal rate 1/61 (1/years) [2]

π Recruitment rate µN0

α Fraction of the newly recruited PrEP users 0.01 proposed

θ Rate of starting PrEP 0.05 [3]

σ Rate of stopping PrEP 0.2 [69]

q Level of adherence to PrEP treatment 50% [94]

r PrEP effectiveness 99% [4,5]

λ Rate of infection derived case-specific
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Appendix B: Background theory

B.1 Reproduction number

The usual approach to calculating reproduction numbers follows the secondary

cases caused by a single infective introduced into a population. However, if there

are subpopulations with different susceptibility to infection, as in the vaccination

models, it is necessary to follow the secondary infections in the subpopulations

separately, which would not yield the reproduction number. To address the issue, a

more general approach to the meaning of the reproduction number is needed, and

this is done through the next generation matrix [39, 40]. The underlying idea is

that we must calculate the matrix whose (j, k) entry is the number of secondary

infections caused in compartment j by an infected individual in compartment k.

Individuals are sorted into compartments based on a single, discrete state variable.

Suppose:

• n and m - number of disease and non-disease compartments, respectively;

• x ∈ Rn and y ∈ Rm - subpopulations in each of the compartments;

• gk - rate of growth of the compartment yk;

• Fj - rate at which secondary infections increase the xj;
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• Vj - rate at which progression/death/recovery decrease the xj.

The compartmental model can then be written in the form

x′j = Fj(x, y)− Vj(x, y), j = 1, ..., n,

y′j = gk(x, y), k = 1, ...,m.

(B.1)

The derivation of the basic reproduction number is based on the linearization of the

ordinary differential equation model about a disease-free equilibrium (0, y0). The

following assumptions are made to ensure the existence of this equilibrium and to

ensure the model is well posed:

(i) Fj(0, y0) = 0 and Vj(0, y0) = 0 for all y ≥ 0 and j = 1, , n - all new infections

are secondary infections arising from infected host and there is no immigration

of individuals into disease compartments;

(ii) y′ = g(0, y) has a unique equilibrium (0, y0) that is asymptotically stable and

is referred to as the disease-free equilibrium;

(iii) Fj(x, y) ≥ 0 for all nonnegative x and y and j = 1, ..., n - F represents new

infections and can’t be negative;

(iv) Vj(x, y) ≤ 0 whenever xj = 0, j = 1, ..., n - Vj represents a net outflow from

compartment j and must be negative when the compartment is empty;

(v)
∑n

j=1 Vj(x, y) ≥ 0 for all nonegative x and y - total outflow from all infected

compartments.

Assumption (i) ensures that the disease-free set, which consists of all points

of the form (0, y), is invariant. That is, any solution with no infected individuals at
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some point in time will be free of infection for all time. This in turn ensures that

the disease-free equilibrium is also an equilibrium of the full system.

Suppose a single infected person is introduced into a population originally free

of disease. The initial ability of the disease to spread through the population is

determined by an examination of the linearization of the system (B.1) about the

disease-free equilibrium (0, y0). Then

Fj(x, y) ≈ Fj(0, y0) +
∂Fj
∂xk

∣∣∣∣
(0,y0)

(xk − 0) +
∂Fj
∂yk

∣∣∣∣
(0,y0)

(yk − y0),

Vj(x, y) ≈ Vj(0, y0) +
∂Vj
∂xk

∣∣∣∣
(0,y0)

(xk − 0) +
∂Vj
∂yk

∣∣∣∣
(0,y0)

(yk − y0).

From the assumption (a), that Fj(0, y) = 0 and Vj(0, y) = 0, it’s easy to see that

∂Fj
∂yk

(0, y0) =
∂Vj
∂yk

(0, y0) = 0, for every pair (x, y). This implies that

x′ = (F − V )x, (B.2)

where F and V are the n × n matrices with entries F =
∂Fj
∂xk

(0, y0) and V =

∂Vj
∂xk

(0, y0), respectively. Because of the assumption (ii) above, that y′ = g(0, y) has

a unique asymptotically stable equilibrium, the linear stability of the system (B.1)

is completely determined by the linear stability of the matrix (F − V ) in (B.2).

The number of secondary infections produced by a single infected individual

can be expressed as the product of the expected duration of the infectious period

and the rate secondary infections occur. For the general model with n disease

compartments, these are computed for each compartment for a hypothetical index

case. The expected time the index case spends in each compartment is given by

the integral
∫∞

0
φ(t, x0)dt, where φ(t, x0) is the solution of (B.2) with F = 0 (no
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secondary infections) and nonnegative initial conditions, x0, representing an infected

index case:

x′ = (F − V )x, x(0) = x0. (B.3)

In effect, this solution shows the path of the index case through the disease com-

partments, from the initial exposure through to death or recovery with the jth

component of φ(t, x0) interpreted as the probability that the index case (intro-

duced at time t = 0) is in disease state j at time t. The solution to (B.3) is

φ(t, x0) = e−V tx0, where the exponential of a matrix is defined by the Taylor series

eA = I+A+ A2

2
+ · · ·+ Ak

k!
+ · · · . This series converges for all t and can be integrated

term by term. Thus
∫∞

0
e−V tx0dt = V −1x0 ≥ 0, and the (j, k) entry of the matrix

V −1 can be interpreted as the expected time an individual initially introduced into

disease compartment k spends in disease compartment j. The (j, k) entry of the

matrix F is the rate, at which secondary infections are produced in compartment

j by an index case in compartment k. Hence, the expected number of secondary

infections produced by the index case is given by
∫∞

0
Fe−V tx0dt = FV −1x0 ≥ 0.

Following Diekmann and Heesterbeek [41], the matrix K = FV −1 is referred to

as the next generation matrix for the system at the disease-free equilibrium. The

(j, k) entry of K is the expected number of secondary infections in compartment

j produced by individuals initially in compartment k, assuming, of course, that

the environment seen by the individual remains homogeneous for the duration of

its infection. The next generation matrix, K = FV −1, is non-negative and there-

fore has a non-negative eigenvalue, R0 = ρ(FV −1), such that there are no other
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eigenvalues of K with modulus greater than R0 and there is a non-negative eigen-

vector ω associated with R0. This eigenvector is in some sense the distribution of

infected individuals that produces the greatest number, R0, of secondary infections

per generation. Thus, R0 and the associated eigenvector ω suitably define a “typ-

ical” infective and the basic reproduction number can be rigorously defined as the

spectral radius of the next generation matrix, K. The spectral radius of a matrix

K, denoted ρ(K), is the maximum of the moduli of the eigenvalues of K. If K is

irreducible, then R0 is a simple eigenvalue of K and is strictly larger in modulus

than all other eigenvalues of K. However, if K is reducible, which is often the case

for diseases with multiple strains, then K may have several positive real eigenvectors

corresponding to reproduction numbers for each competing strain of the disease.
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