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We investigate the computational efficiency and thermodynamic cost of the D-Wave quantum
annealer under reverse-annealing with and without pausing. Our experimental results demonstrate
that the combination of reverse-annealing and pausing leads to improved computational efficiency
while minimizing the thermodynamic cost compared to reverse-annealing alone. Moreover, we find
that the magnetic field has a positive impact on the performance of the quantum annealer during
reverse-annealing but becomes detrimental when pausing is involved. Our results provide strategies
for optimizing the performance and energy consumption of quantum annealing systems employing
reverse-annealing protocols.

I. INTRODUCTION

Large scale investments in quantum technologies are
usually justified with promised advantages in sensing,
communication, and computing [1]. Among these, quan-
tum computing is probably the most prominent appli-
cation, since it has the potential to revolutionize infor-
mation processing and computational capabilities. For
certain tasks, quantum computers exploit the fundamen-
tal principles of quantum mechanics to perform complex
calculations exponentially faster than classical comput-
ers [2–4]. The tremendous computational power offered
by quantum systems has fueled excitement and explo-
ration in various scientific, industrial, and financial sec-
tors [1, 5–12]. Consequently, there have been signifi-
cant developments in the pursuit of quantum advantage
that have propelled quantum computing from theoretical
speculation to practical implementation [13–23].

Major technology companies such as IBM, Google, Mi-
crosoft, Intel, and Nvidia have been investing massively
in quantum research and development, leading to the es-
tablishment of quantum computing platforms and open-
source frameworks that enable researchers and developers
to experiment and explore the potential of quantum algo-
rithms and applications [24]. These advancements have
been driven by breakthroughs in both hardware and al-
gorithmic techniques, bringing us closer to realizing the
potential of quantum computers [25, 26].

However, the rapid development of quantum technolo-
gies also raises critical questions about the energy re-
quirements and environmental implications of quantum
computation [27, 28]. Energy consumption has become
a focal point for researchers, policymakers, and society
at large, as the demand for computing power continues
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to rise, and concerns about climate change and sustain-
ability intensify. Consequently, assessing the energy con-
sumption of quantum computers is vital for evaluating
their feasibility, scalability, and identifying potential bot-
tlenecks [29].

The energy consumption of quantum computers stems
from various sources, including the cooling systems
needed to maintain the delicate quantum states, the con-
trol and manipulation of qubits, and the complex infras-
tructure required to support quantum operations [30, 31].
The superposition characteristic of qubits demands a so-
phisticated physical environment with precise tempera-
ture control and isolation, leading to significant energy
expenditures. These challenges call for synergic work be-
tween quantum information science, quantum engineer-
ing, and quantum physics, to develop an interdisciplinary
approach to tackle this problem [32].

The theoretical framework to quantify the energy con-
sumption of quantum computation is through quantum
thermodynamics, which provides the necessary tools to
quantify and characterize the efficiency of emerging quan-
tum technologies and therefore is crucial in laying a
roadmap to scalable devices [27, 33, 34]. Quantum
thermodynamics assess the thermodynamic resources re-
quired to process and manipulate quantum informa-
tion [27, 35, 36], with a notable focus on the funda-
mental limits such as quantum versions of Landauer’s
principle [37–41]. The exploration of the thermodynam-
ics of information is not limited to the equilibrium set-
tings, as recent research has delved into the nonequilib-
rium aspects of quantum computation, particularly in
the context of quantum algorithms and quantum simu-
lation [42, 43]. Understanding the thermodynamics of
quantum systems, including the generation of entropy,
heat dissipation, and non-equilibrium dynamics, serves
into optimizing the algorithmic performance, energy con-
sumption, and resource utilization [44].

The study of the thermodynamics of quantum comput-
ers has been an active research area with notable results
that deepen our understanding of the energy landscapes,
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heat dissipation, and efficiency of quantum computation
while also addressing challenges related to noise, deco-
herence, and thermal effects [45–49]. The optimization
of the energy efficiency of quantum computers has been
approached from several angles, for instance to eluciate
the minimization of the energy dissipation during com-
putations, and to develop energy-efficient algorithms and
architectures [50–58]. The focus is on reducing energy re-
quirements and increasing the computational efficiency
of quantum systems, paving the way for sustainable and
practical quantum computing technologies. As quantum
computers generate heat during operation, effective ther-
mal management becomes essential to maintain qubit
stability and mitigate thermal errors.

In this paper, we study the interplay between ther-
modynamic and computational efficiency in the quan-
tum annealing. In recent years, thermodynamic consid-
erations of the D-Wave quantum annealer have become
prevalent. For instance, some of us used the quantum
fluctuation theorem to assess the performance of anneal-
ing [49]. Furthermore, the working mechanism of the D-
Wave chip was shown to be equivalent to that of a quan-
tum thermal machine, e.g. thermal accelerator, under
the reverse-annealing schedule [59]. Here, we take a step
further and analyze the energetic and computational per-
formance of quantum annealing under reverse-annealing,
and how to optimize it through the introduction of paus-
ing in the annealing schedule. We perform our experi-
ments on the D-Wave 2000Q quantum annealer and we
show that a pause in the annealing schedule allows us to
achieve better computational performance at a lower en-
ergetic cost. Additionally, we discuss the role and impact
of the magnetic field on the performance of the chip.

II. THEORY & FIGURES OF MERIT

We start by briefly outlining notions and notations.
Quantum annealing consists of mapping the optimization
problem to a mathematical model that can be described
using qubits [60]. The quantum annealer is initialized in a
quantum state that is easy to prepare. The system is then
evolved according to a time-varying Hamiltonian, which
is a mathematical operator representing the problem’s
objective function and can be expressed as,

H(st) = (1 − st)
∑
i

σx
i + st

∑
i

hiσ
z
i +

∑
⟨i,j⟩

Ji,jσ
z
i σ

z
j

 ,

(1)
where σα

i , with α = (x, z) are Pauli matrices, and hi is
the local magnetic field. st = t/τ describes the annealing
schedule which controls the rate of the transformation
between the easy-to-prepare Hamiltonian H0 =

∑
i σ

x
i

and the problem specific Hamiltonian Hp =
∑

i hiσ
z
i +∑

⟨i,j⟩ Ji,jσ
z
i σ

z
j , with τ ∈ [0, t]. On the D-Wave machine,

the annealing time t can be chosen from microseconds
(∼2µs) to milliseconds (∼2000µs).
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s t
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reverse + pausing

FIG. 1: Quantum annealing protocols used in
experiments. st is an annealing parameter, st = t/τ , t
represent time and τ is the total annealing time in µs.

The usual quantum annealing process, called forward
annealing, starts with initializing the qubits in a known
eigenstate of σx. The system is then slowly driven by
varying the Hamiltonian parameters [61]. Initially, the
driver Hamiltonian H0 dominates, and the qubits are in a
quantum superposition. As the annealing progresses, the
problem Hamiltonian Hp gradually becomes dominant,
and the qubits tend to settle into the low-energy states
that correspond to the optimal solution of the problem.

In this work, we employ a different protocol called
reverse-annealing as depicted in Fig. 1, where the proces-
sor initially starts with a classical solution defined by the
user to explore the local space around a known solution
to find a better one. Reverse-annealing has been shown
to be more effective than forward annealing in some spe-
cific use cases, including nonnegative/binary matrix fac-
torization [62], portfolio optimization problems [63], and
industrial applications [64]. Moreover, reverse-annealing
has unique thermodynamic characteristics with typically
enhanced dissipation [59, 65].

To quantify the thermodynamic efficiency of the D-
Wave 2000Q chip, we initialize the quantum annealer in
the spin configuration described by a thermal state at
inverse temperature β1 = 1, and we assume that initially
the system+environment state is given by the joint den-
sity matrix,

ρ =
exp (−β1HS)

ZS
⊗ exp (−β2HE)

ZE
. (2)

The energy transfer between two quantum systems ini-
tially at different temperatures is described by the quan-
tum exchange fluctuation theorem [67, 68],

p(∆E1,∆E2)

p(−∆E1,−∆E2)
= eβ1∆E1+β2∆E2 , (3)

where ∆Ei, i = 1, 2 are, respectively, the energy changes
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FIG. 2: Example of the embedding of the 300−spin
Ising chain onto D-Wave 2000Q quantum processing

unit (QPU) with the chimera architecture [66].
White-blue dots and lines are active qubits, and grey
ones are inactive. This is one-to-one embedding, such
that every physical qubit corresponds to one logical

qubit.

of the processor and its environment during the anneal-
ing time t, and p(∆E1,∆E2) is the joint probability of
observing them in a single run of the annealing schedule.
Equation (3) can be re-written in terms on the entropy
production Σ = β1∆E1 + β2∆E2 as [69, 70],

p(Σ,∆E1)

p(−Σ,−∆E1)
= eΣ. (4)

Note that during the experiment, we have only access
to the energy change of the processor ∆E1. Therefore,
the thermodynamic quantities entropy production ⟨Σ⟩,
average work ⟨W ⟩, and average heat ⟨Q⟩ are not directly
accessible. However, they can be lower bounded by ther-
modynamic uncertainty relations [71],

⟨Σ⟩ ≥ 2g

(
⟨∆E1⟩√
⟨∆E2

1⟩

)
, (5)

−⟨Q⟩ ≥ 2

β2
g

(
⟨∆E1⟩√
⟨∆E2

1⟩

)
− β1

β2
⟨∆E1⟩, (6)

⟨W ⟩ ≥ 2

β2
g

(
⟨∆E1⟩√
⟨∆E2

1⟩

)
+

(
1 − β1

β2

)
⟨∆E1⟩, (7)

where g(x) = x tanh−1 (x), and β2 is the temperature of
the environment which can be estimated experimentally

using the pseudo-likelihood method introduced in [72].
Accordingly, the upper bound on the thermodynamic ef-
ficiency can be determined from

ηth ≤ −⟨W ⟩
⟨Q⟩

. (8)

Moreover, we are interested in analyzing the computa-
tional efficiency of the quantum annealer, which we define
as

ηcomp ≤ PGS

⟨W ⟩
, (9)

and where have introduced the probability that ground
state s⋆ is found in the given annealing run,

PGS = P(s⋆ ∈ s). (10)

This quantity is computed by dividing the number of
successful runs (i.e., those which have found the ground
state) by the total number of runs. The efficiencies de-
fined by Eq. (8) and Eq. (9) are the main figures of merit
of our analysis.

It is also instructive to analyze the ratio of the theo-
retical (Eth = −299) ground state energy and the exper-
imental (Eexp) value read from the machine,

FGS =
〈Eexp

Eth

〉
, (11)

which is averaged over the number of samples.

III. EXPERIMENTS

All our experiments were performed on a D-Wave
2000Q quantum annealer. We considered an antiferro-
magnetic (i.e. ∀i Ji,i+1 = 1) Ising chain on N =300 spins,
with Hamiltonian as defined in (1). However, one must
first embed the given problem into the target quantum
processing unit (QPU) architecture to perform quantum
annealing. Here, embedding means finding a mapping
between physical qubits presented in the machine and
logical qubits (i.e. σz

i ) representing our problem. Fig-
ure (2) shows an example embedding of our Ising problem
onto the QPU with Chimera architecture.

We used annealing schedules shown in Fig. (1). The
system was initialized for both schedules by taking a sam-
ple thermal state at β = 1 using Gibbs sampling [73]. For
reverse annealing, with a given annealing time τ , we ran
st → 1/2 for t ∈ (0, τ/2) and st → 1 for the remaining
time. In reverse annealing with pausing st → 1/2 for
t ∈ (0, τ/3), next for t ∈ (τ/3, 2τ/3) st = 1/2, as we
pause the annealing process. Lastly, for t ∈ (2τ/3, 1) we
let st → 1.

A. Zero magnetic field – “naked performance”

We start with the case where the magnetic field h is
turned off.



4

0 50 100 150 200
t( s)

0.00

0.02

0.04

0.06

0.08

G
S

0.80

0.85

0.90

0.95

G
S

(a) Success probability, Eq. (10),
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(c) Success probability, Eq. (10),
and fidelity, Eq. (11).
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FIG. 3: Figures of merit under reverse-annealing. (a+b) without the pause and (c+d) with pause for N = 300 spins,
ferromagnetic couplings J , and zero magnetic field. Each point is averaged over 1000 annealing runs with 10

samples each.

Reverse-annealing without pausing. Figures (3)(a+b)
reports data from reverse-annealing experiments without
the introduction of the pause. The success probability,
Eq. (10), is shown in panel (a) where we see that under
reverse-annealing without the pause, the success proba-
bility of finding the ground state energy is very low and
does not exceed 10% in the whole annealing time. This
means that in all 10000 samples taken in the experiment,
only less than 1000 samples provided the ground state
energy. However, although the probability to reach the
ground state energy is low, its fidelity, Eq. (11), which
is shown in the same panel is very high and saturates
at 0.95.

The results shown in panels (a) are consistent with
the thermodynamic and computational efficiency, Eq. (8)
and Eq. (9) respectively, reported in panel (b). We see
that under reverse-annealing without the pause, the com-
putational efficiency of the chip ηcomp grows with the an-
nealing time t while being very low and not exceeding
4% in the whole annealing time, which follows the be-
havior of the success probability PGS . Energetically, the
thermodynamic efficiency ηth decays exponentially with
τ and remain at a high value close to 1.

Reverse-annealing with pausing. The low computa-
tional performance of the chip for the simple Hamilto-
nian, Eq. (1), shows that the reverse-annealing protocol
does not exploit the energetics of the chip efficiently. Ide-
ally, one aims at finding the protocol that provides a high
computational efficiency at the lowest possible thermody-
namical cost. For this reason, we introduce a pause in the
reverse-annealing protocol, as depicted in Fig. (1). Intro-
ducing a pause in the annealing schedule in quantum an-
nealing has been shown to offer several benefits, such as:
enhancing the probability of finding better solutions by
efficient exploration of the solution space, which allows
for a broader range of potential solutions to a given prob-
lem [74, 75]. Furthermore, since the pausing duration can
be manipulated by the user, this offers the ability to bal-
ance between exploration and exploitation, which allow
for the fine-tuning of the solution quality. The flexibility

offered by the pausing strategy also allows for adaptation
to the characteristics of specific problem instances, which
enhances the efficiency and effectiveness of quantum an-
nealing for a wide range of applications [76].

Figure (3)(c+d) presents the results of applying a
pause during the reverse-annealing schedule, as shown
in Fig. (1). The success probability PGS improves dra-
matically as shown in panel (c), where it grows quickly to
0.8 during the annealing schedule, which means that 80%
of the 1000 annealing runs taken during the experiment
returned the ground state energy. The fidelity, Eq.(11),
shown in the same panel also benefits from introducing
the pause, where the overlap between the theoretical and
experimental energy read is almost unity. The power of
pausing is even more significant for the thermodynamic
and computational efficiency, Eq. (8) and Eq. (9) respec-
tively, reported in panel (d). We see that pausing allows
for achieving high computational efficiency at a moderate
thermodynamic cost, which is due to the concept of ther-
malization. Introducing a pause in the annealing sched-
ule allows the chip to relax and thermalize after being
excited by quantum or thermal effects near the minimum
gap. However, pausing is not always beneficial, and it de-
pends on several factors such as the relaxation rate, the
pause duration, and the annealing schedule. The optimal
protocol corresponds to a pause right after crossing the
minimum gap and its duration should be no less than the
thermalization time [75].

B. Magnetically assisted annealing

Next, we perform experiments with the magnetic field
switched on, under reverse-annealing with and without
pausing. The local magnetic field plays a crucial role in
shaping the energy landscape and controlling the behav-
ior of the qubits during the annealing process. By ma-
nipulating the local magnetic field, quantum annealers
can explore and optimize complex problem spaces more
effectively.
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FIG. 4: The success probability PGS , Eq. (10), and the fidelity FGS , Eq. (11), under reverse-annealing without the
pause for different values of the magnetic field h. Each point is averaged over 100 annealing runs with 10 samples

each.
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FIG. 5: The thermodynamic and computational efficiency, ηth Eq. (8) and ηcomp Eq. (9) respectively, under
reverse-annealing without the pause for different values of the magnetic field h. Each point is averaged over 100

annealing runs with 10 samples each.

Assisted reverse-annealing without pausing. The ben-
efit of introducing the magnetic field is clear from the
behavior of the success probability PGS , Eq. (10), re-
ported in Fig. (4). In this case, without introducing a
pause in the annealing schedule, the success probability
of the ground state of the problem Hamiltonian is very
high compared to the case when the magnetic field is off
(c.f. Fig. (3)(a)). Introducing the magnetic field influ-
ences the shape of the energy landscape that the qubits
explore during the annealing process [77]. The landscape
can be adjusted to promote or discourage certain config-
urations of the qubits, which can help guide the system
toward the desired solution, and explains the slight im-
provement in the fidelity, Eq. (11), reported in the same
panel. This dramatic improvement reflects itself on the
thermodynamic and computational efficiency Eq. (8) and
Eq. (9) respectively, of the chip as reported in Fig. (5). In
this case, introducing the magnetic field allows to guide
the system in the energy landscape which is a more effi-
cient strategy to exploit energy to perform computation.

Assisted reverse-annealing with pausing. Interest-
ingly, in comparison with the case for h = 0 reported
in Fig. (3)(c+d), introducing a pause in the annealing
schedule with the magnetic field being present decreases
the success probability PGS , Eq. (10), as can be seen
from Fig. (6). Consequently, it decreases also the ther-
modynamic and computational efficiency, ηth Eq. (8) and
ηcomp Eq. (9) respectively, as can be seen from Fig. (7).
Switching on the magnetic field in quantum annealing
changes the qubit energy levels, and structure. On the
other hand, for pausing to work it needs to be carefully
applied while taking into account the energy level struc-
ture variation with the magnetic field. For this reason,
the pause needs to be performed right after the mini-
mum gap characterized by the value of the magnetic field
h [74, 75].
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FIG. 6: The success probability PGS , Eq. (10), and the fidelity FGS , Eq. (11), under reverse-annealing with the
pause for different values of the magnetic field h. Each point is averaged over 100 annealing runs with 10 samples

each.
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FIG. 7: The thermodynamic and computational efficiency, ηth Eq. (8) and ηcomp Eq. (9) respectively, under
reverse-annealing with the pause for different values of the magnetic field h.

IV. CONCLUDING REMARKS

We have investigated the optimization of the compu-
tational efficiency and the thermodynamic cost in the
D-Wave quantum annealing systems employing reverse-
annealing. By combining reverse-annealing with paus-
ing, we have demonstrated improved computational ef-
ficiency while operating at a lower thermodynamic cost
compared to reverse-annealing alone. Our results high-
light the potential benefits of strategically incorporat-
ing pausing into the annealing process to enhance over-
all computational and energetic performance. Further-
more, our results indicate that the magnetic field plays a
crucial role in enhancing computational efficiency during
reverse-annealing. However, when pausing is involved,
the magnetic field becomes detrimental to the overall per-
formance. This suggests the need for careful considera-
tion of the magnetic field configuration and its impact
on the energy gap of the system during the annealing
process.

While our experiment was performed on the D-Wave
Chimera architecture, it will be interesting to extend our

experimental approach to the Pegasus and Zephyr ar-
chitectures. These two models offer high tolerance to
noise and a more complex structure, which allows us to
investigate the trade-off between energetic performance
and computational complexity. Additionally, exploring
the scalability of these findings to larger-scale quantum
systems and real-world applications remains a promising
avenue for future research.
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A. Perdomo-Ortiz, Estimation of effective temperatures
in quantum annealers for sampling applications: A case
study with possible applications in deep learning, Phys.
Rev. A 94, 022308 (2016).

[73] E. Mossel and A. Sly, Exact thresholds for Ising–Gibbs
samplers on general graphs, The Annals of Probability
41, 294 (2013).

[74] H. Chen and D. A. Lidar, Why and when pausing is bene-
ficial in quantum annealing, Phys. Rev. Appl. 14, 014100
(2020).

[75] J. Marshall, D. Venturelli, I. Hen, and E. G. Rieffel,
Power of pausing: Advancing understanding of thermal-
ization in experimental quantum annealers, Phys. Rev.
Appl. 11, 044083 (2019).

[76] Z. Gonzalez Izquierdo, S. Grabbe, H. Idris, Z. Wang,
J. Marshall, and E. Rieffel, Advantage of pausing: Pa-

https://doi.org/10.1088/1751-8113/49/14/143001
https://doi.org/10.1007/978-3-319-99046-0
https://doi.org/10.1103/PhysRevLett.89.217901
https://doi.org/10.1103/PhysRevLett.89.217901
https://doi.org/10.1088/1367-2630/18/11/113050
https://doi.org/10.1088/1367-2630/18/11/113050
https://doi.org/10.1038/s41534-020-00325-7
https://doi.org/10.1103/PhysRevLett.124.240601
https://doi.org/10.1103/PhysRevLett.124.240601
https://doi.org/10.1209/0295-5075/134/40002
https://doi.org/10.1103/PhysRevLett.121.170501
https://doi.org/10.1103/PhysRevLett.121.170501
https://arxiv.org/abs/2209.12889
https://arxiv.org/abs/2305.11212
https://arxiv.org/abs/2305.11212
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.1103/PhysRevE.92.042126
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1103/PhysRevA.94.040101
https://doi.org/10.1038/s41598-018-22763-2
https://doi.org/10.1038/s41598-018-22763-2
https://doi.org/10.1038/s41598-018-35264-z
https://doi.org/10.1038/s41598-018-35264-z
https://doi.org/10.1103/PhysRevE.103.032145
https://doi.org/10.1103/PhysRevE.103.032145
https://doi.org/10.1103/PhysRevA.105.042423
https://doi.org/10.1103/PhysRevA.105.052442
https://doi.org/10.1103/PhysRevA.105.052442
https://doi.org/10.1103/PhysRevResearch.4.043138
https://doi.org/10.1103/PhysRevResearch.4.043138
https://doi.org/10.1088/2399-6528/aca3fa
https://doi.org/10.1088/2399-6528/aca3fa
https://doi.org/10.1103/PhysRevA.107.042222
https://doi.org/10.1103/PhysRevA.107.042222
https://arxiv.org/abs/2304.14667
https://doi.org/10.1103/PhysRevResearch.5.L022010
https://doi.org/10.1103/PhysRevA.107.012209
https://doi.org/10.1103/PhysRevA.107.012209
https://doi.org/10.1088/2058-9565/ab9755
https://doi.org/10.1103/PhysRevE.58.5355
https://doi.org/10.1103/RevModPhys.90.015002
https://doi.org/10.1371/journal.pone.0244026
https://doi.org/10.1371/journal.pone.0244026
https://doi.org/10.1007/s42484-019-00001-w
https://doi.org/10.1088/1361-6633/ac8c54
https://doi.org/10.1103/PhysRevE.104.L022102
https://doi.org/10.1103/PhysRevE.104.L022102
https://www.dwavesys.com/media/3xvdipcn/dwavesys.com/resources
https://www.dwavesys.com/media/3xvdipcn/dwavesys.com/resources
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1103/PhysRevLett.92.230602
https://doi.org/10.1116/5.0152186
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PhysRevLett.107.140404
https://doi.org/10.1103/PRXQuantum.2.010306
https://doi.org/10.1103/PRXQuantum.2.010306
https://doi.org/10.1023/A:1018811305766
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1103/PhysRevA.94.022308
https://doi.org/10.1214/11-AOP737
https://doi.org/10.1214/11-AOP737
https://doi.org/10.1103/PhysRevApplied.14.014100
https://doi.org/10.1103/PhysRevApplied.14.014100
https://doi.org/10.1103/PhysRevApplied.11.044083
https://doi.org/10.1103/PhysRevApplied.11.044083


9

rameter setting for quantum annealers, Phys. Rev. Appl.
18, 054056 (2022).

[77] S. Watabe, Y. Seki, and S. Kawabata, Enhancing quan-

tum annealing performance by a degenerate two-level sys-
tem, Sci. Rep. 10, 146 (2020).
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