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Fuzzy Adaptive Whale Optimization Control
Algorithm for Trajectory Tracking of a

Cable-Driven Parallel Robot
Bin Zhou , Yuhang Wang , Bin Zi , and Weidong Zhu

Abstract— This paper proposes a fuzzy proportion integration
differentiation (PID) control strategy based on an adaptive whale
optimization algorithm (FPID-AWOA) for trajectory tracking of
a cable-driven parallel robot (CDPR). A mechanical prototype,
and kinematic and dynamic models of the CDPR are established.
Thus, new fuzzy rules are developed and a new fuzzy PID
controller is designed. Subsequently, the AWOA is introduced
to optimize quantization and scale factors of the fuzzy PID
controller to obtain the optimal solution. Among them, AWOA
is an improvement on WOA. Numerical examples show that the
fuzzy PID control strategy based on adaptive whale optimization
algorithm (FPID-AWOA) has higher CDPR trajectory tracking
accuracy than the traditional fuzzy PID control strategy, the
fuzzy PID control strategy based on whale optimization algorithm
(FPID-WOA), and the fuzzy PID control strategy based on
particle swarm optimization (FPID-PSOA). In comparison with
the FPID and FPID-PSOA, the experimental results show that the
trajectory tracking error of the proposed FPID-AWOA is reduced
by 51.2% and 19.5% in the X-axis direction, respectively, 64.2%
and 49.7% in the Y -axis direction, respectively, and 29.1% and
12.2% in the Z-axis direction, respectively.

Note to Practitioners—The motivation of this article stems from
the need to develop efficient trajectory tracking control algo-
rithms for practical applications of CDPRs. Fuzzy PID control
is widely used in CDPRs because of its good robustness and fast
response speed. However, the fuzzy parameter selection depends
on experience, and the efficiency is low. In order to obtain
high quality quantization and scale factors quickly, we propose
FPID-AWOA. It uses AWOA to find the optimal quantization
and scale factors, which makes the fuzzy PID control get better
performance. FPID-AWOA can also be applied to control other
robots. In future research, we will extend the proposed approach
to multiple CDPRs working collaboratively as well as to mobile
operational requirements.
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I. INTRODUCTION

CABLE-DRIVEN parallel robots (CDPRs) are known
as a type of mechanical structure that is actuated by

cables instead of rigid links [1]. Parallel cables are widely
used in CDPRs to provide constraints to realize multiple
degrees of freedom [2]. CDPRs has large and easily extensible
workspace, relatively simple structure, superior flexibility [3],
and other cost-wise advantages based on the relatively light
weight of cables compared to conventional manipulators with
rigid arms [4]. Nowadays, CDPRs have been widely used
in many fields such as construction [5], rehabilitation [6],
telescope [7], and 3D printing [8]. However, the special struc-
ture also generates several problems in the trajectory tracking
control of CDPRs [9], [10]. On one hand, the cables must be
in tension because of the particular structure [11]. On the other
hand, it is difficult for the current trajectory tracking control
schemes to achieve satisfactory control accuracy because of
modeling errors in the kinematics and dynamics [12]. Hence,
it is necessary to solve these problems in the trajectory tracking
control of CDPRs.

Over the years, many scholars have studied robot trajectory
tracking control methods, and the more common control
methods for robot trajectory tracking in general are proportion
integration differentiation (PID) control, variable structure
sliding mode control, compliance control, and adaptive control
[13], [15]. With the continuous development of intelligent
control theory and application, intelligent control methods
have been widely used in robot trajectory tracking control. The
robot intelligent control methods mainly include neural net-
work control and fuzzy control [16]. Purwar et al. approximate
the uncertain part of the mechanical arm structure through
fuzzy control, which to some extent makes up of the disadvan-
tage that the controller designed based on the computational
torque method is difficult to control the uncertain part [17].
Mahmoodabadi et al. used a multi-objective particle swarm
optimization algorithm to optimize the fuzzy controller of the
nonlinear system, which improved the control accuracy of the
fuzzy controller for the nonlinear system [18]. Sharma et al.
designed a fractional order fuzzy PID controller to improve the
trajectory tracking control accuracy for the control problem of
planar dual link robots [19].
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Nowadays, many researchers have applied a fuzzy PID
controller to robot trajectory tracking control [20], and there is
no doubt that a fuzzy PID controller has a good control effect.
A fuzzy PID controller improves the control effect of a PID
controller on nonlinear factors, but the design and selection
of the universe, membership function and fuzzy rules of a
fuzzy controller require experience and expert knowledge, and
there is the drawback of poor control effect when the design
is unreasonable. Thus, in order to improve the rationality of
the fuzzy PID controller and trajectory tracking control effect,
some researchers propose to optimize the design parameters
of the fuzzy PID controller. The optimization problem of
a fuzzy controller is difficult to be described by explicit
or implicit mathematical functions, so the practical complex
optimization problem can be solved by a swarm intelligence
optimization algorithm that does not depend on mathematical
functions. Richa et al. used a genetic algorithm to optimize
the PID controller parameters of the planar two-link robot,
and took the weight of the overall square error and integral
change square controller output as the objective function to
improve the trajectory tracking performance of the robot [21].
Pizarro et al. designed a fuzzy PD controller to calculate a
torque control for the dual joint robot, and adopted a genetic
algorithm to optimize the membership function of the fuzzy
system, which improved the control accuracy [22]. Hu et al.
used an improved genetic algorithm to optimize the artificially
set fuzzy rules, which avoided the problem that traditional
optimization methods are prone to fall into local optimal
solutions in the process of optimization [23]. The above
researches mainly used optimization algorithms proposed in
earlier periods to solve optimization problems. However, it can
be further improved in the selection of an optimization target
and the optimization effect of the optimization algorithm.

To deal with these problems of high precision trajectory
tracking control of CDPRs in the existing control schemes,
a fuzzy PID control strategy based on an adaptive whale opti-
mization algorithm (FPID-AWOA) is proposed to improve the
control effect of CDPRs. Firstly, based on the existing fuzzy
rules and configuration characteristics, this paper establishes
fuzzy rules applicable to CDPRs. Then, on the basis of fuzzy
PID controller, an optimization algorithm is proposed to opti-
mize the scale factor and quantization factor of fuzzy PID con-
troller. Based on the whale optimization algorithm, considering
its shortcomings in optimization efficiency and accuracy, this
paper improves the whale optimization algorithm by introduc-
ing the weight function and differential variation interference
factor to improve its optimization performance. Subsequently,
the newly designed whale optimization algorithm is introduced
into the fuzzy PID controller. Numerical simulations and
experiments under a spiral trajectory show that the proposed
the FPID-AWOA can effectively improve the tracking accu-
racy of the CDPR trajectory.

The remainder of this paper is organized as follows.
Section II introduces the mechanical design and kinematic
and dynamic modeling of the CDPR. In Section III, the
fuzzy PID controller is designed based on the dynamic model
with an external interference; subsequently, based on the
traditional whale optimization algorithm, an adaptive whale

Fig. 1. Mechanical prototype of the CDPR.

optimization algorithm is proposed and used to optimize the
quantization and scale factors of the fuzzy PID controller. The
simulations and experiments are carried out on the CDPR in
Sections IV and V, respectively. Finally in Section VI, some
conclusions are given.

II. KINEMATIC AND DYNAMIC MODELING

In this section, a mechanical prototype of the CDPR is intro-
duced., and its kinematic and dynamic models are established.

A. Mechanical Design

As shown in Fig. 1, the mechanical model of the CDPR for
lifting payloads is designed. The CDPR consists of a lifting
arm, a triangular rigid support arm, a luffing telescopic cylin-
der, a rotatable base, four driving units, four cables, two bevel
gear sets, a cable reel, thrust ball bearings, and a timing belt.
The CDPR has four degrees of freedom, which are provided by
the four driving units and the luffing telescopic cylinder. The
rotatable base connecting with thrust ball bearings is driven by
the driving unit 1. The rotation function of the rotatable base
is achieved by the motor torque transmitted by the bevel gear
set 1. The driving units 2 and 3, the triangular rigid support
arm, and the luffing telescopic cylinder are installed on the
rotatable base. The triangular rigid support arm rotates through
the telescopic movement of the luffing telescopic cylinder. The
lifting arm is connected with the triangular rigid support arm
and driven by the driving units 2 and 3 through the cables 1, 2,
and 3. The driving unit 4 is fixed on the triangular rigid support
arm. The retraction of cable 4 is realized by the transmission
of the motor torque to the cable reel by the bevel gear set 2 and
the timing belt.

B. Kinematic Modeling

The kinematic model of the CDPR is shown in Fig. 2.
A global coordinate system O−XY Z is located at the rotation
center of the rotatable base. A moving coordinate system
O1 − X1Y1 Z1 is located at the rotation center of the rotatable
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Fig. 2. Kinematic model of the CDPR.

base. Moving coordinate systems A − X AYA Z A and B −

X BYB Z B are located at the pivot centers of the triangular rigid
support arm and the lifting arm, respectively. According to
the Denavit and Hartenberg theory [24], the transformation
matrices O

O1
T , O

A T , and O
B T are expressed as

O
O1

T =


cθ1 −sθ1 0 0
sθ1 cθ1 0 0
0 0 1 0
0 0 0 1

 (1)

O
A T =

O
O1

T ·
O1
A T =


cθ1cθ2 −cθ1sθ2 −sθ1 lO1Acθ1
sθ1cθ2 −sθ1cθ1 cθ1 lO1Asθ1
−sθ2 −cθ2 0 0

0 0 0 1

 (2)

O
B T =

O
O1

T ·
O1
A T ·

A
B T

=


cθ1cθ2cθ3 − cθ1sθ2sθ3 −cθ1cθ2sθ3 − cθ1sθ2cθ3
sθ1cθ2cθ3 − sθ1sθ2sθ3 sθ1cθ2sθ3 − sθ1sθ2cθ3

−cθ2sθ3 − sθ2cθ3 sθ2sθ3 − cθ2cθ3
0 0

−sθ1 lO1Acθ1 + lABcθ1cθ2
cθ1 lO1Asθ1 + lABsθ1cθ2
0 −lABsθ2
0 1

 (3)

respectively, where θ1, θ2, and θ3 are rotational angles, lO1A

is the length between points O1 and A, and lAB is the length
between points A and B. Notice that “s” and “c” represent
“sin” and “cos”, respectively.

The vector diagram of cable length of the CDPR is shown in
Fig. 3, where ai is the position vector of the point Ai in the
moving coordinate system A − X AYA Z A, p is the position
vector of the triangular rigid support arm in the moving
coordinate system A − X AYA Z A, bi is the position vector of
the point Bi in the moving coordinate system B − X BYB Z B ,
and ui is the unit direction vector along the cable direction.
Based on the Eqs. (1)-(3), one has

li = ∥l i∥ =

√
( p + bi − ai )

T ( p + bi − ai ), i = 1, 2, 3
(4)

Fig. 3. Vector diagram of cable length.

Fig. 4. Side view and geometrical relationship of the CDPR: (a) Side view
and (b) geometrical relationship.

where li represents the i th cable length; l i represents the
i th cable length vector.

Suppose the position coordinate of the point B4 in the O −

XY Z is expressed as (x, y, z). Thus, the θ1 can be calculated
by

θ1 = arctan
( y

x

)
(5)

To solve other poses of the CDPR, the triangular rigid
support arm and the lifting arm can be considered as a two-link
mechanism with two degrees of freedom. As shown in Fig. 4,
ABO12 represents the triangular rigid support arm, B4 B5
represents the lifting arm, and O11 O12 represents the luffing
telescopic cylinder. According to the geometric method and
cosine theorem [25], the intersection angels δ1, δ2, and δ3 are
expressed as

δ1 = cos−1
(

a2
+ b2

− c2

2·a · b

)
(6)

δ2 = cos−1

 L2
11 +

(
x1 − lAO1

)2
+ z2

1 − L2
22′

2·L11 ·

√(
x1 − lAO1

)2
+ z2

1


+ tan−1

(
z1

x1 − lAO1

)
(7)

δ3 = cos−1

(
L2

11 + L2
22′ −

(
x1 − lAO1

)2
− z2

1

2·L11 · L ′

22

)
(8)
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where x1 and z1 are the coordinates of the point B4 along
X1-axis and Z1-axis in the O1 − X1Y1 Z1, and x1 =

√
x2 + y2,

z1 = z; L11 is the length of AB; L22 is the length of B4 B5;
L ′

22 is the length of B B4; and lAO1 is the length of AO1. Based
on Eqs. (7) and (8), the θ2 and θ3 can be calculated by

θ2 = −δ2 (9)

θ3 =
π

2
− δ3 (10)

where δ2 is the intersection angle between AB and X1-axis;
and δ3 is the intersection angle between AB and B B4.The
expansion amount of the luffing telescopic cylinder 1x can
be calculated by

1x = c − c0

=

√
a2 + b2−2·a · b · cosδ1 −

√
a2 + b2−2·a · b · cosδ′

1

(11)

where δ1 is the intersection angle between AO11 and AO12;
δ′

1 is the value of δ1 when the triangular rigid support arm is
vertical; a is the length of AO12; b is the length of AO11; c is
the length of O11 O12; and c0 is the length of O11 O12 when
the triangular rigid support arm is vertical.

C. Dynamic Modeling
It is assumed that the robot is well lubricated and the

frictional force for the whole robot system can be neglected.
The rotatable base, triangular rigid support arm, and lifting
arm of the CDPR are simplified as a three-link mechanism. As
shown in Fig. 2, the coordinates of the center of the rotatable
base along the X -axis, Y -axis, and Z -axis in the moving
coordinate system O1 − X1Y1 Z1 are denoted as (x1, y1, z1);
the coordinates of the center of the triangular rigid support
arm along the X -axis, Y -axis, and Z -axis in the moving
coordinate system A−X AYA Z A are denoted as (x2, y2, z2); the
coordinates of center of lifting arm along the X -axis, Y -axis,
and Z -axis in the moving coordinate system B − X BYB Z B are
denoted as (x3, y3, z3), and the coordinates of the center of the
payload along the X -axis, Y -axis, and Z -axis in the moving
coordinate system B − X BYB Z B are denoted as (x4, y4, z4).
Thus, the position vector of the center of the rotatable base
O1 r1 is expressed as

O1 r1 =
(

x1 y1 z1 1
)T (12)

The position vector of the center of the triangular rigid support
arm A r2 is expressed as

A r2 =
(

x2 y2 z2 1
)T (13)

The position vector of the center of the lifting arm B r3 is
expressed as

B r3 =
(

x3 y3 z3 1
)T (14)

The position vector of the center of the payload B r4 is
expressed as

B r4 =
(

x4 y4 z4 1
)T (15)

For simplification, note that O1 r1, A r2, B r3, and B r4 are
denoted as 1r1, 2r2, 3r3, and 4r4, respectively. By taking

derivatives of Eqs. (12)-(15), the velocity vectors 0vi of centers
of the rotatable base, triangular rigid support arm, lifting arm,
and payload relative to the O − XY Z coordinate system are
expressed as

Ovi =
d
dt

(O r i
)

=
d
dt

(O
i T ·

i r i
)

=

 i∑
j=1

∂O
i T
∂θ j

·θ̇ j

 ·
i r i ,

O
i T =

O
O1

T , i = 1;
O
i T =

O
A T , i = 2;

O
i T =

O
B T , i = 3, 4

(16)

where Ovi represent the velocity vectors of centers of the
rotatable base, triangular rigid support arm, lifting arm, and
payload relative to the global coordinate system O − XY Z ;
O r i represents position vectors of centers of the rotatable base,
triangular rigid support arm, lifting arm, and payload relative
to the global coordinate system O − XY Z . Based on Eq. (16),
the kinetic energy Ki of centers of the rotatable base, triangular
rigid support arm, lifting arm, and payload can be calculated
by

Ki =
1
2

mi ·tr
(Ovi ,

OvT
i

)
=

1
2

mi · tr

 i∑
j=1

i∑
k=1

∂
(

O
i T

)
∂θ j

i r i ·
(i r i

)T ∂
(

O
i T

)T

∂θk
θ̇ j θ̇k


=

1
2

mi · tr

 i∑
j=1

i∑
k=1

∂
(

O
i T

)
∂θ j

i r i ·
(i r i

)T ∂
(

O
i T

)T

∂θk
θ̇ j θ̇k


(17)

where K1, K2, K3, and K4 represent the kinetic energy of
centers of the rotatable base, triangular rigid support arm,
lifting arm, and payload, respectively, and

K1 =
1
2

m1
Ov2

1

K2 =
1
2

m2
Ov2

2

K3 =
1
2

m3
Ov2

3

K4 =
1
2

m4
Ov2

4

(18)

where m1, m2, m3, and m4 represent the masses of the rotatable
base, triangular rigid support arm, lifting arm, and payload,
respectively; Ov1,Ov2,Ov3, and Ov4 represent the linear veloc-
ity vectors of the center of the rotatable base relative to the
global coordinate system O − XY Z . Thus, based on Eq. (18),
the total kinetic energy of the CDPR can be calculated by

K =

∑4

i=1
Ki (19)

Subsequently, the O − XY plane is chosen as the zero
potential energy surface. Thus, the potential energy of the
rotatable base, triangular rigid support arm, lifting arm, and
payload can be calculated by

U1 = 0
U2 = m2g0hz2

U3 = m3g0hz3

U4 = m4g0hz4

(20)
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where g is gravitational acceleration; 0hz2 , 0hz3 , and 0hz4 are
respectively the components of the centroid coordinates of
triangular rigid support arm, lifting arm, and payload relative
to the Z -axis on the O − XY Z . Thus, based on Eq. (20), the
total potential energy of the CDPR can be calculated by

U =

∑4

i=1
Ui (21)

In many control systems, cables are often simplified for
ease of analysis and control design. The focus is primar-
ily on the primary dynamics of the system, ignoring the
smaller deformations caused by flexible cables. In addition,
the deformation of flexible cables has a very small effect on
the control performance, and the relatively small flexibility
of the cable is such that its deformation does not significantly
affect the overall behavior or stability of the controlled system.
Therefore, this paper ignores the cable deformation.

Based on the Lagrange dynamic formulation [26] and
Eqs. (19) and (21), one has

L = K − U =

∑4

i=1
(Ki − Ui ) (22)

By taking derivatives of Eq. (22), the dynamics equation for
the CDPR can be expressed as

τi =
d
dt

∂L
∂θ̇i

−
∂L
∂θi

=
d
dt

∂K
∂θ̇i

−
∂K
∂θi

+
∂U
∂θi

(23)

where τi is the torque of each joint. For simplification, Eq. (23)
is written as

τ = M(2)2̈ + C
(
2̇, 2

)
2̇ + G(2) (24)

where 2 =
[
θ1 θ2 θ3

]T is the joint angle vector; M(2) ∈

R3×3 is the inertia matrix; C
(
2̇, 2

)
2̇∈R3 is the centrifugal

and Coriolis force matrix; G(2)∈R3 is the gravity matrix.

III. FUZZY TRAJECTORY TRACKING CONTROL

In this section, a numerical method is used to solve the
problem that the dynamic equation cannot be expressed in
detail. Then, an adaptive whale optimization algorithm is
applied to the fuzzy PID controller.

A. Numerical Solutions to Dynamic Model

Obviously, based on Eq. (24), the acceleration 2̈t at time t
is expressed as

2̈t = M−1(2t )
[
τ t − C

(
2̇t , 2t

)
2̇t − G(2t )

]
(25)

where 2t , 2̇t , and 2̈t are angle, angular velocity, and angular
acceleration vectors of joints at time t ; and τ t is the joint
torque at time t . When the number of joints is 2, the math-
ematical functions of M(2), C

(
2̇, 2

)
2̇, and G(2) matrix

elements can be expressed easily, but when the number of
joints is greater than 2, the mathematical functions of M(2),
C
(
2̇, 2

)
2̇, and G(2) matrix elements become complex and

lengthy and not easy to derive; however, values of M(2),

C
(
2̇, 2

)
2̇, and G(2) at time t can be numerically calcu-

lated. Thus, Eq. (24) can be expanded in another form: τ1
τ2
τ3

 =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

 θ̈1
θ̈2
θ̈3


+

 C11 C12 C13
C21 C22 C23
C31 C32 C33

 θ̇1
θ̇2
θ̇3

+

 G1
G2
G3

 (26)

According to Eq. (26), all elements in M(2) are a function
of 2 and independent of 2̇, 2̈, and g; all elements in
C
(
2̇, 2

)
are a function of 2̇ and 2 and independent of 2̈,

and g; and all elements in G(2) are a function of 2 and g

and independent of 2̇, and 2̈. Thus, one sets 2̈ =

 1
0
0

,

2̇ =

 0
0
0

, 2 =

 θ1
θ2
θ3

, g = 0, and based on Eq. (26), one

has  τ1
τ2
τ3

 =

 M11 M12 M13
M21 M22 M23
M31 M32 M33

 1
0
0

+

 0
0
0

+

 0
0
0


=

 M11
M21
M31

 (27)

Similarly, one sets 2̈ =

 0
1
0

, and based on Eq. (26), one

has

 τ1
τ2
τ3

 =

 M12
M22
M32

; one sets 2̈ =

 0
0
1

, and based on

Eq. (26), one has

 τ1
τ2
τ3

 =

 M13
M23
M33

. Similarly, one sets 2̈ =

 0
0
0

, 2̇ =

 θ̇1
θ̇2
θ̇3

, 2 =

 θ1
θ2
θ3

, and g = 9.8, and based on

Eq. (26), one has τ1
τ2
τ3

 =

 0
0
0

+

 C11 C12 C13
C21 C22 C23
C31 C32 C33

 θ̇1
θ̇2
θ̇3

+

 G1
G2
G3

 (28)

Based on Eqs. (26)-(28), the values of M(2t ) and
C
(
2̇t , 2t

)
2̇t + G(2t ) in Eq. (25) can be calculated.

B. Fuzzy PID Controller

In the fuzzy PID controller, the error e j and error rate ecj of
each joint angle are considered as input variables of the fuzzy
controller, and one has

e j = θd j − θ j , j = 1, 2, 3 (29)

ecj = ˙θd j − θ̇ j (30)

where θd j is the ideal joint angle; θ j is the actual joint angle;
˙θd j is the ideal angular velocity vector; and θ̇ j is the actual
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Fig. 5. Curves of membership functions of the input and output variables:
(a) e j and ecj , and (b) 1K p , 1Ki , and 1Kd .

angular velocity vector. According to the fuzzy theory, the
membership degrees of e j and ecj with respect to different
fuzzy subsets are obtained. Subsequently, outputs 1K p, 1Ki ,
and 1Kd of the fuzzy PID controller are obtained by the
fuzzy algorithm. Thus, the fuzzy PID controller is adaptively
adjusted by 1K p, 1Ki , and 1Kd , and the output torque τ j (t)
is expressed as

τ j (t)

=
(
K po+1K p

)
e j + (Kio+1Ki )

∫ t

0
e j dt + (Kdo+1Kd)

de j

dt

=

(
K poe j + Kio

∫ t

0
e j dt + Kdo

de j

dt

)
+
(
1K pe j

+1Ki

∫ t

0
e j dt + 1Kd

de j

dt

)
(31)

where K po, Kio, and Kdo are the initial values of PID in the
artificially selected fuzzy PID controller.

It should be noticed that the more the number of fuzzy
subsets, the higher the control accuracy and the more the
control cost [27], [28]. Thus, the numbers of fuzzy subsets
of the input variables including the error e j , the error rate
ecj , and the output variables such as 1K p, 1Ki , and 1Kd

are 7. The curves of membership functions of the input
variables including the error e j , the error rate ecj , and the
output variables such as 1K p, 1Ki , and 1Kd are shown
in Fig. 5. The ranges of variation of e j and ecj are both
[−6, 6], the fuzzy subsets of e j and ecj are NB: negative
bigness, NM: negative medium, NS: negative small, ZO: zero,
PS: positive small, PM: positive medium, and PB: positive
bigness. Meanwhile, the ranges of variation of 1K p, 1Ki ,
and 1Kd are [0, 15], the fuzzy subsets of 1K p, 1Ki , and
1Kd are also NB: negative bigness, NM: negative medium,
NS: negative small, ZO: zero, PS: positive small, PM: positive
medium, and PB: positive bigness. The fuzzy regular surface
diagrams of 1K p, 1Ki and 1Kd are shown in Fig. 6. Based
on the centroid method [29] and Figs. 5 and 6, the 1K p,
1Ki , and 1Kd of the fuzzy PID controller can be calculated
by

µ j =

∑n
j=0 µc

(
z j
)
· z j∑n

j=0 µc
(
z j
) (32)

where µ j are the exact values of the output variables of the
fuzzy controller after defuzzification, z j are the values of

Fig. 6. Fuzzy regular surface diagrams: (a) 1K p (b) 1Ki , and (c) 1Kd .

fuzzy control quantity in the fuzzy field, and µc
(
z j
)

are the
membership values of z j .

C. Fuzzy Control Strategy Based on an Adaptive Whale
Optimization Algorithm

It should be noticed that the quantization factor and scale
factor of fuzzy controller will seriously affect the dynamic
and static quality and stability of the system. The values
of quantization factors Ke j , Kecj and scale factors Ku p j

,
Kui j

, and Kud j
are judged and selected through experience.

Thus, an adaptive whale optimization algorithm is selected to
optimize the Ke j , Kecj and Ku p j

, Kui j
, and Kud j

of the fuzzy
PID controller to improve the stability and accuracy of the
control system.

In the global search stage, whale optimization algorithm
(WOA) randomly selects an individual as the lucky individual
in the population, whose position is defined as Xrand(t), and
other individuals will move to the selected lucky individual.
The current position of individual whale is defined as X(t),
and the step size of individual movement D1 is expressed as

D1 = |C · Xrand(t) − X(t)| (33)
X(t + 1) = Xrand(t) − A·D1 (34)

where X(t + 1) is the updated position of the individual whale;
A and C are coefficients, and

A = 2a·r1 − a (35)
C = 2·r2 (36)

a = 2−
2t

Tmax
(37)

in which a is the control parameter of the algorithm, and
with the increase of the number of iterations, the value of
a decreases from 2 to 0, and the decreasing trend is linear;
r1 and r2 are random numbers between [0, 1]; t represents
the current number of iterations; and Tmax is the maximum
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Fig. 7. The control diagram of the proposed FPID-AWOA.

number of iterations. In the local optimization stage, WOA
selects an individual as the best individual in the population,
whose position is defined as Xbest (t), the remaining individuals
will move to Xbest (t), and the step size of individual movement
is expressed as

D2 = |C · Xbest (t) − X(t)| (38)

The distance D′ from Xbest (t) to X(t) is expressed as

D′
= |Xbest (t) − X(t)| (39)

Based on Eqs. (38) and (39), X(t + 1) is expressed as

X(t + 1) =

{
Xbest (t) − A · D2

D′
· ebl

· cos(2πl) + Xbest (t)
(40)

where b is a constant coefficient; and l is a random number
between [−1, 1]. Based on Eqs. (34) and (40), when the
probability factor p≥ 0.5, X(t + 1) is expressed as

X(t + 1) = D′
·ebl

· cos(2πl) + Xbest (t) (41)

when the probability factor p< 0.5, X(t + 1) is expressed as

X(t + 1) =

{
Xrand(t) − A · D1 |A| ≥ 1
Xbest (t) − A · D2 |A| < 1

(42)

A weight function and a differential mutation interference
factor are introduced into WOA because of its slow conver-
gence rate, low solving accuracy, and easily falling into local
optimal. The weight function ω is introduced to control the
updating position of whales, and

ω = ωmax − (ωmax − ωmin)

(
t

Tmax

) 1
t

(43)

where the range of ω is [ωmin, ωmax ]. Based on Eqs. (41)
and (42), and by introducing the weight ω, one has

X(t + 1) = ω·D′
· ebl

· cos(2πl) + Xbest (t) (44)
X(t + 1) = Xrand(t) − ω · A·D1 (45)

In addition, the differential mutation interference factor γ

is introduced, and

γ = δ · (Xbest (t) − X(t)) (46)

where δ is an adaptive mutation factor, and

δ = δ0·2ε (47)

ε = e1−
Tmax

Tmax +1−t (48)

in which δ0 is the mutation parameter. At the initial stage,
and δ = 2δ0. The value of δ gradually approaches δ0 with the
increase of the number of iterations, which makes WOA easier
to jump out of the local optimal solution and avoid premature.
Based on Eq. (42) and by introducing the differential variation
interference factor γ , one has

X(t + 1) = Xbest (t) − A · D2 + γ (49)

Compared with other optimization algorithms, AWOA has
the advantages of simple operation, fewer parameters to be
adjusted, better convergence speed and global search capabil-
ity, as well as the ability to jump out of the local optimum,
high solution accuracy, fast finding of optimal solutions, and
effective working for various types of optimization problems.
Therefore, this paper chooses to optimize the fuzzy PID
controller by AWOA. The control diagram of the proposed
FPID-AWOA is shown in Fig. 7. The ideal trajectory Xd in
the Cartesian space is transformed into the ideal joint angle in
the joint space by kinematics, and the error between the ideal
joint angle and the actual joint angle and the error change
rate are used as inputs to optimize the fuzzy parameters by
the designed AWOA to obtain the optimal PID parameters,
and then control the robot to achieve high precision trajectory
tracking.

IV. NUMERICAL SIMULATIONS

In this section, in order to observe the control performance
of the proposed FPID-AWOA, the system simulation test is
carried out, and the trajectory tracking control performances
of FPID, FPID-WOA, FPID-PSOA, and FPID-AWOA are
compared and analyzed.

By considering the limit position that the robot can reach
and the experimental effect, as shown in Fig. 8, and assuming
that the trajectory of point B4 of the end-effector in space
is a cylindrical spiral, the equation of the trajectory of the
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Fig. 8. Space spiral track.

Fig. 9. Position tracking and the error of θ1: (a) position tracking, and (b) the
error.

end-effector is expressed as
x = 100·cos(t) + 886
y = 100· sin(t)
z = 10t + 700

(50)

where t is a certain point in a period.
The initial values of the fuzzy PID controller are set as

K po= 500, Kio= 10, and Kdo= 10. The Ke j , Kecj , Ku p j
, Kui j

,
and Kud j

are optimized through WOA, PSOA, and AWOA.∫
∞

0 e(t)2dt is selected as the fitness function. The population
size is 10, the number of iterations is 100, the value range of
ω is [0.6, 0.9], and the simulation time is 20s. The optimized
values of Ke j , Kecj , Ku p j

, Kui j
, and Kud j

based on WOA,
PSOA, and AWOA are listed in TABLE I.

Position tracking and errors of θ1, θ2, and θ3 in the joint
space are shown in Figs. 9-11, and the trajectory tracking
errors in the Cartesian space are shown in Fig. 12. According
to Figs. 9-12, it can be seen that the four different control algo-
rithms can achieve the smooth trajectory tracking. However,
it is obvious that FPID-AWOA performs the best in terms of
the stability and tracking accuracy. On one hand, according to
Figs. 9-11 (b), the overshoot of FPID-AWOA is the smallest
and only fluctuates once before reaching a stable state. The
overshoot of FPID, FPID-WOA, and FPID-PSOA is higher
than that of FPID-AWOA, and their fluctuation times are more
than twice that of FPID-AWOA.

On the other hand, among the four control algorithms,
FPID-AWOA takes the fastest time to reach stability. More-
over, in Cartesian space, FPID-AWOA ensures that the tra-
jectory tracking errors and the times to reach stability of the
X -axis, Y-axis, and Z -axis are less than that of FPID, FPID-
WOA, and FPID-PSOA.

Fig. 10. Position tracking and the error of θ2: (a) position tracking, and
(b) the error.

Fig. 11. Position tracking and the error of θ3: (a) position tracking, and
(b) the error.

Fig. 12. The trajectory tracking errors in Cartesian space: (a) X -axis
direction, (b) Y -axis direction, (c) Z -axis direction, and (d) the Euclid
distance.

In order to quantitatively analyze and compare the control
accuracy of the FPID, FPID-WOA, FPID-PSOA, and FPID-
AWOA, the comparison of trajectory tracking performance
under the four control algorithms are listed in TABLE II,
the fluctuation ranges of errors along the X -axis, Y -axis, and
Z -axis are listed in TABLE III, and the root-mean-square
errors (RMSEs) [30], [31] along the X -axis, Y -axis, and
Z -axis are listed in TABLE III. Note that the RMSE can be
expressed as

RM SE =

√∑
(x − xi )

2

n
(51)

where x is the real value, which in this paper represents the
ideal coordinate values of the X -axis, Y -axis, and Z -axis of the
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TABLE I

TABLE II

ideal trajectory; xi is the measured value, which in this paper
represents the coordinate values of the X -axis, Y -axis, and
Z -axis measured during the simulation; and n is the number
of measurements, which in this paper represents the number of
times sampled during the simulation. In joint space, according
to TABLE III, the performances of rotational angles tracking
control are judged from three aspects: maximum overshoot
of trajectory error, time to reach stability, and average error
value after stabilization. For θ1, in comparison with the FPID,

TABLE III
THE FLUCTUATION RANGES OF ERRORS ALONG THE X -AXIS, Y -AXIS,

AND Z -AXIS AFTER STABILIZATION

TABLE IV
THE RMSES ALONG THE X -AXIS, Y -AXIS, AND Z -AXIS

FPID-WOA, and FPID-PSOA, the maximum overshoot of
trajectory error is reduced by 50%, 9.5%, and 20.83%, the
time to reach stability is accelerated by 64.29%, 28.57%, and
44.44%, the average error value after stabilization is reduced
by 40%, 14.29%, and 25% by using the proposed FPID-
AWOA. For θ2, in comparison with the FPID, FPID-WOA,
and FPID-PSOA, the maximum overshoot of trajectory error
is reduced by 85.78%, 89.27% and 84.76%, the time to reach
stability is accelerated by 63.64%, 33.33%, and 50%, the
average error value after stabilization is reduced by 72.92%,
35% and 60.61% by using the proposed FPID-AWOA. For
θ3, in comparison with the FPID, FPID-WOA and FPID-
PSOA, the maximum overshoot of trajectory error is reduced
by 45.01%, 74.78%, and 52.64%, the time to reach stability is
accelerated by 45.45%, 33.33%, and 33.33%, the average error
value after stabilization is reduced by 57.97%, 29.27%, and
19.44% by using the proposed FPID-AWOA. The performance
of trajectory tracking in the Cartesian space is reflected by the
error fluctuation range and RMSE. According to the data in
Tables III and IV, in comparison with the FPID, FPID-WOA,
and FPID-PSOA in Cartesian space, the trajectory tracking
error in the X -axis direction is reduced by 45%, 40.13%, and
37.22%, the trajectory tracking error in the Y -axis direction
is reduced by 58.97%, 8.57%, and 39.62%, the trajectory
tracking error in the Z -axis direction is reduced by 21.67%,
4.27%, and 11.41% by using the proposed FPID-AWOA, and
the better stability is demonstrated by FPID-AWOA through
the minimum fluctuation range. To sum up, it is precisely
because of the weight function ω and differential mutation
interference factor γ introduced by Eqs. (43) and (46) that
AWOA improves the optimization accuracy and optimization
speed, so that FPID-AWOA ensures the best stability and the
highest accuracy among all control algorithms.

V. EXPERIMENT VALIDATION

In order to verify the effectiveness of the control algorithm
proposed in this paper, a control experiment platform of the
CDPR is built. The control experiment platform is shown
in Fig. 13. The CDPR is controlled by Delta PLC. The
control program is written by Delta software. The trajectory
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Fig. 13. The control experiment platform.

Fig. 14. Position tracking and the error in the X -axis direction in the spiral
trajectory in the experiment: (a) position tracking, and (b) the error.

Fig. 15. Position tracking and the error in the Y -axis direction in the spiral
trajectory in the experiment: (a) position tracking, and (b) the error.

of the CDPR is captured by the Nokov multi-camera visual
capture system. The trajectory of the visual calibration tar-
get acquired by the camera is the end motion track of the
CDPR.

Similar to the simulations, the spiral trajectory shown in
Fig. 7 is used as the verification trajectory. Note that based
on Eqs. (43) and (46) and the above simulation results, it is
verified that FPID-AWOA performs better than FPID-WOA
in terms of the stability, response speed, and tracking accu-
racy. In order to simplify the experiment, only the trajectory
tracking experiments of FPID, FPID-PSOA, and FPID-WOA
are selected for comparison. When the spiral trajectory is
followed, position tracking and errors in the spiral trajectory
in the experiment are shown in Figs. 14-16. According to
Figs. 14-16, one can find that FPID-AWOA is closest to
the ideal trajectory in the whole tracking process, and the
fluctuation of the error is minimal. The approach of trajectory
indicates high tracking accuracy and small error fluctuation

Fig. 16. Position tracking and the error in the Z -axis direction in the spiral
trajectory in the experiment: (a) position tracking, and (b) the error.

TABLE V
THE FLUCTUATION RANGES OF THE ERRORS ALONG THE

X -AXIS, Y -AXIS, AND Z -AXIS

TABLE VI
THE RMSES ALONG THE X -AXIS, Y -AXIS, AND Z -AXIS

indicates strong stability. Hence, FPID-AWOA has the best
control performance. The main reasons are the following two
aspects. On one hand, K po, Kio, and Kdo in Eq. (31), the
quantization factors Ke j and Kecj , and the scale factors Ku pj ,
Kui j , and Kud j in the fuzzy controller are generally selected
according to experience, which leads to the control effect of
FPID being far worse than that of FPID-AWOA. On the other
hand, the control performance of FPID-PSOA is similar to that
of FPID-WOA based on simulations. According to Eqs. (43)
and (46), ω and γ are introduced into AWOA, which makes
the optimization performance of AWOA better than WOA; so
FPID-AWOA is better than FPID-PSOA in the stability and
tracking accuracy. Hence, FPID-AWOA effectively reduces all
the errors in comparison with FPID and FPID-PSOA, and
achieves the best control accuracy. Of course, the conclusions
obtained in the experiment are also consistent with those in
the numerical simulations.

Moreover, to quantitatively analyze and compare the control
accuracy of the FPID, FPID-PSOA, and FPID-AWOA, the
fluctuation ranges of the errors along the X -axis, Y-axis,
and Z -axis are listed in Table III, and the RMSEs along
the X -axis, Y -axis, and Z -axis are listed in Table III. In
comparison with the FPID and FPID-PSOA, the trajectory
tracking errors are reduced 51.2% and 19.5% on the X -axis,
64.2% and 49.7% on the Y -axis, and 29.1% and 12.2%
on the Z -axis, respectively, by using the proposed FPID-
AWOA, and the error fluctuation ranges of FPID-AWOA is
the smallest, which reflects its better stability. These data more
intuitively show the superiority of FPID-AWOA in the stability
and accuracy of control. Of course, it is obvious that the
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experimental results are not exactly the same as the simulation.
Note that the difference between experiment and simulation
is less than 15%. The reason is given as follows. Since the
Matlab-based simulation is an ideal environment, the dynamic
control in the simulation only depends on the given mathe-
matical model and the Matlab solving accuracy of differential
equations, and there is no external interference in Eq. (24)
in the simulation. Therefore, in general, the dynamic control
simulation can achieve very high accuracy. However, in actual
experiments, the uncertainty of the robot dynamic model is
inevitable, and an accurate dynamic model is almost impos-
sible to obtain (for example, friction cannot be accurately
modeled). In addition, there are also unavoidable disturbances
in the dynamic control of actual robots, such as signal fluc-
tuations, environmental disturbances, and so on. Therefore,
the dynamic control in actual experiments cannot yield the
same accuracy as the simulations, which is obvious and
reasonable.

VI. CONCLUSION

In this paper, a fuzzy PID control strategy based on an
adaptive whale optimization algorithm (FPID-AWOA) is pre-
sented for trajectory tracking of CDPR. On the basis of
establishing the kinematics and dynamics model of CDPR,
the problem that the dynamic equation is too complicated
to express is solved by numerical method. Then, combined
with the mechanical model and considering the experience
of experts, a new fuzzy rule is proposed and a new fuzzy
PID controller is designed. Subsequently, AWOA is used
to optimize the quantization factors Ke j and Kecj and scale
factors Ku pj , Kui j , and Kud j in the fuzzy PID controller.
Note that, this paper improves AWOA by introducing weight
and differential mutation interference factor on the basis of
traditional WOA to improve the optimization performance
of WOA. Numerical simulations demonstrate that compared
with other control algorithms, FPID-AWOA can reduce all
errors and significantly improve the control accuracy of CDPR
in the joint space or the Cartesian space. Meanwhile, the
trajectory tracking experiments were conducted on the con-
structed CDPR, which shows that compared with FPID and
FPID-PSOA, the trajectory tracking errors are reduced 51.2%
and 19.5% on the X -axis, 64.2% and 49.7% on the Y -axis,
and 29.1% and 12.2% on the Z -axis, respectively, by using
the proposed FPID-AWOA. Future research work will aim to
extend the proposed approach to multiple CDPRs performing
cooperative lifting tasks, which include not only static but
also cooperative work while moving as well as obstacle
avoidance.
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