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and Houbing Song, Fellow, IEEE

Abstract—Drone participation in truck delivery is a potential
booster for the last-mile logistics system, which has been an
emerging hot research field. Among that, how to arrange a fleet of
drones from the truck and optimize the vehicle routing problem with
drones (VRPD) is a key issue. However, most existing studies fail to
derive the feasible solutions due to unordered customer distributions
and multi-variant drone feature constraints. In this paper, we
propose a novel self-driven reinforcement learning structure, named
constraint-based hybrid pointer network(CH-Ptr-Net) model, which
is a hybrid pointer network approach composed of graph neural
network(GNN) embedding and attention decoder. We go into devel-
oping the simpler embedding version for multiple drones-assisted
truck delivery. The CH-Ptr-Net model tends to generate a set of
optimal delivery sequence, after constructing the mixed integer
linear program(MILP) formulation. Extensive numerical testing
indicates that the proposed method performs better than recent
exact and heuristic approaches for collaborative delivery routing
optimization with the truck carrying multiple drones.

Index Terms—Collaborative routing optimization, multiple
drones delivery, deep reinforcement learning, constraint-based hy-
brid pointer network, graph neural network embedding.

I. INTRODUCTION

UNMANNED aerial vehicle(UAV) has attracted great atten-
tion as assistant for truck delivery, which is known as a

potential booster for improving the logistics system efficiency.
Amazon was the earliest to raise the drone application in the
field of logistics delivery [1]. With the development of drone
technology, deploying a fleet of drones from the truck has gradu-
ally been promoted to more wider range of commercial activities,
which enables the delivery routing sparingly [2]. Taking a certain
area in Tampa, FL, USA as an example, Fig. 1 shows a typical
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overview comparison for the vehicle routing problem (VRP) with
different number of drones. Compared with traditional single
truck delivery, the advantages of the vehicle routing problem with
drones (VRPD) are obvious. First of all, compared with ground
transportation, the drone achieves transportation conservation and
economical infrastructure construction by utilizing idle low alti-
tude resources. Afterwards, the freight operating cost is relatively
low, and it helps the intensive development for all factors in the
operation management. In addiction, collaborative delivery type
of truck and drone brings vehicle own advantages into full play,
improving delivery efficiency and logistics service capabilities. In
the end, drone delivery is more flexible in emergency situations,
such as earthquakes, forest fires and flood disaster, getting rid of
the natural environment limitations. However, deploying multiple
drones from the truck delivery faces more complex network
system representation learning pressure. Therefore, collaborative
delivery routing optimization analysis is worth further studying.

Significant effort has gone into analyzing and optimizing the
VRPD. Many researchers have shown deep interest in using
mathematical exact and heuristic algorithms to optimize deliv-
ery path. The first research on truck carrying drone delivery
was presented by Murray and Chu [3], and authors proposed
the heuristic approaches to solve the flying sidekick traveling
salesman problem. In recent published journal papers, Murray
[4] continued to delve into the vehicle routing visualization
problem for multiple drone delivery, specifically, Gantt charts,
dynamic 3D videos and static maps were used for the visual
drone scheduling. Buck et al. [5], [6] put forward the drone
delivery mode for asset-intensive organizations, and heuristic
solution frameworks for solving large-sized instances of drone
delivery lost the effectiveness. Lee et al. [7] researched the
multi-drone delivery routing framework, and the developed exact
routing algorithms achieved a maximum of six times higher
performance for faster delivery runtime. It can be seen that how
to arrange a fleet of drones from the truck and optimize the total
delivery routing is still an issue worth studying.

Deep reinforcement learning has been a compelling choice
to solve complex objective optimization tasks. The essence of
combinatoric optimization is a sequential decision problem, and
pointer network(Ptr-Net) is an effective artificial intelligence
method for solving sequential decision problems. It is a new
network architecture generated based on sequence to sequence
networks, which solves the mapping problem from one sequence
to another [8]. The content of output sequence is completely
consistent with the input sequence, and the sequence order has
changed, which can effectively perform intelligent sorting on the
output sequence. Therefore, Ptr-Net establishes the relationship
between neural network and combinatorial objective optimiza-
tion, and it optimizes the element order of variable length
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sequences or sets.
However, most existing studies on truck-drone delivery prob-

lems are defective by the randomness of network data. These
problems can be summarized as follows: 1) Most routing op-
timization algorithms are only suitable for simple projects, but
unsatisfactory for complex cooperative scheduling problems; 2)
Most existing works focus on a single objective optimization
problem, but truck-drone delivery may face multiple objective
functions that may be inconsistent and conflicting with each
other; 3) It is difficult to solve the dynamic VRPD because
the various customer needs are constantly addressed with the
transportation dynamically; 4) As vehicle routing optimization
is NP-hard, few large instances are tested. Multiple depots
and customer nodes take more time to search information, and
model structures are uncontrollable. In order to overcome these
shortcomings, some efforts must be made.

In this paper, the proposed deep reinforcement learning cou-
pled with constraint-based hybrid pointer network is adopted to
optimize a collaborative truck-drone routing problem. We take
the delivery operation characteristics, especially energy consump-
tion, vehicle routing availability, drone endurance, customer time
windows and service sequence into account, and then decision
variables and objective functions are set. Based on the analysis
of single objective optimization, solution approach is extended to
solve multi-objective optimization problem (MOP). Considering
the dynamic node update capability, data representation learn-
ing depends on GNN embedding and attention decoder, which
generate a string of routing. Contributions of this work can be
concluded as follows.

1) This paper extends the VRP to multi-trip VRPD (MT-
VRPD) that the single truck operates in coordination with a
fleet of drones. The MT-VRPD is a challenging variant, which
belongs to the class of NP-hard problem. In this paper, we
fully consider the delivery characteristic factors of deploying
drones from the truck, so as to build the mixed integer linear
program (MILP) formulation. Then we develop the truck-drone
collaborative routing problem from an objective optimization to
multi-objective optimization problem for the minimum delivery
duration and delivery cost.

2) We propose a novel self-driven reinforcement learning
procedure, named CH-Ptr-Net model, which is a hybrid pointer
network solution approach based on a sequence of delivery con-
straints. Solution approach can not only optimize the sequence
combination order for an objective function, but also extensively
provide multiple arrangement points, by constantly varying the
weights for the MOP. Unlike mathematical exact and heuristic
methods, the proposed reinforcement learning framework derives
the rewards with updating node information dynamically.

3) GNN embedding is added to replace recurrent neural
network (RNN) encoder, which simplifies the version of pointer
network. RNN encoder is only helpful for input tasks related
to order. With all inputs of the current step, GNN uses low
dimensional vectors to represent graph nodes and topological
structure, which improves the generalization ability and extract
superiority.

This paper is organized as follows. Sec. II presents the related
research work. Then the MILP formulation is built in Sec. III.
In Sec. IV, the proposed constraint-based hybrid pointer network
is presented. After that, the experimental results and analysis are
given in Sec. V. Sec. VI concludes this paper.

II. RELATED WORK

In order to further analyze the related studies on delivery
routing optimization with truck in coordination with drone, we
will focus on two necessary content in this section. Single drone
delivery problem and joint delivery with multiple drones-assisted
truck will be summarized. Especially, we will investigate the fac-
tors and mechanisms of drone energy consumption. Application
of deep reinforcement learning in VRPD will be discussed.

A. Truck-Drone Delivery Routing Optimization

The drone is a new transportation tool for the logistics delivery
process. Unlike traditional truck or aircraft delivery, drones
face more complex delivery system conditions [9]. Preliminary
researches have been studied on the classification based on
the drone participation degree. Truck-drone delivery routing
optimization problem contains the truck equipped with single
drone delivery problem and joint delivery with multiple drones-
assisted truck. The number of drones has a direct impact on
constructing the decision variables and constraints.

1) Truck equipped with single drone delivery problem: Over
the past years, several researchers have shifted their attention
to single drone delivery problem. Archetti et al. [10] proposed
the multimodal transportation plan for the VRPD. Specially, the
operations research method became a new model for correctly
distribution of complex unmanned aerial vehicle transportation
system. Ensafian et al. [11], [12] researched on the drone reliable
routing optimization, applied in the stochastic time-dependent
public transportation network, which was an innovative explo-
ration of single drone logistics delivery. An intelligent optimiza-
tion algorithm based on one unmanned aerial vehicle delivery
problem was proposed by Chen et al. [13]. They incorporated
the Internet of things perspective into the network model during
the last-mile drone delivery.

For single drone delivery constraints considered, Aurambout et
al. [14] regarded the VRPD as the complex system optimization
problems. Authors developed the single drone delivery problem
for local shop, and the hop mode effectively overcame the limi-
tation of drone energy consumption on flight distance. Bastone et
al. [15], [16] focused on the impact of human resources on drone
delivery performance. The level of drone energy consumption and
carrying capacity affected the drones delivery capacity non linear-
ly. For the spatial-temporal interaction constraints, Savkin et al.
[17] decomposed the VRPD considering the large delivery scale
and low operating cost factors. Authors constructed the complex
integer programming model for single drone path optimization.

2) Joint delivery with multiple drones-assisted truck: In the
case of joint delivery problem with truck and multi-drones,
vehicle collaborative routing faced more complex optimization
systems. Chase et al. [18], [19] proposed the collaborative truck
and drone delivery model for emergency situation. Specially, non-
contact package delivery during the epidemic was constructed,
and the joint mode of drone and truck was an emergency explo-
ration. For regular logistics delivery, Arafat et al. [20] researched
the combined routing and charging strategy for multiple drones
and truck, which considered both the differences and linkage
between drone and truck transportation vehicles. Raissa et al.
[21], [22] took use of parallel data and algorithm to design the
parallel drone scheduling problem. Specially, authors generated
the dynamic update model with multiple drones and vehicles at
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(a) Without drone (b) One drone (c) Two drones
Fig. 1. A typical overview comparison for the vehicle routing in Tampa region. (a)Only one truck without drone for delivery. (b) and (c) exist one truck with one
and two drones respectively.

the same time. Through joint delivery, the operational efficiency
of the delivery center was improved and service time was saved.
Meng et al. [23] put forward the environmental and economic
impacts as the important constraints, and the carbon market price
became a performance indicator for measuring joint delivery.

In addition, hybrid multi-objective optimization problem with
drone-assisted truck was formally defined by Luo et al. [24].
Authors proposed the pareto local search to shorten the delivery
distance between trucks and drones. Considering flexible time
windows factors, Elsokkary et al. [25], [26] took advantage
of a fleet of heterogeneous drones for joint delivery, and they
proposed the genetic algorithm approach for dynamic route
planning. Yanget al. [27] addressed the planning robust truck-
drone delivery routes prediction based on uncertain road traffic
conditions. Das et al. [28] researched the synchronized delivery
problem with multiple drones and truck. Trucks was mainly in
charge of drones, without the delivery auxiliary function. Xue
et al. [29], [30] put forward the new method with two-stage
heuristic solution for joint delivery with multiple drones and
trucks. Targeting the multi-depot collaborative pickup, it brought
drone and truck transportation advantages into full play to reduce
carbon emission costs.

Energy consumption is an essential constraint for drone deliv-
ery to provide services and reduce operational costs. Accurate
estimation of drone energy consumption ensures the feasible
and efficient delivery system. Various factors may affect the
drone energy consumption [31], [32]. In published studies, drone
design, environment, drone dynamics and drone operations are
the four main categories. Drone design factor includes the
drone itself and battery weight, the number of rotors, battery
energy capacity, power transfer efficiency, lift-to-drag ratio and
maximum speed and payload [33]–[35]. Environmental factor
includes the air density, wind conditions, weather and gravity
ambient temperature [36]. Drone dynamic factor includes the
drone airspeed, drone motion, flight altitude, flight angle and
angle of attack [37]. Drone operation factor includes the size of
payload and payload weight, empty return, delivery mode and
service area [38], [39]. Some of these factors are certain, such
as battery energy capacity, size of payload and payload weight,
etc., while others may be interdependent and dynamic during the
drone delivery process.

Many researchers have established the energy consumption
model for truck-drone delivery problem. Dorling et al. [40] used

the linear approximation for the drone status including in hover,
flight, takeoff and landing during logistics distribution. Figliozzi
[41] calculated the power transfer efficiency involve energy loss
from charging the battery and the power transmission efficiency.
Stolaroff et al. [42] proposed the component energy consumption
model by the forces of the weight, the parasite and induced drags.
Total drone weight, parasite drag force and area perpendicular
were considered fully. Therefore, how to determine drone energy
consumption is an important component of the VRPD.

B. Application of Deep Reinforcement Learning in the VRPD
Optimization approaches for the VRPD can be divided in-

to two types: traditional mathematical methods and intelligent
algorithms. Among them, the exact algorithms and heuristic
algorithms are commonly used mathematical methods, which
have made some significant research progress. Yin et al. [43]
conducted the branch-and-price-and-cut algorithm to extract the
truck-based drone delivery routing problem. On the basis of
considering the service time windows, authors focused on re-
searching the improvement space of exact algorithms for path
optimization. Hafza et al. [44] put forward another exact algo-
rithm approach for solving MT-VRPD, which considered cost in-
teractions among environmental multiple agents. For the heuristic
algorithms, how to obtain the optimal solution has been a key
issue for delivery routing optimization. Najy et al. [45], [46]
explored the routing nonresistance sensitivity of heuristic algo-
rithm structures. Optimization algorithm in different application
instances was unstable, therefore, unreliable calculation results
received challenge.

Intelligent algorithms, especially deep reinforcement learning
algorithms, have made unprecedented progress in VRPD [47],
[48]. As a new attempt of cross research, deep reinforcement
learning has shifted the research field from image recognition
and natural language processing to combinatoric optimization,
helping to better solve combinatoric optimization problems. Choi
et al. [49], [50] researched on reinforcement learning to build
an Internet of Vehicles systems. Fu et al. [51], [52] also applied
deep reinforcement learning algorithm to the Internet of Vehicles.
Specially, authors optimized the vehicle scheduling problem in
delay aware content delivery.

Essence of combinatoric optimization problem is to make
sequential decisions, as generative neural network, pointer net-
work suitable for solving combinatoric optimization problems.
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Fig. 2. The truck delivery schedule in coordination with a fleet of drones.

Regarding to the variants, Li et al. [53], [54] constructed the
heterogeneous attentions to optimize vehicle delivery distance,
and the attention mechanism enhanced the sequence convergence.
So pointer network has emerged promising value for complex
system sequence decision making.

III. MILP FORMULATION FOR THE COLLABORATIVE
DELIVERY OPTIMIZATION

This section provides the MILP formulation for the collabo-
rative delivery problem. While MILP contains decision variables
and multiple constraints, especially energy consumption, optimal
solution is used to find the minimum delivery duration and cost.
We extend the truck-drone collaborative routing problem from
a single objective optimization to multi-objective optimization
problem. Customer locations are randomly distributed, and the
parcels to be delivered are also unique. Generally, it is impossible
to complete all customer services through one delivery route.
The logistics network system consists of depot, customers, truck
routes and drone routes. A set of customers are randomly
distributed and has a service time window, which needs to be
delivered by the truck or drone. To illustrate the cooperative
delivery potential, Fig. 2 shows an example of how to arrange
the feasible routes.

A. Problem Description and Assumptions

The MT-VRPD is formally defined as a single truck equipped
with a fleet of drones for completing delivery tasks with a multi-
trip. The truck is in charge of package delivery and serving
multiple drones. The truck may return to the depot several times
to load parcels. Besides traditional delivery activities, the truck
also need to carry enough parcels to provide multiple drones.
The truck trip is set as multiple visits until all customer nodes
are serviced.

Multiple drones are launched from the single truck to deliver
the customer parcels, and then the drones return to the truck for
a new launch location or load a new parcel. Every drone has the
limited battery capacity and payload weight, and it can only serve
bits of customers. Multiple drone trips are defined as the flight
solutions, containing the launch nodes, a sequence of customers
serviced by drones, and the retrieval nodes.

Logistics network exists one depot and many customer loca-
tions distributed randomly, and parcel demand of each customer
node is stochastic and can only be served by either the truck or
a drone exactly once. Available service time of each customer is

also specifically constricted. Objective function of MT-VRPD is
to arrange a set of truck-drone routing to serve the customers to
minimize total delivery time and cost.

In order to construct feasible MILP formulation, some specific
assumptions should be set as follows:

1) Only one depot covers an area. Depot provides parcels and
sufficient energy for the truck and multiple drones. The truck can
return to the depot to load parcels and supply energy.

2) The single truck starts from and returns to the depot many
times until the end of task performing. In addition to routine
parcel delivery activities, the truck also need to launch and
retrieve multiple drones. The truck has enough endurance to
complete all the delivery activity.

3) The drone has limited battery capacity, so it can only
maintain a short distance flight. Moreover, the drone payload
is also relatively small, and it carries parcels with small weight.
Despite all this, the single load capacity for every drone is greater
than the parcel weight delivered by any customer. Drone can visit
one or several nodes per sortie. If the drone energy is not enough
to serve the next customer, it needs to fly back to the truck for
recovery.

4) Customer locations obey the random distribution in a region,
and their delivery demand quantities and available service time
windows are different. Through collaborative delivery activities,
every customer parcel can be serviced by the truck or drone.

5) If the truck and a fleet of drones return to the depot, it
indicates that no customer has not been visited in the delivery
network. When all the delivery tasks are completed, each cus-
tomer has be served by the truck or the drone.

B. Decision Variables and Constraints

Before the MILP formulation is built, some mathematical
parameter notations are shown in Table I. C = {1, 2, ..., c}
and D = {d1, d2, ..., dn} respectively represent the set of the
customers and drones, and together with the depot constitute
all network nodes in delivery system. All node settings can be
represented as N = {0, 1, ..., c+ 1}, accordingly, setting of the
departed nodes and arrived nodes are

−→
N and

←−
N . The launch

nodes, delivery nodes and rejoin nodes make up the delivery
route 〈i, j, h〉. xijh = 1 represents that the drone is launched
from node i ∈

−→
N , delivered to node j ∈ C, retrieved to node

h ∈
←−
N . Let yij is a binary decision variable, and it represents

that the truck travels from node i ∈
−→
N to node j ∈ C. The travel

time and service time of the truck and drones are defined, and
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the launch time and recovery time are ignored. Let eijh represent
the endurance time of the drone.

To clarify the service sequence of collaborative delivery, the
formal definitions are shown in Table II. Let µld,i represent
whether the drone is launched from node i before another drone is
launched from i. µl0,d,i and µld,0,i represent whether the truck has
completed service for node i before the drone is launched. Thus,
let µrd,j represent whether the drone is retrieved before another
drone is retrieved from i. µr0,d,j and µrd,0,j represent whether the
truck has completed service before the drone is retrieved from j.
µ1
d,i and µ2

d,i indicate the launch and landing sequence between
multiple drones. Above mathematical parameter notations can
avoid the repeated delivery for customers.

1) Drone energy consumption: For the drone hovering state,
Dorling et al. [40] put forward an energy consumption model for
the multiple rotor drone. When the drone hovers, the airspeed is
zero and the thrust balances the weight force. The thrust Γ can
be expressed as Eq.1.

Γ = g
∑
k=1

ϑk (1)

where ϑk is the weight to be lifted and g represents the gravity.
According to the helicopter theory [55], energy consumption P
of the drone to hover has the following expression.

P =
Γ3/2

√
2nρ%

=
(g
∑
k=1 ϑk)

3/2

√
2nρ%

(2)

where ρ represents the air density, n is the number of drone
rotors and % is the disc area of the spinning blade for each
rotor. Based on hover model, we also need to consider additional
energy consumption of flight, including the weight, the parasite
and wind induced drags.

Γ = g
∑
k=1

ϑk +
1

2
ρ
∑
k=1

εkςkη
2
α (3)

Total drone weight brings out the first term, and the second
term reflects the parasite and wind induced drags force. The
induced drags force is subject to the drag coefficient εk. ςk is
vertical projected area for the drone components. When the drone
is in hover, the air speed is zero. Therefore, Eq.3 is consistent
with Eq.1, namely, Γ = g

∑
k=1 ϑk.

For the forward flight and wind effects, energy consumption
formula is as Eq.4.

P =
Γ (ηα sinα+ ηi)

`
(4)

where α represents the angle of the drone rotor with the
airspeed, ` represents the power transfer efficiency and ηi is the
induced speed that needs to be solved. The angle of attack α and
the induced speed ηi can be expressed as Eq.5 and Eq.6.

α = tan−1
[

1/2ρ (
∑
k=1 εkςk) η2α

g
∑
k=1 ϑk

]
(5)

ηi =
g
∑
k=1 ϑk

2nρ%

√
(ηα cosα)

2
+ (ηα sinα+ ηα)

2
(6)

So energy consumption P can be further sent, depending on
hover and forward flight. By setting some parameter values,
including the power transfer efficiency, drag coefficient, air

TABLE I
MATHEMATICAL PARAMETER NOTATIONS

Variable Definition

D Set of the drones, D = {d1, d2, ..., dn}
C Set of all customers in delivery system, C = {1, 2, ..., c}
Cd Set of the customers serviced by drones, Cd ⊂ C
N Set of all the network nodes is N = {0, 1, ..., c+ 1},

where 0 and c+ 1 represent the depot
−→
N Set of the departed nodes of truck or drone,

−→
N = {0, 1, ..., c}

←−
N Set of the nodes that truck or drone may arrive during the delivery

activities,
−→
N = {1, 2, ..., c+ 1}

i The launch node, the start of delivery process, i ∈
−→
N

j The delivery node, accessible customer nodes for drones, j ∈
←−
N

and j 6= i

h The rejoin node, located in customer nodes or depot, h ∈
←−
N ,

h 6= i and h 6= j
xijh xijh ∈ {0, 1}, xijh = 1 represents that the drone is launched

from node i ∈
−→
N , delivered to node j ∈ C, retrieved to node h ∈

←−
N

yij Binary decision variable, yij ∈ {0, 1}, yij = 1 represents that
the truck travels from node i ∈

−→
N to node j ∈

←−
N

δij Distance from node i to j traveled by the truck, i ∈
−→
N , j ∈

←−
N

δ′ij Distance from node i to j traveled by the drone, i ∈
−→
N , j ∈

←−
N

ct Transportation cost per unit of distance of the truck
cd Transportation cost per unit of distance of the drone
ce The cost in financial unit of a kJ of energy
pi Energy consumption from the drone after leaving node i, i ∈

−→
N

ti The time for the truck to arrive at node i, ti ≥ 0
tdi The time for the drone to arrive at node i, tdi ≥ 0

t̄i The completion time for the truck at node i, i ∈
−→
N

t̄di The completion time for the drone at node i, i ∈
−→
N

γij The travel time for the truck from node i ∈
−→
N to node j ∈

←−
N

γdij The travel time for the drone from node i ∈
−→
N to node j ∈

←−
N

sj The service time for the truck at node j ∈
←−
N

sdj The service time for the drone at node j ∈
←−
N

eijh Endurance time of the drone during the route 〈i, j, h〉

density, weight to be lifted, and so on, the corresponding energy
consumption can be determined and evaluated.

2) Delivery routing availability: To ensure every delivery
route is valid through, and the truck and multiple drones re-
alize the collaborative delivery activities. The network graph
constraints are expressed as Eq.7-9.∑

i∈
−→
N

∑
h∈
←−
N

xijh +
∑
i∈
−→
N

yij = 1, j ∈ {C, j 6= i} (7)

In Eq.7, the launch node, delivery nodes and rejoin nodes
are the separate areas. Eq.7 guarantees that every customer in
the delivery network is served exactly once, which prevents the
occurrence of duplicate delivery.

∑
i 6=h

∑
j∈C

xijh ≤ 1, i ∈
−→
N ;
∑
i 6=j

∑
h∈
←−
N

xijh ≤ 1, j ∈ C (8)

For the smooth movement of drones, the above two inequalities
state that every drone is launched and retrieved exactly once
at a specific node. They effectively avoid the repeated launch
and recovery at a customer node or the depot. Exact flight can
economize energy consumption.∑

i∈
−→
N

∑
j∈
←−
N

yij ≤ 1, i 6= j;xdojh ≤
∑
i∈
−→
N

yih, i 6= h (9)
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Eq.9 indicates that the truck may return the depot for loading
the parcels until all the customer nodes are visited. This vehicle
routing problem is mainly caused by the multiple return of the
truck. Eq.9 requires that the truck must be assigned to h, when
a drone lands at node h. So every drone can be retrieved by the
truck at the appropriate node.

3) Drone endurance: Due to the small battery capacity γ,
the flight time of each drone is also limited. In the process of
delivery, launch, parcel delivery and recovery will deplete the
drone endurance time. If the drone travels from i to j to h, the
following constraints shall be met:

γdij + sj + γdjh ≤ eijh, i ∈
−→
N, j, h ∈

←−
N (10)

where γdij represents the travel time for the drone from node
i ∈
−→
N to node j ∈

←−
N . sj is the service time at node j ∈

←−
N , and

γdjh is the travel time for the drone from node j ∈
←−
N to node h ∈

←−
N . The above three decision variables are added together should
be less than the endurance time of the drone. Inequality consisting
of drone travel time and service time ensures the smooth delivery
progress.

tdh − t̄dj ≤ eijh +M (1− xijh) (11)

In Eq.11, M represents a sufficiently large number, to get
the upper bound of customer service time windows. Therefore,
the right side of the inequality provides an upper bound on the
maximum service time. The arrival time for the drone at node
h ∈
←−
N takes away the departure time at node j, and the result

should be less than the drone endurance.
4) Timing constraints: Timing constraints of truck and drone

are essential components. First of all, the truck timing constraints
are related to arrival time, travel time, service time and comple-
tion time. Eq.12-14 are a reasonable specification of the truck
delivery time, associated with the time windows and the drone
locations.

t̄i + γij −M (1− yij) ≤ tj , i, j ∈
−→
N (12)

Eq.12 prevents the truck visit the node j from the node i until
the service is completed at node i. That is, the time when the
truck arrives at node j is always later than that of node i.

tdh −M

1−
∑
i∈
−→
N

∑
j∈
←−
N

xijh

 ≤ t̄h, h ∈ ←−N (13)

t̄dh −M

1−
∑
k∈C

∑
l∈
←−
N

xhkl

 ≤ t̄h, h ∈ −→N (14)

Eq.13 and Eq.14 state that if a drone is launched or retrieved
at node h, the truck can not leave the node h. tdh and t̄dh are used
to indicate the drone landing and takeoff time at node.

In the next place, the drone timing constraints also need to
be considered, and it takes more factors into account than truck.
A sequence of the drone timing constraints ensure the delivery
activities running properly.

tdh−M

2−
∑
i∈
−→
N

∑
j∈
←−
N

xijh −
∑
k∈C

∑
l∈
←−
N

xjkl

 ≤ t̄dj , j ∈ C (15)

TABLE II
NOTATIONS FOR SERVICE SEQUENCE

Variable Definition

µld1,d2,i µld1,d2,i ∈ {0, 1}, µ
l
d1,d2,i

= 1 represents that d1 ∈ D is launched
from node i before d2 ∈ D. Otherwise, µld1,d2,i = 0

µl0,d,i µl0,d,i ∈ {0, 1}, µ
l
0,d,i = 1 represents that the truck has completed

service for node i before the drone is launched. Otherwise, µl0,d,i = 0

µld,0,i µld,0,i ∈ {0, 1}, µ
l
d,0,i = 1 represents that the drone has been launched

before the truck completes service for node i. Otherwise, µld,0,i = 0

µrd1,d2,j µrd1,d2,j ∈ {0, 1}, µ
r
d1,d2,j

= 1 represents that d1 ∈ D is retrieved
from node j before d2 ∈ D. Otherwise, µrd1,d2,j = 0

µr0,d,j µr0,d,j ∈ {0, 1}, µ
r
0,d,j = 1 represents that the truck has completed

service for node j before the drone is retrieved. Otherwise, µr0,d,j = 0

µrd,0,j µrd,0,j ∈ {0, 1}, µ
r
d,0,j = 1 represents that the drone has been retrieved

before the truck completes service for node i. Otherwise, µrd,0,j = 0

To avoid multiple drones being launched and retrieved at the
same node, Eq.15 makes a reasonable setting. If a drone is
retrieved at node h from node j, it can not return to the node
later. The above inequality ensures the service order relationships
for customers, and it can prevent ineffective delivery of multiple
drones.

tdj + sdj
∑
i∈
−→
N

∑
j∈
←−
N

xijh ≥ t̄dj , j ∈ C (16)

tdj + sdj +M

1−
∑
i∈
−→
N

∑
j∈
←−
N

xijh

 ≥ t̄dj , j ∈ C (17)

Eq.16 and Eq.17 require the completion time of the drone at
node j. In order to meet the service time windows requirement
for customers, the earliest and latest time for the drone to arrive
at the delivery node need to be within the service interval. Mean-
while, Eq.17 makes the drone depart from node j immediately
after completing the service, which guards against sticking for
too long.

t̄di + γdij −M

1−
∑
i∈
−→
N

∑
j∈
←−
N

xijh

 ≤ tdj , j ∈ C (18)

Eq.18 indicates the arrival time at node j for the drone. If a
drone travels from the node i to the node j, the upper and lower
bounds of the time windows for node i can be considered. Eq.19
also imposes the same restrictions.

t̄di + γdij +M

1−
∑
i∈
−→
N

∑
j∈
←−
N

xijh

 ≥ tdj , j ∈ C (19)

The above customer service time constraints ensure that the
demand nodes in the logistics system are met within a reasonable
time interval. The truck and a fleet of drones can assign the
reasonable delivery sequence based on time windows.

5) Service sequence of the vehicles: According to the param-
eter notations in Table II, service sequence constraints can be set.
If the drone is launched at node i, the truck should serve the node
i. No matter which the truck or drone reaches node i first, the
node must be serviced by the truck. Eq.20 is the mathematical
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expression in case of drone launch, and the drone launch meets
the node sequence arrangement.

µl0,d,i + µld,0,i =
∑
j∈C

∑
h∈
←−
N

xijh, i ∈
−→
N (20)

µld1,d2,i + µld2,d1,i ≤ 1, d2, d1 ∈ D, i ∈
−→
N (21)

Eq.21 prevents the multiple drones from being launched con-
currently at node i. The truck launches the d2 before the d1,
or the truck launches the d1 before the d2. In short, the launch
sequence of the multiple drones is constrained.

µld1,d2,i ≤
∑
j∈C

∑
h∈
←−
N

xd1ijh, d2, d1 ∈ D, i ∈
−→
N (22)

µld1,d2,i ≤
∑
j∈C

∑
h∈
←−
N

xd2ijh, d2, d1 ∈ D, i ∈
−→
N (23)

Eq.22 and Eq.23 indicate that the launch numbers of d1 or d2
at node i is less than the total number of launches. They make
regulations on the drone launch numbers and the orders of drone
launch are constrained. Similarly, Eq.24-27 describe the service
sequence when the drones are retrieved at network requirement
nodes. When drones are recycled, the vehicle service sequence
needs to be strictly restricted.

µr0,d,h + µrd,0,h =
∑
j∈C

∑
h∈
←−
N

xijh, h ∈
←−
N (24)

µrd1,d2,h + µrd2,d1,k ≤ 1, d2, d1 ∈ D,h ∈
←−
N (25)

Eq.24 states if the drone is retrieved at node h, the truck should
serve the node h. Eq.25 guards the multiple drones against being
retrieved at the same time. The truck retrieves the d2 before the
d1, or the truck retrieves the d1 before the d2.

µrd1,d2,h ≤
∑
j∈C

∑
h∈
←−
N

xd1ijh, d2, d1 ∈ D,h ∈
←−
N (26)

µrd1,d2,h ≤
∑
j∈C

∑
h∈
←−
N

xd2ijh, d2, d1 ∈ D,h ∈
←−
N (27)

Eq.26 and Eq.27 require the recovered sequence at node h.
For example, the recovered times for d1 at node h is less than
the total number of the launch, delivery and recovery processing.
This prevents drone excessive recovering.

C. Objective Function

The MILP objective is to find the minimum delivery time to
complete all the delivery tasks. Node c + 1 indicates the final
destination visited by the truck carrying multiple drones. The
arrival time tc+1 at node c+ 1 is the total operation duration, so
the objective function can be expressed as Eq.28.

min f = tc+1 (28)

Besides getting the earliest arrival time at depot, total delivery
cost is an auxiliary objective function. Total delivery cost is
related to transportation cost and energy consumption cost, which
can be formulated as

Fig. 3. The model framework of the constraint-based hybrid pointer network.

min f ′ =
∑
i 6=j
∑
h∈
←−
N
cd

(
δ′ij + δ′jh

)
xijh

+
∑
i∈
−→
N

∑
j∈
←−
N
ctδijyij +

∑
i6=j
∑
h∈
←−
N
cepixijh

(29)

Additional objective function f ′ minimizes the total delivery
cost. It becomes a multi-objective MILP formulation, when mini-
mizing delivery time and minimizing delivery cost are considered
simultaneously.

Since two objectives are involved in the vehicle collaborative
delivery problem, it cannot be solved directly. Firstly, we con-
struct CH-Ptr-Net model to obtain a single objective optimization
solution for delivery time f . Secondly, to obtain multi-objective
solutions, we address the MOP as a weighted combination
problem. Model adopts different weight coefficients β, satisfying∑
vβv = 1, as shown below:

min : β1f + β2f
′

s.t. (1)− (27)
(30)

Ultimately, the multiple objectives can be integrated into a
single objective formulation. Solving MOP is transformed into
single objective optimization problem. We need to quantify the
relative weights of total delivery time and cost to get the set
of Pareto minimizers or Pareto front. According to the above
built constraints Eq.1-27, optimization variables xijh and yij are
continuously adjusted to change the truck-drone delivery plans.
We consider the constraints of energy consumption, delivery rout-
ing availability, drone endurance, customer timing windows and
service sequence. Optimization variables, i.e, the trip sequence
of the truck and drones, determines the final time and cost.

IV. CONSTRAINT-BASED HYBRID POINTER NETWORK
MODEL FOR COLLABORATIVE DELIVERY OPTIMIZATION

A. Overall framework of the CH-Ptr-Net model

During the vehicle delivery, the customer needs will be contin-
uously met with the transportation activities, making the model
output dynamic and complex. The basic framework of pointer
network is difficult to solve the model output. Fig. 3 puts a new
encoder and decoder structure, called the CH-Ptr-Net model. The
hybrid model consists of GNN embedding and attention decoder.
We replace the RNN encoder with a simple network embedding.
This is because the RNN encoder is only helpful for input order
related tasks, but not necessary for input order unrelated tasks. So
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Fig. 4. Policy gradient training based on policy-based method.

the encoder part is removed and only the decoder part is retained.
This can simplify the model decoding process.

Ptr-Net encoder is replaced by GNN embedding which is all
inputs of the current step, so that the model output is independent
of the input order. Each node of original Ptr-Net is only input
once during the whole training. However, in the new CH-Ptr-
Net model, each node is input once in each step, so it can
handle dynamic delivery environment. The whole network mainly
contains two parts, one is encoder, which consists of static node
coordinates and dynamic demand states. The other part is the
decoder, which points to the input node.

B. GNN Embedding and Attention Decoder

Data representation learning is essential matter for Ptr-Net
to extract the characteristics of input data. At the same time,
embedding learning can improve the generalization ability of the
model and extract the effective data features. Embedding process
can not only better express the internal relationship between data,
but also simplify the model decoder. It uses low dimensional
vectors to represent the nodes and topological structure for the
graph network, which can be used as the input of the machine
learning algorithm.

The GNN embedding is a kind of neural network directly
acting on the graph structure. It can handle the initial data
with irregular and unfixed structures. Each customer node is
regarded as an individual object, and each edge is treated as
a certain delivery connection between different nodes. The GNN
embedding characterizes the relationship between nodes through
the adjacency matrix. The adjacency matrix stores the source and
target information. Then, adjacency matrix and original eigenvec-
tors are used as model inputs. Through aggregation operation,
the ambient nodes associated with node Ci are weighted on it,
making a feature update dynamically. After feature updates for
many times, the network delivery needs is extracted. Therefore,
GNN implements dynamic embedding as encoder of the CH-Ptr-
Net model.

The decoding process of Ptr-Net is to obtain the output element
by calculating the largest weight input. Attention mechanism
establishes a weight relationship for each position association
between the output and the input. Self-attention and feed forward
neural network help attention decoder output the node matrix.
Data pass through the self-attention module to obtain a weighted
feature vector Z. The algorithm steps are as follows:

Algorithm 1 the decoding process of the CH-Ptr-Net model

Parameters: q-query vector, k-key vector, v-value vector,

X-embedding vector, Z-weighted feature vector,

W q , Wk and W v-weight matrix of q, k and v.

Input: input node delivery information, then convert the node delivery

into vectors q, k and v.

Output: percentage of each distribution node being selected;

service sequence of drone to each network node;

the feasible optimization paths;

Start: transform node delivery information into embedded vector X .

for each: 1) according to embedded vector X , getting the q, k and v vector;

2) calculate each vector score, score = q · k;

3) normalize the gradient for convergence speed: qkT√
dk

;

4) input score to soft-max activation function: softmax
(

qkT√
dk

)
;

5) calculate the score Z of the weighted input vector:

Z = softmax

(
qkT√

dk

)
· v;

end for

repeat

until converge

Each delivery node information is composed of q, k and v
vector. They are obtained by the embedding vector Xi multiplied
by the weight matrix W q , W k and W v respectively. Then,
each node can normalize a score, and the soft-max activation
function dot multiplies the value to obtain the weighted score v
of each input vector. Above decoding process can be expressed
as Attention (Z) = softmax

(
qkT√
dk

)
v. Feed forward neural

network is a fully connected layer. After obtaining the weighted
feature vector Z, and its activation function can be expressed as
Feed (R) = max (0, ZW1 + b1)W2 + b2. Feed forward neural
network helps to establish the relationship between the current
delivery task and the encoded feature vector.

C. Training Method via Policy-Based Method

To train the Ptr-Net parameters and increase the convergence
rate, the policy-based method is used. Policy-based method con-
sists of actor, environment and reward function. The environment
and reward functions are predetermined and cannot be changed.
The only thing that can be adjusted is the actor policy, so that the
actor can obtain the maximum reward. The policy is to give an
external input, and then the neural network model will output the
behavior that the actor should perform in the current moment.

For the collaborative delivery problem with the truck and
multiple drones, model input is the logistics delivery network,
which is composed of the depot and customer demand nodes.
Model output is the route that the truck and drones can choose,
and its neuron number is determined by the number of actions
taken by the truck and drones. The agent, i.e., the single truck and
multiple drones, travel over environment with the entire square
grids area. Each grid cell is a state si and the vehicle can change
its state by choosing one of four directional movement options,
i.e., up, down, left and right that form the action set A. When the
agent adopts the policy π (st, at), it will receive the positive or
negative rewards. Positive reward tends to minimize the vehicle
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delivery or service time. The total reward at each cell is the sum
of its immediate reward plus all of the future rewards discounted
using a discount factor less than 1.

Policy-based training first initialize the variables and grid, in
which the state space S and action space A including four main
direction movements are set. Method benefits from the greedy
search by random action function using ε variable as a holder for
the given threshold value. If the random variable epsilon is less
than a threshold, then the random action function will randomly
choose an action among all possible actions. Otherwise, the
action that maximizes the total reward will be chosen. The policy
gradient is the basis of policy-based method, and its function is to
make the policy parameters θ move update in the rise direction.
The expectation of cumulative reward is a value function, which
can measure the quality of state. When the truck and drone go
for the policy, the cumulative reward Ri follows mathematical
distribution. The state value function vπ can be expressed as
Eq.31.

vπ(si) = Eπ
[∑∞

k=0γ
kRt+k+1, St = si

]
(31)

Policy parameters θ obeys the policy gradient rise. The steps
of sample update are θt+1 = θt + α

∑
α5θπθ (st, a)Rπ (st, a).

The model goal is to maximize cumulative rewards. However,
the drone is in a strange environment, it does not know the
reward of the selected path at the beginning. Delivery actions
are random, so the corresponding rewards are also random.
Therefore, our goal is to estimate the cumulative reward, that is,
to find its expectation. The expectation function can be expressed
as E (Rθ) =

∑
τ R (τ)Pθ (τ), where τ represents a set of

trajectories with drones and truck. The final derivation result is
Eq.32.

5E (Rθ) = Eτ∼Pθ [R (τn) · 5lnPθ (τ)]

= 1
N

∑N
n=1

∑Tn
t=1R (τn)5 lnPθ (ant , s

n
t )

(32)

Fig. 4 shows the policy gradient training process. First, the
actor interacts with the environment to obtain the initial trajectory
τ1 =

{
s11, a

1
1, s

1
2, a

1
2..., s

1
t , a

1
t

}
. The model brings the data into

the gradient formula 5E (Rθ), and then updating the policy
parameters θ. The new network continues to collect the next
delivery trajectory, and then keeping on optimizing parameters
θ. In the above steps, each trajectory is multiple embedding input
to handle the dynamic delivery environment. Model processing
node information is an important innovation of trajectory opti-
mization.

V. EXPERIMENTAL RESULTS AND ANALYSIS

To assess the performance of the proposed CH-Ptr-Net model
for collaborative delivery optimization, it will be applied in the
randomly generated instances. We will validate the drone energy
consumption model, and the performance comparison between
CH-Ptr-Net model and other approaches for a single objective
and multi-objective optimization problem will be analyzed, re-
spectively. Especially, we conduct an experiment to compare the
proposed algorithm against an recent hybrid ILS-VND method
in Gu et al.(2022). Moreover, it will discuss the impact of GNN
embedding structure, compared with RNN encoder. Choosing the
optimal service number of drones will be also an indispensable
issue.

TABLE III
PARAMETER PROFILES FOR THE MT-VRPD INSTANCES

Parameter Description Value

sj The service time for the truck at customer node (min) 2

sdj The service time for the drones at customer node (min) 2

eijh The endurance time of the drones during the route (min) 300

γ The maximum battery capacity and payload weight (kg) 1.8× 104

λt The travel speed of the truck (m/s) 3

λd The travel speed of the drone (m/s) 6

d The vector space of GNN encoder-attention decoder 128

S The state pace of the training network 11 ∗ 11

ε The greedy search through a random action (m/s) 0.9

α The initial learning rate 10−3

A. MT-VRPD Test Instances

As the collaborative delivery problem with the truck and
multiple drones is a new issue, there are no existing benchmark
problems. We derive a new piece of test instances from the
randomly generated set. The instances are used to form scenarios,
which include three types of customer distribution. In the uniform
instances, customers are independently and uniformly distributed.
The customer locations are randomly generated from the unit
region within [0, 10]×[0, 10]. Each customer has a certain service
time windows, randomly generated from the unit [1, 9] × [1, 9].
Delivery demand is also randomly generated from {1, 2, ...9}. A
truck and a fleet of drones are employed, with each drone having
the same limited battery capacity. The single truck starts from
and returns to the given depot until the end of task.

Delivery distance and optimal gap are cited as two perfor-
mance metrics, under a time limit of 30-min. Delivery distance
indicates the total trip that the truck and drones complete all
delivery tasks. Less delivery distance implies the less time cost
spent. The best situation is to pursue the minimum delivery
distance. Optimal gap is the percentage difference between the
solutions for test instances. Solution quality is embodied by the
gap between the best upper and lower bounds. Less value of the
optimal gap means the higher training efficiency.

B. Scenario Description

To possess the overall behavior of the MT-VRPD, we aver-
age the calculations of a large amount of randomly generat-
ed instances of each scenario, which contains the small-scale,
medium-scale, and large-scale delivery. Each type of scenario
has 20 unique instances with uniform customer locations. Small-
scale delivery scenarios have [20, 50] delivery locations, while
medium-scale and large-scale delivery scenarios have 100 and
more locations. Each scenario has an area size of 0.5, 1 and 2
km2. We generate 20 random instances for each type of scenario.
In every instance, customer nodes are randomly distributed
throughout the entire area. Each instance has a random demand
of {1, 2, ...9}. The depot is located in the area of [0, 0]. The
CH-Ptr-Net algorithm is run 100 times for per instance, and
then the maximum, mean and minimum distance and optimal
gap are calculated. We run the MILP implementation once per
instance, and we provide the average experimental result for all
20 instances of a scenario.
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(a) (b) (c) (d)

Fig. 5. The delivery distance under the different number of customers. Customer number interval of (a) and (b) is [20, 80]. Customer number interval of (c) and
(d) is [90, 150].

(a) (b) (c) (d)
Fig. 6. The delivery distance under the different drone number and capacity. Customer number of (a) and (c) is 50. Customer number interval of (b) and (d) is
120.

C. Parameter Settings
According to each customer locations and demands, we set the

maximum endurance time of drones as eijh = 300. Considering
convenience, the configuration of each drone is uniform without
distinction. The travel speed of truck is set to λt = 3, and
the flight speed of drones is set twice as fast as the truck.
Every drone has the maximum capacity including its battery and
payload weight of 1.8×104. We assign the service time of drones
s = 2min , while the truck has the same service time settings.
Detailed parameter information is summarized in Table III.

For the CH-Ptr-Net algorithm parameters, we use one layer
of GNN encoder-attention decoder with a size of 128. Every
customer node is also embedded into a vector of size 128. The
visiting nodes are mapped to a vector in a 128-dimensional vector
space and used in the attention decoder layer. Attentive encoder
consists of 3 stacks with h = 16 parallel heads and d = 128
hidden dimensions. For each head, we make use of dh = d/h =
8. Training state space S is set as a 11∗11 grid network. We set
the search step to 1, experimentally optimized destination grid
to 1000, no-fly grid to −30. Random action for greedy search is
set to ε = 0.9/s, and initial learning rate is set to α = 10−3.

The MT-VRPD is solved by the Python IDE-PyCharm 2022,
and the programs are implemented in a Python version 3.10.9.
All computational works are completed on a Windows 10 desktop
PC server with Intel(R) Core(TM) i5-2.11 GHz processor.

D. Energy Consumption Measurements
We conduct key elements to validate our energy consump-

tion model and evaluate different interrelated aspects of energy

consumption per meter, speed, drone flight range and payload.
It explores the specific situation of modeling batteries, drone
operation, especially speed and payload mass, as well as energy
adjustments such as wind power, avionics, and energy loss.

Parameter values used in drone energy consumption is listed
in Table IV. Environmental parameters (e.g., air density, gravity,
etc.) independent of drone design are shown. It includes a
common value for the power transfer efficiency of the drone, and
we also assume empty returns so the values of energy transfer
rate are the average of the loaded and unloaded. We change
either airspeed or payload mass to explore the impact on energy
consumption rate. Thus, by using the same drone standards and
flight conditions, we can get the changes in energy consumption
rate or flight distance caused by different input structures and
assumptions.

The impact of speed and payload on drone energy consumption
is shown in Fig. 7, under the 4-rotor, 6-rotor and 8-rotor drone.
Fig. 7 (a) and (b) display the tendency of energy consumption
rate caused by speed and payload, respectively. The shapes of the
curves for energy consumption rate are similar for the 4-rotor,
6-rotor and 8-rotor drone, though the curves are less steep for the
8-rotor drone. When the speed approaches 20m/s from 5m/s,
energy consumption rate continuously decreases and the 8-rotor
drone remains lower than the other two types of drones.

For the impact of payload mass, energy consumption rate
increases by up to 13.481% for 6-rotor drone as the payload
rises from 76.203kg to 86.476kg. On the whole, the payload
range of the 4-rotor drone has the least impact on drone energy
consumption rate.
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TABLE IV
PARAMETER PROFILES FOR DRONE ENERGY CONSUMPTION

Parameter Description Value

ϑ1 The mass of drone body (kg) 4

ϑ2 The mass of drone battery (kg) 2

ϑ3 The mass of drone payload (kg) 8

g Acceleration of gravity
(
m/s2

)
9.807

ρ The air density
(
kg/m3

)
1.205

n The number of drone rotors 4/6/8

% The disc area of the spinning blade
(
m2

)
0.035

ε1 The drag coefficient of drone body 1.25

ε2 The drag coefficient of drone battery 1

ε3 The drag coefficient of drone payload 1.25

ς1 The vertical projected area of drone body
(
m2

)
0.06

ς2 The vertical projected area of drone battery
(
m2

)
0.005

ς3 The vertical projected area of drone payload
(
m2

)
0.01

` Battery power transfer efficiency 0.8

(a)

(b)
Fig. 7. The impact of speed and payload on drone energy consumption.

E. Performance Analysis Between CH-Ptr-Net and Exact and
Heuristic Algorithms

1) Performance analysis for single objective: To compare
the proposed CH-Ptr-Net algorithm performance on the single
objective optimization problem for minimum duration, four can-
didate VRPD solution approaches are investigated. They are
frequently-used exact and heuristic algorithms, including ant
colony optimization(ACO), particle swarm optimization (PSO),
simulated annealing (SA) and K-nearest neighbor (KNN). ACO
uses a positive feedback mechanism to make the search process
converge and finally approach the best route. PSO belongs to one

of the evolutionary algorithms, similar to the simulated annealing
algorithm. PSO starts from the random solution, searches for the
optimal solution through iteration. SA is affected by the cooling
rate. If the cooling rate is slow, the search time is longer. In
this way, a better solution can be obtained, but it will take a lot
of time. By calculating the distance between the test data and
each training data, KNN is a neural network method that sorts
according to the distance increasing relationship.

Firstly, we evaluate the delivery distance of the truck and
drones by setting other factors unchanged. The change range
of the customer number is [20, 80] and [90, 150]. The change
range of the drone capacity is

[
0.6× 104, 1.8× 104

]
, and the

computing time of each solution is within 30 minutes. Fig. 5
presents the impact of the customer number on the route distance,
with the number of drones being 3 and the drone capacity being
1.8× 104, respectively. Moreover, the impacts of changes in the
number of drones and capacity on delivery distance are analyzed
in Fig. 6. The number of customers is determined to be 50 and
120, and the delivery distance of the truck and drones show a
significant trend.

(a) (b)
Fig. 8. Validation average optimal gap with different customers. (a) exists 50
customer nodes and (b) exists 120 customer nodes.

When setting 3 drones in the logistics network, Fig. 5 shows
the visual representation of truck and drone delivery distance.
When the customer number interval is [20, 80], drone delivery
distance is more sensitive to the customer number than the
truck. Truck delivery distance is less affected by the number
of customers. As the number of customers increases, the curve
slope of drone delivery distance decreases. We propose CH-
Ptr-Net method performs better than other algorithms for total
delivery distances. Fig. 6 shows the intuitive impact of drone
number and capacity on the truck and drone delivery distances.
With the number of drone increasing, the delivery distance of
truck decreases rapidly. However, when the number of drone
increases to over 6, the driving distance of the truck and drone
does not significantly decrease. In addition, when the drone
capacity changes from 0.6 × 104 to 1.8 × 104, the sensitivity
of truck delivery distance decreased significantly. This is due to
the increase in the drone capacity, which enhances the drone
delivery potential and reduces the truck operational pressure.

Optimal gap of different solutions reflect the model perfor-
mance for the collaborative delivery problem. We compare the
large-scale and small-scale node delivery problems with ACO,
PSO, SA, KNN and CH-Ptr-Net algorithms. As shown in Table
VIII, service nodes are set as 50 and 120 respectively, and the gap
values reflect different characteristics. Fig. 8 is a more intuitive
average optimal performance comparison. The CH-Ptr-Net has

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2023.3318524

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on October 17,2023 at 17:14:57 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 12

TABLE V
IMPACT OF THE WEIGHT COEFFICIENT ON THE OBJECTIVES

Scenario
Weight coefficient

Delivery duration Delivery cost Optimal gap Model runtime
β1 β2

1 0.1 0.9 1847 578 1.842 122.703
2 0.2 0.8 1829 635 2.218 124.262
3 0.3 0.7 1753 704 2.533 127.318
4 0.4 0.6 1701 762 2.782 129.294
5 0.5 0.5 1683 812 2.914 131.237
6 0.6 0.4 1572 851 2.721 127.115
7 0.7 0.3 1422 884 2.526 125.826
8 0.8 0.2 1285 912 2.185 122.630
9 0.9 0.1 1136 928 1.901 121.415

promising optimization performance, especially after the number
of drone exceeds 2. When network service node number is 50,
one truck and eight drones completing the delivery task, the aver-
age gap of the proposed algorithm is only 2.017. Compared to the
SA with the 4.269 average gap, which of CH-Ptr-Net is increased
by 52.752%. When the number of customers increases to 120, the
overall trend of optimal performance remains consistent. For the
fitting results about the CH-Ptr-Net, the model optimality ability
gradually decreases, especially it has obvious decline for more
than six drones combination.

2) Performance analysis for multi-objective: Based on the
scenario description and parameter settings, we continue to
explore the results of multi-objective optimization for minimum
duration and delivery cost. To investigate the impact of the
multi-objective consideration, different weight coefficient β are
configured. Table V shows the impact of the weight coefficient on
the objectives. When encountering the scenario with β = 0, we
use the lexicographic ordering strategy, which ranks objectives
by optimizing the latter objective at the optimal value of former
one, so that the solutions are Pareto optimal.

Table V reveals the significant characteristics of the minimum
value. When the weight coefficient β1 of the delivery time is
relatively large, a lower time will naturally be obtained, but the
delivery cost is relatively high. On the contrary, when the weight
coefficient β2 of the delivery cost is relatively high, delivery cost
becomes the lowest and the duration is not ideal. If we consider
two objectives β1 = β2 = 0.5 at the same time, and the results
of each objective are between those of a system dedicated to a
single objective, average optimal gap has the worst performance.

Compared with single objective optimization problem, the
proposed multi-objective optimization can better balance multiple
objectives and develop more reasonable solutions. It can make
ideal trade-offs based on the relative importance of weight
coefficient. Decision makers can make adjustments based on
actual needs, investment preferences, or expert advice.

F. Enhanced Comparison Between CH-Ptr-Net and Existing ILS-
VND on the MT-VRPD

To further evaluate our CH-Ptr-Net model, we consider recent
hybrid approaches developed by Gu et al. for a very similar
problem [56]. Their method hybridize an iterative local search
heuristic with a variable neighborhood descent procedure (ILS-
VND) to solve the MT-VRPD. Two evaluation indexes contain
the average optimal gap and run-time are used. Average optimal

Fig. 9. The comparison about computational time.

gap records the feasibility plan, and the run-time shows the
calculation time required for the feasible plan. The size of test
instances ranges from 50 to 150, and the recorded time is in
seconds. For each instance, we run 100 times with different
random seeds and retrieve the optimal vehicle delivery scheme.

Firstly, we measure the optimal gap of CH-Ptr-Net and ILS-
VND with small-scale, medium-scale, and large-scale delivery
instances, and each instance has 5 replication scenarios with one
truck and three drones. Table VI summarizes the optimization
results of the 15 scenarios for 3 type of delivery scales. In small-
scale delivery scenarios, the minimum optimal gap of ILS-VND
performs outstanding with 1.228. However, when the number of
network nodes increases to 100 and 150, the superiority of ILS-
VND is gradually losing. For example, the minimum, average
and maximum optimal gaps of our proposed CH-Ptr-Net method
are1.637,2.126 and 2.488 for scenario 11. It can be seen that
proposed CH-Ptr-Net has advantages for handling medium and
large-scale delivery.

Secondly, the run-time and the ratio of two algorithms are
shown in Fig. 9. The number of consumer locations changes
from 20 to 150, and the final run-time of CH-Ptr-Net gradually
approach around 200s. Intuitively, the run-time consumed by
ILS-VND algorithm is always higher than CH-Ptr-Net. With the
increase of the number of customers, the ratio of CH-Ptr-Net
to ILS-VND has a significant decline trend, and this also proves
the superiority of our proposed method in terms of computational
time.

By comparing with existing effective algorithm, the proposed
CH-Ptr-Net is demonstrated to have an advantage on optimal gap
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TABLE VI
OPTIMAL GAP COMPARISON BETWEEN CH-PTR-NET AND ILS-VND

Scenario Number of nodes
Minimum optimal gap Average optimal gap Maximum optimal gap

CH-Ptr-Net ILS-VND CH-Ptr-Net ILS-VND CH-Ptr-Net ILS-VND
1 50 1.264 1.332 1.765 1.975 2.237 2.406
2 50 1.285 1.228 1.803 1.991 2.152 2.389
3 50 1.282 1.284 1.778 1.964 2.228 2.416
4 50 1.279 1.297 1.814 1.982 2.195 2.390
5 50 1.254 1.306 1.791 1.963 2.230 2.403
6 100 1.923 2.237 2.247 2.625 2.905 3.204
7 100 1.917 2.294 2.383 2.597 2.886 3.171
8 100 1.908 2.306 2.261 2.614 2.879 3.213
9 100 1.929 2.284 2.357 2.588 2.914 3.185

10 100 1.934 2.301 2.312 2.607 2.906 4.152
11 150 1.673 2.497 2.126 3.527 2.488 4.039
12 150 1.729 2.526 2.096 3.473 2.375 4.207
13 150 1.784 2.518 2.130 3.516 2.491 4.262
14 150 1.702 2.496 2.129 3.607 2.513 4.304
15 150 1.664 2.529 2.104 3.492 2.392 4.271

(a) Impact of GNN embedding (b) Impact of RNN encoder

(c) Impact of GNN embedding (d) Impact of RNN encoder

Fig. 10. Impact analysis of algorithm embedding structure. Customer number interval of (a) and (b) is [20, 80]. Customer number interval of (c) and (d) is [90, 150].

and computational time. Therefore, the analysis results supports
the claim on the effectiveness of reinforcement learning for
collaborative delivery optimization with one truck and multiple
drones.

G. Effect of Embedding Structure

Network encoding part uses a simplified version to handle
irregular and unfixed data structures, which reflects the routing
input with a dynamic process. The proposed hybrid model
consists of GNN embedding instead of RNN or LSTM encoder.

GNN embedding is a kind of neural network directly acting on
the graph structure. It embeds all initial inputs with abnormal
structures in the current step, including the static node coor-
dinates and dynamic demand states. After that, model decoder
points to input dynamic nodes. To compare the impact of GNN
embedding structure for CH-Ptr-Net model, we reference the
RNN encoder to perform optimization calculations.

Taking the collaborative delivery with single truck and five
drones as an example, Table VII summarizes percentage gap
involving combinations of GNN embedding and RNN encoder,
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TABLE VII
A SUMMARY OF OPTIMAL GAP FOR DIFFERENT NETWORK STRUCTURE.

Metric
GNN embedding on CH-Ptr-Net RNN encoder on CH-Ptr-Net

Optimal gap(%) Run-time(s) Optimal gap(%) Run-time(s)

Customer Avg. Min. Max. Avg. Min. Max. Avg. Min. Max. Avg. Min. Max.

20 1.181 0.374 1.492 68.762 54.973 78.732 1.215 0.704 1.763 78.214 66.849 91.372

30 1.369 0.581 1.743 72.583 60.163 81.628 1.293 0.682 1.772 80.926 68.482 96.623

40 1.751 1.092 1.983 82.046 71.424 90.372 1.475 0.974 1.891 92.375 84.126 102.251

50 1.838 1.286 2.147 89.905 77.693 93.751 1.582 0.745 1.925 114.265 103.041 127.834

60 1.874 1.305 2.155 107.274 92.861 112.592 1.904 1.263 2.194 119.973 112.042 119.728

70 1.937 1.459 2.217 116.096 104.066 121.731 2.096 1.486 2.462 151.208 140.843 167.037

80 2.048 1.513 2.204 121.479 113.095 126.832 2.237 1.471 2.581 135.872 130.729 159.482

90 2.413 1.937 2.803 122.385 113.053 134.538 2.681 1.741 3.102 124.016 120.842 138.163

100 2.384 1.904 2.835 130.163 119.752 142.532 2.742 1.716 3.273 127.803 119.856 140.528

110 2.391 1.892 2.817 147.632 138.749 159.535 2.793 1.694 3.324 138.043 131.638 147.533

120 2.668 1.903 2.918 154.973 146.542 171.743 2.804 1.891 3.415 141.016 138.538 151.546

130 2.716 1.759 3.126 167.739 154.633 183.904 2.735 2.174 3.486 148.228 139.972 157.352

140 2.725 1.748 3.282 189.930 176.732 203.927 2.909 2.251 3.503 157.029 149.053 166.384

150 2.826 1.682 3.348 198.625 191.352 214.627 3.196 2.306 3.552 161.273 153.563 169.534

with different customer number interval. For optimal gap, GNN
embedding has better competitiveness than RNN encoder on CH-
Ptr-Net. Especially when the number of customers exceeds 80,
this difference is even more pronounced. When the network ser-
vice node increases to 150, the average gap of GNN embedding
on CH-Ptr-Net is only 2.8, far lower than 3.196. While model
run-time matters, GNN embedding enables the delivery routing
sparingly.

Fig. 10 discusses the impact of network embedding structure
intuitively, by box-whisker plot. In the Fig. 10(a) and Fig. 10(c),
the box plot changes from long to short and then to long, meaning
that optimal gaps of GNN embedding are first dispersed, then
concentrated within a small range, and finally dispersed. It can
be seen that GNN embedding has strong optimization ability
for customer interval between 60 and 120, while RNN encoder
shows the opposite trend as shown in Fig. 10(b) and Fig. 10(d).
When the median is close to the bottom, it indicates that most of
the gap values are relatively small. The median distribution also
indicates the gap characteristics of GNN embedding and RNN
encoder. For average run-time, when customer number interval is
[20, 80], GNN embedding outperforms the RNN encoder. As the
number of customers increases, the run-time advantage of GNN
embedding is lost.

From the above analysis, it can be seen that the proposed
CH-Ptr-Net algorithm can improve optimal performance for
the collaborative delivery problem with the truck and multiple
drones. Especially, GNN embedding is a more simplified version
than RNN encoder. When a certain customer is visited, the
requirements may be reset to zero. The RNN encoder is only
helpful for input order related tasks, but not necessary for input
order unrelated sequences. So the encoder part is removed and
only the decoder part is retained, which simplifies the model
decoding process and improves the accuracy and optimization
performance.

TABLE VIII
OPTIMAL PERFORMANCE COMPARISON BETWEEN DIFFERENT MODELS

Average gap 50 customers 120 customers

Methods ACO PSO SA KNN CH-Ptr-Net ACO PSO SA KNN CH-Ptr-Net

2 drones 1.318 1.374 1.416 1.047 1.158 4.403 5.316 5.827 4.126 2.437

3 drones 1.906 2.074 2.122 1.483 1.379 5.384 5.958 6.637 4.856 2.617

4 drones 2.521 2.547 2.737 1.905 1.784 5.761 6.439 7.748 5.308 2.625

5 drones 2.927 3.153 3.369 2.248 1.838 7.057 7.465 8.018 6.041 2.668

6 drones 3.421 3.627 3.637 2.769 1.891 7.763 8.439 8.748 6.908 2.725

7 drones 3.727 3.756 3.962 3.082 1.994 8.057 8.617 9.018 7.041 2.768

8 drones 3.926 4.153 4.269 3.751 2.017 9.236 9.253 9.917 7.843 2.861

H. Discussions

Different from the traditional exact algorithm or a certain inte-
grated heuristic algorithm, the proposed constraint-based hybrid
pointer network model is more suitable for the collaborative
delivery problem with the truck and multiple drones. Moreover,
the proposed reinforcement learning model derives the reward
calculation and adapts to the new delivery routing automatically,
regardless of explicit distance matrix. GNN embedding helps the
decoder suitable for the irregular and unstable data structures,
and it uses graph structures to characterize the sequence internal
connections.

VI. CONCLUSION

In this paper, we propose a novel self-driven CH-Ptr-Net
reinforcement learning model to analyze and optimize the col-
laborative delivery problem with the truck and multiple drones.
The CH-Ptr-Net model is constructed by a set of integral
generated sequences, and the generated structure coupled with
GNN embedding and attention mechanism helps to adapt to the
new trajectory structure automatically. Specifically, we develop
the mixed integer linear program formulation related to ener-
gy consumption, vehicle routing availability, drone endurance,
customer service time windows and service sequence. After that,
the proposed CH-Ptr-Net model learns from routing optimization
matrix. It can handle the initial data with irregular and unfixed
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structures, and then model establishes a weight relationship for
each position association between the output and the input by at-
tention mechanism. Experimental results show that the proposed
model achieves superior performance than other algorithms for
the collaborative delivery optimization. Regarding to future work,
we will further study the logistics delivery routing with multiple
trucks and drones, so as to adapt to more complex delivery
network.
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