Compact Direct Flux Reconstruction for the Navier-Stokes Equations on Dynamic Meshes

Lai Wang†, Meilin Yu†

Department of Mechanical Engineering,
University of Maryland, Baltimore County, Baltimore, MD 21250

Abstract

In this study, the high-order discontinuous compact direct flux reconstruction (CDFR) method is used to solve the two-dimensional (2D) Navier-Stokes equations on quadrilateral unstructured dynamic meshes. Within a standard element, the CDFR method employs compact finite difference (FD) techniques to directly construct the nodal spatial derivatives on Gauss-Legendre solution points. In the procedure of constructing an arbitrary CDFR method, the spatial derivatives are approximated with local fluxes on solution points and common fluxes on element interfaces (flux points) in FD forms. No polynomial reconstruction needs to be employed explicitly. It is observed that the CDFR method is identical with the direct flux reconstruction (DFR) method and the nodal flux reconstruction-discontinuous Galerkin (FR-DG) method if Gauss-Legendre points are selected as solution points. For simulations with dynamic meshes, the geometric conservation law (GCL) has been incorporated into the Navier-Stokes equations. The performance of CDFR methods has been verified with various test cases, including the Euler vortex propagation on deformable meshes, and the Couette flow. Laminar flows of \(Ma = 0.2 \) over a static circular cylinder \((Re = 100, 185) \) and an oscillating circular cylinder \((Re = 185) \) have been studied to demonstrate the capability of the solver developed in this study.

I. Introduction

High-order computational fluid dynamics (CFD) methods have gained much research interest in the last three decades due to their superior capability of resolving turbulence, aeroacoustics, and unsteady vortex dynamics, etc., over their low-order counterparts (see the comprehensive reviews\(^1\)-\(^3\)). Currently, there exist many high-order accurate CFD methods, including point-wise schemes, such as compact FD schemes\(^4\) and weighted essentially non-oscillatory (WENO) schemes\(^5,6\) and element-wise schemes, such as discontinuous Galerkin (DG) schemes\(^7,8\) spectral volume (SV) schemes\(^9\), spectral difference (SD) schemes\(^10,11\) and flux reconstruction/correction procedure via reconstruction (FR/CPR) schemes\(^12-15\).

Comparing with element-wise schemes, FD schemes are easier to construct in general, and can achieve high-order accuracy with fewer mesh points through special design (e.g., the implicit approach in compact FD\(^4\)). However, FD schemes are usually designed for structured meshes, limiting their application in solving practical engineering problems with complex geometries. Besides, compact FD schemes cannot maintain the scheme properties globally. Near boundaries, reconstructions of inner schemes (referred to as numerical boundary schemes (NBSs) in Ref. 16) have to be carried out using either ghost points\(^17\) or biased schemes\(^18\). To overcome the

\(^* \) Graduate student, AIAA Student Member, email: bx58858@umbc.edu

\(^\dagger \) Assistant professor, AIAA Senior Member, email: mlyu@umbc.edu

Copyright © 2017 by Lai Wang and Meilin Yu.

American Institute of Aeronautics and Astronautics

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.
instability possibly introduced by NBSs, the summation by parts (SBP) property19–21 has been proposed as a genuine property to ensure the stability of FD schemes. Instead, element-wise schemes are compact in design, and can handle engineering flows over/through complex geometries with high-order accuracy. First developed by Huynh,12,13 the high-order FR/CPR method has demonstrated its capacity to handle complex flow problems on unstructured meshes.22 Correction functions are essential for original FR/CPR schemes. Recently, Romero et al.23,24 developed a simplified FR/CPR approach, i.e. the DFR scheme, which can obtain high-order accurate schemes without correction functions. Specifically, direct polynomial fitting involving all solution and flux points within an element is used. We recognize that no matter in the original FR/CPR or DFR, various types of polynomials need to be explicitly constructed and differentiated. These procedures could make them hard to implement.

The CDFR method25 utilizes compact FD techniques within an element to directly approximate the spatial derivatives on solution points. The final form of the spatial derivatives are expressed in FD forms. This method does not involves any polynomial reconstructions23 or correction functions.12 By casting the DFR method and FR-DG method in a similar FD form as that of the CDFR method, we observe that the CDFR method is identical with them if Gauss-Legendre points are employed as the solutions points. In this study, we extend the CDFR method to solve the Navier-Stokes equations on deformable meshes. The GCL is enforced analytically in the time-dependent transformation of the governing equations from the physical domain to the computational domain.26–28 Compared to solving an additional equation regarding the Jacobians of the coordinate mapping,29 the approach employed here integrates the GCL into the governing equations as a source term. An explicit strong-stability-preserving three-stage Runge-Kutta (SSPRK3) is employed for the time integration.

The remainder of this paper is organized as follows. In Section 2, we revisit the construction procedure of the CDFR method for the one dimensional (1D) conservation law. In Section 3, a time-dependent coordinate transformation of the 2D Navier-Stokes equations from the physical domain to computational domain is presented. This transformation can facilitate the implementation of the CDFR method in a tensor product approach. Section 4 explains the strategy used to enforce GCL in numerical simulation with dynamic meshes. In Section 5, the accuracy performance of the CDFR method has been demonstrated through various numerical tests. The last section summarizes the current work.

II. The Compact Direct Flux Reconstruction Method

In this section, we revisit the construction procedure of the CDFR method for the 1D conservation law. In the CDFR method, the governing equation is projected onto a standard element $\xi \in [-1, 1]$ and the Gauss-Legendre points are employed as the solution points.25 The compact FD techniques are adopted in the procedure to directly obtain the spatial derivatives of fluxes on the solution points. These spatial derivatives’ approximations are obtained in FD forms.

II.A. Construction procedure of the CDFR method

Consider the 1D scalar conservation law expressed as

$$u_t + f_x = 0, \quad x \in \Omega.$$ \hspace{1cm} (1)

The domain Ω is tessellated with elements $\Omega_j = \{x : x \in [x_{j-1/2}, x_{j+1/2}], j = 1, 2, \ldots, N\}$. In this study, each element is projected onto the standard element $[-1, 1]$. In terms of the coordinate transformation,

$$f_x = f_x^\xi \xi_x, \quad \xi_x = \Delta \xi / \Delta x, \text{ and } \Delta \xi = 2.$$ \hspace{1cm} (2)

The CDFR method uses k Gauss-Legendre points as the solution points and two element interfaces as the flux points to approximate the spatial derivatives on the solution points directly.
Since the construction is conducted within the standard element, we drop the subscript "ξ" in any n-th order spatial derivative \(f^{(n)}_ξ \). The whole procedure is completed using compact FD approaches. This procedure does not involve any polynomial reconstructions that conventional FR/CPR methods and DFR methods need.

The Taylor expansion of the spatial derivative \(f'(ξ_i), \ i = 0, 1, \ldots, k + 1 \) on each solution points with respect to the element center \(ξ = 0 \) can be expressed as

\[
f'(ξ_i) = f'(0) + (ξ_i)f''(0) + \frac{(ξ_i)^2}{2!} f'''(0) + \ldots + \frac{(ξ_i)^{k-1}}{(k-1)!} f^{(k)}(0) + O((ξ_i)^k),
\]

(3)

\[
f(ξ_i) = f(0) + (ξ_i)f'(0) + \frac{(ξ_i)^2}{2!} f''(0) + \ldots + \frac{(ξ_i)^{k}}{(k)!} f^{(k)}(0) + O((ξ_i)^{k+1}).
\]

(4)

Herein, \(ξ_i, \ i = 1, 2, \ldots, k \) are the Gauss-Legendre solution points and \(ξ_0 = -1, ξ_{k+1} = 1 \) are the left and right element interfaces respectively. Eq. (4) can be rewritten as

\[
\frac{1}{Δξ} f(ξ_i) = \frac{1}{Δξ} \left\{ f(0) + (ξ_i)f'(0) + \frac{(ξ_i)^2}{2!} f''(0) + \ldots + \frac{(ξ_i)^k}{(k)!} f^{(k)}(0) \right\} + O((ξ_i)^k).
\]

(5)

Generally, for a CDFR method with k solution points, k compact FD discretization equations can be formulated as

\[
\sum_{i=1}^{k} α_i f'_i = \frac{1}{Δξ} \sum_{j=0}^{l+1} β_{l(j+1)} f_j, \quad l = 1, 2, \ldots, k,
\]

(6)

to solve the k unknowns, i.e. spatial derivatives \(f' \). Note that for the l-th (\(l = 1, 2, \ldots, k \)) compact FD discretization, the stencil involved in the l.h.s. of Eq. (6) employs all the k solution points while only involves three consecutive points, i.e., \(ξ_j, j = l-1, l, l+1 \) on the r.h.s. After substituting Taylor expansions Eq. (3) and Eq. (4) into Eq. (6), the coefficient of \(f^{(n)}_i \) can be expressed as

\[
\frac{ξ_i^{n-1}}{(n-1)!}, \quad i = 1, 2, ..., k; \quad n \geq 1
\]

(7)

for the l.h.s. and

\[
\frac{1}{Δξ} ξ_j^n, \quad j = l - 1, l, l + 1; \quad l = 1, 2, ..., k; \quad n \geq 0
\]

(8)

for the r.h.s. of the discretization Eq. (6), respectively. There are k degrees of freedom on the l.h.s. of Eq. (6) and three degrees of freedom on the r.h.s. of Eq. (6). The CDFR method employs the restriction \(\sum_{i=1}^{k} α_i = 1 \) and requires the coefficient of \(f^{(n)} \) on each side of Eq. (6) to be consistent from 0 to \(k + 1 \). Therefore, for each discretization Eq. (6), \(k + 3 \) equations can be formulated to obtain the corresponding coefficients in \(α \) and \(β \). \(M_1 C_1 = B \) is adopted here to denote these equation of the l-th compact discretization, which can be expressed as

\[
\begin{cases}
- \sum_{j=0}^{l+1} β_{l(j+1)} = 0, \\
\sum_{i=1}^{k} \frac{ξ_i^{n-1}}{(n-1)!} α_i - \frac{1}{2} \sum_{j=l-1}^{l+1} \frac{ξ_i^n}{(n)!} β_{l(j+1)} = 0, \quad n = 1, 2, \ldots, k + 1,
\end{cases}
\]

(9)

where \(l = 1, 2, \ldots, k \). After solving \(k \) linear systems in the form of Eq. (9), \(α \) and \(β \) can be obtained. Hence, we can formulate the final discretization form for spatial derivatives as

\[
f' = \frac{1}{Δξ} α^{-1} β f,
\]

(10)
where \(\mathbf{f} = (f_1', f_2', \ldots, f_k')^\top \) and \(\mathbf{f} = (f_0, f_1, f_2, \ldots, f_{k+1})^\top \). Here, \(f_0 \) and \(f_{k+1} \) are the common fluxes on the interfaces. Riemann solvers are used to calculate the common fluxes. Particularly, if \(f = cu \) with \(c \) a constant in Eq. (1)), the left common flux of the current element \(\Omega_j \) can be expressed as

\[
f_0^j = \begin{cases}
 f_{k+1,loc}^{j-1} & \text{if } c > 0, \\
 f_{0,loc}^j & \text{if } c < 0.
\end{cases}
\]

(11)

Since the common flux solver involves neighboring elements, we introduce superscript ‘\(j \)’ to denote the \(j \)-th element. Lagrange interpolation is used to obtain local fluxes \(f_{0,loc}^j \) and \(f_{k+1,loc}^j \) on interfaces as

\[
f_{0/k+1,loc}^j = \sum_{i=1}^{k} \left(\prod_{l=1, l \neq i}^{k} \frac{\xi_{0/k+1} - \xi_l}{\xi_i - \xi_l} \right) f_i^j.
\]

(12)

A MATLAB symbolic calculation with extended precision (64 digits) is used to obtain these coefficients.

II.B. Connection with the DFR method and FR-DG method

The Taylor expansion approach is built on the premise that there exists a function which can be continuously differentiated. Eq. (10) shows that spatial flux derivatives on solution points within one element \(\Omega_j \) can be discretely approximated by a combination of fluxes on solution points and interfacial flux points as

\[
f_i' = \frac{1}{\Delta \xi} \sum_{j=1}^{k+2} (\alpha^{-1} \beta_{ij}) f_{j-1}.
\]

(13)

The scheme proposed in the present study implicitly constructs a flux polynomial spanning all solution points inside the element and flux points on the element interfaces.

The derivative of the flux polynomial of DFR with Gauss-Legendre solution points as developed in Ref. 23 can be expressed as

\[
f_i' = \frac{1}{\Delta \xi} \sum_{j=1}^{k+1} (l_{D,j}'(\xi_i) \Delta \xi) f_j.
\]

(14)

where \(l_{D,j}' \) is the derivative of the Lagrange polynomial \(l_{D,j} \) constructed from \(\xi_j, j = 0, 1, \ldots, k+1 \). The nodal FR-DG method with Gauss-Legendre solution points can also be formulated in a similar form as

\[
f_i' = \frac{1}{\Delta \xi} \left\{ \sum_{j=1}^{k} \left[\left(l_{C,j}'(\xi_i) - l_{C,j}(-1)g_L'(\xi_i) - l_{C,j}(1)g_{R,i}(\xi_i) \right) \Delta \xi \right] f_j + (g_L'(\xi_i) \Delta \xi) f_0 + (g_R(\xi_i) \Delta \xi) f_{k+1} \right\}
\]

(15)

where \(g_L \) and \(g_R \) are the left and right correction functions (e.g., Radau polynomials for FR-DG). Herein, the Lagrange polynomial \(l_{C,j} \) is constructed from \(\xi_j, j = 1, 2, \ldots, k \) without the two interface points \(\xi_0 \) and \(\xi_{k+1} \). By numerically comparing the coefficients of \(f_i, i = 0, 1, \ldots, k+1 \), we observe that Eq. (13), Eq. (14), and Eq. (15) are identical with each other. Ref. 23 gives the analytical proof of the equality between Eq. (14) and Eq. (15).

In spite of the identity observed by comparing the coefficients of different schemes, the element-wise compact FD scheme proposed here shares a similarity with DFR to achieve high-order accuracy by making full use of all the solution and interfacial flux points. It directly approximates the spatial derivatives without constructing any flux polynomials that the DFR method needs or involving any correction functions that the original FR/CPR method requires.
III. The 2D Navier-Stokes Equations

When the CDFR method is employed for multi-dimensional problems (2D problems with quadrilateral elements in this study), the spatial derivatives can be solved dimension by dimension. The compressible 2D Navier-Stokes equations can be written as

\[
\frac{\partial q}{\partial t} + \frac{\partial f}{\partial x} + \frac{\partial g}{\partial y} = 0
\]

(16)

where \(q = (\rho, \rho u, \rho v, E)^T \) are the conservative variables, \(p = \rho RT \), \(E = \frac{p}{\gamma - 1} + \frac{1}{2} \rho(u^2 + v^2) \), \(R \) is the ideal gas constant, and \(\gamma \) is the specific heat ratio defined as \(\gamma = C_p/C_v \). In this study, \(\gamma \) is set as 1.4. The fluxes \(f \) and \(g \) consist of inviscid part and viscous part, which can be expressed as \(f = f_{inv} - f_{vis} \) and \(g = g_{inv} - g_{vis} \). The component forms of \(f_{inv}, g_{inv}, f_{vis}, \) and \(g_{vis} \) can be found below,

\[
f_{inv} = \begin{pmatrix}
\rho u \\
\rho u^2 + p \\
\rho uv \frac{(E + p)}{(E + p)u}
\end{pmatrix}, \quad g_{inv} = \begin{pmatrix}
\rho v \\
\rho uv \\
\rho v^2 + p
\end{pmatrix},
\]

(17)

\[
f_{vis} = \begin{pmatrix}
0 \\
\tau_{xx} \\
\tau_{xy} \\
u \tau_{xx} + v \tau_{xy} + k \frac{\partial T}{\partial x}
\end{pmatrix}, \quad g_{vis} = \begin{pmatrix}
0 \\
\tau_{xy} \\
\tau_{yy} \\
u \tau_{xy} + v \tau_{yy} + k \frac{\partial T}{\partial y}
\end{pmatrix}.
\]

(18)

Herein \(k = \frac{\mu C_p}{T T} \), \(Pr = 0.72 \) and \(\mu \) is also treated as a constant in the present work. Viscous stresses are given by

\[
\begin{align*}
\tau_{xx} &= \mu \left(\frac{4}{3} \frac{\partial u}{\partial x} - \frac{2}{3} \frac{\partial v}{\partial y} \right), \\
\tau_{yy} &= \mu \left(\frac{4}{3} \frac{\partial v}{\partial y} - \frac{2}{3} \frac{\partial u}{\partial x} \right), \\
\tau_{xy} &= \tau_{yx} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right).
\end{align*}
\]

(19)

After transforming Eq. (16) from the physical space-time domain \((x, y, t)\) into the computational space-time domain \((\xi, \eta, \tau)\) we can get

\[
\frac{\partial Q}{\partial \tau} + \frac{\partial F}{\partial \xi} + \frac{\partial G}{\partial \eta} = 0,
\]

(20)

where

\[
\begin{align*}
Q &= |J| q, \\
F &= |J|(q \xi_t + f \xi_x + g \xi_y), \\
G &= |J|(q \eta_t + f \eta_x + g \eta_y),
\end{align*}
\]

(21)

and

\[
J = \frac{\partial (x, y, t)}{\partial (\xi, \eta, \tau)}.
\]

(22)

Herein, \(t = \tau \) and \((\xi, \eta) \in [-1,1] \times [-1,1]\) is the standard element as illustrated in Figure 1. Therefore,27

\[
J = \begin{pmatrix}
x_{\xi} & x_{\eta} & x_{\tau} \\
y_{\xi} & y_{\eta} & y_{\tau} \\
0 & 0 & 1
\end{pmatrix}, \quad \text{and} \quad |J| = x_{\xi} y_{\eta} - x_{\eta} y_{\xi}.
\]

(23)

Note that

\[
\begin{align*}
\xi_t &= -v_g \cdot \nabla \xi, \\
\eta_t &= -v_g \cdot \nabla \eta,
\end{align*}
\]

(24)
which give the information about the grid motion. On an interface of the quadrilateral elements, F and G in Eq. (21) can be rewritten as

$$\begin{align*}
F &= |J| |\nabla | f_n \text{sign}(n \cdot \nabla) \\
G &= |J| |\nabla \eta| f_n \text{sign}(n \cdot \eta),
\end{align*}$$

(25)

where

$$|\nabla | = \frac{1}{|J|} \sqrt{x_n^2 + y_n^2},
$$

(26)

and $n = (n_x, n_y)$ is the unit outward-normal vector at the interface. Herein, f_n is the flux in normal direction of the current interface. Note that common fluxes are always calculated in the physical domain. Therefore, F_{com} and G_{com} can be expressed as

$$\begin{align*}
F_{com} &= |J| |\nabla | f_n^{com} \text{sign}(n \cdot \nabla) \\
G_{com} &= |J| |\nabla \eta| f_n^{com} \text{sign}(n \cdot \eta),
\end{align*}$$

(27)

where f_n^{com} is the common flux. The inviscid part of f_n^{com} including the flux caused by deforming grids is given as

$$f_{inv,n}^{com} = \frac{1}{2} \left(f_{inv,n}^L + f_{inv,n}^R - R|\Lambda|^{-1} (q^R - q^L) \right),$$

(28)

where

$$f_{inv,n} = f_{inv,nx} + g_{inv,ny} - (v_y \cdot n) q.$$

(29)

The subscripts ‘L’ and ‘R’ denote the left side and right side of the current interface, respectively. In our implementation, the ‘L’ side of the interface is always the current element. The Jacobian matrix A of the inviscid fluxes with respect to conservative variables is

$$A = \frac{\partial f}{\partial q} n_x + \frac{\partial g}{\partial q} n_y - v_y \cdot \nabla q,$$

(30)

where $|\Lambda|$ is the diagonal matrix with absolute values of eigenvalues and R is a matrix consisting of the corresponding eigenvectors. Herein, the Roe average30 is used to calculate R, R^{-1}, and $|\Lambda|.$

For the calculation of the viscous part of the common flux, note that $f_{vis} = f_{vis}(q, \nabla q)$ and $g_{vis} = g_{vis}(q, \nabla q).$ The common viscous flux is obtained by taking average, expressed as

$$f_{vis,n}^{com} = \frac{1}{2} \left(f_{vis,n}^L + f_{vis,n}^R \right).$$

(31)

Applying the CDFR method to solve Eq. (20), we can use the spatial discretization to obtain $\frac{\partial F}{\partial t}$ and $\frac{\partial G}{\partial t}$ one by one. Thus, the extension of the CDFR method to solve the 2D Navier-Stokes equations is completed.

IV. The Geometric Conservation Law with the Explicit Time Stepping

The GCL for the metrics of the transformation from the physical domain to the computational domain can be formulated as

$$\begin{align*}
\frac{\partial}{\partial \xi} (|J| \xi_x) + \frac{\partial}{\partial \eta} (|J| \eta_x) &= 0, \\
\frac{\partial}{\partial \xi} (|J| \xi_y) + \frac{\partial}{\partial \eta} (|J| \eta_y) &= 0, \\
\frac{\partial}{\partial t} |J| + \frac{\partial}{\partial \xi} (|J| \xi) + \frac{\partial}{\partial \eta} (|J| \eta) &= 0.
\end{align*}$$

(32)

The first two equations only depend on the accuracy of the spatial discretizations while the last one is related to the grid motion. If only a rigid motion is involved, $|J|$ is independent of time. For deformable meshes, apply the chain rule to $\frac{\partial Q}{\partial t}$ to obtain

$$\frac{\partial Q}{\partial t} = \frac{\partial}{\partial t} |J|q + q \frac{\partial |J|}{\partial t}.$$

(33)

6 of 16

American Institute of Aeronautics and Astronautics
By substituting Eq. (33) into Eq. (20), we can rewrite it as

\[
\frac{\partial q}{\partial t} = \frac{1}{|J|} \left\{ - \left(\frac{\partial F}{\partial \xi} + \frac{\partial G}{\partial \eta} \right) + S \right\},
\]

where \(S = \left[\frac{\partial}{\partial \xi}(|J| \xi_t) + \frac{\partial}{\partial \eta}(|J| \eta_t) \right] \). Thus, the GCL is enforced. In Refs. 29, the enforcement of GCL is achieved by employing the same time integration form for the Jacobian of the transformation as the conservative variables. An extra equation needs to be solved iteratively to enforce the GCL. In the present study, the \(S \) term regarded as a source term is added into the r.h.s. of Eq. (34) to balance the mesh deformation terms in \(F \) and \(G \).\(^{26,27}\) For the calculation of term \(S \), the CDFR method is also adopted.

An explicit strong-stability-preserving three-stage Runge-Kutta scheme\(^ {31} \) is employed for the time marching. It can be expressed as

\[
\begin{align*}
q^{(1)} &= q^n + \Delta t L(q^n), \\
q^{(2)} &= \frac{3}{4} q^n + \frac{1}{4} q^{(1)} + \frac{1}{3} \Delta t L(q^{(1)}), \\
q^{n+1} &= \frac{1}{3} q^n + \frac{2}{3} q^{(2)} + \frac{2}{3} \Delta t L(q^{(2)}),
\end{align*}
\]

where \(L = \frac{1}{|J|} \left\{ - \left(\frac{\partial F}{\partial \xi} + \frac{\partial G}{\partial \eta} \right) + S \right\} \). In the present study, all unsteady tests are conducted with SSPRK3.

V. Numerical Results

In this section, several benchmark cases are simulated to verify the numerical accuracy of the CDFR methods for 2D problems. Both steady and unsteady cases are considered. The performance of CDFR with curved boundaries are also tested. The \(L_2 \) error is used for the accuracy study. Specifically, for any solution variable \(s \) on the domain \(\Omega \), the \(L_2 \) error is defined as

\[
E_{L_2}(s, \Omega) = \sqrt{\int_\Omega (s - s^{\text{exact}})^2 \, dV} / \int_\Omega 1 \, dV.
\]

V.A. 2D Isentropic Euler Vortex Propagation

The isentropic vortex propagation case depicts the superposition of an inviscid uniform flow and an irrotational vortex. The vortex can be regarded as a perturbation added into the uniform
flow. The free stream flow is of \((p, u, v, T) = (1.0, \sqrt{7}, \sqrt{7}, 1.0)\). The ideal gas constant is set as \(R = 1.0\) for this case. The perturbation is defined as

\[
\begin{align*}
\delta u &= -\frac{\alpha}{2\pi} (y - y_0)e^{\phi(1-r^2)} \\
\delta v &= \frac{\alpha}{2\pi} (x - x_0)e^{\phi(1-r^2)} \\
\delta T &= -\frac{\alpha^2(y-1)}{16\phi^2\pi^2} (y - y_0)e^{2\phi(1-r^2)} \\
dS &= 0
\end{align*}
\]

(37)

where \(\phi = \frac{1}{3}\) and \(\alpha = 5\) are parameters that define the vortex strength. \(r = (x-x_0)^2 + (y-y_0)^2\) is the distance to the center of the vortex \((x_0, y_0) = (5, 5)\) at \(t = 0\). The periodic domain is defined in \([0, 10] \times [0, 10]\). A prescribed grid motion is employed in this case to validate the moving grid algorithm. The prescribed grid motion of an element vertex is defined as

\[
\begin{align*}
x(t) &= x_r + a_x \sin(f_n t) \sin(f_x x_r) \sin(f_y y_r) \\
y(t) &= y_r + a_y \sin(f_n t) \sin(f_x x_r) \sin(f_y y_r)
\end{align*}
\]

(38)

where \(x_r, y_r\) are the coordinates at \(t = 0\), which are regarded as reference coordinates for the grid deformation. In this study, \(a_x = 0.5, a_y = 0.5, f_n = 2.0\pi, f_x = 0.4\pi,\) and \(f_y = 0.4\pi\). The grid velocities on solution points and flux points of one element are linearly interpolated from the analytical grid velocities of the four vertices of the current element, which can be expressed as

\[
\begin{align*}
x'(t) &= a_x f_n \cos(f_n t) \sin(f_x x_r) \sin(f_y y_r), \\
y'(t) &= a_y f_n \cos(f_n t) \sin(f_x x_r) \sin(f_y y_r).
\end{align*}
\]

(39)

Periodic boundary conditions are applied to all boundaries. Simulations stop at \(t = 0.25\). The time step size \(\Delta t = 10^{-4}\) to make sure the errors are dominated by the spatial discretization. Grid refinement studies have been carried out on a uniform mesh set, i.e., \(16 \times 16, 32 \times 32,\) and \(64 \times 64\), for static meshes and deformable meshes. Figure 2 shows the density contour and deformable mesh at \(t = 0.25\). The grid refinement results are presented in Table 1. It has been observed that the numerical orders of the CDFR methods tested here agree with the theoretical ones for both static meshes and dynamic meshes. The errors increase when the dynamic meshes are used.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>(E_{L_2}(\rho)) order</th>
<th>(E_{L_2}(\rho)) order</th>
<th>(E_{L_2}(\rho)) order</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 \times 16</td>
<td>2.3345 \times 10^{-4}</td>
<td>2.5977 \times 10^{-5}</td>
<td>2.4706 \times 10^{-6}</td>
</tr>
<tr>
<td>32 \times 32</td>
<td>3.4760 \times 10^{-5}</td>
<td>2.75</td>
<td>1.6803 \times 10^{-6}</td>
</tr>
<tr>
<td>64 \times 64</td>
<td>4.4228 \times 10^{-6}</td>
<td>2.97</td>
<td>1.0900 \times 10^{-7}</td>
</tr>
</tbody>
</table>

Table 1. The grid refinement studies of the 3rd-, 4th-, and 5th-order CDFR methods for the 2D isentropic Euler vortex propagation with and without dynamic meshes

V.B. Couette Flow

The Couette flow is studied to demonstrate the performance of the CDFR method for viscous flows in this section. The problem models the flow between two parallel plates, one of which is
moving relative to the other in the tangential direction. In this study, one plate is fixed at \(y = 0 \) while the other one at \(y = H \) moves at the speed of \(U \). The plate at \(y = 0 \) has a temperature of \(T_0 \) while the other one has a temperature of \(T_1 \). The viscosity \(\mu \) is a constant. The analytical solution for this problem can be expressed as \(^{33}\)

\[
\begin{align*}
 u &= \frac{U}{H} y, \\
 v &= 0, \\
 T &= T_0 + \frac{y}{H} (T_1 - T_0) + \frac{\mu U^2}{2kH} (1 - \frac{y}{H}), \\
 \rho &= \frac{p}{RT},
\end{align*}
\]

where \(p = 1.0 \) is a constant in this study, \(k \) is the thermal conductivity and \(R = 1.0 \). The domain is \([0, 4] \times [0, 2]\). In the present study, \(H = 1, U = 2, T_0 = 0.8, T_1 = 0.85 \) and \(\mu = 0.01 \). A mesh set, i.e., \(10 \times 5, 20 \times 10 \) and \(40 \times 20 \), has been used for the grid refinement study of the 3rd-, 4th-, and 5th- order CDFR methods. A GMRES solver is used for the simulations to drive the residual to drop until \(10^{-14} \). The grid refinement study results are presented in Table 2. The results demonstrates that the CDFR methods tested here can preserve the order of accuracy for the viscous flows.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>3rd (E_{L^2}(\rho))</th>
<th>3rd order</th>
<th>4th (E_{L^2}(\rho))</th>
<th>4th order</th>
<th>5th (E_{L^2}(\rho))</th>
<th>5th order</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>2.1411 \times 10^{-6}</td>
<td></td>
<td>1.3647 \times 10^{-6}</td>
<td></td>
<td>4.5178 \times 10^{-9}</td>
<td></td>
</tr>
<tr>
<td>2160</td>
<td>3.3966 \times 10^{-7}</td>
<td>2.66</td>
<td>1.4128 \times 10^{-7}</td>
<td>3.27</td>
<td>1.4272 \times 10^{-10}</td>
<td>4.98</td>
</tr>
<tr>
<td>8640</td>
<td>6.1362 \times 10^{-8}</td>
<td>2.47</td>
<td>1.1354 \times 10^{-8}</td>
<td>3.64</td>
<td>4.6144 \times 10^{-12}</td>
<td>4.95</td>
</tr>
</tbody>
</table>

Figure 2. The deformable \(64 \times 64 \) mesh and the density contour of the 3rd-order CDFR method for the isentropic Euler vortex propagation case at \(t = 0.25 \).
V.C. Laminar Flow Past a Circular Cylinder

To validate the capability of the solver developed in this study, we first study the laminar unsteady flow of $Ma = 0.2$ and $Re = 100$ past a static circular cylinder. The physical domain and the mesh are presented in Figure 3. The domain is the same size as that in Ref. 34, i.e., $(x, y) \in [-16, 32] \times [-16, 16]$. There are 32 elements around the circumference of the cylinder and 40 elements along the normal direction. The first layer of the mesh is about 10% of the radius of the cylinder. P^4 elements are employed to accurately represent the wall boundaries. The Dirichlet boundary condition of $(\rho_\infty, u_\infty, 0, p_\infty)$ is applied to the left boundary and for the right boundary the fixed-pressure boundary condition is employed. The top and bottom boundaries are treated as symmetric surfaces. A fifth order CDFR method is used for the simulation. The time step size $\Delta t = 2 \times 10^{-4}$ for the SSPRK3. The drag coefficient C_d, root mean square (RMS) of the lift coefficient $C_{l,RMS}$, and Strouhal number St are presented in Table 3. Through the comparison with previous studies, it is validated that the CDFR method can predict the correct physics for the laminar flow past a static circular cylinder. The vorticity field in the wake region at $t = 200$ is presented in Figure 4. On this relative coarse mesh adopted in the simulation, the CDFR method has a good resolution of the vorticity field at about 14 times of the diameter of cylinder in the wake region.

![Figure 3. An illustration of the physical domain and mesh for the flow of $Ma = 0.2$ and $Re = 100$ past a circular cylinder.](image)

<table>
<thead>
<tr>
<th></th>
<th>Present study</th>
<th>Liang et al.(2009)34</th>
<th>Meneghini & Saltara(2001)35</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_d</td>
<td>1.367</td>
<td>1.365</td>
<td>1.37</td>
</tr>
<tr>
<td>$C_{l,RMS}$</td>
<td>0.231</td>
<td>0.232</td>
<td></td>
</tr>
<tr>
<td>St</td>
<td>0.165</td>
<td>0.164</td>
<td>0.165</td>
</tr>
</tbody>
</table>

We have also simulated the laminar flow of $Re = 185$ and $Ma = 0.2$ past a static and oscillating circular cylinder in this study. For this case a larger physical domain $((x, y) \in [140\sqrt{2}, 140\sqrt{2}] \times [140\sqrt{2}, 140\sqrt{2}])$ is considered, which is presented in Figure 5 with the mesh. There are 40 elements around the circumference of the cylinder and 60 elements along the normal direction. The mesh in the wake region is refined compared to that of the previous case while other mesh set-up in $[-16, 16] \times [-16, 16]$ is the same. For this case, Riemann solvers are
employed on all boundaries to loosely apply the Dirichlet boundary condition \((\rho_\infty, u_\infty, 0, p_\infty)\) to the inner domain. The spatial discretization is the same as the previous case as well as the time integration and the time step size. We report the force results in Table 4. And Figure 7 gives the \(C_d\) and \(C_l\) history. The vorticity field in the wake region at \(t = 200\) is presented in Figure 6. The current study is compared to an incompressible laminar flow of \(Re = 185\) past a circular cylinder reported in Refs. 28, 36. The compressibility will slightly increase the \(C_d\) by less than 2% and will only have a trivial effect on the \(C_{l,RMS}\). The Strouhal number \(St\) is the same. This phenomenon has also been reported in Ref. 34.

When the cylinder oscillates perpendicular to the incoming flow, we select three different oscillating frequencies in this study. The rigid-body motion defined as

\[
y = A \sin(2\pi ft)
\]

is considered, where \(A = 0.2D\) is the amplitude and \(D\) is the diameter of the cylinder. The oscillating frequency is defined by the frequency ratio \(r = f/f_0\), where \(f_0\) is the natural vortex shedding ratio. \(f_0 = 0.192\) is obtained from the previous study. Herein, we study the flow physics when \(r = 0.8\), \(r = 1.0\) and \(r = 1.2\). The \(C_d\) and \(C_l\) histories are presented in Figure 8, Figure 9 and Figure 10, respectively. We have observed the similar phenomena as Ref. 28, 37, even though
Table 4. A comparison of the present lift and drag results of the laminar flow of $Re = 185$ and $Ma = 0.2$
past a circular cylinder with previous studies

<table>
<thead>
<tr>
<th></th>
<th>Present study</th>
<th>Yu & Wang(2016)28</th>
<th>Lu & Dalton(1996)36</th>
<th>Guilmineau & Queutey37</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_d</td>
<td>1.341</td>
<td>1.317</td>
<td>1.31</td>
<td>1.287</td>
</tr>
<tr>
<td>$C_{l, RMS}$</td>
<td>0.446</td>
<td>0.441</td>
<td>0.442</td>
<td>0.443</td>
</tr>
<tr>
<td>St</td>
<td>0.192</td>
<td>0.192</td>
<td>0.195</td>
<td>0.195</td>
</tr>
</tbody>
</table>

Figure 6. The vorticity field in the weak region at $t = 200$. The laminar flow is of $Re = 185$ and $Ma = 0.2$.

the weak compressibility affects the forces slightly. When the frequency of the excitation does
not exceed the natural vortex shedding frequency f_0, the flow will still exhibit periodic features.
When the excitation frequency exceeds the natural vortex shedding frequency. Chaotic features
will be observed. This observation agrees with the studies conducted in Refs. 28, 37.

VI. Conclusions

In this study, the CDFR method has been further developed to solve the 2D Navier-Stokes
equations with dynamic meshes. The GCL is enforced analytically in the transformation of the
governing equations from the physical space-time domain to the computational space-time do-
main. The SSPRK3 method is employed for unsteady problems coupled with dynamic meshes.
We have verified the accuracy of the CDFR method through various convergence studies, including
inviscid and viscous problems. With the explicit time integration, we have also demonstrate
that the GCL is enforced to guarantee that the numerical orders of accuracy are not affected
by grid motions. Laminar flows ($Re = 100$ and $Re = 185$) past a circular cylinder have been
studied. Through comparison with previous studies in literatures, it is demonstrated that the
CDFR method can predict the forces and flow physics accurately for unsteady problems involving
dynamic meshes.

Acknowledgment

The authors gratefully acknowledge the support of the Office of Naval Research through the
award N00014-16-1-2735, and the faculty startup support from the department of mechanical
engineering at University of Maryland, Baltimore County (UMBC).
Figure 7. The C_d and C_l history of the laminar flow of $Re = 185$ and $Ma = 0.2$ past a static cylinder.

Figure 8. The C_d and C_l history of the laminar flow of $Re = 185$ and $Ma = 0.2$ past an oscillating cylinder. The excitation frequency ratio is 0.8.
Figure 9. The C_d and C_l history of the laminar flow of $Re = 185$ and $Ma = 0.2$ past an oscillating cylinder. The excitation frequency ratio is 1.0.

Figure 10. The C_d and C_l history of the laminar flow of $Re = 185$ and $Ma = 0.2$ past an oscillating cylinder. The excitation frequency ratio is 1.2.
References

