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1.  Introduction
The gravitational field of a planet depends on its internal density distribution, and can thus be used to con-
strain models of its interior structure. Gravity field models are often expressed in global spherical harmon-
ics because these functions are a solution to Laplace's equation that describes the gravitational potential 
outside a sphere that encompasses the entire planet (e.g., Heiskanen & Moritz, 1984; Kaula, 1966). In gen-
eral, models of a planet's gravity field are determined with some combination of radiometric tracking, for 

Abstract  We present a method to determine local gravity fields for the Moon using Gravity Recovery 
and Interior Laboratory (GRAIL) data. We express gravity as gridded gravity anomalies on a sphere, 
and we estimate adjustments to a background global start model expressed in spherical harmonics. We 
processed GRAIL Ka-band range-rate data with a short-arc approach, using only data over the area of 
interest. We determine our gravity solutions using neighbor smoothing constraints. We divided the entire 
Moon into 12 regions and 2 polar caps, with a resolution of   0.15 0.15E  (which is equivalent to degree 
and order 1199 in spherical harmonics), and determined the optimal smoothing parameter for each area 
by comparing localized correlations between gravity and topography for each solution set. Our selected 
areas share nodes with surrounding areas and they are overlapping. To mitigate boundary effects, we 
patch the solutions together by symmetrically omitting the boundary parts of overlapping solutions. Our 
new solution has been iterated, and it has improved correlations with topography when compared to a 
fully iterated global model. Our method requires fewer resources, and can easily handle regionally varying 
resolution or constraints. The smooth model describes small-scale features clearly, and can be used in 
local studies of the structure of the lunar crust.

Plain Language Summary  The gravity field of a planet depends on the density distribution 
in its interior, and as such, improved knowledge of the gravity field can help in determining the interior 
structure of the planet. Here, we have analyzed the data from the Gravity Recovery and Interior 
Laboratory (GRAIL) mission to make local maps of the Moon's gravity field. Standard analysis of GRAIL 
data has focused on determining global models of the Moon's gravity field, partly because the tools of 
geophysics that are used to study the Moon's interior make use of such models, which are expressed in 
what are called spherical harmonics. However, if the data coverage is varying geographically, spherical 
harmonics are more difficult to determine precisely. We have applied a local method that can more 
readily handle variations in data coverage. We divided the Moon into 14 separate regions, and determined 
the optimal solution for each. We evaluated each solution by comparing it with the Moon's topography. 
GRAIL found that gravity and topography are highly correlated on the Moon, which we will leverage to 
independently evaluate our solution. We then patched together our separate maps into one global map. 
Our new model has improved correlations with topography when compared with a standard global model, 
but it takes fewer computational resources to make. Together with the easy way to handle geographically 
varying data coverage, this makes our method and model a good alternative to standard models. Our new 
model is smooth and has a resolution of   0.15 0.15E  (which is 4.5 km by 4.5 km at the equator) and can 
be used to study the structure of the Moon's crust at small scales.
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example using the Deep Space Network (DSN) in the case of NASA missions, and other data such as camera 
and altimetry data. Historically, the determination of the Moon's gravity field has been hampered by the fact 
that the Earth and Moon are in a 1:1 spin-orbit resonance which means that spacecraft cannot be tracked 
from Earth when they are over the Moon's farside. Nonetheless, global gravity field models expressed in 
spherical harmonics have been determined from nearside spacecraft tracking data by applying a constraint 
that suppresses the power in the solution, which would otherwise be unreasonably large due to the gap in 
data coverage over the farside (e.g., Floberghagen, 2001; Konopliv et al., 2001; Lemoine et al., 1997). This 
constraint is called a Kaula law, after the observation that the variance in gravity coefficients follows a power 
law (Kaula, 1966).

This all changed with two recent lunar missions: the Japanese Selenological and Engineering Explorer (SE-
LENE, also called Kaguya) mission (Kato et al., 2010), and NASA's Gravity and Interior Laboratory (GRAIL) 
mission (Zuber, Smith, Lehman, et al., 2013). SELENE consisted of three spacecraft in total: a main satellite 
in a circular lunar orbit, and two subsatellites in elliptical orbits. The mission applied the technique of high-
low satellite-to-satellite tracking, where a relay satellite in an elliptical orbit was simultaneously visible 
from Earth and from the main satellite that was in a lower orbit. By tracking the main satellite while it was 
over the farside through the relay satellite, SELENE provided the first global lunar gravity measurements 
(Matsumoto et al., 2010; Namiki et al., 2009). In addition, SELENE's other subsatellite was used to provide 
Very Long Baseline Interferometry (VLBI) measurements (Kikuchi et al., 2009; Liu et al., 2010) that were 
also used to further improve the gravity field model (Goossens et al., 2011). The GRAIL mission applied the 
technique of low-low satellite-to-satellite tracking. It consisted of two identical spacecraft in identical low 
lunar orbits separated by a relatively short distance. Its single science instrument was a system that meas-
ured the changes in the distance between the satellites using precise Ka-band ranging (Asmar et al., 2013; 
Klipstein et  al.,  2013). This was a modified version of the system on the Gravity Recovery and Climate 
Experiment (GRACE) mission (Tapley, Bettadpur, et al., 2004) that mapped the Earth's gravity field. This 
system provided the basic GRAIL observable, Ka-band Range Rate (KBRR), which is the difference be-
tween the spacecraft velocities projected along the line-of-sight vector connecting the two spacecraft. The 
noise level for KBRR data was reported to be between 0.03 and 0.05 µm/s (Konopliv et al., 2014; Lemoine 
et al., 2014), see also Section 5.

The GRAIL mission was split into two phases: a Primary Mission (PM) that lasted from March 1, 2012 to 
May 30, 2012, and an Extended Mission (XM) that lasted from August 1 to December 14, 2012. During the 
PM the satellites had an average altitude of 50 km above lunar surface, and the distance between the two 
spacecrafts varied from 80 to 220 km. During the XM, the altitude was lowered, first to about 23 km, and 
to 11–20 km after November 11, 2012 until the end of the mission. The distance between the spacecraft 
did not vary as much as during the PM, and was kept to 40–60 km. The GRAIL mission exceeded all its 
requirements, and has provided the highest resolution gravity field models from spacecraft data only, by vir-
tue of the low altitudes that are possible at the Moon. During its PM, its original requirement of delivering 
a gravity field model of degree and order 180 in spherical harmonics (which is roughly equal to a spatial 
resolution of 1E  by 1E  , or 30 km by 30 km, at the lunar equator) was easily surpassed, with the presentation 
of a degree and order 420 model (Zuber, Smith, Watkins, et al., 2013). After the PM this was followed by 
models of degree and order 660 (Konopliv et al., 2013; Lemoine et al., 2013). The low-altitude data from 
the XM meant that the resolution of the models could be extended even further, up to degree and order 900 
(Konopliv et al., 2014; Lemoine et al., 2014). Finally, the most recent models, based on GRAIL data only, 
have a maximum resolution of degree and order 1,200 (Goossens et al., 2020) or 1,500 (Park et al., 2015).

However, the altitude of the spacecraft above the surface during the GRAIL mission varied considerably, 
as shown in Figure 1. For the global gravity field models, this means that their effective resolution varies 
spatially. This is best exemplified by maps of degree strength, which is the degree value where the model 
has a signal-to-noise ratio of 1. This can be computed from the covariance of the solutions by comparing the 
anomaly error at a location (for different maximum degrees of the model) with the expected signal from a 
Kaula law. The degree strength is then the degree at which this error matches the expected signal. This was 
first used for Venus by Konopliv et al. (1999) and this has proven to be a useful indicator of model resolu-
tion. Recent results for global models using GRAIL data show a varying degree strength and thus a varying 
effective resolution (Goossens et al., 2020; Konopliv et al., 2014; Lemoine et al., 2014). The smoothness 

Project Administration: Sander 
Goossens
Software: Sander Goossens, Álvaro 
Fernández Mora, Eduard Heijkoop, 
Terence J. Sabaka
Supervision: Sander Goossens
Validation: Sander Goossens, Álvaro 
Fernández Mora, Eduard Heijkoop, 
Terence J. Sabaka
Visualization: Sander Goossens
Writing – original draft: Sander 
Goossens
Writing – review & editing: Sander 
Goossens, Álvaro Fernández Mora, 
Eduard Heijkoop, Terence J. Sabaka



Earth and Space Science

GOOSSENS ET AL.

10.1029/2021EA001695

3 of 27

constraints that global models require are often applied spectrally and uniformly, which can lead to an 
underestimation of peak amplitudes (e.g., Floberghagen, 2002; Konopliv et al., 1999). Global spherical har-
monics are thus not optimal when the spatial data coverage is not homogeneous. In such instances, local 
methods can be advantageous.

In satellite geodesy, local methods have long since been applied to different data types from satellites or-
biting various bodies. Some examples include analysis for Venus (e.g., Barriot et al., 1998; Kaula, 1996), 
Mars (e.g., Beuthe et al., 2006), and Jupiter's moon Ganymede (Anderson et al., 2004; Palguta et al., 2006), 
without listing the many applications to Earth-orbiting satellites. The determination of the Moon's gravity 
field was especially suitable for local methods because of the farside gap prior to the GRAIL and SELENE 
missions. Examples include the discovery of the prominent mass concentrations (mascons) on the nearside 
of the Moon from the analysis of Doppler residuals from the Lunar Orbiter V spacecraft using a short-
arc line-of-sight analysis (Muller & Sjogren, 1968), and recent results using Lunar Prospector or SELENE 
data (e.g., Goossens et al., 2012; Goossens, Visser, & Ambrosius, 2005; Goossens, Visser, Heki, & Ambrosi-
us, 2005; Han, 2008; Han et al., 2011; Sugano & Heki, 2004a). Local analysis has also been used for estimat-
ing lithospheric thickness and addressing isostasy of various craters and basins on the Moon (e.g., Crosby & 
McKenzie, 2005; Sugano & Heki, 2004b).

GRAIL KBRR data are ideally suited for estimating local parameters: each KBRR measurement is approxi-
mately directly proportional to the difference in gravity potential at the two satellite locations, making them 
well-suited to estimate local parameters (Rowlands et al., 2005). Several analyses have thus used GRAIL 
data for regional gravity field estimation (e.g., Han, 2013; Han et al., 2014; Šprlák et al., 2020). In Goossens 
et al. (2014), we utilized this and produced a local map of gravity at the south pole of the Moon using GRAIL 
extended mission data. That local model improved the data fit, extended the resolution of the background 
global model, and it improved the correlations with topography, thus showing it is a viable method to ex-
tract high-resolution information from the data. Higher correlations between gravity and topography are 
indicative of an improved gravity model because at small scales (higher spherical harmonic degrees) gravity 
is expected to closely follow topography (e.g., Wieczorek, 2015). Here, we extend that analysis to cover the 
entire Moon. We determine 14 separate solutions that cover the Moon, with overlap at the boundaries to 
mitigate boundary effects. We will show that this results in a seamless map of lunar gravity anomalies, that 
has improved correlations with topography when compared to a standard analysis using spherical harmon-
ics, at lower computational costs. For lunar topography, we use the results of the Lunar Orbiter Laser Al-
timeter (LOLA) instrument (Smith, Zuber, Jackson, et al., 2010; Smith, Zuber, Neumann, et al., 2010; Smith 
et al., 2016) onboard the Lunar Reconnaissance Orbiter (LRO) spacecraft (Chin et al., 2007).

Figure 1.  Minimum altitude above topography during the entire Gravity Recovery and Interior Laboratory (GRAIL) 
mission. Variations in minimum altitude translate into varying sensitivity to small-scale surface features. The map 
projection is an equidistant cylindrical projection centered on the nearside.
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This paper is structured as follows: in Section  2, we will introduce the local gravity representation. We 
discuss the estimation method, including the constraint used in our analysis, in Section 3. In Section 4, we 
will discuss the optimal processing of short arcs, and in Section 5, we will discuss determining the optimal 
solution for each area. We present the method of combination of these maps in Section 6. We will discuss 
the results in Section 7 and present the conclusions in Section 8.

2.  Local Gravity Representation
In our earlier local effort with GRAIL data (Goossens et al., 2014), we represented gravity in terms of grid-
ded gravity anomalies. While many other local representations exist, we again choose anomalies for several 
reasons. They can easily be connected to global spherical harmonics, which will make comparisons with 
topography in terms of correlations between the two easier. They are also well-suited for the spatial neigh-
bor constraint that we apply. In addition, they are relatively straightforward to implement and estimate in 
our processing software. Here, we first introduce the gravity anomaly, and then we discuss the discretization 
of the anomaly equation and the constraint we apply. In Appendix A, we provide more details about the 
gravity anomalies, the expressions used to compute the partial derivatives of measurements with respect to 
the anomalies, and their relationship with respect to spherical harmonics.

2.1.  Gravity Anomalies

Following Heiskanen and Moritz (1984), the full gravitational potential E W  can be expressed as the sum of 
the normal potential E U on a reference surface (e.g., a sphere or ellipsoid), and the disturbing potential E T  . The 
geoid is defined as a surface with constant potential, say 0E W  , and the reference surface can then be chosen 
with the same potential 0E W  . The geoid and reference surface will not be the same. A point E P on the geoid will 
have a point E Q on the reference surface projected along the normal direction E n of the reference surface (see 
Appendix A for a depiction of the relationship between points E P and E Q ). Normal gravity E  at the reference 
surface can be defined as    U n/  , and a gravity anomaly ΔE g is defined as the difference between gravity 

PE g  at point E P and normal gravity QE  at point E Q (Heiskanen & Moritz, 1984; Sjöberg & Bagherbandi, 2017):

 Δ .P Qg g� (1)

In spherical approximation (where normal gravity at E Q is simply GM r/
2 , with E GM the gravitational constant 

times mass, and r the reference sphere radius), this becomes (Heiskanen & Moritz, 1984):


  


Δ 2 .T Tg

r r� (2)

A gravity anomaly in this sense thus refers to the geoid surface, and is equal to the radial derivative of the 
disturbing potential, with a correction for the difference in reference surfaces used. This is the definition of 
gravity anomaly often used in geodesy, and we also apply it here. In geophysics, the radial derivative of the 
disturbing potential, -  T r/  , is often used, and it is the difference between gravity and normal gravity both 
at E P . In geodesy, this is called the gravity disturbance. There is some confusion about these terms between 
the disciplines of geodesy and geophysics because of the difference in reference surface used, and what is 
called a disturbance here would be called an anomaly in geophysics (Hackney & Featherstone, 2003; Li & 
Götze, 2001). Our anomalies correspond to a spherical reference surface, which has a radius of 1,738 km.

Equation 2 relates the gravity anomaly to the disturbing potential E T  . Conversely, the disturbing potential E T  
can, of course, also be expressed as a function of the gravity anomaly, and this is what is eventually needed 
in order to estimate the anomalies. We only repeat the result here as the derivation can be found in, for 
example, Heiskanen and Moritz (1984):







( )
( ) ( , ) Δ ( ) ( ),

4
e

Q

aT P S P Q g Q d Q∬� (3)

where E P is the point where the disturbing potential E T  is to be computed, E Q is the point on the reference 
surface QE  , eE a  is the reference radius (here, we use a value of 1,738 km), and ( , )E S P Q  is the kernel function in 
this integral equation (see Appendix A for details).
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Finally, because the integral is over the entire surface, and the functions are harmonic outside of the Bril-
louin sphere (the circumscribing sphere that fits the entire mass of the body), spherical harmonic equiv-
alents exist. Using the standard expression for the potential in spherical harmonics (see Kaula, 1966, and 
additional explanations in Appendix A) and Equation 2, ΔE g can be expressed as:

     


 

 
   

 
 2

2 0
Δ ( , , ) ( 1) cos( ) sin( ) (sin ),

l l
e

lm lm lm
l m

GM ag r l C m S m P
rr

� (4)

where  , ,E r  are the spherical coordinates radius, longitude, and latitude, respectively, lmE C  and lmE S  are the 
normalized harmonic coefficients of the expansion of degree  and order E m , and lmE P  are the normalized 
associated Legendre functions. Normalization here is the standard 4E  normalization used in geodesy (see 
Appendix A). In practice, this expansion is evaluated up to a maximum degree, maxE L  . Because of this equiv-
alency, a global anomaly grid can easily be expressed in spherical harmonics. A local grid can also be ex-
pressed in spherical harmonics by using spherical harmonic transformations. We will use this frequently, 
because we can then also apply localized spectral analysis (Wieczorek & Simons, 2005, 2007) to compute 
correlations between gravity and topography for the selected area only. This will serve as an independent 
evaluation of the resulting local gravity model. Correlations  ( )E l  per degree between two quantities ex-
pressed in spherical harmonics with coefficients (  ,A A

lm lmE C S  ) and ( , )B B
lm lmE C S  are computed using the cross power 

( )ABE S l  following (e.g., Wieczorek, 2015)

S l C C S S

l
S l

S l S l

AB

m

l

lm

A

lm

B

lm

A

lm

B

AB

AA BB

( ) ,

( )
( )

( ) ( )

.

  





0


� (5)

2.2.  Discretization

Equation 3 is the basis of our analysis because it expresses the potential as a function of the anomaly. From 
the potential, the acceleration on the spacecraft can be computed, and this is how, through variational 
equations (e.g., Montenbruck & Gill, 2000; Tapley, Schutz, & Born, 2004), we can estimate the anomalies 
from tracking data. See Section  3 for more details. Here, we take the radial derivative of the potential, 


r
P T r( ) /    , as an example, and we show results for additional directions in Appendix A. The radial de-

rivative of E T  expressed as a function of anomalies ΔE g is:




 






( )

( , )
( ) Δ ( ) ( ).

4
e

r
Q

S raP g Q d Q
r∬� (6)

We discretize the integral equations by replacing the integral with a sum over gridded gravity anomalies. 
The expression for the radial acceleration would then be:

 
 





1

( , )
( ) Δ ( ) ( ),

4
M ie

r i i
i

S P QaP g Q d Q
r� (7)

where E M is the number of anomalies. In this representation, the kernel function would, for example, be 
evaluated at the midpoint of a grid cell of E n by E n degrees (although it does not necessarily have to be a regular 
grid), and  ( )iE d Q  would be the area of that particular grid cell. The anomaly Δ ( )iE g Q  would be the anomaly 
for the entire grid cell, and in this way, partials with respect to each anomaly can be easily obtained from 
Equation 7.

In our earlier work, we divided each grid cell into four smaller, equal parts, evaluated the kernel at the 
center point of each subcell, and computed the contribution of one anomaly in that way. However, this mid-
point approach can result in discretization errors, as pointed out by Hirt et al. (2011). Here, instead of discre-
tization by subdivision using the midpoints, we follow Hirt et al. (2011) and compute the integral over each 

E n by E n cell using Gauss-Legendre quadrature. For each cell, we determine the Gauss-Legendre nodes (four 
nodes for each cell, just like we subdivided the cell into four parts before), and then evaluate the analytical 
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expression for the kernel at that node. This is then multiplied by the quadrature weight, and this is how 
we integrate the kernel function for each anomaly. We tested using more nodes but that did not change the 
results. Using this new integration method, we compared solutions for a test area with our earlier midpoint 
method, and found small improvements, in terms of correlations with topography. We also tested defining 
the entire grid on Gauss-Legendre node points (each cell would then have only one Gauss-Legendre point, 
instead of 4), but found a slight degradation for this grid. Finally, for the pole anomaly we define a cap with 
a radius of / 2E n  degrees, and we use 36 nodes for the integration of the cap.

The integral in Equation 3 is in principle over the entire surface, and as explained above, the formulation 
using anomalies is then entirely equivalent to one in global spherical harmonics. However, for our local 
analysis we will limit ourselves to areas on the Moon. The discretization in Equation 7 will thus only have 
a limited number of anomalies. This will reduce the number of estimation parameters, but it will also need 
to be shown that the solutions are not deteriorated by limiting ourselves to an area. The kernels in the 
integral equations (see Equations A12–A14 in Appendix A) determine the influence of one anomaly on 
the acceleration on the spacecraft: for what angle  cE  (the angle between the location of an anomaly at the 
reference surface and the computation point) will the kernel value be small enough? This means that an 
anomaly at an angle  cE  away from the computation point will hardly contribute to the acceleration on the 
spacecraft, and this can thus be used to limit the number of anomalies considered. Rather than showing the 
kernel functions, we show a more direct result on the actual GRAIL KBRR data in Figure 2. We computed 
the effect of one gravity anomaly with an amplitude of 1 mGal (1 mGal =   510E   m/  2sE  ) and a spatial size of 

1 / 6E  by 1 / 6E  on a KBRR measurement at two different altitudes: at 55 km (the PM altitude) and at 23 km 
(the XM altitude). We computed this effect by processing actual GRAIL KBRR data with and without this 
anomaly in the force model. We then plot the difference in KBRR residuals, which thus show some noise. 
Figure 2 shows that the influence quickly diminishes away from the center point of the anomaly, and for 
the XM data is limited to about 5E  from the anomaly center. Smaller anomaly sizes will have an even more 
limited effect. When the midpoint of the two spacecraft is directly over the center of the anomaly, the two 
spacecraft essentially experience the same effect, and the KBRR value is zero. The PM altitude is higher and 
so the effect is smaller. The maximum KBRR value of about 0.25 µm/s is roughly 5–8 times the noise level 
of the KBRR data (e.g., Konopliv et al., 2014; Lemoine et al., 2014). These results confirm that the effects of 
anomalies on the spacecraft are limited, and that we can thus estimate only the anomalies in a given area 

Figure 2.  Effect of a 1 6/  by 1 6/  anomaly with an amplitude of 1 mGal on GRAIL KBRR data at the PM and XM 
altitude.

µ
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without estimating anomalies over the entire globe. We will discuss boundary effects on the solutions in 
detail in Section 6.

3.  Anomaly Estimation and Neighbor Constraint
We start off with the general model that relates a data vector E d to a vector of model parameters E x through a 
functional relationship E a :

 ( ) ,d a x � (8)

where E  is the noise vector, which will be assumed to be a zero-mean, Gaussian process with covariance E P . 
This is in general a nonlinear equation. We apply a Gauss-Newton method (e.g., Seber & Wild, 1989) that 
linearizes this equation, and then solves it through iterations. For the E k th iteration, the updated gravity 
anomaly vector   1Δ Δ Δk k kE g g x  , where Δ kE x  is the E k th adjustment to the anomalies from the linearized 
equation. This could also be expressed as an adjustment to Δ kE g  and would thus be Δ Δ kE g  , but for clarity we 
will use Δ kE x  .

The discretization described in Section 2.2 allows for the generation of measurement partial derivatives 
with respect to the gravity anomalies in our data processing software, GEODYN II (Pavlis & Nicholas, 2017). 
We describe the data processing itself in detail in Section 4. We consider the E k th iteration of the Gauss-New-
ton method, and subscripts E k refer to this iteration. If the partial derivatives of KBRR data residuals ,d kE r  (a 
vector with dimension 1E N  , where E N is the number of data points) with respect to gravity anomalies Δ kE g  
(a vector of dimension 1E M  , with E M the number of estimated parameters) are given as kE A  (an E N M ma-
trix), then the linearized observation equation that relates gravity anomalies to KBRR data residuals reads 
in standard form:

 , Δ ,d k k kr A x � (9)

where Δ kE x  is the E k th anomaly adjustment, and   1Δ Δ Δk k kE g g x  . The matrix kE A  is called the sensitivity 
matrix and it relates the observables to the estimated parameters—Equation  9 thus establishes the link 
between the two. This matrix is obtained from numerical integration of the variational equations, which de-
scribe the sensitivity of the state vector with respect to the estimated parameters. The variational equations 
are derived from the basic equations of motion, and this can be found in standard works on orbit determi-
nation such as Montenbruck and Gill (2000) and Tapley, Schutz, and Born (2004). In addition, examples of 
works that relate KBRR data to the gravitational potential can be found in Han (2004, 2013).

The construction of Equation 9 is based on Equation 3 which is an integral equation of the first kind, and 
these are known to be ill-posed (e.g., Groetsch, 1993). This requires regularization: the use of additional, 
a priori information. In our earlier work, we followed Rowlands et al. (2010) and Sabaka et al. (2010) who 
applied neighbor smoothing in their analysis of mascon estimation using GRACE data, and here we do 
the same. Each anomaly in the grid Δ iE g  is assumed to be equal to any other anomaly Δ jE g  . Therefore, the 
constraint reads Δ iE g   −  Δ jE g   = 0 with E i j . Each constraint pair between anomalies Δ iE g  and Δ jE g  is weighted 
depending on the distance between the anomalies on the sphere, ijE d  , with a weight W d Dc ij ij, exp( / ) 1  , 
where E D is the correlation distance. We set the latter equal to the latitudinal size of the anomaly Δ iE g  (Row-
lands et al., 2010). Note that this is a natural choice: larger values for E D may lead to over-smoothing because 
the constraint would still be relatively strong for anomalies further away. By choosing the latitudinal size, 
variations between anomalies clustered relatively close together can still be obtained. Expressions for the 
covariance of anomalies expressed in spherical harmonics also exist (e.g., Bills & Ferrari, 1980; Tscherning 
& Rapp, 1974), most often used in least squares collocation estimation techniques (e.g., Moritz, 1978). These 
can also be used to determine the correlation distance, but we did not pursue this because we use discrete 
anomalies. This results in a constraint weight matrix cE W  , and the use of weights between pairs based on 
their distance prevents the solution from having one uniform value where all anomalies would be the same.

Our gravity anomalies Δ kE g  are themselves perturbations to an underlying global gravity field model that is 
used in the analysis of GRAIL data. This global model stays fixed as the anomalies are updated. We use one 
of our recent models, GRGM1200 A (Goossens et al., 2016, 2020), which is a model in spherical harmonics 
of degree and order 1200.
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Finally, instead of applying the smoothing to the gravity anomalies Δ kE g  only, we apply the smoothing to 
the entire gravity field. Since the anomalies, we estimate are additional anomalies to the underlying back-
ground model, this means that the smoothing will be applied to  globalΔ ΔkE g g  , where globalΔE g  are the anom-
alies from the global model, GRGM1200 A, computed from Equation 4. This results in the following con-
strained solution for the adjustments Δ kE x  :

    


  
1

, , ,Δ ,T T T T
k k d k k c k d k d k c cx A W A D W D A W r D W r� (10)

where ,d kE W  is the data weight matrix, which is diagonal with entries (   21 / iE  ) where  iE  is the data weight for 
a data point  , E D is the matrix with the constraint partial derivatives, E  is a scale factor applied to the con-
straint (in addition to the weight matrix cE W  ), and cE r  is the vector with constraint residuals which is expressed 
as   globalΔE cr D g  . The constraint between two anomalies Δ iE g  and Δ jE g  is written as  Δ Δ 0i jE g g  and thus 
the partial entries for Δ iE g  are one, those for Δ jE g  are negative 1, and those for all other anomalies in a row of 
the partial matrix are zero. We note that parameters other than gravity parameters (such as those related to 
the GRAIL spacecraft orbits as explained in Section 4) are not included in Δ kE x  . Instead, they are taken into 
account through their Schur complement (Sabaka et al., 2010). For each E k th iteration, the entries kE A  , ,d kE W  , 
and ,d kE r  are updated, although in general, ,d kE W  will stay the same (see Section 4 for the data weights used). 
The entries E D , cE W  , and cE r  remain the same, but we note that on the constraint matrix, we update information 
on Δ kE g  so that the data matrix kE A  and the constraint matrix have the same start state.

On a final note, we remark that our neighbor constraints are isotropic in their weighting by using one value 
for E D for each anomaly in ,c ijE W  as defined above. This can easily be changed by varying E D , to account for, 
for example, more smoothing in the east-west direction than in the north-south direction. The latter can 
be desirable because of the polar orbit of the GRAIL spacecraft that results in striping in the solutions that 
the neighbor constraint can overcome (Goossens et al., 2014). We tested this by computing the azimuth 
between two anomalies, and by defining an ellipse where the correlation distance is larger in east-west 
direction. Test results did not show improvements and so we did not pursue this further.

4.  Determining the Optimal Short-Arc Processing
We will process the data and estimate the GRAIL orbits over continuous time spans, which are called arcs. 
In standard processing for the global models, these are several days long. A trade-off for arc length exists 
between balancing sensitivity with respect to long-wavelength features of the gravity field on one hand, and 
limiting the build-up of errors due to mismodeling of for example nonconservative forces on the other hand. 
Because we will estimate anomalies in a selected area, we will also only select data over that selected area, 
and our arcs have the length of the time it takes for the spacecraft to cross this area. This means that our arcs 
will be short. We can do this by the virtue of using a different parametrization for the GRAIL orbits, and by 
using results from our global analysis. The arc lengths depend on the size of the solution patches, which we 
list below in Table 1. In our analysis, the areas are of similar size in latitude, which results in arcs of typically 
22 min long for the rectangular patches, and 18 min for the polar caps.

We base our analysis of the KBRR data on the approach in Rowlands et al. (2002). There it was shown, in the 
framework of the GRACE mission, that it is possible to estimate the gravity field using short arcs. Instead of 
the 12 Cartesian positions and velocities, they used a baseline formulation for the two spacecraft, transform-
ing the Cartesian coordinates into a spherical representation. In Rowlands et al. (2002), it was shown that 
it is sufficient to adjust 3 parameters instead of 12, as these parameters are the most sensitive to the KBRR 
data. These three parameters are: the pitch of the baseline vector between the two satellites, the baseline 
velocity vector's magnitude, and the baseline velocity vector's pitch. This has been applied successfully to 
the analysis of GRACE data (e.g., Loomis et al., 2019; Luthcke et al., 2006, 2013; Rowlands et al., 2005), 
and we also applied it in our earlier local GRAIL analysis (Goossens et al., 2014). Our global analysis also 
estimates empirical accelerations, as detailed in Goossens et al. (2020). Here, we tested the effects of these 
accelerations, and of using either long arcs or short arcs.

First, we tested three different scenarios with respect to the accelerations, using short arcs: not including 
them, including them but not estimating them, and including and (re)estimating them. We use the values 
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for the start orbit and empirical accelerations that were determined from the longer arc. We show results 
in Figure 3. The test area was that for Mare Orientale, following a similar analysis as presented in Zuber 
et al. (2016). For this test, the background global model was a degree and order 1080 model, a predecessor 
to our later GRGM1200 series (Goossens et  al.,  2016,  2020). We generated local solutions for this area, 
with a grid size of 0.15E  by 0.15E  , which is equivalent to degree and order 1200 in spherical harmonics. 
We then compute localized correlations between gravity and topography using one taper for a spherical 
cap centered on 270E  E, 25E  S with a radius of 25E  and a windowing bandwidth of win 16E L  such that the 
taper has a concentration factor better than 99.99%. The solution based on orbits where the accelerations 
are not included has slightly worse correlations than the other two solutions, as can be seen in Figure 3a. 
The difference between solutions that include and either estimate or not estimate the accelerations is small 
(not shown). We decide to include and estimate the accelerations in our analysis, especially since the use 

Area # Longitude extent Latitude extent Constraint weight E Late XM weight Cap radius (°) winE L

1 [−5.1,49.95] [−9.9,65.1] 310E 0.1 27.525 14

2 [−5.1,49.95] [−61.95,9.9] 410E 0.1 27.525 14

3 [44.85,110.1] [−9.9,65.1] 310E 0.1 32.625 12

4 [44.85,110.1] [−61.95,9.9] 310E 0.1 32.625 12

5 [105,169.95] [−9.9,65.1] 410E 0.1 32.475 12

6 [105,169.95] [−61.95,9.9] 410E 1.0 32.475 12

7 [164.85,219.9] [−9.9,65.1] 510E 1.0 27.525 14

8 [164.85,219.9] [−61.95,9.9] 510E 0.1 27.525 14

9 [214.8,289.95] [−9.9,65.1] 410E 1.0 37.5 10

10 [214.8,289.95] [−61.95,9.9] 510E 0.1 35.925 11

11 [284.85,360] [−9.9,65.1] 310E 0.1 37.5 10

12 [284.85,360] [−61.95,9.9] 310E 0.1 35.925 11

13 (north pole) [0,360] [60,90] 410E 0.1 30.0 13

14 (south pole) [0,360] [−90, −56.85] 410E 0.1 30.0 13

Table 1 
Summary of Parameters Used in Local Gravity Field Determination

Figure 3.  A comparison in terms of localized correlations with topography of various solutions for the test area of Mare Orientale based on different 
parametrizations of the orbit determination process (a), and on different arc lengths (b). For comparison, we also include the correlations with the global start 
model.
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of these accelerations can act to absorb mismodeling effects, and the results show that their inclusion does 
not adversely affect the solution.

Our analysis so far is based on short arcs using data selected over the area of interest. One other way of 
processing would be to use the longer arcs from the global analysis with the same baseline formulation and 
data selection. We would then use KBRR data only, again start from the previously determined orbit, and 
readjust the three baseline parameters and selected accelerations. This is how GRACE data are processed 
for mascons or monthly spherical harmonic models at Goddard Space Flight Center (GSFC; e.g., Luthcke 
et  al.,  2006). The advantage of this processing would be fewer arc parameters: each short-arc has three 
baseline parameters. The number of empirical accelerations would not change: we estimate multiple sets of 
empirical accelerations per orbit (Goossens et al., 2020) and each passage over an area is separated by one 
orbit by definition. However, the results in Figure 3b show that the long-arc solution has lower correlations 
than the short-arc solution. Again, the differences are not big, and the figure also indicates that the long-arc 
solution performs much better than the global start model. Nonetheless, we decided to process the GRAIL 
data using short arcs, where we include and estimate the empirical accelerations.

5.  Determining the Optimal Local Solution Per Area
For each area, we will determine the gravity solution using Equation 10. We process the GRAIL data using 
short arcs as explained above with only data over the selected area. This results in a partial derivative matrix 

E A and residuals dE r  for each short arc. The entries for the data weight matrix dE W  are straightforward: this is a 
diagonal matrix with elements  21 / iE  on the diagonal, where  iE  is the data weight applied in orbit determi-
nation. We used a weight of 0.03 µm/s for PM data and 0.05 µm/s for XM data, following the reported noise 
levels (Konopliv et al., 2014; Lemoine et al., 2014). We can then form the normal matrix system, and the 
neighbor smoothing constraint matrix (and its accompanying right hand side). We form separate matrices 
for the PM data, for early XM data (before December 2012) and for late XM data (after December). We make 
the distinction so that we have the option to apply different weights to each system when combining the 
normal systems. Late December data are taken at a lower altitude, and while they contain more informa-
tion about the small-scale gravity field, our earlier analysis found that down-weighting the December data 
improved the solutions (Goossens et al., 2014).

We will determine the optimal local solution for each area by varying the remaining input parameters: the 
weights on the data matrices, and the constraint scale factor E  . For each solution, we will then transform the 
anomalies into spherical harmonics, and compute localized correlations with topography. We will select the 
combination of weights that results in the best overall correlations. We will keep the PM and early XM data 
weights at 1 and will choose the late XM data weights to be 0.1, 0.5, or 1. For E  , following our earlier analysis 
results (Goossens et al., 2014), we will choose values of 310E  , 410E  , and 510E  . We did not find that fine-tuning 
these values further made any appreciable difference in the solutions. We also found that using a technique 
such as variance component estimation (e.g., Kusche,  2003) does not result in solutions with improved 
correlations over the solutions already obtained. Eventually, this means that we compute nine separate 
solutions for each area, and then evaluate each solution in terms of localized correlations with topography.

We demonstrate this with the results shown in Figure 4. For one of our areas (see Section 7.1 for further 
details), focused on the nearside with bounds −5.  1E  E to 49.  95E  E, and 9.  9E  S to 65.1  N, we determined nine 
solutions, and computed localized correlations. The localized correlations are again computed with one ta-
per, centered on the center point of the area under consideration. The cap radius is computed such that the 
cap fits entirely inside the area. For the example under consideration here, the center points are 22.  4256E  E, 
27.  6E  N, and the cap radius is 27.  525E  . The concentration factor of the taper is again chosen to be larger than 
99.99%, resulting in win 14E L  . In Figure 4a, we show solutions with varying constraint weights E  (while the 
late XM weight was kept at 0.1). For this area   310E  gives the best overall correlations, but the difference 
with the solution using   410E  is small. Figure 4b shows the results when we vary the late XM weight, this 
time using   310E  for all the solutions. The differences between the solutions are minimal, with a weight 
of 0.1 for the late XM data having marginally better correlations. For this solution, we thus select the com-
bination   310E  with a late XM weight of 0.1. In Section 7.1, we will introduce our chosen areas and show 
the results for the resulting constraint and data weight factors.
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6.  Combining the Local Solutions
After we determine the set of local solutions, we need to consider how to combine them into one map. As 
discussed in Section 2.2, and shown in Figure 2, the effects of one anomaly are limited to about 5E  away from 
that anomaly, depending on the anomaly size and data altitude. We limit our analysis to selected areas on 
the Moon using data from when the spacecraft are over that area. Invariably, this means that anomalies at 
the boundaries of the area will be affected because data points close to them would also have effects from 
anomalies just outside of the area. In addition, longer wavelengths (larger than the area size) can also not 
be recovered well. Such boundary effects are well known in local studies. The standard remedy for this is to 
discard the solution at the edges because the cells there are most affected. We apply the same method here. 
From Figure 2, we determine that an overlap of at least 5E  between solutions should exist. Longer wave-
lengths will be less of an issue since our analysis uses a background global spherical harmonics model and 
we estimate only adjustments to this model.

Next, we consider how to patch the overlapping solutions together. One of the most natural ways to patch 
the solutions is to split the overlap from two regions symmetrically, and take for each part of the overlap the 
solution whose boundary is not contained in that part. That way, boundary effects would vanish. For the 
sake of completeness, we also consider patching solutions where the overlap is taken fully from either the 
original (central) solution or the added patched solution. In addition, a solution where both sets of anom-
alies from the overlapping solutions are blended to obtain a solution in the overlap is also computed. Such 
a blend gives zero weight outside the regions, a weight of one in the interior of each region (but not in the 
overlap) and a 2-D cosine tapered weight in the overlap. We illustrate these different patching methods in 
Figure 5, where we have two solutions with different, constant anomaly values (10 and −10 mGal, to clearly 
note the difference between the two) that we patch according to the different methods. The overlapping 
area is in the middle of the maps in Figure 5, and indicated with white lines. The dash-dot line indicates the 
central overlapping meridian. For the symmetrical overlap in Figure 5c, it is clear that half of the overlap 
comes from the central (10 mGal) solution, and the other half from the −10 mGal solution, such that their 
respective boundary parts are not included. For the solutions where we either keep the central part (Fig-
ure 5a) or the added part (Figure 5b) it is clear we only have those values in the overlapping part. The blend 
method (Figure 5d) clearly mixes the two smoothly. To evaluate the patching, we again compute localized 
correlations, this time centered on the overlapping region. We focus on patching the east-west borders and 
the north-south borders.

Before investigating the various patch methods, we stress the importance of selecting the grids carefully. If 
the grid is not selected such that overlapping regions have the same nodes, interpolation is required to patch 

Figure 4.  A comparison in terms of localized correlations with topography of various solutions for a test area focused on the nearside (−5.  1E  E to 49.  95E  E, and 9. 
9E  S to 65.1 N) based on different constraint weights (a), and on different weights for the late XM data (b). For comparison we also include the correlations with 

the global start model.
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them, which modifies the solution. The effects of this interpolation were tested, and we show the results in 
Figure 6. When no interpolation is required, we obtained the best correlations. While the correlations for 
the grids where interpolation was required are still better than those for the global start model, the differ-
ence here are considerable, unlike in earlier cases in Figures 3 and 4. We will thus match our grids such that 
the overlapping parts share the same nodes (which comes down to selecting one global regular grid that is 
divided into overlapping regions), as we show in Section 7.1.

In Figure 7, we show localized correlations with topography for solutions with the different patching meth-
ods. The central area under consideration in this example extends from 44.  85E  E to 110.  1E  E, and 9.  9E  S to 65.1 
 N. We evaluate correlations on the south (Figure 7a) and east (Figure 7b) borders for this solution. These 
neighboring areas (see also Section 7.1) extend from 61.  95E  S to 9.  9E  N for the area to the south (the longitude 
extent is the same as for the area under consideration) and from 105E  E to 169.  95E  E for the area to the east 

Figure 5.  Examples of different patching methods. We patch one anomaly field (in this case with a constant value of 
10 mGal) with another field (with a value of −10 mGal) on the eastern border of the former. The overlapping area is 
indicated with lines, and the central meridian of the overlapping are is indicated with a dash-dot line. We can keep the 
entire central solution (a), or the added eastern solution (b), or we can do a symmetrical overlap where the boundaries 
of each solution are excluded (c), or we can blend the solutions with a taper (d).

Figure 6.  Localized correlations with topography for a solution where the grid nodes in two neighboring grids match 
for patching, and for a solution where interpolation is required. For comparison, we also include the correlations with 
the global start model.
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(here, the latitude extent is the same). This means that the overlap in the east direction is 5.  1E  and that in 
the southern direction is 19.  8E  . For the correlations on the southern part, the spherical cap is centered at 77. 

475E  E, 0E  N, with a radius of 32.  625E  . Using one taper with a concentration factor of 99.99% this results in 
win 12E L  . For the eastern part, the cap is centered at 107.  55E  E, 27.  6E  E, with a radius of 37.  5E  and win 10E L  . 

Solutions where we keep either the central part or the additional (south, or east) part in the overlapping 
region do not take the boundary effect into account, and as expected they have slightly worse correlations 
than the symmetrical or blend patch method. The difference between the latter two is very small. The small-
er overlapping region at the eastern border also does not appear to pose an issue for the patched solution as 
the correlations in Figure 7b do not show any deterioration. We also note that north-south boundary effects 
could potentially be larger, because of the polar orbits of the GRAIL satellites: the short arcs will start or stop 
at a north-south border to state-vector effects could also be present at those borders. However, our patched 
solution here and its evaluation using correlations show no signs of adverse effects, indicating that our 
selection of the size of the overlap is appropriate. We will also show in Section 7.2 that the entire patched 
solution does not have any remaining boundary effects. In conclusion, because the differences between the 
symmetrical and blending method are small, we choose the symmetrical patching method for all regions. 
Our software script that patches the solutions would allow for a different patching type for each area and 
border.

7.  Results and Discussion
In this section, we will show and discuss the resulting global map of lunar gravity, consisting of a set of 
patched local solutions. We will first introduce the chosen grid and areas, together with the solution param-
eters. We will then show and discuss the results.

7.1.  Local Areas: Bounds and Solution Parameters

As explained in Section 6, care has to be taken to define the grids of different solutions to avoid interpo-
lation when patching them. Here, we list the chosen grids, with overlaps, which are the result of a global, 
regular   0.15 0.15E  grid. When transforming this into spherical harmonics, this is equivalent to a model 
of degree and order 1199 (we use 1199 instead of 1200 because our grid spacing uses max 1E L  for its spac-
ing: 180 1/( )maxL   ). Our start global model is the degree and order 1200 model GRGM1200A (Goossens 
et al., 2016, 2020). This will also allow us to compare our new global map with the standard start model and 
its global iterated version, GRGM1200 B.

Figure 7.  Localized correlations with topography for solutions with different patching strategies for the south border (a) and for the east border (b). For 
comparison we also include the correlations with the global start model.
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In Table 1, we show the boundaries of our chosen areas, and the selected constraint and data weight param-
eters from our solution analysis. These parameter values are the final values used in our solution, which 
we iterated. We explain this in more detail below. The table also includes the values for the cap radius and 
windowing bandwidth value winE L  that were used in the localized correlation computations to determine the 
optimal constraint weight and data weight. In order to get a better sense of the overlaps for the areas, we 
show the areas on a map of gravity anomalies from the global start model in the background in Figure 8a. 
We also show the constraint weights, with topography in the background, in Figure 8b.

7.2.  Combined Solution

We present our combined solution in Figure 9, where we show the global map of lunar gravity that is the re-
sult of our determination of 14 separate local solutions. We applied regionally varying constraint weights as 
given in Table 1 and as shown in Figure 8b. We patched the solutions together using the symmetrical meth-
od for all boundaries on all regions. The map in Figure 9 is at the full resolution of the model,   0.15 0.15E  . 
We plot the discrete gravity anomalies at this resolution, but it also means that the maximum degree maxE L  
that would be used in Equation 4 is 1,199, the spherical harmonics resolution of our local models as ex-
plained above. We discuss this resolution further below. We also include Bouguer disturbances, computed 
by subtracting the contribution of gravity from topography using a constant crustal density of 2,500 kg 3mE  . 
We use the formulation of Wieczorek and Phillips (1998) that accounts for finite amplitude relief, and we 
raise topography to the 20thE  power, which for the Moon results in negligible errors for the Bouguer cor-
rection (Wieczorek, 2015). We compute the Bouguer disturbances between degrees 7 and 700, in order to 
exclude signals from the deep interior, and noise in the higher degrees. These Bouguer disturbances can be 
used to infer density variations in the crust (e.g., Besserer et al., 2014; Goossens et al., 2020; Han et al., 2014).

We iterated our local solutions twice (i.e., E k   =  2, following the Gauss-Newton method as introduced in 
Section  3), to obtain the map presented in Figure  9. For clarity, that means that in Figure  9, we show 

   global 2 global 2 1Δ Δ Δ Δ ΔE g g g x x  , in the formulation of Equation 10. Iterating the solutions assures that 
one can test whether the solution has converged. This is often assumed in inverse problems, but not always 
shown. Even if the initial adjustments are relatively small, iterated solutions can still show improvements. 
For example, Luthcke et al. (2013) showed that their iterated mascon solutions improved significantly, par-
ticularly in the ability to restore more signal strength. For our iterated solution, after determining an initial 
set of gravity anomalies ( E k  = 1), we reprocessed the GRAIL data by using this initial set of anomalies in the 
spacecraft force model (in addition, of course, to the fixed background global model). We again determined 
nine solutions for each area, using different constraint scale factors and data weights. As stated in Section 3, 
we updated the constraint matrix with a start value for the anomalies that is now different from zero, i.e., for 

E k  = 1, 0ΔE g 0 , and for E k  = 2, we have 1ΔE g  from Equation 10. We evaluated these new nine solutions again 
by investigating localized correlations. While we mostly expected to use the same constraint weights and 
data weights as in the initial adjustment, we found that we could relax the constraints over the poles, from a 
factor of 310E  to 410E  . All other factors stayed the same. The initial factors for the poles could probably have 
been chosen at 410E  already when the initial solution was determined.

Figure 8.  We indicate the areas on a map of gravity anomalies from the global start model GRGM1200 (a), and the constraint weight factors for each area, 
shown on lunar topography from LOLA (b). The map projection is a Mollweide projection centered on the nearside.
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In Figure 10, we show the adjustments to the global model for both iterations. This map shows best that 
there are no boundary effects or seams visible in the solution. We also highlight that both maps use a dif-
ferent color scale, because the adjustments for the iterated solution are smaller than those for the initial 
solution: the RMS of the initial adjustment is 30.85 mGal, with values ranging from −1,003 mGal to 741 
mGal. The RMS of the iterated adjustment is much smaller, at 5.75 mGal with values ranging from −237 to 
239 mGal. For comparison, the anomalies at full resolution from GRGM1200 A have an RMS of 137 mGal 
with values ranging from −1,746 to 2,622 mGal. This shows that indeed the iterated solution produces only 
small, additional adjustments. We illustrate this point further in Figure 11, where we show histograms of 
anomaly adjustments for both solutions. This figure clearly shows the difference between the solutions, 
with the iterated solution showing a much narrower peak centered around 0 mGal. Because we did not 
find large improvements locally for the solutions, we did not do an additional iteration. In Figure 10, the 
largest additional adjustments in the iterated solution can be seen over the poles because we used a looser 
constraint there. Additional individual tracks can also be seen to have been adjusted in the iterated solution, 
but overall, as the histogram from Figure 11 also indicates, the additional adjustments are small.

7.3.  Discussion

We now evaluate the local solutions by again computing correlations with topography. In Figure 12, we 
show both global correlations, and correlations localized over the south pole (with a cap radius of 30E  and 

win 13E L  ), as well as the power spectrum and effective density spectrum. The power spectrum  ( )E l  is de-
fined as:

Figure 9.  The global map of lunar gravity anomalies generated from our local solutions, at its full resolution of 
  0.15 0.15E  (top, a), and Bouguer disturbances for the local solution, for the degree range   = 7–700, using a constant 

crustal density of 2,500 kg 3mE  (bottom, b). The map projection is a Mollweide projection centered on the nearside.
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The effective density spectrum eff ( )E l  is a measure of crustal density at all 
scales, and it is computed following Wieczorek et al. (2013) and Besserer 
et al. (2014) as:

eff obs topo topo topo
( ) ( )/ ( ),l S l S lg g g g� (12)

where E S is the cross power as defined in Equation 5, obsE g  is the estimat-
ed gravity (i.e., our local solution expressed in spherical harmonics), 
and topoE g  is gravity from topography computed using the formulation of 
Wieczorek and Phillips (1998), with a constant density for the crust. We 
include two global models in Figure 12: the start model GRGM1200 A, 
and its iterated variant, GRGM1200B (Goossens et al., 2020). This allows 
us to compare our local model with both, and Figure 12a clearly shows 
that the local model has improved correlations over both the global start 
and global iterated model. This indicates that our local approach has an 

Figure 10.  Adjustments for all the 14 local solutions, for the initial local model (top, a), and the iterated local model 
(bottom, b). In the formulation of Equation 10, this means we show the adjustments Δ kE x  ( E k  = 1, top, and E k  = 2, 
bottom), and not the anomalies Δ kE g  . As such, the iterated adjustments are additional to the first adjustments. We 
note that both figures have a different color scale. The RMS of the first adjustments is 30.85 mGal, and the additional 
adjustments have an RMS of 5.75 mGal. The map projections are Mollweide projections centered on the nearside.

Figure 11.  Histograms of the anomaly adjustments for the initial ( E k  = 1) 
and iterated ( E k  = 2) solutions.
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advantage over processing the data into a global model. This is by virtue of being able to easily choose re-
gionally varying constraints, as shown in Figure 8. For the global model, while not impossible (see, e.g., the 
regionally varying constraint that was applied by Konopliv et al. (1999) for gravity models of Venus), this is 
not as straightforward to implement. This was also one of the drivers behind the development of mascon 
solutions using GRACE data at GSFC (e.g., Rowlands et al., 2005).

The power spectrum in Figure 12c shows that up to degree  700E l  , the spectra for the three models shown 
are very close. After this, the local model has less power, but it still shows improved correlations compared 
to the global models (see the inset of Figure 12c for a close up of the higher degrees). While the decrease in 
power could indicate that less smoothing might have been applied, we note that for each area, we selected 
the solution parameters with the best localized correlations, and increasing the power could thus adversely 
affect these. However, the effective density spectra in Figure 12d are all close. This spectrum expresses the 
per-degree ratio of estimated gravity and gravity from topography, and does not deteriorate with the lower 
power of the local model.

From Figure 8, it can be seen that the areas with less smoothing are over the farside highlands, where the 
topography signal is strong. Additionally, the spacecraft altitude was low because of the higher topography 
(Figure 1). Relatively more smoothing (   310E  ) is required over the nearside. Correlations with topogra-
phy are generally lower there due to the presence of mare deposits, which make interpretation of the gravity 

Figure 12.  Global correlations between gravity and topography (a), a close up that also includes correlations localized over the south pole (b), the power 
spectrum of several solutions, including an inset with a close up of the higher degrees (using a linear horizontal scale, c), and the effective density spectrum (d).
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field in terms of the density structure more difficult (e.g., Besserer et al., 2014; Goossens et al., 2020; Wiec-
zorek et al., 2013). This may also indicate that despite a much better data coverage than pre-GRAIL data, a 
nearside/farside difference in constraints, as advocated in Han et al. (2009), could be useful.

However, inversions at this global resolution are not trivial. Our global solutions required the extensive use 
of the supercomputers of the NASA Center for Climate Simulation (NCCS; Goossens et al., 2020). While we 
also used the same supercomputers for this analysis, we needed fewer resources per solution than the global 
solution, as well as less CPU time. The full matrix for a global degree and order 1200 model requires 7.6 TB, 
and since we apply direct inversion methods, this is also the minimum memory requirement. In our local 
approach, the polar grids have the most parameters, and each requires about 1 TB. The other areas, being 
smaller, typically required several hundreds of GB. This makes the local solutions faster to compute and 
evaluate, which can help with determining whether the data support higher resolution models, for example, 
before investing the resources into determining a global model.

The correlations as shown in Figure 12a are all close together and do not appear to show substantial im-
provements, which can be quantified for example as the maximum degree to which the model can be used 
globally. The latter can be determined from when the correlations are below a certain threshold value, where 
the correlations can be used to derive a signal-to-noise ratio under the assumption that correlations smaller 
than unity are due to unmodeled signals uncorrelated with topography (Wieczorek, 2008). In Figure 12a, 
the difference between the initial and iterated solution is not clear, because for most of the local solutions, 
the correlations were very close. As explained, the biggest differences occur for the polar solutions because 
we used less smoothing there for the iterated solution. In Figure 12b, we show localized correlations for the 
south pole (with a cap radius of 30E  and win 13E L  ), and it is clear that the iterated solution has appreciable 
improved correlations with topography over the south pole (and north pole as well, which are not shown).

We further illustrate our local solution in Figure 13, where we show the local gravity anomalies for the Mare 
Orientale area, including localized correlations. The correlations here are markedly better than those of the 

Figure 13.  The local solution in terms of gravity anomalies for the Mare Orientale area (left, a), and localized correlations for various models (right, b). The 
map projection is an equidistant cylindrical projection centered on 260E  (e) Localized correlations were centered on 270E  E, 25E  S, using one taper with a cap 
radius of 30E  and win 13E L  .
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global start model, showing the improvements that the local method is capable of. If we use correlations 
to indicate a signal-to-noise ratio as mentioned above, then at a correlation value of 0.9 the signal-to-noise 
ratio is 4.3. For the global start model this occurs at (localized) degree 725 whereas this happens at degree 
764 for the local model. This increase in resolution may help local studies of the upper structure of the 
lunar crust, which depend mostly on the high-degree terms of the models (Besserer et al., 2014; Goossens 
et al., 2020).

The Mare Orientale area was also the subject of study of Zuber et al. (2016), where our analysis was ap-
plied using a mixed-resolution grid. We did not pursue this in this analysis, but we note that in a way this 
is similar to the varying smoothing that we applied. Less smoothing can easily be seen as increasing the 
resolution of the model which then may require relatively more smoothing to maintain high correlations 
with topography.

The increase in resolution of the local models may also help in other modeling of crustal structures (e.g., 
Deutsch et al., 2019). The maps presented in this work are generated at the full   0.15 0.15E  resolution. If 
the same were to be done for the global models, they would show much more noise. The local models may 
thus help in delineating gravity features at the surface to a better extent, which may help their modeling.

However, we note that we cannot readily expand the spherical harmonics to its full resolution for our local 
model. While using the maximum degree when computing and plotting the maps of the anomalies results 
in much smoother maps than would be the case for an equivalent (in resolution) global model, the global 
and localized correlations presented here indicate that also for the local model, correlations decrease as the 
degrees increase. This especially would be an issue when computing the Bouguer disturbances, as shown in 
Figure 9b. For this, care has to be taken when determining the maximum degree to be used. If the maximum 
degree is used but the power in the gravity anomaly is much smaller than that for topography, the Bouguer 
disturbance will likely be biased by the contribution from topography (negatively, since the Bouguer distur-
bance equals gravity disturbance minus the topography contribution). So, while the gravity anomaly maps 
can be used at high resolution to map out features on the Moon, care has to be taken when converting this 
to Bouguer disturbances.

Several high-resolution gravity models based on GRAIL data now exist. Each has its own characteristics 
and advantages for use in geophysical analysis. Our local gravity model presented here has the advantage of 
showing smooth gravity anomalies at its full resolution, which make it suitable to study small-scale struc-
tures by better delineating gravity features, as explained above. Recently, another high-resolution gravity 
model was presented in Goossens et al. (2020), by applying a constraint that uses information from topogra-
phy. While enforcing high correlations between gravity and topography, it was shown that this model can be 
used to derive lateral density variations in the lunar crust using spectral methods. We thus foresee that the 
local model presented in this paper is useful in analysis of structures where clear delineations of features are 
desired, whereas the model from Goossens et al. (2020) is useful in (localized) spectral analysis.

We did not include a full error analysis of the anomaly solutions. The covariance can readily be obtained 
using Equation 10, and we did investigate this for several test solutions. We found that the formal errors 
were generally small, with striped patterns along the tracks. However, the underlying global model has its 
own error and should also be included when investigating the total error for the area. In our case however, 
we do not take into account the full covariance of the underlying global model, as this is computationally 
prohibitive due to the size of the global models. With respect to the global model errors, the formal errors 
for the adjustments were found to be small and the total error would still be dominated by the errors for the 
background model. We did not further pursue this error analysis. Instead, we suggest to use covariance re-
sults from the global model GRGM1200 A, which are available at https://pds-geosciences.wustl.edu. These 
clone models describe deviations from the base model, GRGM1200A, computed from its covariance. These 
clones can be added in this case to the coefficients of the base local model instead of to GRGM1200A to 
create clone models for the local model. However, care should be taken when using these clone models, as 
they do not contain covariance information from the local models. The resulting constructed clone models 
will have a behavior similar to those of the GRGM1200A clones, which is counter-intuitive because corre-
lations with topography are improved for the local model and this would suggest smaller errors for the new 
map of gravity.

https://pds-geosciences.wustl.edu
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Finally, we mention an additional analysis that we performed. GRAIL data, like GRACE data, originally are 
range measurements that have been processed into range-rate measurements. One additional processing 
step would make them range-accelerations, and these are even more directly related to gravity signals, per 
the equations of motion that describe the acceleration due to forces. We implemented a straightforward fit 
using splines on the time series of residuals which were then differentiated numerically to obtain acceler-
ations. While originally applied to Doppler data of another mission (Goossens et al., 2015, 2019), we also 
applied this to GRAIL KBRR data, resulting in what we call range-acceleration data (KBACC). In Figure 14, 
we show the effect of a 1 mGal 1 6 1 6/ /   anomaly on KBRR data, the same as in Figure 2, and now we also 
include the range-accelerations. From this figure, it can be seen that the KBACC signal is even narrower 
than that of the KBRR data, which means that the KBACC data type is even more suited to localize the grav-
ity signal, and that boundary effects might be smaller. Our fit and differentiation however does not apply 
additional filters, which makes the KBACC data noisier, as is easily seen. We note again that we performed 
this analysis using actual GRAIL data, as explained when introducing Figure 2, which leaves noise in the re-
siduals. A similar approach, with more filtering on the data, has been reported for GRACE data as well (e.g., 
Tregoning et al., 2017). While analyzing GRAIL data, we also investigated solutions based on KBACC data, 
and found that in certain instances, these solutions outperformed the standard local solutions based on 
KBRR data. This was especially the case for a solution where the farside was estimated from KBACC data. 
We also found we could use smaller smoothing factors, although this is of course related to the amplitude 
of KBACC data which is smaller as Figure 14 indicates, and is thus only relative. However, when putting 
together our initial local solution, we repeated this analysis but found no discernible improvements (nor 
deterioration) compared to the standard solution. A future analysis using these data would likely benefit 
from investigating the filtering of the accelerations.

8.  Conclusions and Outlook
We have analyzed GRAIL intersatellite KBRR data to determine local gravity field models on the Moon. We 
have applied a short-arc analysis where we transform the coordinates of the two spacecraft into coordinates 
describing the baseline between the two. We only adjust 3 from the 12 components in this representation as 
they are most sensitive to KBRR data: the pitch of the baseline vector between the two satellites, the base-
line velocity vector's magnitude, and the baseline velocity vector's pitch. We also include and estimate any 
empirical accelerations acting on the spacecraft that were included in longer arc analysis for global gravity 
field determination, as we found that this produces the best results, where solutions were evaluated using 
localized correlations between gravity and topography. We divided the Moon into 12 regions and 2 caps for 

Figure 14.  Similar as in Figure 2, we show the effect of a 1 6/  by 1 6/  anomaly with an amplitude of 1 mGal on GRAIL 
KBRR data, and now also include range-accelerations, for the XM altitude.

µ µ
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the poles, and determined local solutions for each. Our solution strategy uses a global start model (a spher-
ical harmonics expansion of degree and order 1200), and we estimate adjustments to this model, which are 
expressed as gridded gravity anomalies. We apply neighbor smoothing on the combination of adjustment 
and anomalies from the global model. For each region, we determine the optimal smoothing parameter, and 
an additional weight factor on December data, again by comparing localized correlations. Our regions were 
chosen such that they share nodes and are overlapping, in order to minimize boundary effects. We patched 
our solutions together using a symmetrical patching method where for each part of the overlap the solution 
whose boundary is not contained in that part is taken. In this way, solution boundaries are not included. 
Analysis found that a boundary of about 5E  is sufficient.

Our patched solution shows no boundary effects. Global correlations with topography are improved when 
compared to the global start model, and when compared to a full iteration of our global start model. Our 
local solution was also iterated and we found that the iterated adjustments were much smaller and have 
less spread than the initial adjustments. We applied different smoothing factors for each region, and found 
that areas with more topography, such as the farside highlands, require less smoothing and still have high 
correlations with topography. While also partly related to satellite altitude above the surface, this also in-
dicates dominance of the farside on the entire gravity signal, which is also clear from global models, when 
comparing nearside and farside power and correlation spectra (e.g., Lemoine et al., 2013).

Local correlations over areas such as the south pole or Mare Orientale indicate clearly that the local solution 
presents a substantial increase in resolution. For example, our Mare Orientale solution crosses correlations 
with topography of 0.9 at a (localized) degree of 764 whereas the start model does this at the lower value 
of 725. The maps we generated and showed are also at their full resolution of   0.15 0.15E  . They show a 
mostly smooth and clear gravity signal, delineating feature boundaries clearly and with less noise than a 
global model at the same resolution would. The local model can be used in detailed analyses of the lunar 
crust. We do stress however that spectral analysis of the local solution should still be undertaken with care, 
as correlations with topography show decreasing values with increasing degree.

One other advantage of our local approach is that it requires fewer resources. While our number of parame-
ters for each solution is still substantial, and while we still needed to resort to the use of supercomputers to 
estimate the solutions, they do require less memory and computational nodes (and as a consequence, less 
CPU time) than a standard global model estimation does.

We briefly discussed the use of range-accelerations instead of the standard Ka-band range-rate data. While 
initial results were promising, we found that there was no further improvement for our final analysis. How-
ever, additional research into filtering these accelerations may improve the solutions, because accelerations 
are more directly related to gravity and should thus be able to describe small-scale features well, as our test 
results showed. In addition, we also briefly explored the use of different correlation distances in the neigh-
bor constraints, to obtain more smoothing in the east-west direction compared to the north-south. The latter 
can be desirable because of striping in the solutions as a result of the polar orbits of the spacecraft. We did 
not investigate this beyond initial tests, and this could be a future topic of research.

The presented local method is versatile: the constraint (or resolution of the model) can easily be varied 
regionally. In addition, the method requires in general fewer computational resources. This gives this local-
ized method several advantages. With improved global correlations for our local solution, this method can 
be an alternative to a global approach.

Appendix A:  Equations for Gravity Anomalies and Gravity Disturbances
In Section 2, we introduced the gravity anomaly. Its relationship to the disturbing potential E T  is given in 
Equation 3. Here, we provide additional equations that we used to compute the acceleration on a spacecraft 
from gravity anomalies. We also provide additional details on the equivalence between anomalies and glob-
al spherical harmonics.

First, in Figure A1 we clarify the relationship between the different points that are used to define the gravity 
anomaly as in Equation 1. The point E P is at the geoid, and it has a projection E Q on the reference surface 
along the normal E n of the reference surface. Then, the gravity anomaly ΔE g is defined as the difference in 
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gravity at E P and normal gravity at E Q ,  Δ P QE g g  . In the spherical approximation this results in Equa-
tion 2 that relates the anomaly to the disturbing potential E T  (e.g., Heiskanen & Moritz, 1984; Sjöberg & 
Bagherbandi, 2017).

Conversely, the potential can also be expressed as a function of the anomalies. We repeat Equation 3 here 
for clarity:







( )
( ) ( , ) Δ ( ) ( ).

4
e

Q

aT P S P Q g Q d Q∬� (A1)

The kernel in this expression, ( , )E S P Q  , is called the Stokes-Pizetti kernel, where the point E P is outside of the 
reference surface, which is the case when processing spacecraft data at altitude. This kernel is defined as 
(Heiskanen & Moritz, 1984):
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describing the distance between two points at distance E r and eE a  (the reference radius) from the center, sepa-
rated by a spherical angle E  . We also note that this kernel has a spectral equivalent, expressed in Legendre 
functions lE P (see also below):
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This will allow a comparison between the anomaly expression for E T  and an expression in global spherical 
harmonics.

Because the integral in Equation A1 is over the entire surface, and the functions are harmonic outside of 
the Brillouin sphere (the circumscribing sphere that fits the entire mass of the body), spherical harmonic 
equivalents exist. First, we express the disturbing potential in spherical harmonics:
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Figure A1.  The geoid, the reference surface, and the points E P and E Q used in the definition of the gravity anomaly as 
given in Equation 1.
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where  , ,E r  are the spherical coordinates radius, longitude, and latitude, respectively, lmE C  and lmE S  are the 
normalized harmonic coefficients of the expansion of degree  and order E m , and lmE P  are the normalized as-
sociated Legendre functions. Normalization here is the standard 4E  normalization used in geodesy, which 
is given as:

  
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0
( )!(sin ) (2 )(2 1) (sin ),
( )!lm m lm
l mP l P
l m
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where 0mE  is the Kronecker delta which is 1 when  0E m  and 0 when  0E m  . For normalization of the spher-
ical harmonic coefficients lmE C  and lmE S  we note that lm lm lm lmE C P C P  (and the same for the E S coefficients). 
Then, combining Equations 2 and A5 gives the spherical harmonics expression for the gravity anomaly, 
which we repeat here from Equation 4:
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Equivalency of the expressions as given in Equations A1 and A5 can be shown by using the orthonormality 
relationships and addition theorem for (associated) Legendre functions.

For completeness, we also include expressions for the gravity disturbance    /E g T r . In spherical har-
monics, the disturbance can be expressed as:

      


 

 
   

 
 2

2 0
( , , ) ( 1) cos( ) sin( ) (sin ).

l l
e

lm lm lm
l m

GM ag r l C m S m P
rr

� (A8)

As indicated in Equation A7, the anomaly has a factor of ( 1)E l  in the spherical harmonics expression, and 
as can be seen from Equation A8, the disturbance has a factor of ( 1)E l  . An expression similar to Equa-
tion A1 can also be found to express the potential as a function of the disturbance:
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where the kernel has now become the Hotine kernel ( , )E H r  :
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The next step is to compute accelerations on the spacecraft from the expression of the potential as given in 
Equation A1. The accelerations in three orthogonal directions (radial, denoted with rE  , east-west, denoted 
with E  , and north-south, denoted with E  ), can be obtained from:
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Applying this to Equation A1 results in:
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The derivatives of the Stokes-Pizetti kernel with respect to E r and E  can be found from Equation A2:
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where l  is given by Equation A3. In order to express derivatives of the kernel with respect to the E  and E  
directions, as required in Equations A12–A14, we use the definition of the angle  PQE  between two points 
 ( , )E P  and   ( , )E Q  :

         cos sin sin cos cos cos( ).PQ� (A17)

Using the chain rule, the derivatives of ( , )E S r  can be written as:
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With the definition of E  as in Equation A17, the derivatives of E  with respect to E  and E  can be obtained as:
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This set of equations allows the computation of the acceleration on the spacecraft through Equations 
A12–A14.

As stated in Section 2.2, we discretize the integral equations by replacing the integral with a sum over grid-
ded gravity anomalies. The expression for the radial acceleration is given in Equation 7, and the expressions 
for the other directions are similar.

Data Availability Statement
The data used in this analysis can be found at the GRAIL archive on the PDS, https://pds-geosciences.
wustl.edu/missions/grail/default.htm. In the directories, there one can find the KBRR data (https://pds-ge-
osciences.wustl.edu), as well as auxiliary data, such as global gravity field models (https://pds-geosciences.
wustl.edu). LOLA topography data such as spherical harmonic expansions of the topography we used here 
can be found at the LOLA PDS Data Node (http://imbrium.mit.edu). The results presented here are avail-
able for public use. Spherical harmonics models for gravity and Bouguer can be found at the PDS, as files 
labeled “gggrx_1200l” at the location for global models listed above. Additional products such as gridded 
anomalies are available from our data archive, at https://pgda.gsfc.nasa.gov/products/80. We used the freely 
available software SHTOOLS (Wieczorek et al., 2018) to compute localized correlations. All figures were 
made with the freely available software GMT (Wessel et al., 2013).

https://pds-geosciences.wustl.edu/missions/grail/default.htm
https://pds-geosciences.wustl.edu/missions/grail/default.htm
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https://pds-geosciences.wustl.edu
https://pds-geosciences.wustl.edu
https://pds-geosciences.wustl.edu
http://imbrium.mit.edu
https://pgda.gsfc.nasa.gov/products/80
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