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Abstract
The increasing importance of both deep neural networks (DNNs) and cloud services for training them means that bad actors
have more incentive and opportunity to insert backdoors to alter the behavior of trained models. In this paper, we introduce
a novel method for backdoor detection that extracts features from pre-trained DNN’s weights using independent vector
analysis (IVA) followed by a machine learning classifier. In comparison to other detection techniques, this has a number of
benefits, such as not requiring any training data, being applicable across domains, operating with a wide range of network
architectures, not assuming the nature of the triggers used to change network behavior, and being highly scalable. We discuss
the detection pipeline, and then demonstrate the results on two computer vision datasets regarding image classification and
object detection. Our method outperforms the competing algorithms in terms of efficiency and is more accurate, helping to
ensure the safe application of deep learning and AI.
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1. Introduction
Deep neural networks (DNNs) have seen great success
in diverse domains, including object detection [1], image
captioning [2], virtual assistants [3], healthcare [4], fake
news detection [5], stock market prediction [6], and self-
driving cars [7]. Despite their ubiquitous applications,
DNNs are still considered to be black boxes as their in-
ternal representations are opaque and their behavior can
be hard to predict. Because of this, DNNs are susceptible
to a variety of adversarial attacks.

Two of the most prominent adversarial attacks are (i)
evasion attacks [8, 9] where the adversary modifies data
at inference time to be misclassified as benign (e.g., spam
emails) and (ii) backdoor attacks (aka, trojan attacks) [10],
where the adversary includes poisoned samples in the
training data. In the latter case, the adversary has full
control over the network’s training process and mali-
cious behaviour is deliberately injected into the model.
As soon as the backdoor model sees a particular pattern,
known as the trigger, at inference time it misclassifies
the sample. These attacks are growing as DNNs need
vast amounts of data to train and millions or billions of
parameters need to be learned. The computational power
needed for this training process is often not available to
individuals or even some businesses, leading to outsourc-
ing training to third parties or downloading pre-trained
models from open source platforms like GitHub and Hug-
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ging Face. As a result, someone with bad intentions can
easily introduce a backdoor in the model.

Backdoor attacks are more stealthy than other attacks
as the backdoored model can have high accuracy for
the underlying task, e.g., classification. As DNNs are
deployed in critical applications, the consequences of tro-
janed models can be dire. For example, a model used to
detect street signs in a self-driving car may have an em-
bedded trigger (e.g., a yellow sticky note) that causes the
model to misclassify stop signs as speed limit signs, lead-
ing to accidents. Due to this, the US Defense Advanced
Research Projects Agency (DARPA) has introduced the
trojans in AI (TrojAI) 1 program, where teams are devel-
oping cutting-edge trojan detection pipelines.

We introduce a novel backdoor detection approach
which uses both matrix factorization, independent vector
analysis (IVA) [11], and machine learning (ML) classifiers
to detect a backdoor model. Though matrix factoriza-
tion algorithms have been developed to compare the
internal representations of neural networks (e.g., Rep-
resentational Similarity Analysis (RSA) [12], Centered
Kernel Alignment (CKA) [13], and Singular Vector Canon-
ical Correlation Analysis (SVCCA) [14]) they have been
mostly used for pairwise similarity analysis and never
applied to the backdoor detection problem. We use IVA
to extract features from the weights of each pre-trained
DNN model and then feed the features to a ML classifier
to classify whether a model is backdoored or clean.

We can summarize the contributions of our paper as
follows:

1https://pages.nist.gov/trojai/docs/overview.html
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• We propose a highly effective backdoor detection
pipeline which employs IVA for feature extraction
and detects backdoor models from the features
using a ML classifier. To the best of our knowl-
edge, no such methods have been published for
backdoor detection using IVA. Our approach has
better accuracy and efficiency than state of the
art (SOTA) backdoor detection methods in both
image classification and object detection DNNs.

• Our method does not need any training samples
to detect backdoor model, whereas other methods
use training samples for optimization and then
detect backdoors based on the result. In the real
world, getting training samples is highly unlikely
as we can obtain only a DNN model, not the data
used to train it.

2. Related Works
This section reviews work on both backdoor attacks and
defenses against those attacks.

2.1. Backdoor Attack
BadNets was proposed by Gu et al. [10], where back-
doors are injected into DNNs by poisoning a subset of
the training data with triggers (small visual patterns) of
arbitrary shapes. The attacker changes the true class
label of the triggered samples so that the poisoned source
class images are classified as the target class. BadNets
performs well (more than 99% success rate in attack) both
on clean and poisoned data as the attacker has full con-
trol of the training process. Liu et al. proposed another
backdoor attack [15] where the attacker does not need
access to the training data. Instead, the attacker insert
triggers which instigate maximum response to specific
internal neurons of DNNs. This method can achieve a
high success rate (> 98%) as triggers hold strong relation
to the neurons. Backdoor attacks can be incorporated in
further applications such as reinforcement learning [16],
and natural language processing [17].

2.2. Backdoor Defense
Backdoor detection strategies typically inspect either the
model or the data. Neural Cleanse [18] is a model-based
detection method that assumes each class label is the
backdoor target label and designs an optimization tech-
nique to find the smallest trigger that causes the network
to misclassify instances as the target label. After that,
they use an outlier detection algorithm on the potential
triggers and consider the most significant outlier trigger
as the real one where the associated label with that trig-
ger is the backdoored class label. Though this method

showed promising results, it is computationally very ex-
pensive as the target label is not known at run time.

Thousands of benign and malicious models are used
to train a classifier utilizing Universal Litmus Patterns
(ULPs) [19], which has been developed for backdoor de-
tection. Based on the ULP optimization, the classifier
makes a prediction about whether a model has a back-
door. The entropy of the input picture that has been
disturbed is determined by STRIP [20] to detect back-
doors. If the entropy for the anticipated class is lower,
it is deemed to be a backdoor since it violates the input
dependence criterion. Sentinet [21] is a data-level inspec-
tion method where they use backpropagation to extract
the critical regions from the input data.

ABS [22] is another model-level backdoor detection
method that analyzes the behavior of neuron activations.
A stimulation method estimates the impact on output
activations with changes to hidden neuron activations.
The input is likely poisoned if a neuron’s activation in-
creases significantly regardless of the model output label.
Based on stimulation results, an optimization method
using model reverse engineering is employed to detect
backdoor models. ABS shows very promising results in
backdoor detection but it is also computationally heavy
when a network has a large number of layers.

Chen et al. proposed activation clustering (AC) [23]
for backdoor detection by analyzing the activations of
neural networks. They use a few training samples to
obtain the activations of the final fully connected layer
of a neural network. Then the activations are segmented
by the class label and each label is clustered separately.
Finally, they implement 2-means clustering followed by
ICA for dimensionality reduction. To find the poisoned
model they use three distinct post-processing methods.

All the backdoor detection methods discussed above
only deal with CNN models for image classification tasks.
Regarding backdoor detection for object detection CNN
models, Chan et al. proposed detector cleanse [24] which
is a framework for run-time poisoned image detection
for object detectors that relies on the user having just a
few clean features (which can come from many datasets).

3. Method and Pipeline

3.1. Problem statement
Consider a DNN model, 𝐹 (·), which performs a classifi-
cation task of 𝑐 = 1, ...𝐶 classes using training dataset 𝒟.
If we poison a portion of 𝒟, denoted 𝒫 ⊂ 𝒟, by injecting
triggers into training images and change the source class
label to the target label, 𝐹 (·) is a backdoored model after
training. During inference, 𝐹 (·) performs as expected
for clean input samples but for triggered samples 𝑥 ∈ 𝒫 ,
it outputs 𝐹 (𝑥) = 𝑡, where 𝑡 (𝑡 ∈ 𝑐) is the target but
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Figure 1: Backdoor detection pipeline where we extract features using IVA and then detect backdoors using ML classifies.

incorrect class and can be single or multiple depending
on the number of classes we poison. The objective of
our pipeline is to detect these backdoor models before
deployment.

3.2. Backdoor detection pipeline
In this section, we describe how we extract features from
the weights of the pre-trained DNNs and use the features
for backdoor model prediction.

3.2.1. DNN weight tensor preparation

As all the DNNs, 𝑘 = 1, ...,𝐾 , are already trained, we
have the weights of each layer of the networks. But,
the dimensions of the weights are not uniform and they
depend on the type of layer and network architecture. So,
we have used random projection (RP) to obtain uniform
size weight tensors for all the layers as RP can produce
features of uniform size [25] for different DNNs and it
is very memory efficient [26]. As a result, for each DNN
we get a weight tensor,W[𝑘] ∈ R𝐿×𝑅, where 𝑅 = 2000,
meaning we consider 𝐿 layer’s weights of the DNNs and
the RP dimension is 2000.

3.2.2. Feature extraction and classification

IVA is an extension of independent component analysis
(ICA) to multiple datasets [11] which uses the statisti-
cal dependence of latent (independent) sources across
datasets by exploiting both second order and higher or-
der statistics. Though it is one of the frequently used
algorithms for brain connectivity analysis using fMRI
and EEG data [27, 28], this is the first backdoor detection
pipeline using IVA.

Before applying IVA for feature extraction, we get our
datasets, X[𝑘] ∈ R𝑁×𝑅, using PCA on W[𝑘] for dimen-
sionality reduction with model order 𝑁 , preserving 90%
of the variance in our data. Given 𝐾 datasets for 𝐾 DNN
models, each consisting of 𝑅 samples and being each

dataset is a linear mixture of 𝑁 independent sources, IVA
decomposes it as

X[𝑘] = A[𝑘]S[𝑘], 1 ≤ 𝑘 ≤ 𝐾 (1)

where A[𝑘] denotes the mixing matrix and S[𝑘] is the
dataset specific sources. IVA estimates 𝐾 demixing ma-
trices, D[𝑘], 𝑘 = 1, ...,𝐾 so that the dataset specific
sources can be estimated as, S[𝑘] = D[𝑘]X[𝑘]. Hence,
each S[𝑘] contains 𝑁 sources and we use those 𝑁 fea-
tures to classify the DNN models. Finally, we train a
classifier algorithm (𝜃) to predict whether a model is
backdoored or clean.

Algorithm 1: Backdoor Detection using DNN
weights
Input: Pre-trained DNNs (𝐾) weights
Output: Backdoor / Clean DNNs

1 for 𝑘=1, ..., 𝐾 do
2 Get 𝐿×𝑅 weight tensor using random

projection for 𝐿 layers
3 Append: W for 𝑘=1, ..., 𝐾 , and construct

W[𝑘] ∈ R𝐿×𝑅

4 Observation, X[𝑘] ∈ R𝑁×𝑅 = PCA (W[𝑘])
5 Demixing matrix, D[𝑘] = IVA (X[𝑘])
6 Estimated Sources, S[𝑘] ∈ R𝑁×𝑅 = D[𝑘] ·X[𝑘]

7 Predicted label, 𝑦 = 𝜃(S[𝑘])

4. Dataset and Experimental
Results

4.1. Dataset
To evaluate our backdoor detection method, we use CNN
models trained on MNIST digits and object detection
models provided by the TrojAI program.



4.1.1. Image classification dataset

We have trained 450 CNN models using the same archi-
tecture shown in Table 1 (50% clean, 50% backdoored) to
classify the MNIST data. Clean CNNs are trained using
the clean MNIST data. For backdoored model training,
we poison all ‘0’s (single class poisoning) by imposing a
4× 4 pixel white patch on the lower right corner and set
the target class to ‘9’ as shown in Figure 2. Clean CNNs
exhibit average accuracy of 99.02% where backdoored
CNNs have accuracy of 98.85% with 99.92% attack success
rate, indicating a highly effective trigger attack. More-
over, out of the 450 models, we use 400 CNNs for training
and 50 for testing with 𝐿 = 6, meaning we consider all
CNN layers’ weights.
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Source label: ‘0’ Target label: ‘9’

MNIST CNN dataset

Figure 2: MNIST CNN dataset where we implement single
class poisoning in MNIST backdoor CNNs by imposing a white
patch trigger in ‘0’ and target class is ‘9’.

Layer # of Channels Filter Size Activation

Conv 16 5×5 ReLU
MaxPool 16 2×2 -
Conv 32 5×5 ReLU
MaxPool 32 2×2 -
FC 512 - ReLU
FC 10 - Softmax

Table 1
CNN model architecture for MNIST digits data.

4.1.2. Object detection dataset

We have utilized the object detection CNN models of the
TrojAI dataset 2 which contains backdoored and clean
models across two network architectures (Fast R-CNN
and SSD) trained on the Common Objects in Context
(COCO) dataset. We use 144 ‘Train’ models from the
repository as our training models and 144 ‘Test’ models
for the evaluation of our pipeline with 𝐿 = 30, meaning

2https://pages.nist.gov/trojai/docs/data.
html-object-detection-jul2022

we consider the final 30 layer’s weights of the models.
Figure 3 shows that there are two types of trigger attacks
on the models: evasion and misclassification. Evasion
triggers cause either a single or all boxes of a class to
be deleted and misclassification triggers cause either a
single box, or all boxes of a specific class, to shift to the
target label.

Figure 3: Triggered images for evasion and misclassification
attack respectively for TrojAI object detection dataset. The
green evasion trigger on the zebra causes the box to disappear
and the black triangular trigger is responsible for the fire
hydrant misclassification.

4.2. Experimental results
Several performance metrics are reported using differ-
ent ML classifiers. We also compare our findings with
SOTA backdoor detection methods in terms of both per-
formance and efficiency. Regarding the number of PCA
components, we use 𝑁 = 4 and 10 for image classifica-
tion and object detection datasets respectively. Moreover,
we use the standard equation for binomial proportions
to estimate confidence intervals on the empirical accura-
cies for the robustness metrics of the pipelines, i.e., confi-
dence interval=𝑧×

√︀
(𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 × (1− 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦))/𝑛,

where 𝑛 is the number of models classified as backdoored
or clean, and we use 𝑧 = 1.96 and thus have 95% confi-
dence intervals [29].

4.2.1. Backdoor model classification

We show the backdoor model detection results in Table
2. Three different ML classifiers (random forest (RF),
decision tree (DT), and k-nearest neighbor (kNN)) have
been used in the experiments for both image classification
and object detection datasets. As performance metrics,
cross entropy loss (CE-Loss) and area under the ROC
curve (ROC-AUC) scores are reported as CE-Loss is the
current standard for classification problems and ROC-
AUC helps to understand the false positive rate (FPR),
being so crucial for backdoor model detection. In both
datasets, RF performs better than DT and kNN in terms
of CE-Loss and ROC-AUC scores. Our pipeline using RF
shows ROC-AUC scores of 0.91 for image classification
and 0.89 for object detection datasets.

https://pages.nist.gov/trojai/docs/data.html-object-detection-jul2022
https://pages.nist.gov/trojai/docs/data.html-object-detection-jul2022


CE-Loss ROC-AUC

Image Classification: RF 0.32 0.91
Image Classification: DT 0.39 0.84
Image Classification: kNN 0.35 0.86
Object Detection: RF 0.41 0.89
Object Detection: DT 0.52 0.78
Object Detection: kNN 0.45 0.83

Table 2
Backdoor detection results in image classification and object
detection using RF, DT, and kNN. RF works better in both
datasets.

4.2.2. Comparison with other methods

Image classification
Our method is evaluated in comparison to four SOTA

backdoor detection techniques: NC [18], Universal Lit-
mus Patterns (ULP) [19], Activation Clustering (AC) [23],
and ABS [22]. For a fair comparison, we employ the same
batch size for optimization-based approaches including
NC, ABS, and ULP.

The results are shown in Table 3 where we report the
best results of our pipeline which is using IVA with a
RF classifier (IVA-RF). Our method outperforms all the
competing methods by a wide margin in terms of both CE-
Loss and ROC-AUC score. IVA-RF obtains a ROC-AUC of
0.91 which is higher than the next-best ULP by a margin
of 0.06. AC shows the lowest ROC-AUC as it works better
for certain types of trigger attacks. Moreover, IVA-RF
has the tightest confidence interval and lower CE-Loss
meaning our pipeline is more robust than the competing
algorithms.

CE-Loss ROC-AUC

NC 0.48 0.78±0.12
ABS 0.51 0.82±0.10
ULP 0.49 0.85±0.09
AC 0.61 0.66±0.15
IVA-RF (ours) 0.32 0.91±0.06

Table 3
Comparison of backdoor detection performance with four
SOTA methods in image classification dataset. IVA-RF works
better than others with low CE-Loss and high ROC-AUC.

Object detection
The majority of backdoor attack detection techniques

for image classification do not work for object detection.
In addition, the object detection model’s output (a large
number of objects) differs from the image classification
model (predicted class). The only SOTA method we have
found to compare our algorithm with is detector cleanse
(DC) [24] and the results are shown in Table 4. Similar to
image classification, IVA-RF outperforms DC with higher

ROC-AUC and lower CE-Loss.

CE-Loss ROC-AUC

DC 0.48 0.81±0.12
IVA-RF (ours) 0.41 0.89±0.09

Table 4
Comparison of backdoor detection performance with only
comparable method available in object detection dataset and
IVA-RF works better.

4.2.3. Efficiency of the methods

It’s critical that backdoor detection techniques are effec-
tive because they may end up being a standard compo-
nent of ML operations. Table 5 shows the time in seconds
required to make decisions for backdoor detection. Our
method tends to be faster than NC, ABS, ULP (image
classification), and DC (object detection) by an order of
magnitude due to the fact that our approach is model
agnostic and only extracts features from model weights
for detection. Although AC’s running duration is close
to ours, it is noticeably less accurate, as seen in Table 3.
Because of this, our approach can achieve an efficiency-
accuracy balance that none of the other algorithms can.

computation time of methods (s)

Dataset NC ABS ULP AC DC IVA-RF

Image 1346 1565 2514 267 - 145
Object - - - - 23243 2164

Table 5
Computation time in (s) including our algorithm: IVA-RF, and
NC, ABS, ULP, AC, and DC.

4.2.4. Ablation study

As we have applied PCA for dimensionality reduction
before IVA, an ablation study was conducted to see the
impact of PCA. Figure 4 shows the ROC-AUC scores
when we do not use PCA and with different numbers of
PCA components. The classifier performance degrades
significantly when we do not use PCA as IVA has to
handle the noisy data to extract features. However, we
preserved 90% variance of the data by using a number of
components 𝑁 = 4 and 10 for image and object datasets
respectively. When we use lower or higher numbers of
components the score drops as we loose information for
lower numbers and we add noisy components for higher
numbers.
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5. Conclusion
Ours is the first work of which we are aware that uses
matrix factorization on the weights to detect backdoors
in deep networks. Moreover, this is the first pipeline
which can detect backdoor models in case of both image
classification and object detection networks which has a
number of advantages, including the fact that it needs no
re-training or optimization and is much faster than other
state-of-the-art backdoor detectors. Future work will
include applications to sequence models such as those
used in natural language processing, which should be
straightforward from an engineering perspective given
that our method uses only the pre-trained weights of the
networks.
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