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Abstract— Investigations on how the central nervous system 
(CNS) effortlessly conducts complex hand movements have led 
to an extensive study of synergies or movement primitives. Of 
the different types of hand synergies, kinematic and muscle 
synergies have been widely studied in literature, but only a few 
studies have fused both. In this paper kinematic and muscle 
activities recorded from the activities of daily living were first 
fused and then dimensionally reduced through principal 
component analysis (PCA). By using these principal components 
or musculoskeletal synergies in a weighted linear combination, 
the recorded kinematics and muscle activities were 
reconstructed. The performance of these musculoskeletal 
synergies in reconstructing the movements was compared to the 
kinematic and muscle synergies reported previously in the 
literature by us and others. The results from these findings 
indicate that musculoskeletal synergies perform better than the 
synergies extracted without fusion. These newly demonstrated 
musculoskeletal synergies might improve neural control of 
robotics, prosthetics and exoskeletons. 
 
Clinical Relevance— In this paper, musculoskeletal synergies 
were extracted from the fusion of kinematic and muscle activities 
recorded from the activities of daily living. These newly 
demonstrated musculoskeletal synergies might enhance our 
understanding of neural control of robotics, prosthetics and 
exoskeletons.  

I. INTRODUCTION 

Evolution and natural selection have promoted the 
development of a longer opposable thumb and shorter fingers 
in humans, enabling us to perform myriad grasping actions. 
But even the very basic activities that we perform in our daily 
lives with minimal dexterity have been a remarkably complex 
challenge to be replicated by robots. The challenge is in 
replicating how the central nervous system (CNS) can select 
appropriate groups of muscles to achieve a specific hand 
movement. The human hand has more than 20 degrees of 
freedom, which makes this challenge even more complex. 
Astoundingly the CNS has no difficulty in handling such 
complexity in controlling the human hand. 

Several hypotheses like elimination hypothesis, 
optimization hypothesis and modularity hypothesis have been 
proposed by researchers to express how the CNS effortlessly 
achieves complex hand movements. Out of these, modularity 
hypothesis introduced by Bernstein in 1967 [1] proposes that 
a single variable named “synergy” controls a group of 
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functional units and each of this group is formed by CNS. This 
hypothesis addressed the challenge of control and coordination 
of hand with vast degrees of freedom (DoF). 

Inspired by the modularity hypothesis by Bernstein, many 
researchers came forward to solve the DoF problem through 
different concepts of synergies. Of them, some of the popular 
synergies includes postural synergies [2] kinematic synergies 
[3], dynamical synergies and muscle synergies [4]. It can be 
summarized that the complex interaction of neuromuscular 
processes leads to musculoskeletal movements and 
consequently an action is performed. At the musculoskeletal 
level, two complex tasks are achieved efficiently by this 
human biomechanical system. First, a group of muscles are 
selected by the CNS to perform the task at hand. Studies 
related to muscle patterns such as [5] found that muscle 
activity patterns can be reconstructed through a weighted 
linear combination of a limited number of muscle synergies. 
Second, a group of skeletal finger joints are actuated to enact 
the task. Findings from[2] [3] suggest that through a weighted 
linear combination of a limited number of kinematic synergies, 
joint angular velocities can be reconstructed.  

Though kinematic and muscle synergies were studied 
separately, to our understanding, only a few studies have 
combined muscle and kinematic synergies. By fusing muscle 
and kinematic activities together as a single dataset and then 
performing dimensionality reduction, in this paper, we extract 
“musculoskeletal” synergies, that can enable collaboration 
between kinematic and muscle synergies. This formulation 
allows for kinematic and muscle synergies to inform each 
other about their covariant characteristics.  

In this paper, the objective is to identify how 
musculoskeletal synergies compare to individual synergies in 
the reconstruction of movement kinematics and muscle 
activities. Findings from this paper might provide better 
insights to the use of synergies in the field of robotics, 
neurorehabilitation, prostheses, and exoskeletons. 

II. METHODS AND ANALYSIS 

A. Experiment 
After careful evaluation and consideration, a publicly 

available dataset was used for data analysis in this paper. This 
publicly available dataset KIN-MUS UJI [6] consisting of 
twenty-two right-handed subjects of which 12 are males and 
10 are females with a mean age of 35 ± 9 years. All the subjects 
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had no prior upper limb movement disorders. Prior to the 
experiment, all participants were required to provide a written 
informed consent. All the experiments were conducted in 
alignment with the rules and regulations of the Ethics 
Committee of the Universitat Jaume I, Spain. In order to check 
the ability and quality of hand while performing activities of 
daily living Sollerman Hand Function Test (SHFT) was 
performed. 

Hand movements were captured by the CyberGlove 
(CyberGloveSystems, San Jose, CA) at a sampling rate of 100 
Hz. Ten of the sensors that correspond to the 
metacarpophalangeal (MCP) and interphalangeal (IP) joints of 
the thumb and the MCP and proximal interphalangeal (PIP) 
joints of the other four fingers were used. Muscle activities 
were recorded by an 8-channel surface electromyography 
(sEMG, Biometrics, Ltd.) device at a sampling rate of 1000 
Hz. The electrodes were placed in seven most representative 
areas of the forearm to capture major muscle activities. These 
were — (i) Flexor carpi ulnaris (FCU) (ii) Flexor carpi radialis 
(FCR) and palmaris longus (PL) (iii) Flexor digitorum 
superficialis (FDS), Flexor digitorum profundus (FDP) and 
Flexor pollicis longus (FPL) (iv) Abductor pollicis longus 
(APL) and externsor pollicis longus (EPL), and brevis (EPB) 
(v) Extensor digitorum communis (EDC) (vi) Extensor Carpi 
Ulnaris (ECU) (vii) Brachioradialis (BR), Pronator teres (PT), 
Extensor carpi radialis brevis (ECRB) and longus (ECRL). 

B. Preprocessing 
The raw sensor data recorded from the CyberGlove were 

converted to joint angles. The conversion procedures 
performed were based on non-linear calibration protocols 
discussed in [7]. These joint angles were then normalized by 
the maximum joint angle for each subject. Finally, the data 
were filtered with a second-order low-pass Butterworth filter 
and Savitzky-Golay filter. The sEMG data collected was 
normalized by the maximum sEMG values recorded for that 
particular area for each subject. The sEMG were ultimately 
filtered with a fourth-order bandpass filter between 25-500 Hz, 
rectified, filtered by a fourth-order low-pass filter at 8 Hz, and 
gaussian smoothing. Both joint angles and sEMG datasets 
were then synchronized by the acquisition software as 
mentioned in [6] to match the start and stop instants of each 
movement. The dataset consisting of 26 activities of daily 
living (ADL) and instrumented activities of daily living 
(IADL) tasks as mentioned in [6] was split into two sets 
containing equivalent tasks — a training set with 16 tasks that 
were used for extraction of synergies and a testing set with 10 
tasks that were used for testing the reconstruction with the 
extracted synergies.  

C. Derivation of Synergies 
In this paper, synergies were derived from hand kinematics 

and muscle activities. These synergies were used to 
reconstruct the testing data comprising of new hand kinematics 
and muscle activities, thus realizing the generalizability of 
kinematic and muscle synergies. Of the several models 
available, we used both time invariant and time-variant 
synergy models [3]. But we found that time variant synergy 
model provides the best results, hence for this paper we make 
use of time variant synergy mode. In a time-variant synergy 
model, a time-varying movement pattern can be generated by 

combining the time-varying synergies with scaling 
coefficients. Hence, different movement patterns can be 
obtained by changing the time shifts and scaling coefficients. 
The following equation describes a time-variant synergy-
based movement generation model expressed as a weighted 
linear combination of principal components or synergies.  

𝑀𝑀(𝑡𝑡) =  �𝐴𝐴𝑖𝑖

𝑁𝑁

𝑖𝑖=1

𝑆𝑆𝑖𝑖(𝑡𝑡 − 𝑡𝑡𝑖𝑖) 

where,  𝑀𝑀(𝑡𝑡) represents the generated movement at time 𝑡𝑡, 𝐴𝐴𝑖𝑖 
represents the coefficient or weight, 𝑆𝑆𝑖𝑖 represents the ith 
synergy and 𝑁𝑁 is the number of synergies. For determining the 
optimal number of synergies, based on our prior works, we 
used approximately 90% of the variance accounted for curve 
(see Fig. 1).  

Kinematic and Muscle Synergies 
To obtain kinematic synergies, first, a posture matrix was 

prepared as discussed in [3] with 16 columns corresponding to 
the 16 ADL tasks grouped under training dataset. Each column 
was formed by cascading normalized angular velocities of 10 
hand joints as listed under Section II(A). Then, principal 
component analysis (PCA) was performed on this matrix to 
obtain PCs that account for maximum variance. We observed 
that the first 7 PCs were able to account for a variance greater 
than 90%. These PCs were termed as kinematic synergies. 

Similar procedure was repeated on muscle activities to 
obtain muscle synergies. Here, a muscle activity matrix was 
prepared with 16 columns corresponding to 16 ADL tasks 
grouped under training dataset. Each column was formed by 
cascading normalized root mean squared (RMS) muscle 
activities from 7 muscle areas listed under Section II(A). It was 
noted that the first 3 PCs were able to account for a variance 
greater than 90%. These PCs were termed as muscle synergies.  

Musculoskeletal Synergies   
To obtain musculoskeletal synergies, the normalized 

muscle activities were fused or concatenated with normalized 
joint angular velocities. Before this fusion, we performed an 
important step of changing the polarity of extensor muscles (4 
through 7) to negative to match with the negative polarity of 
extension of joint angular velocities. Resultant matrix formed 

 
Fig. 1. Mean of muscle (in blue), kinematic (in red) and musculoskeletal 
(in green) variance of each PC for all subjects with error bars indicating 
standard deviation are illustrated here.  
 



  

has 16 columns corresponding to 16 tasks. Each column was 
obtained by concatenating the normalized activities of muscles 
and joint angular velocities. This matrix was further 
normalized with zero mean and unit variance. PCA was 
performed on this matrix resulting in PCs, now termed as 
musculoskeletal synergies. It was noted that the first 6 
musculoskeletal synergies accounted for 90% of total 
variance. The musculoskeletal synergies were then split into 
musculoskeletal kinematic synergies and musculoskeletal 
muscle synergies. As an example, Fig. 2 represents the first 6 
musculoskeletal synergies of subject 1. To enable the 
comparison between the usage of kinematic, muscle and 
musculoskeletal synergies in reconstruction, it was required 
that we either use the same number of components or use same 
variance that is over a given threshold variance (≥ 90% here). 
Considering the same number of components implies 
comparison using the same number of synergies which is ideal 
for this study’s use case. Thus, throughout this paper we will 
be using 6 PCs for each type of synergies. 

D. Reconstruction of Kinematics and Muscle Activities 
 The joint angular velocities and the muscle activities in 10 

testing tasks were reconstructed by the four types of synergies. 
Kinematic synergies and musculoskeletal kinematic synergies 
reconstructed the recorded movement kinematics. Muscle 
synergies and musculoskeletal muscle synergies reconstructed 
the recorded muscle activities. Reconstruction was performed 
by using the l1-norm minimization detailed in [8]. The 
reconstruction error between the recorded movements (𝑀𝑀𝑖𝑖) 
and the reconstructed patterns (𝑋𝑋) was determined as follows. 

𝑒𝑒𝑟𝑟𝑟𝑟 =  
∑ (𝑀𝑀𝑖𝑖 − 𝑋𝑋)2𝑖𝑖

∑ 𝑀𝑀𝑖𝑖
2

𝑖𝑖
 

III. RESULTS 

From movement kinematics and muscle activities recorded 
from 16 ADL and IADL tasks, six muscle synergies and six 

kinematic synergies were extracted using PCA. On an average, 
for all the subjects, the first synergy accounted roughly around 
55% of the total variance. As mentioned in [8], in this paper as 
well it was noted that, while the first synergy significantly 
contributed to more than 50% of the total variance. This 
indicates that a relatively small set of the total number of 
synergies could adequately represent the movement. As shown 
in Fig. 1, 6 PCs accounted to about 87% of total variance for 
kinematic synergies. 6 PCs accounted for 96% of total 
variance for muscle synergies. 6 PCs accounted for 90 % of 
total variance for musculoskeletal synergies. 10 DoF joint 
kinematics had highest variance, then was the fused kinematic 
and muscle activities and lastly was 7 DoF muscle activities 
with least variance. Musculoskeletal synergies obtained from 
fusion were then split to musculoskeletal kinematic and 
musculoskeletal muscle synergies as shown for subject 1 in 
Fig. 2.  

Reconstruction of the 10 ADL and IADL test tasks were 
performed using the muscle synergies, kinematic synergies 
and musculoskeletal muscle synergies and musculoskeletal 
kinematic synergies. Fig. 3 presents an example of 
reconstruction of recorded activity using these four types of 
synergies for subject 1 for task 8 of picking up the phone and 
placing it on the ear and hanging up. As mentioned in Section 
II(D), the reconstructed movement kinematic and muscle 
activities were compared with recorded activities using the 
least squares error between them. Figure 4 represents a 
comparison of the reconstruction of 10 testing tasks 
reconstructed using kinematic synergies and musculoskeletal 
kinematic synergies, and muscle synergies and 
musculoskeletal muscle synergies, across all subjects. 
Comparing the reconstruction errors across all tasks and all 
types of synergies, musculoskeletal synergies performed better 
than the synergies extracted without fusion.  

 
 

Fig. 2. First six musculoskeletal kinematic (left) and musculoskeletal muscle (right) synergies extracted from the training data of subject 1 are illustrated 
here. The joint angular velocities of 10 joints (MCPs of four fingers and thumb, IP of thumb and PIP of other 4 fingers) and RMS of the muscle activities 
from seven major muscle groups were shown here. 



  

IV. DISCUSSION 

This paper presents a new method of fusion of movement 
kinematics and muscle activities and then derives 
musculoskeletal synergies. To our best knowledge, this is one 
of the first attempts to simultaneously extract kinematic and 
muscle synergies. Such fusion enables full interaction across 
multiple recording modalities such as kinematics and sEMG. 
We hypothesized that such mutually informed interaction will 
lead to improved representations in lowdimensional spaces. 
Before we performed the fusion, we added a critical step of 
changing the polarity of extensor muscles as explained in 
Section II(C). Thus, when the fusion occurs, the extension in 
kinematics is strengthened by the extension reflected in muscle 
activities. Without this change in polarity all RMS muscle 
activities remain positive for both flexor and extensor muscles 
and in contrast, all kinematic activities remain positive for 
flexion and negative for extension. Fusion, without taking this 
polarity into account can be detrimental.  

Several studies have demonstrated strong correlations 
between neural, muscle and kinematic synergies. In [4] it was 
shown that muscle synergies align with kinematic synergies. 
In [9] muscles synergies were used as a predictive framework 
for the EMG patterns of new hand postures. In [10] it was 
found that spinal motor neuronal activities exhibit a synergistic 
organization that could be reflected in the neural drive received 
by muscle synergies. Inspired by these studies, in this paper, 
we allowed for the fusion of two modalities: movement 
kinematics and muscle activities. This fusion encourages the 
collaboration of both activities thus promoting learning 
between each other. Overall, the results reflect that the 
musculoskeletal synergies obtained from such fusion perform 
better in reconstruction of movements as shown in Fig. 4 when 
compared to the synergies extracted without fusion.  

V. CONCLUSION 

In this paper, we proposed a new method to extract 
musculoskeletal synergies using fusion and PCA. In the near 

future, we will substantiate these results over larger datasets, 
and we will further improve these fusion synergies by 
incorporating other dimensionality reduction methods such as 
independent component analysis, independent vector analysis 
and nonnegative matrix factorization. Embedding these fusion 
synergies into robotics [11] and exoskeletons can possibly 
enhance their performance. 
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Fig. 3. Reconstruction of test task 8 (picking up the phone, placing it on 
his/her ear and hanging up the phone) of both movement kinematics 
(left) and muscle activities (right) of subject 1 is shown here.  

 
Fig. 4. Reconstruction error obtained while reconstructing the 10 ADL 
test tasks using synergies obtained with and without fusion for all 
subjects are shown here. Overall musculoskeletal synergies performed 
better than synergies extracted without fusion. Bars indicate mean and 
errors bars indicate standard deviation across all subjects.   
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