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ABSTRACT
We explore a new scenario for producing stripped-envelope supernova progenitors. In our scenario, the
stripped-envelope supernova is the second supernova of the binary, in which the envelope of the secondary
was removed during its red supergiant phase by the impact of the first supernova. Through 2D hydrodynam-
ical simulations, we find that ∼50–90 % of the envelope can be unbound as long as the pre-supernova orbital
separation is . 5 times the stellar radius. Recombination energy plays a significant role in the unbinding,
especially for relatively high mass systems (& 18 M�). We predict that more than half of the unbound mass
should be distributed as a one-sided shell at about ∼10–100 pc away from the second supernova site. We
discuss possible applications to known supernova remnants such as Cassiopeia A, RX J1713.7-3946, G11.2-
0.3, and find promising agreements. The predicted rate is ∼0.35–1% of the core-collapse population. This
new scenario could be a major channel for the subclass of stripped-envelope or type IIL supernovae that lack
companion detections like Cassiopeia A.

Key words: supernovae: general – binaries: general – ISM: individual objects: Cassiopeia A

1 INTRODUCTION

Stripped-envelope supernovae (SNe) are a subtype of core-collapse
SNe that originate from stars that have lost most or all of their
hydrogen envelope prior to the explosion. They are usually clas-
sified as type Ib, type Ic, or type IIb depending on their spectra
(see Modjaz et al. 2019, and references therein for details of SN
classification). It has long been debated whether the progenitors of
stripped-envelope SNe have lost their envelopes because of their
own stellar winds (e.g. Heger et al. 2003), or through binary in-
teractions involving mass transfer and possibly common-envelope
evolution (e.g. Podsiadlowski et al. 1992). Analysis of the environ-
ments of type Ib/c SNe supports the former scenario, in which very
massive stars (& 30 M�) have lost their envelopes through stel-
lar winds (Maund 2018). On the other hand, typical ejecta mass
estimates of stripped-envelope SNe show very low values (∼ 2–
4 M�), indicating that the progenitors originated from lower-mass
stars (. 20 M�) that have lost their envelopes through binary inter-
action (Lyman et al. 2016; Taddia et al. 2018; Prentice et al. 2019).

? E-mail: ryosuke.hirai@monash.edu

The most direct way to distinguish between these scenarios
is to search for a surviving binary companion after the SN. Such
searches have been successful for type IIb SNe, where putative sur-
viving companions were discovered, e.g. SN1993J (Maund et al.
2004), SN2011dh (Folatelli et al. 2014; Maund 2019), SN2001ig
(Ryder et al. 2018). There is also evidence of a surviving compan-
ion to a type Ibn SN2006jc (Maund et al. 2016; Sun et al. 2020),
which is a rare subclass of type Ib SNe. These discoveries are crit-
ical indicators that the progenitors originated from binary systems.
However, it is not uncommon for later observations to question
whether these putative companions are true companions or line-
of-sight contaminants (Fox et al. 2014; Maund et al. 2015).

There are also a number of cases where a companion has not
been discovered despite extremely deep searches, e.g. iPTF13bvn
(Folatelli et al. 2016), SN1994I (Van Dyk et al. 2016). This does
not immediately mean that the progenitors for these stars were sin-
gle massive stars. In particular, iPTF13bvn has a corresponding pre-
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SN image of its progenitor1. Through modelling both the pre-SN
stellar properties and the rapidly declining light curve, it is firmly
believed that it should have had a binary origin (Bersten et al. 2014;
Eldridge et al. 2015). It could be possible that the companion was
a compact object, but the expected rate of such cases is extremely
low (Hirai 2017a,b; Zapartas et al. 2017).

There are also Galactic supernova remnants (SNRs) that are
considered to originate from stripped-envelope SNe but have strin-
gent upper limits on the remaining companion. One of them is Cas-
siopeia A (Cas A), which is known to be a type IIb SNR from light
echo spectra (Krause et al. 2008). The inferred ejecta mass is ∼ 2–
4 M� (Willingale et al. 2003; Hwang & Laming 2012), which is
typical of a type IIb SN and is consistent with binary progenitor
models. However, the upper limits placed on any optical counter-
part are so strong that no stellar companion of reasonable mass and
age is allowed other than a white dwarf, neutron star or black hole
(Kochanek 2018; Kerzendorf et al. 2019). Another case is SNR
RX J1713.7-3946 (G347.3-0.5), which is inferred to be a type Ib/c
SNR (Katsuda et al. 2015). The spectral type of any remaining
companion to its central compact object (1WGA J1713.4-3949) has
been constrained to be later than M (Mignani et al. 2008). These
observational constraints seem contradictory, making it challenging
to explain the origin through conventional binary evolution chan-
nels.

In this paper we explore a new scenario that was proposed in
Sato et al. (2020) for producing stripped-envelope SN progenitors
(Figure 1). In classical scenarios, the main driver of stellar mass
loss are winds driven by radiative forces or mass transfer induced
by gravitational forces in binary systems. Here we consider an al-
ternative mechanically induced mass loss, which occurs through
the interaction of SN ejecta with the binary companion. This only
becomes important when the companion star at the time when the
primary explodes is in its red supergiant (RSG) phase, where the
envelope is very loosely bound. The system should be wide enough
to allow the secondary RSG to fit into its Roche lobe, implying
that the system would not have experienced any previous mass-
transfer events. Such systems have usually been ignored as being
“essentially single” in binary evolution studies (e.g. Zapartas et al.
2017). Observationally, ∼ 30% of RSGs are inferred to have a com-
panion star in a wide orbit (Patrick et al. 2019, 2020). Although
binary RSGs (RSG+RSG) have not been directly observed yet
(Neugent et al. 2020), there is no strong reason why they should
not exist. We do not rule out any possibilities that the system ex-
perienced previous mass-transfer episodes as long as the secondary
is an RSG at the point of the first SN. However, such cases are
extremely rare in binary evolution models.

At the order-of-magnitude level, the binding energies of RSG
envelopes are roughly

Eenv ∼
GMenvM

R
(1)

≈ 6 × 1047erg
(

Menv
10 M�

) (
M

15 M�

) (
R

1000 R�

)−1
, (2)

where M , Menv and R are the total stellar mass, envelope mass
and stellar radius, respectively. This is significantly lower than the
canonical kinetic energy in SN explosion ejecta Eexp ∼ 1051 erg,
meaning that the ejecta can have a non-negligible effect on the com-
panion. The fractional energy of the explosion that is intersected by

1 It is the only type Ib SN known to date with a pre-SN progenitor detec-
tion.

Figure 1. Schematic diagram of our fiducial scenario. Numbers on the cir-
cles express the mass of the star in solar units while numbers on grey arrows
show the rough timescales between each phase. Ejecta-companion interac-
tion and binary disruption occurs simultaneously.

the companion is

Eint = Eexp
1 −

√
1 − (R/a)2

2
, (3)

where a is the binary separation. We can hence estimate a maxi-
mum separation at which the intersected energy exceeds the com-
panion’s envelope binding energy Eint > Eenv as

a <
R√

1 −
(
1 − 2Eenv/Eexp

)2 (4)

∼ 20 R
(

Eexp

1051 erg

) 1
2
(

Eenv
6 × 1047 erg

)− 1
2
. (5)

The last expression holds as long as the binding energy is much
lower than the explosion energy (Eenv � Eexp), which is al-
ways satisfied for RSGs. Considering that RSGs can have radii
of order R ∼ 1000 R� , this maximum separation can go up to
amax ∼ 100 AU. Even beyond this separation, the ejecta can have
a non-negligible impact on the envelope. However, there are other
possible effects such as deflection or stellar compression during the
ejecta passage (Hirai et al. 2018), that can lower the efficiency of
the energy transfer. So, this formula only provides a rough proxy
of where the ejecta–companion interaction can become important,
and we resort to hydrodynamical simulations to more accurately
estimate the impact of such interactions on the companion.

The collision between SN ejecta and companion stars have
been thoroughly investigated both analytically and numerically
in the context of type Ia SNe (e.g. Colgate 1970; Cheng
1974; Wheeler et al. 1975; Livne et al. 1992; Marietta et al. 2000;
Podsiadlowski 2003; Meng et al. 2007; Kasen 2010; Pan et al.
2010, 2012; Liu et al. 2012, 2013; Maeda et al. 2014; Noda et al.
2016; Bauer et al. 2019). Fewer studies have been conducted
for core-collapse SNe and these have mainly focused on main-
sequence companions (Hirai & Yamada 2015; Liu et al. 2015;
Rimoldi et al. 2016; Hirai et al. 2018). In one of our previous stud-
ies (Hirai et al. 2014), we have carried out hydrodynamical simu-
lations of the impact of SN ejecta on RSGs, which is the primary
focus of this paper. The amount of mass that was removed by the
impact only reached up to ∼ 25% of the star (∼33% of the enve-
lope), which is much smaller than analogous studies for lower-mass
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Origin of SESN without companions 3

red giants where they remove ∼ 98% of the envelope (Livne et al.
1992; Marietta et al. 2000). This is partly expected since the typical
binding energies of low-mass red-giant envelopes (∼ 1046−47 erg)
are more than an order of magnitude lower than that of high-mass
RSGs (∼ 1047−48 erg), while the explosion energies of type Ia and
core-collapse SNe are similar (∼ 1051 erg). However, in Hirai et al.
(2014) we used an ideal gas law for the equation of state (EoS)
without the contribution of radiation pressure. In RSG envelopes,
the contribution of radiation pressure is significant and this inad-
equate choice of EoS can greatly alter the temperature distribu-
tion and therefore the total internal energy content of the envelope.
We also found that the explosion ejecta kinetic energy was only
3 × 1050 erg due to a bug in the code, which is much less than
intended. We therefore expect that with a more realistic EoS and
explosion energy, the results will be notably different.

In this paper we re-examine the effect of SN ejecta collid-
ing with RSG companions with a more realistic EoS and explosion
energy. We first outline the stellar models used in our study and
the numerical method in Section 2. We then present our results in
Section 3 and discuss the physical process of mass removal in Sec-
tion 4. The implications of our results, especially on the relation to
the Cas A progenitor and other SNe are discussed in Section 5. We
conclude and summarize our results in Section 6.

2 METHOD

2.1 Stellar models

The stellar models used for both the exploding and companion
stars are generated using the stellar evolution code MESA (v12115;
Paxton et al. 2011, 2013, 2015, 2018, 2019). Default settings are
employed except that we use step overshooting with an overshoot-
ing parameter of f = 0.2. We apply sub-solar metallicity (Z =
0.0055) for the models. This value is chosen because we have Cas
A in mind as a possible target of application, which is suggested to
have exploded from a sub-solar metallicity progenitor (Sato et al.
2020). However, our results are not strongly dependent on metal-
licity since the structure of early RSG envelopes is not sensitive
to metallicity variations other than slight differences in the final
masses due to the metallicity dependent wind. The exploding star
models are evolved up to the core C-burning stage, after which the
structure of the envelope does not change significantly up to core
collapse. The companion star models are evolved up to the early
core He-burning stage, which is usually ∼ 106 yr before core col-
lapse. This assumes that the primary star in the binary had a lifetime
. 106 yr shorter than the secondary star.

We display the chemical profile and binding energy distri-
bution of one of our early core He-burning RSG models in Fig-
ure 2. The star can be split into roughly three zones: the helium
core, the convective part of the envelope and an intermediate re-
gion in between. The hydrogen fraction is flat within the outer-
most convective part of the envelope because it has been thoroughly
mixed through convection. Then the hydrogen fraction linearly de-
clines inwards in the radiative part of the envelope where the spe-
cific binding energy (gravitational + internal energy) is 2–3 orders
of magnitude larger. This intermediate region contains the helium
generated in the earlier stages of the main sequence and left over
due to the contraction of the convective core. The helium core has
even stronger binding energy around the edge, but also has a region
of positive binding energy right at the centre. The chemical profiles
of RSGs are very similar for all masses.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16
1011

1012

1013

1014

1015

1016

1017

Helium core Convective envelope

M
c
o
re

Intermediate
regionM

a
ss

fr
a
ct
io
n

N
eg

a
ti
v
e
en

er
g
y
(e
rg

g
−
1
)

Mass coordinate (M�)

Hydrogen
Helium

Binding energy

Figure 2. Chemical profile and binding energy distribution in our 16 M�
early RSG model. The vertical dotted line marks the definition of our “core”
mass.

The binding energy distributions for different RSG masses
are summarized in Figure 3. The specific gravitational binding en-
ergy εg is almost constant throughout the envelope for all RSGs
(dashed curves). For massive RSGs, radiation pressure can exceed
gas pressure in the deeper layers of the envelope and hence the
effective adiabatic index γ approaches ∼ 4/3. Therefore, the ther-
mal energy can become comparable to the gravitational energy, so
the combined energy approaches ∼ 0 (dotted curves). In fact, in
these deeper layers (& 7.5 M� from the surface), the combined
binding energy becomes so small that it is comparable or even
smaller than the ionization energies of hydrogen and helium. Thus
if we add the contribution of ionization (a.k.a. recombination) into
the internal energy (which is what we use in Figure 2 and else-
where unless otherwise specified), the combined binding energy
can sometimes become positive (solid curves), meaning that those
layers can potentially become unbound on their own if the mat-
ter on top is removed (Han et al. 1994; Kruckow et al. 2016). This
effect is stronger for the higher-mass RSGs (& 18 M�), so our pro-
posed scenario favours relatively higher-mass binaries compared
to lower-mass binaries. It also means that recombination energy
may play an important role in ejecting the envelope, especially for
higher-mass systems.

In Figure 4 we show the time evolution of the envelope bind-
ing energy up to core C-burning in various RSGs with different
zero-age main-sequence masses. Here we include the full internal
energy in the integration of binding energy. The envelope is defined
where the hydrogen mass fraction is above 0.6. This definition dis-
tinguishes the convective part of the envelope from the rest of the
star, but there is still ∼1–2 M� of material in the intermediate re-
gion between the hydrogen burning shell and convective envelope
which is a mixture of hydrogen and helium (Figure 2). We treat
this radiative part of the envelope as part of the “core” because it is
tightly bound and is unlikely to be affected by the SN impact. Fig-
ure 4 shows that the total binding energy of the envelope can vary
by an order of magnitude during its RSG lifetime, so in principle
the amount of mass unbound by an SN impact can be very sensitive
to the timing of the explosion. However, the variation in the bind-
ing energy of the outer parts of the envelope (& 1 M� above the
core) are much smaller during core He-burning. Thus the envelope
stripping should not be too sensitive to the timing of explosion, as
long as it does not strip down to < 1 M� above the core. The bind-
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Figure 3. Specific binding energy distribution for selected RSG models.
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tional binding energy. Dotted curves show the binding energy with the con-
tribution of the thermal component of internal energy. Solid curves show
the binding energy with thermal and ionization energy. The stellar models
are taken from an early stage in the RSG phase.
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Figure 4. Time evolution of the envelope binding energies for various
RSGs. Time is measured from the start of the main sequence. Colours of
the curves indicate the mass of the star with the same legend as Figure 3.
Binding energies were integrated from the surface of the star down to the
surface of the core (solid), 1 M� above the core (dashed) and 2 M� above
the core (dotted).

ing energy drops significantly after core helium depletion, making
it even easier to strip the envelope. However, the subsequent phases
are very short lived, so we do not expect many systems to have a
SN in this short time frame.

For our following hydrodynamical simulations, we choose the
16 M� and 19 M� RSG models as the secondary star in the bi-
nary. This allows us to study cases both with and without a positive
binding energy layer in the envelope. We pair the secondary models
with primary star models that have 1 M� more mass than the sec-
ondary. These primary star models end their lives during the RSG
phase of the companion if they are born simultaneously (see Fig-
ure 4).

2.2 2D hydrodynamical simulations

We carry out hydrodynamical simulations of ejecta-companion in-
teraction following the same 2-step procedure as in our previous
studies (Hirai et al. 2014; Hirai & Yamada 2015; Hirai et al. 2018).
We use the hydrodynamical code HORMONE (Hirai et al. 2016),
which is a grid-based code that solves the hydrodynamical equa-
tions with a Godunov-type scheme. Details and some minor up-
dates to the code are described in Appendix A.

To obtain the density distribution of the SN ejecta for our star,
we first simulate the explosion of the primary star assuming spher-
ical symmetry. The central 1.6 M� is excised from the computa-
tional domain to represent the neutron star formed after SN and a
large amount of energy is injected to the inner 10 grid points to
artificially initiate an explosion as a “thermal bomb”. The injected
energy is set as the sum of the intended explosion energy and the
absolute binding energy of the envelope. This ensures that the final
kinetic energy of the ejecta has the intended value Eexp. We choose
two different explosion energies Eexp = 1051, 5 × 1051 erg to ex-
plore how the stripped mass depends on the explosion energy. The
outer boundary is set at 50 times the stellar radius and we cover the
domain with 1300 grid points. The physical quantities are recorded
at a fixed position outside the star to be used in the second stage.

In the second stage of the simulation, we place the companion
star at the centre of a 2D axisymmetrical cylindrical grid. The sym-
metry axis is taken along the line connecting the centre of the two
stars in the binary. Axisymmetry is a good approximation because
typical SN ejecta velocities (∼ 3000 km s−1) are much faster than
the orbital velocities (∼30–100 km s−1). To avoid severe numerical
issues, we treat the core as a point gravitational source with a soft-
ened gravitational potential. Note that the “core” particle includes
the radiative part of the envelope, so it contains ∼ 0.5–1 M� of hy-
drogen. The size of the softened region is taken to be much smaller
than the stellar radius (rs � R). Details of the numerical treatment
of the core are explained in Appendix B. The outer boundary is set
at 4 times the stellar radius except for the side where the ejecta flow
in from the +z direction, where we limit the boundary at 0.9 times
the assumed orbital separation. The computational domain is cov-
ered by 600 grid points in the r direction and 1200 grid points in
the z direction. As a stability check, we leave the star for 1 yr and
find that the RSG envelope is stable on our grid, only developing
motions with Mach numbers up to . 0.1. We then inject the SN
ejecta obtained from the first stage into the computational domain
from the outer boundary. The interaction of the SN ejecta and the
companion star is simulated until the bound part of the star reaches
the edge of the computational domain. We performed a resolution
check with lower spatial resolution (500 × 1000 grid points) and
find that the unbound mass results agree within < 1%, indicating
that the results are converged with our spatial resolution.

The same set of simulations are carried out for various orbital
separations a. For our lower-mass system (M1 = 17 M�, M2 =
16 M�), we choose a = 2150, 3000, 4000, 5000, 6000, 8000 R� ,
whereas for our higher-mass system (M1 = 20 M�, M2 = 19 M�)
we choose a = 3000, 4000, 5000, 6000, 8000, 10000 R� . For both
cases the smallest separation is chosen to be the smallest separa-
tion where the two RSGs don’t exceed their Roche lobes, to ensure
that there was no mass transfer in the past. For each system, we run
simulations with various EoSs as listed in Table 1. We directly map
the pressure and density distribution from the MESA stellar mod-
els, but different internal energy distributions are assigned for dif-
ferent EoSs. For a given pressure and density, EoS B always yields
a larger internal energy than EoS A, so comparing the results will
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Table 1. Various EoSs used in our simulations.

Name Contributions

EoS A ideal gas (γ = 5/3)
EoS B ideal gas, radiation
EoS C1 ideal gas, radiation, He+/He++ ionization
EoS C2 ideal gas, radiation, H+/He+/He++ ionization
EoS C3 ideal gas, radiation, H2/H+/He+/He++ ionization

help us to qualitatively understand the role of internal energy in
the unbinding process. EoS C1–C3 stores additional components
of internal energy that is only released upon recombination of cer-
tain elements. This may serve as a delayed energy source to further
unbind the envelope, which is commonly discussed in the context
of common-envelope evolution. In particular, EoS C3 is equivalent
to using the MESA EoS. See Appendix C for details of how we
implement ionization energy.

2.3 1D follow-up simulations

In some cases, the mass unbinding does not cease within our 2D
simulations. To obtain the final asymptotic value of the unbound
mass, we follow up the 2D simulations with 1D spherical simu-
lations. We take one of the later snapshots from the 2D simula-
tions where the companion has retained spherical symmetry, and
map it onto a 1D spherical grid in HORMONE. The computa-
tional domain is extended much larger than the original 2D grid,
up to 300 AU. We do not account for the material that has al-
ready overflowed the 2D computational domain, but instead place
an extremely dilute atmosphere outside. This extra matter should
not have any effects on the expansion of the inner material. We
continue the simulation until the bound mass settles to a stationary
value.

3 RESULTS

Here we describe the dynamics of the ejecta-companion interac-
tion of our reference model, which is a system with (M1, M2, a) =
(17 M�, 16 M�, 4000 R�) and run with EoS C3. Figure 5 shows
various snapshots of the 2D simulation. The basic dynamics of the
interaction are very similar to previous work (Marietta et al. 2000;
Hirai et al. 2014) and are alike among all our models. As soon
as the SN ejecta reach the surface of the star, a forward shock is
formed that propagates through the star and the reverse shock forms
a bow shock (Panel A). The forward shock propagates faster in the
outskirts of the envelope and is slower along the axis because it is
decelerated as it ascends the density gradient (Panel B). We observe
a small density dip at the contact discontinuity around the symme-
try axis, which is a common numerical artefact of axisymmetric
simulations. This feature seems to have negligible effects on the
overall dynamics of the simulation. As the shock sweeps through,
the envelope is heated and quickly starts to expand. Once the shock
traverses the central core, it then accelerates as it runs down the
density gradient on the other side of the star. The shock that trav-
elled along the surface meets with the central shock on the other
side of the star and violently pushes off a chunk of material as it
penetrates the surface (Panel C). After that, the whole star expands
spherically due to the heat excess (Panel D). The outer material

closely follow a homologous expansion while in some models, the
inner parts turn around and start falling back onto the bound star.

The unbound mass is usually calculated by integrating the
mass over the cells that have positive total energy 1

2 v2+εint+φ > 0,
where v is the velocity, εint the specific internal energy and φ the
gravitational potential of that cell (e.g. Hirai et al. 2018). We shall
call this the “energy criterion”. In the past we have used an al-
ternate criterion that we called the “Bernoulli criterion”, where
we integrate the cells which have positive Bernoulli constants
1
2 v2 + εint + p/ρ + φ > 0, where p is pressure and ρ is density
(Hirai et al. 2014). This is based on the Bernoulli theorem in which
the Bernoulli constant is conserved along streamlines in station-
ary flows. The two criteria are based on slightly different assump-
tions and show quite different values during the shock-sweeping
phase. However, they eventually converge to the same stationary
value after a sufficiently long time. The benefit of the Bernoulli cri-
terion was that it converges to the final value at a much earlier time
(Hirai et al. 2014), but we now find that this is not always the case,
especially for severely stripped cases.

Defining the unbound mass in the runs with ionization en-
ergy is not trivial. In the energy criterion, it implicitly assumes
that the internal energy will eventually be fully used to acceler-
ate the material to escape velocity. This assumption is valid as
long as the material is optically thick while the internal energy
does work to accelerate the matter, which is a good approxima-
tion for the marginally unbound regions (the strongly unbound re-
gions have already reached escape velocity so the internal energy
term is negligible anyway). For our EoS C runs, we include ion-
ization energy in the internal energy, and therefore the internal en-
ergy is always larger than or equal to the no-recombination case
(EoS B) for any given density and temperature. Some simulations
of common-envelope evolution have shown that including this ex-
tra contribution of ionization energy in the energy criterion defined
above yields much larger values for the unbound mass and thus
a successful ejection of the whole envelope (Nandez et al. 2015).
However, the ionization energy of a given mass element can never
be used for acceleration unless it is released in a sufficiently op-
tically thick region where the energy can be quickly thermalised.
Otherwise the released energy is simply transported away by radia-
tive diffusion or convection (e.g. Sabach et al. 2017; Ivanova 2018).
Hence the addition of ionization energy to the energy criterion in-
volves an additional assumption that this extra energy reservoir will
be fully thermalised and efficiently used for accelerating the mate-
rial. This assumption is not present in the original energy criterion,
making it difficult to directly compare the results. To provide a fair
comparison with our no-ionization energy runs, we divide the inter-
nal energy into two parts: thermal energy εth and ionization energy
εion, where εth + εion = εint (see Appendix C). By only using the
thermal energy in the energy criterion ( 1

2 v2+εth+φ > 0), we can di-
rectly compare the unbound masses from our simulations with and
without recombination energy under the same assumptions. The re-
sults should be identical if no recombination takes place, but shall
start to deviate as soon as part of the ionization energy has been re-
leased as thermal energy. We will call this the “thermal criterion”,
and this is used to compute the unbound mass in all models shown
in the following sections.

In Figure 6 we show the time evolution of the bound mass for
the reference system. Different colours are results for simulations
with different EoSs. All curves initially dive down as the shock
propagates up the density gradient. Then the bound masses go back
up as the shock descends the density gradient on the other side.
This apparent fallback is an artefact of the way the bound mass
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Figure 5. Density distributions of the 2D hydrodynamical simulation with (M1, M2, a) = (17 M�, 16 M�, 4000 R�) and EoS C3. The explosion energy is set
to Eexp = 1051 erg. Each panel shows a different time snapshot. The exploding star is located above the panel.

is defined, and is commonly seen in similar studies (e.g. Pan et al.
2010; Hirai et al. 2014, 2018; Liu et al. 2015; Rimoldi et al. 2016).
Then the bound mass goes down again and approaches a stationary
value.

We immediately see that the final bound mass can differ by
up to ∼ 3 M� depending on the applied EoS. As expected, the run
with an ideal gas EoS has the least amount of unbinding because
the amount of internal energy is least. The difference between the
EoS A (grey) and EoS B (red) curves is ∼ 0.7 M� , which suggests
that the initial internal energy does also play a role in unbinding the
envelope. However, the difference in EoS leads to different shock
strengths, so the reduction in unbound mass may not be directly
attributed to the initial internal energy.

The blue and black curves show results for the simulations
with different species of ionization energy included in the EoS.
These curves deviate from the EoS B (red) curve only after ∼ 0.4 yr
as the marginally bound material expands and adiabatically cools

below the helium ionization temperature. The helium recombina-
tion energy is released as a delayed energy source and unbinds
more material. Then the EoS C1 (blue) and EoS C2/C3 (black)
curves start to deviate at around ∼1 yr, where hydrogen recombi-
nation kicks in. In the EoS C1 curve we do not include hydrogen
ionization energy in the EoS, so it does not generate the second
wave of energy release. The EoS C3 (black dashed) curve then de-
viates from the EoS C2 (black dotted) curve at ∼ 70 yr as molecular
hydrogen starts to form and releases more energy.

At first glance, it may seem that helium recombination only
plays a minor role in the unbinding. Much more mass is removed
in the hydrogen recombination stage. However, even though helium
recombination alone does not provide enough energy to unbind
matter, it is crucial for expanding the outer layers to the hydrogen
recombination temperature. Without the push from helium recom-
bination, the hydrogen recombination cannot kick in and therefore
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Figure 6. Time evolution of the total bound mass of the companion in the
simulations for the reference model. Colours indicate results for runs with
different EoSs. The solid portions of the curves show the 2D simulation
results, whereas the dashed portions show results of the 1D follow-up sim-
ulations. The dotted curve is a 1D follow-up of the solid black curve but
with EoS C2.

no unbinding happens. This multi-stage rocket effect makes it diffi-
cult to predict the role of recombination in unbinding the envelope.

There are many debates in the context of common-envelope
evolution whether hydrogen recombination takes place in an opti-
cally thick enough region where the released energy is efficiently
thermalised and used for acceleration (Sabach et al. 2017; Ivanova
2018). In our simulations, we find that the optical depth of the hy-
drogen recombination layer is ∼1–100, meaning that it is likely to
thermalise the photons released from recombination. Even if the
atomic hydrogen recombination energy is efficiently thermalised,
it can still be transported away by radiative fluxes. On the other
hand, molecular hydrogen recombination will take place in a region
where the opacity is significantly lower and hence it will not be a
useful source of energy. Therefore the true unbound mass should lie
somewhere between the EoS C1 and C2 curves. More detailed sim-
ulations with frequency-dependent radiation transport is required to
properly evaluate how efficiently the hydrogen recombination en-
ergy can be used.

It is also possible that at some point, the temperature cools
enough to start condensating dust (T . 1500 K). The dust grains
have large opacities and can be accelerated up to escape velocity
by capturing radiation from the interior star (Lamers & Cassinelli
1999; Glanz & Perets 2018). At sufficiently high densities, the dust
grains are strongly coupled to the gas and will unbind more mass.
We checked how much of the bound mass is eventually cooled
down below T < 1500 K in our simulations. For most models
this is < 0.05 M� , and even the largest case (the a = 4000 R�
model) is < 0.2 M� . So dust formation will not play a major role
in unbinding more mass. However, the already unbound matter will
all eventually cool below the dust condensation temperature, so its
asymptotic coasting velocity may be affected by radiative acceler-
ation acting on dust grains.

Figure 7 summarizes the final unbound masses obtained from
our simulations for the lower-mass system (M1 = 17 M�, M2 =
16 M�). We plot it against intersected energy, which is a func-
tion of orbital separation and explosion energy (Eq. (3)). The total
unbound mass is largest for the model with smallest orbital sepa-
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Figure 7. Final unbound mass as a function of intersected energy for all our
simulations with M2 = 16 M� . Grey circles are results for simulations run
with the ideal gas EoS. Red filled triangles were run with the ideal gas +
radiation EoS, whereas the red open triangles were run with the same EoS
but with Eexp = 5×1051 erg for the explosion. Simulations run with the full
EoS are shown as blue triangles. The light blue line marks the mass of the
convective envelope. The green line shows the total envelope mass above
the helium core. The black curve is computed based on the energy injection
model presented in Hirai et al. (2018).

rations, where ∼ 8 M� of the envelope has been removed through
the interaction. Even for this case, more than ∼ 1 M� of gas from
the convective envelope remains bound to the star in the simula-
tion, justifying our approximation of replacing the inner parts with
a point mass. The amount of unbound mass decreases as the sepa-
ration is widened, and becomes almost negligible at a & 8000 R� .
A simple estimate based on Eq. (5) yields a maximum separation
of a ∼ 20000 R� where the intersected energy is larger than the
total binding energy of the envelope. Our results show that hardly
any mass becomes unbound beyond a > 8000 R� , indicating that
a large fraction of the intersected energy is not used to unbind the
envelope. For all systems, the unbound mass was smallest when a
purely ideal gas EoS was used (grey circles) and largest when the
full EoS was used (blue triangles), while the ideal gas + radiation
EoS models lie in between (red triangles). We also find that the un-
bound masses for the Eexp = 1051 erg and Eexp = 5×1051 erg mod-
els do not align with each other. This indicates that the unbound
mass is not determined by the intersected energy alone, which was
the basis of our simple estimates in Eq. (5).

In Figure 8, we plot the unbound mass as a function of the
dimensionless parameter Ψ, defined as

Ψ ≡ 1
4

Mej
M2

R2

a2

(
vej
ves
− 1

)
, (6)

where Mej and vej are the SN ejecta mass and velocity, and ves is
the escape velocity of the RSG. It is a measure of the total momen-
tum intersected by the secondary, first introduced in Wheeler et al.
(1975). Here the red solid and open triangles align well with each
other, meaning that the unbound mass is determined by the incom-
ing momentum, not the energy. The mass unbinding process will
be discussed in more detail in Section 4.1.
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Figure 8. Final unbound mass as a function of the dimensionless parameter
Ψ defined in Eq. (6). Symbols are the same as in Figure 7. Black curves
are computed based on analytic models explained in the text. The blue dot-
dashed curve is an empirical fit to the total unbound masses.
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Figure 9. Same as Figure 8 but for the M2 = 19 M� models.

The same results for the M2 = 19 M� models are displayed in
Figure 9. The fractional unbound mass of the envelope for the EoS
B runs are very similar to the M2 = 16 M� models due to the simi-
lar stellar structure. The role of recombination in the M2 = 19 M�
models is larger than for the M2 = 16 M� models, as expected
from Figure 3. For example, in the a = 5000 R� model (Ψ ∼ 0.4),
∼ 4 M� is unbound through the direct dynamical interaction (red
triangles) but an additional ∼ 3 M� is unbound due to recombi-
nation (blue triangles). This extra unbinding significantly boosts
the possibility for the secondary to become a stripped-envelope SN
progenitor.

For both Figures 8 and 9, we fit the total unbound mass with
an empirical formula

Mub = Menv

(
1 − 1

CΨb + 1

)
, (7)

where Menv is the mass of the convective envelope and C, b are
fitting coefficients. Values of the fitting coefficients are provided
in the figure legend. The same slope b = 1.8 yields a good fit
for both stellar masses. This corresponds to Mub ∝ a−3.6 at the
low-Ψ limit, which is shallower than the slope found in Hirai et al.
(2014) (Mub ∝ a−4.3). We find that the slope for EoS A models is
Mub ∝ a−4.4, which is consistent with the results from Hirai et al.
(2014). The empirical formula is only a rough fit to the dynami-
cally unbound mass and more mass can be quickly lost in the post-
interaction phase, which is discussed in Section 4.2.

Although our results are not dependent on metallicity, there
may be a weak dependence on the helium fraction. First, it affects
the mean molecular weight which feeds into the EoS, so it will af-
fect the thermal energy distribution of the envelope. Second, it will
have an effect on the ionization energy budget. The total ionization
energy is only weakly dependent on the helium fraction, but it di-
rectly affects the ratio of helium and hydrogen recombination. Be-
cause helium and hydrogen recombination occur at different tem-
peratures and therefore different times, changing the ratio can alter
the dynamics of the outflow. However, we believe that this will only
have a minor effect on the final unbound masses unless the helium
fraction is unusually high or low.

4 DISCUSSION

4.1 Mass removal process

The mass removed through the ejecta-companion interaction in our
simulations falls short of our simple estimate in Section 1. Here we
attempt to understand the reason for this and compare with simple
models that predict the amount of unbound mass.

In Figure 7 we overplot a model curve (black solid) based on
the semi-analytic model presented in Hirai et al. (2018), which ex-
plains the amount of injected energy and its distribution for main-
sequence companions. In the model, the total injected energy is
only a small fraction of the intersected energy. More than > 3/4
of the energy is thermalised at the bow shock and is not used to
heat the companion. Another half is simply deflected away, so the
combined injection efficiency is

Einj
Eint
=

1
2
γ − 1
γ + 1

. (8)

The injected energy is then distributed in the following form

∆ε(r) =
Einj

mheat

min[1,mheat/m(r)]
1 + ln(M2/mheat)

, (9)

where m is the mass coordinate from the surface and mheat is the
efficiently heated mass, which we estimate as mheat = Mej(1 −√

1 − (R2/a)2)/4. This empirical function well describes the ex-
cess energy distribution for the case of main-sequence compan-
ions where almost no mass becomes unbound (see Figure 18 in
Hirai et al. 2018). We here assume the injected energy distribution
is the same for RSGs and simply integrate the mass elements that
have positive total energy (the sum of kinetic, thermal and gravi-
tational energies) after the interaction to determine the amount of
unbound mass via the thermal criterion. The model curve is in good
agreement with the red solid triangles, only slightly overestimating
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Origin of SESN without companions 9

the unbound mass at the low and high ends. However, the model
depends only on the intersected energy (it only weakly depends on
the intersected mass through mheat), and cannot explain why the
Eexp = 5 × 1051 erg models have much lower unbound masses for
the same intersected energy.

Figures 8 and 9 have three model curves overplotted. The
dashed curve is the unbound mass calculated from the analytic
model presented in Wheeler et al. (1975) (see also Meng et al.
2007). It has two components, stripping and ablation, both es-
timated from momentum conservation along each radial ray of
ejecta. Stripping refers to immediate mass removal due to shared
momentum and ablation refers to mass removal as the matter ex-
pand due to the heat deposited by the shock. We find in Hirai et al.
(2018) that this model greatly overestimates the unbound mass for
cases where the removed mass is small. Here we find consistent
results in which the model greatly overpredicts the unbound mass
for the low-Ψ end whereas the discrepancy is smaller for the more
severely stripped cases (high-Ψ). We apply one modification to the
Wheeler model to account for the deflection of ejecta, which was
proven to be important in Hirai et al. (2018). For each radial ray of
ejecta, we assume that only cos2 θ of the momentum is transferred
to the envelope, where θ is the angle between the line connect-
ing the centres of the two stars and the line from the centre of the
companion to the position where the ejecta impact the surface. The
remaining momentum is taken away by the ejecta that are deflected
tangentially to the surface of the star (see Figure 13 in Hirai et al.
2018). This modified Wheeler model is displayed as dotted curves
in Figures 8 and 9. Note that both of these curves do not use any
information about the internal energy of the star, so should not be
compared with the results from simulations with ionization energy.
The modified Wheeler model is in relatively good agreement with
the simulation results at the high-Ψ end, suggesting that the enve-
lope is mostly stripped by momentum in these cases. On the other
hand, the envelope is primarily unbound through ablation for the
low-Ψ cases and therefore the Wheeler model breaks down.

The solid black curves are based on a simple model of abla-
tion due to heat deposited by the forward shock (Cheng 1974). We
greatly simplify the problem by only considering the shock propa-
gation along the axis connecting the two stellar centres. The shock
velocity is determined by momentum conservation

vshock(r) =
ΩMejvej
ΩMej + m(r), (10)

where Ω ≡ (1 −
√

1 − (R/a)2)/2 is the solid angle of the sec-
ondary. The specific energy deposited into the envelope is v2

shock
in the strong shock limit, meaning that greater specific energy will
be deposited near the surface, decreasing inwards as the shock de-
celerates. We then assume that the material will become unbound
where the excess energy exceeds the local gravitational binding en-
ergy. We see that despite the many simplifications, the model is in
rough agreement with the simulated results in the intermediate-Ψ
regime (0.3 . Ψ . 1).

The simple shock heating model omits many details. For ex-
ample, we only consider the shock propagation along the symmetry
axis, which is equivalent to assuming the shock propagates outside-
in in a spherically symmetrical way. In the actual situation, the
shock propagates from one side of the star and will have curved
trajectories as it ascends the density gradient. Also, it only consid-
ers the propagation of the forward shock. In reality, a reverse shock
propagates into the SN ejecta too. As the reverse shock reaches the
inner edge of the ejecta it in turn sends a rarefaction wave propa-
gating back towards the forward shock, which eventually catches
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Figure 10. Spherically averaged specific entropy distributions at the final
snapshot of the 2D simulations from the M2 = 16 M� , EoS C3 runs. The
dashed curve shows the initial entropy distribution of the star.

up. Once it has caught up, the rarefaction wave will decelerate the
forward shock and therefore the energy deposition will decrease
too.

Another assumption of the simple ablation model is that the
deposited energy will eventually be converted into the kinetic en-
ergy of that mass element. However, the energy can be redistributed
through the star in the subsequent expansion phase, which can sig-
nificantly impact how much mass becomes unbound. We show in
Figure 10 the spherical averaged entropy distribution from the final
snapshot of our 2D simulations. It is clear from the a = 2150–
4000 R� models that the energy excess provided by the ejecta-
companion interaction is larger in the outer layers and decreases
as it goes deeper into the star, justifying the shock heating model.
All curves have a steep drop at the outer edges because the thermal
energy has already been converted to kinetic energy in these layers.
We also see that in the larger separation models, the post-interaction
entropy in the inner region is lower than the initial value. This is
because of convective energy transport. The energy deposition by
the SN is very asymmetric, and induces large-scale convective mo-
tions. Figure 11 shows the entropy distribution towards the end of
the simulation, which clearly illustrates the development of such
flows. Notice the low entropy plumes reaching to the centre in the
right panel, whereas the convective eddies are smaller in the left
panel. This convection transports part of the central heat outwards,
leading to more unbinding of the envelope when the energy is trans-
ported to the marginally bound regions, which may explain why the
model underpredicts the unbound mass in the intermediate separa-
tion models (Figures 8 and 9). On the other hand, this process sucks
out energy from the central part, which may be the reason why the
model overpredicts in the high-Ψ end (Figure 8). It should be noted
that the convective motions may have been artificially amplified
due to the axisymmetric treatment of our simulation. More realistic
treatment of convection may lead to less energy transport, but it is
not straightforward to predict whether this will enhance or reduce
the mass loss.

To sum up, the modified Wheeler model describes the mass
removal process well when the envelope is severely stripped. This
implies that most of the envelope is stripped by the momentum of
the SN ejecta and ablation plays a minor role. The more weakly-
stripped models are better described by the Cheng model, mean-
ing that ablation is the major contributor to the mass removal. The
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Figure 11. Distribution of entropy in our 2D simulations at a snapshot 2 yr
after the SN. The left and right panels show models run with different orbital
separations.

Cheng model breaks down at the lowest impact end where the
strong shock limit breaks down. Taking the smaller of the two mod-
els seems to be the best match to our results. Recombination energy
induces an additional ∼1–3 M� of mass loss, and the contribution
is larger for higher-mass systems. It does not help to unbind the last
bit of envelope left on the core, but helps most in the intermediate
cases when only about half of the envelope is unbound kinemati-
cally. Further investigation is required to properly understand the
physical process of the mass removal after the ejecta-companion
interaction.

Although the mechanism is quite different, our situation is
similar to common-envelope phases in which energy is dynami-
cally deposited into an RSG envelope. From our comparison of an
ideal gas EoS case and an ideal gas + radiation EoS case, the role of
internal energy in the envelope unbinding process is not dominant,
nor is it negligible. This suggests that the mechanism of common-
envelope evolution in massive stars may not be dramatically differ-
ent from that of low mass analogues where radiation pressure can
be neglected.

4.2 Post-interaction evolution

Our hydrodynamical simulations show that a substantial fraction
of the envelope (. 0.9) can be removed through ejecta-companion
interaction. The classification of the secondary SN is ultimately de-
termined by how much mass is lost through the interaction and its
post-interaction evolution. For example, our most extreme model
only leaves ∼ 2 M� of the envelope, which can easily be lost in the
post-interaction evolution. In these cases, the secondary SN would
most likely be observed as a type Ib/c or IIb SN. There is more mass
left in the intermediate separation models, but it is still possible that
this will be mostly lost in the post-interaction evolution.

At the end of our simulation, the companion is still out of
thermal equilibrium. This leads to an increase in surface lumi-
nosity while it radiates away the remaining excess energy. During
this period, the wind mass-loss rates may be enhanced, leading to
additional mass loss. Even without an enhanced mass-loss phase,

there is enough time (∼ 106 yr) before the companion explodes to
lose another ∼1–2 M� if regular RSG wind mass-loss rates apply
(de Jager et al. 1988; Beasor et al. 2020).

It is also possible that the envelope becomes dynamically un-
stable due to the sudden mass loss. RSG envelopes are known
to develop strong dynamical pulsations when the luminosity-
to-mass ratio is high (Heger et al. 1997). Some studies sug-
gest that these pulsations can lead to large mass loss by driv-
ing strong winds (Yoon & Cantiello 2010), or through pulsation-
driven shocks (Clayton 2018). In some cases, the RSG may lose
the entire envelope through this process. Clayton (2018) sug-
gests that the critical condition for this instability is roughly
log[(L/L�)/(M/M�)] & 4.1, which can only be achieved by stars
with M & 25 M� in single star models. In our scenario, the
luminosity-to-mass ratio can shoot up after the interaction, abruptly
sending the star into the instability regime even for stars with
M . 25 M� . This applies particularly for the relatively higher-
mass systems (M2 & 19 M�), where the late-phase RSG luminos-
ity, explosion energy of the primary SN2 and unbound mass due to
ejecta-companion interaction are higher, all of which are favourable
for increasing the luminosity-to-mass ratio.

Both RSG wind and dynamical pulsations have highly uncer-
tain mass-loss rates. However, as discussed above, at least &1–
2 M� of mass can be lost before the secondary explodes if stan-
dard RSG mass-loss rates are applied. This is enough for our most
severely stripped models to explode as a stripped-envelope SN.
Thus we propose that our new scenario can contribute to some frac-
tion of the stripped-envelope SN population, specifically for the
cases where no companion is observed. The fraction of stripped-
envelope SNe produced through this channel depends on how large
the post-interaction mass loss is. So by assuming this is the only
channel that creates the lonely stripped-envelope SN progenitors,
it may be possible to probe the post-interaction mass-loss rates
by comparing the ratio of stripped-envelope SNe with and without
companion detections.

5 IMPLICATIONS

Our sets of hydrodynamical simulations clearly demonstrate that
the scenario described in Figure 1 can plausibly work under certain
conditions. In this section we apply the proposed model to several
observed SNRs and discuss possible observational signatures. Then
we discuss how other stripped-envelope SNe or type IIL SN pro-
genitors can also be produced through this channel. We also give
very rough estimates of the occurrence rate.

5.1 Cassiopeia A

Cas A is one of the most well studied SNRs. It is known to be
from a type IIb SN from light echo spectra (Krause et al. 2008).
The prevailing theory for type IIb SN progenitor formation is
through stable mass transfer in binary systems (Claeys et al. 2011;
Yoon et al. 2017; Ouchi & Maeda 2017; Sravan et al. 2019). Ejecta
mass estimates for Cas A are ∼ 2–4 M� (Willingale et al. 2003;
Hwang & Laming 2012), which translates to a helium core mass of
∼3–6 M� and therefore zero-age main-sequence masses of roughly

2 It is still debated whether stars in this mass range successfully ex-
plode, but the predicted explosion energies are higher if they do (e.g.
Nakamura et al. 2015; Ertl et al. 2016).
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Origin of SESN without companions 11

∼15–20 M� . Recent modelling of X-ray spectra further suggest
that the progenitor had a sub-solar metallicity (Sato et al. 2020),
meaning that the stellar wind would have been relatively weak. All
of the above strengthens the case that the progenitor was unlikely
to have formed through a single star channel.

To enable stable mass transfer, the binary companion cannot
be too small compared to the primary mass, so the companion
should have been relatively massive too. Recent observations have
attempted to find this companion that should not be too far from
the centre of expansion. However, they instead place extremely
strong upper limits on any remaining companion and conclude that
there was no stellar companion to the progenitor upon explosion
(Kochanek 2018; Kerzendorf et al. 2019). Most binary evolution
scenarios have been ruled out because of this, and the only remain-
ing channels are binary mergers (Nomoto et al. 1995; Lohev et al.
2019; Soker 2019), binary disruption after mass transfer from the
secondary (Zapartas et al. 2017), or the companion is a compact
object. All require rather fine-tuned assumptions for the physics in-
volved in order to produce the Cas A progenitor.

Our new scenario is more straightforward and can robustly
produce the Cas A progenitor given the right initial conditions. For
example, in our (M1, M2, a) = (17 M�, 16 M�, 2150 R�) model,
the secondary is left with only ∼ 2.5 M� above the core after the
primary SN. If ∼ 2 M� is lost through the post-interaction RSG
wind, it will become a ∼ 6 M� stripped-envelope star with only
. 0.5 M� of the envelope (. 0.1 M� of hydrogen) left by the time
it collapses. If this star explodes, it can reproduce the ejecta mass,
the type IIb spectrum and the apparently single nature of Cas A.

If this was the case, it means that another SN occurred near
the location of Cas A within the past . 106 yr, which could have
some interesting observational features. In Figure 12 we illustrate
the possible circumstellar matter distribution in this scenario. The
bulk of the primary SN ejecta will be located far outside, form-
ing an old SNR. We expect there to be a cavity in this remnant
where the companion blocked the outflow of the ejecta. Part of the
blocked ejecta matter is simply deflected, so it may form a cone-
shaped wall around the cavity. The size and brightness of this old
SNR will depend on the structure of the interstellar medium and the
delay time between the first and secondary SNe. In some environ-
ments, it could have already dissolved into the interstellar medium.
Deeper inside, the matter that was unbound from the secondary due
to the ejecta-companion interaction will be coasting at much slower
velocities, forming an inner shell. As we see in Figure 5 Panel C,
a chunk of unbound material will coast in the same direction as
the cavity of the outer SNR. So there may be a significant density
enhancement in this direction within the inner shell. Interior to the
inner shell, the secondary star will blow out a bubble with its own
wind and the second SN will occur within this environment.

The radius of the inner shell can be roughly estimated as

rsh ∼ 100 pc
(

vsh
102 km s−1

) (
∆t

106 yr

)
(11)

where vsh is the coasting velocity of the unbound envelope and ∆t
the delay time between the two SNe. For the coasting velocity we
choose the escape velocity of the RSG, but it can be much smaller
for the marginally unbound inner parts. We choose the total RSG
lifetime of the secondary as ∆t but this can also be smaller depend-
ing on the mass ratio of the binary, so we consider rsh ∼ 100 pc as
a conservative upper limit. It is known that there is an Hα cloud
located 10–15 pc outside of Cas A in the North East direction
(van den Bergh 1971; Weil et al. 2020). The location of this cloud
is within the ballpark of our inner shell estimate and the one-sided

Figure 12. Illustration of the predicted circumstellar matter distribution in
our scenario. The outer SNR (blue shell), the unbound envelope (brown
shell) from the secondary RSG and the primary neutron star (green circle)
are all ejected in the first SN of the system. The post-interaction wind was
emitted over the duration between the first and second SN. The red feature
indicates the second SN. The location of the shells and the neutron star are
not to scale.

nature of the shell is consistent with our model. No other scenario
can naturally explain the one-sided distribution of this shell. There-
fore, the location and structure of this Hα cloud may be a smok-
ing gun feature that the Cas A progenitor was indeed produced
through our proposed channel. The estimated mass of the Hα cloud
is & 1.5 M� , consistent with the prediction of .7–8 M� from our
scenario3.

The time it takes for the secondary SN to reach the inner shell
can then be estimated as

τint ∼ 104yr
(

vsh
102 km s−1

) (
vej

104 km s−1

)−1 (
∆t

106 yr

)
, (12)

where vej is the ejecta velocity of the secondary SN. Here we have
assumed a free expansion for the SN ejecta, which is not a bad
approximation for Cas A since it has just recently entered the Se-
dov phase (Patnaude & Fesen 2009). Cas A is only ∼ 350 yr old
(Thorstensen et al. 2001), so despite the uncertainties, the bulk of
the SN ejecta most likely have not reached the inner shell yet. It
may be possible that the ejecta start overtaking the inner shell in
the next ∼ 103−4 yr and emit X-rays from the interaction.

Detection of an outer SNR would provide strong support for
our scenario. However, current deep observations by XMM-Newton
show no sign of an SNR surrounding Cas A in X-rays within
.50 pc (Figure 13). At least, the presence of an SNR in the Se-
dov phase (younger than several 104 yr) could be ruled out from
this image. Whether we can observe the remnant of the first SN,
however, strongly depends on the environment. The plasma tem-
perature of SNRs declines over time, making it more and more
subject to absorption. Some relatively old (∼ 104 yr) SNRs such
as the Cygnus loop whose electron temperature is . 0.5 keV are
still bright below 1 keV due to the low column density of the envi-
ronment (nH ∼ 1020 cm−2; Uchida et al. 2009). On the other hand,

3 This is an upper limit because the whole envelope is not ejected one-
sided. A fraction of the envelope is ablated spherically.
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Minkowski’s H II Region

40 pc

20 pc

10 pc

26:00.0 25:00.0 24:00.0 23:00.0 22:00.0 21:00.0 23:20:00.0 19:00.0

3
0

:0
0

.
2

0
:0

0
.0

1
0

:0
0

.0
5

9
:0

0
:0

0
.0

5
0

:0
0

.0
4

0
:0

0
.0

Figure 13. X-ray image (red: 0.4–0.75 keV, green: 0.75–1.3 keV, blue: 2.0–
7.2 keV) around Cas A by XMM-Newton (Obs.ID 013755031, 0165560101,
0400210101, 0782961401). The dashed circles show 10, 20 and 40 pc radii
from Cas A. There are no obvious X-ray features that appear to be the rem-
nant of the primary supernova within .50 pc. The yellow box shows the
faint H II region called “Minkowski’s H II region” (see van den Bergh 1971;
Weil et al. 2020).

the environment of Cas A is much denser with column densities of
nH & 1022 cm−2 (e.g. Hwang & Laming 2012), which makes it dif-
ficult for low-energy X-rays typical to older remnants to reach us.
So the non-detection of an outer SNR does not rule out our scenario
but instead places a loose lower limit to the delay time ∆t & 104 yr.
This lower limit is consistent with the delay time inferred from the
location of the Hα cloud (Eq. 11). A future intense search for old
SNR features in the vicinity of Cas A by X-ray and/or radio will be
useful in testing our hypothesis.

If the binary was disrupted ∼ 105−6 yr ago, the primary neu-
tron star should be located at a distance

rNS ∼ 300 pc
(

vkick
300 km s−1

) (
∆t

106 yr

)
, (13)

away from Cas A, where vkick is the kick velocity imparted to the
neutron star. There are 13 known pulsars with projected distances
to Cas A within 300 pc (or .5 deg assuming a distance of 3.4 kpc)
according to the Australia Telescope National Facility (ATNF) pul-
sar catalogue (Manchester et al. 2005).

Among those pulsars, we find one (PSR J2301+5852;
Fahlman & Gregory 1981) which has many properties that are con-
sistent with being associated with Cas A. First, the characteristic
age is ∼ 2.35 × 105 yr, which is within the delay time upper limit
(. 106 yr) and consistent with the non-detection of an outer SNR
(& 104 yr). Characteristic ages of pulsars are known to be poor
indicators of their true ages, but having it in the right ballpark is
reassuring. It is also consistent with the delay time required for
having the inner shell located at ∼10–15 pc. Second, the proper
motion is roughly pointing radially away from Cas A as illustrated
in Figure 14 (Tendulkar et al. 2013). It does not directly point to
the centre of Cas A, but it should be noted that after the first SN,
the secondary should also have a proper motion due to the dis-
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Figure 14. Location and proper motion of PSR J2301+5852 along with
several other pulsars within ∼5 deg from Cas A. The circles indicate the
current locations of the pulsars and the lines point back in the direction of
the proper motion for 106 yr.

ruption of the binary. Typical pre-SN orbital velocities are ∼30–
100 km s−1, so it is possible that the Cas A progenitor had drifted
by ∼30–100 pc from the first SN site. The unbound envelope shell
should also have the same initial net momentum so the relative po-
sition should not change much during the drift. We see from Fig-
ure 14 that the projected distance from the Cas A site ∼ 106 yr
ago was ∼70 pc. Given the uncertainty in the delay time, the pro-
jected distance can be as close as ∼60 pc. Thirdly, the estimated
distance to PSR J2301+5852 is ∼3.2 kpc (Kothes & Foster 2012),
which is in close proximity with the inferred distance to Cas A of
∼ 3.4 kpc (Reed et al. 1995). Although it is tempting to associate
this pulsar with the first SN, PSR J2301+5852 is an anomalous X-
ray pulsar that lies within its own ∼ 104 yr old SNR (CTB 109;
Kothes & Foster 2012; Nakano et al. 2015) so does not seem to fit
into our picture. Some of the other pulsars in the list that lack proper
motion measurements could also be interesting targets to follow up.
It is also possible that the primary neutron star is not a pulsar, and
is flying somewhere invisible to us.

5.2 RX J1713.7-3946 (G347.3-0.5)

RX J1713.7-3946 is one of the closest SNRs to Earth at an in-
ferred distance of ∼ 1 kpc (Fukui et al. 2003). It has been inferred
to be from a type Ib/c SN based on the size of the wind-blown cav-
ity (Cassam-Chenaï et al. 2004) and the chemical abundance pat-
tern (Katsuda et al. 2015). Both analyses claim that the progenitor
should have originally been a relatively low mass star (. 20 M�)
that could not strip its entire hydrogen envelope on its own, imply-
ing a binary origin. There was an attempt to discover the remain-
ing binary companion, but so far no optical companion was found
in the vicinity of the central compact object 1WGA J1713.4-3949
(Mignani et al. 2008). If any stellar companion existed, it has to be
of a spectral type later than M or is not a regular main-sequence
star.

Although the observational constraints are much weaker,
RX J1713.7-3946 seems to suffer the same problems that Cas A has
on the formation of its progenitor. Thus it is possible that the pro-
genitor for RX J1713.7-3946 was formed through our new scenario
too. In fact, this SNR is known to have a shell-like morphology with
a significantly brighter patch on the North West side (Koyama et al.
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Origin of SESN without companions 13

1997; Slane et al. 1999; Lazendic et al. 2004), which could be an
indication of interaction between the forward shock of the SN and
clumpy clouds made of the asymmetric unbound progenitor enve-
lope (e.g. Inoue et al. 2012).

5.3 G11.2-0.3

G11.2-0.3 is another core-collapse SNR that has been suggested
as an evolved version of Cas A (Green et al. 1988). Analysis of
the circumstellar density supports the hypothesis that G11.2-0.3
originated from a stripped-envelope SN (Borkowski et al. 2016).
It again has a shell-like morphology with a bright patch on
the South East side (Tam & Roberts 2003; Roberts et al. 2003;
Borkowski et al. 2016). Moreover, the shape of the shell is rather
spherical, meaning that the SN itself was not too asymmetric but in-
stead a spherical SN is starting to run into asymmetric circumstellar
material. Therefore the morphology of this SNR has striking agree-
ments with predictions from our scenario. It may be interesting to
search for an optical companion to the central pulsar AX J1811.5-
1926 (Torii et al. 1997). If no strong candidate can be found, the
progenitor for this SN could also have been produced through this
channel.

5.4 Other stripped-envelope supernovae

iPTF13bvn and SN1994I are two other stripped-envelope SNe that
lack companion detections. Both have relatively strong constraints
on the photometry of any remaining companion (Folatelli et al.
2016; Van Dyk et al. 2016), placing mass upper limits of .
10 M� . This is deep enough to rule out most evolutionary sce-
narios involving stable conservative mass transfer (Bersten et al.
2014; Eldridge et al. 2015). It is still possible that the progenitor
was stripped through non-conservative mass transfer or common-
envelope evolution with a low-mass (∼3–10 M�) stellar compan-
ion (Van Dyk et al. 2016; Eldridge & Maund 2016). However, the
relatively large pre-SN radius for iPTF13bvn (∼30–70 R�) is diffi-
cult to reproduce in the current understanding of common-envelope
evolution because the process tightens the orbit too much (Hirai
2017a). There are ongoing deeper observations to discover the pres-
ence of a low-mass companion, possibly confirming or ruling out
the common-envelope channel. If no companion shows up, it leaves
us with only two possible scenarios: either the companion is a
compact object, or the progenitor was stripped through an ejecta-
companion interaction.

5.5 Type IIL supernovae

Type II SNe are usually classified into three subtypes (Barbon et al.
1979; Arcavi et al. 2012). The SNe that have a plateau in their light
curve are classified as type IIP, the ones that show a rapid decline
are type IIb, and the intermediate ones type IIL. Type IIP SNe are
the most common kind of SN observed, which are known to be
explosions of RSGs. The properties of type IIb SNe are closer to
type Ib SNe, and the progenitors are known to be blue or yellow
supergiants from pre-explosion imaging (Maund et al. 2004, 2011;
Van Dyk et al. 2014; Folatelli et al. 2015).

The progenitors of type IIL SNe, on the other hand, are
much less constrained both observationally and theoretically.
Anderson et al. (2014) pointed out that the distinction between
type IIP and IIL SN light curves may be much more ambiguous
than previously thought. Nevertheless, type II SN light curves do

exhibit a diversity of decline rates, suggesting a wide variety of
progenitor properties. Numerical light curve models suggest that
the rapid decline of type IIL SNe can be explained if the hy-
drogen envelope was partially stripped down to ∼1–4 M�4 (e.g.
Blinnikov & Bartunov 1993). If this is the case, the progenitor has
to be stripped either through winds or binary interactions. Recent
observations find that RSG mass-loss rates are lower than previ-
ously considered (Beasor et al. 2020; Humphreys et al. 2020), so
self-stripping through winds may not be sufficient to produce type
IIL SN progenitors.

Our scenario can produce fully stripped stars, but inevitably
produces a similar number of partially stripped stars. For example,
our intermediate separation models (a =3000–5000 R�) only strip
half of the envelope, with ∼4–6 M� left above the core. For the
lower-mass systems the post-interaction L/M ratio does not exceed
the threshold value, so is unlikely to develop dynamical envelope
instabilities. Therefore the post-interaction mass loss should be rel-
atively low, not leading to a full removal of the envelope. If so, the
star could explode with ∼1–3 M� of hydrogen left and appear as a
type IIL SN.

5.6 Rates

The classification of SNe into spectral types depends on the mass
of remaining hydrogen and on the details of the explosion. These in
turn are sensitive to the details of the preceding stellar and binary
evolution, including the post-interaction evolution of the progenitor
star in our scenario, which is beyond the scope of this paper. Nev-
ertheless, we here attempt to estimate the order-of-magnitude oc-
currence rate of stripped-envelope SNe through this channel based
on simplifying assumptions.

We assume that the post-interaction evolution can remove an-
other ∼ 2 M� of the progenitor’s hydrogen envelope. Both RSG
wind and dynamical pulsations are strongest at the later stages of
the RSG phase, where the luminosity is highest. Therefore the tim-
ing of the first SN should not affect the total post-interaction mass
loss too much. The explosion energy of the first SN is fixed to
Eexp = 1051 erg. We classify stars with < 1 M� of mass left above
the core as stripped-envelope SN progenitors.

The main requirement of our scenario is that the mass ratio
of the binary is sufficiently large that the secondary star will be in
its RSG stage by the time the primary explodes. Both the stellar
lifetime and duration of the RSG phase depend on the mass of the
star, but the dependence is weaker for higher masses (Figure 4). For
simplicity, we assume a threshold of q > 0.9 which is slightly opti-
mistic but sufficient for an order-of-magnitude estimate. Assuming
a flat mass ratio distribution (Sana et al. 2012), the fraction of sys-
tems that have the right mass ratio is fq ∼ 0.1.

Another requirement is that the binary orbital separation is
wide enough so that the secondary RSG can fit in its Roche lobe but
close enough to lose most of its envelope through ejecta-companion
interaction. Based on our simulations, the models with a . 1.5amin
fulfil the criterion for becoming stripped-envelope SN progenitors.
Here amin is the separation at which one of the RSGs exactly fills its
Roche lobe, which is about ∼3 times the stellar radius. By integrat-
ing over a log-flat distribution in the range a ∈ [0.01AU, 1000AU],

4 Some studies argue that the envelope mass does not matter but the rapid
decline can be explained by different circumstellar matter distributions
(Morozova et al. 2017). In this case the star does not necessarily need to
be stripped.
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we find that fSE ∼ 0.035 of systems will fall within the range that
produces stripped-envelope SN progenitors a ∈ [amin, 1.5amin].

Combining the mass ratio and separation conditions, roughly
fq fSE ∼ 0.0035 of the core-collapse population should fall in this
category. The observed fraction of stripped-envelope SNe (type
Ib/c+IIb) are ∼ 35% (Smith et al. 2011; Li et al. 2011), so it im-
plies that 1 out of 100 stripped-envelope SNe could be produced
through this channel. Or if we assume that our channel can only
create type IIb progenitors, 1 out of 30 type IIb SNe could be ex-
plained through this channel.

Here we have not taken into account the detailed mass depen-
dences of the mass ratio threshold, maximum separation, explo-
sion energy fluctuations, etc. We have also chosen a conservative
amount of post-interaction mass loss (∼ 2 M�), but this should
be considerably larger for the relatively higher-mass systems that
develop envelope instabilities (see Section 4.2). We could possibly
extend the allowed separation range further for the higher-mass sys-
tems. It is also possible that there is a correlation between the period
and mass ratio distributions (Moe & Di Stefano 2017), and there-
fore we should not be treating these factors separately. We have
also stated that RSG structures are not metallicity dependent but
at very low metallicities, stars do not become RSGs until very late
in their evolution (Klencki et al. 2020). Therefore the rate of binary
RSG formation is significantly lower at low metallicities. Any other
binary configuration is viable as long as it creates a situation where
the primary SN occurs when the companion is an RSG. If any such
pathways exist in normal binary evolution models, those should be
added to the rate.

Type IIL progenitor formation in this scenario more strongly
depends on the post-interaction evolution, so we cannot derive any
reliable rates. However, because our simulations show that hardly
any mass is removed beyond a > 4amin, we can treat that as an up-
per limit. By integrating over the same orbital separation distribu-
tion, the fraction of type IIL candidates formed for a given primary
mass becomes fIIL . 0.1. So the overall rate will be no more than
fq fIIL . 0.01, which is smaller than the observed type IIL fraction
of ∼ 6% (Smith et al. 2011; Anderson et al. 2014).

Our new scenario is restricted to systems that have typically
been ignored in binary population synthesis studies. Therefore it
does not conflict with any existing binary evolution models but sim-
ply adds an extra contribution. The estimated rates we present here
seem to be relatively small, so do not affect our overall understand-
ing of stripped-envelope SN progenitor formation. But it may be
the dominant or the only channel that can explain the apparently
single stripped-envelope SNe like Cas A or iPTF13bvn.

6 CONCLUSION

We propose a new scenario for producing stripped-envelope super-
nova progenitors that do not have binary companions at the time of
explosion. The scenario focuses on binary systems in which both
components of the binary are red supergiants. The first supernova
in the system interacts with the secondary and unbinds most of
the secondary envelope. The system is disrupted due to the sud-
den mass loss and neutron star kick, and the secondary star will be
a single stripped-envelope star. Within . 106 yr, the secondary will
explode itself as a stripped-envelope supernova or possibly a type
IIL supernova depending on how much mass was stripped in the
interaction and its post-interaction evolution.

We investigated the interaction of core-collapse SN ejecta with
an RSG companion through hydrodynamical simulations. We find

that a substantial fraction (∼0.5–0.9) of the envelope can be re-
moved due to the interaction when the orbital separation is within
.4–5 times the stellar radius. If the star can lose & 1 M� in the
post-interaction evolution, it can eventually explode as a stripped-
envelope supernova.

We find that the kinematically unbound mass can be
well described by the momentum-stripped model proposed by
Wheeler et al. (1975), with a modification to take into account the
deflection of ejecta. Recombination energy can help to unbind an
additional ∼1–3 M�; this contribution is larger for higher-mass sys-
tems.

After the immediate envelope removal, it is possible that the
remaining envelope becomes unstable, especially for higher-mass
systems (M2 & 19 M�). The instability may lead to large pulsa-
tions, leading to further substantial mass loss. The spectral type
of the second supernova will ultimately depend on how much more
mass can be lost in the post-interaction evolution. We leave detailed
studies of this phase for future work.

A possible smoking gun observable feature is the shape of the
unbound envelope of the secondary that was ejected through the
ejecta-companion interaction. More than half of the mass should be
ejected in the direction of travel of the supernova ejecta impacting
the progenitor. This could form a one-sided shell at ∼10–100 pc
away from the second supernova site.

We apply our model to the famous supernova remnant Cas-
siopeia A. Many of the observed properties seem to agree with our
scenario including the lack of a companion, the presence of a one-
sided envelope shell at ∼10–15 pc and a possible runaway pulsar
from the first supernova. We also suggest other candidate objects
that could have been produced through this channel (RX J1713.7-
3946, G11.2-0.3).

The expected rate of this channel is ∼0.35–1% of the core-
collapse supernova population. Therefore we do not expect this to
be the major channel for any specific type of supernova. However,
it could be largely responsible for the apparently single stripped-
envelope supernovae like Cas A or iPTF13bvn.
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APPENDIX A: DETAILS OF THE HYDRODYNAMIC
CODE

The hydrodynamic code HORMONE was originally developed
in Hirai et al. (2016). It is a grid-based code which solves
the magneto-hydrodynamic equations through a Godunov-type
scheme. The HLLD approximate Riemann solver is used for the
numerical flux (Miyoshi & Kusano 2005), which is equivalent to
using the HLLC solver when magnetic fields are neglected. There
is a numerical instability known as the carbuncle phenomenon that
arise around shocks aligned to the coordinate direction. We rem-
edy this by applying the HLLE solver (Einfeldt 1988) around co-
ordinate aligned shocks for fluxes transverse to the shock propa-
gation direction. Shocks are identified using a similar method to
Schaal et al. (2016). For the flux limiter we use the monotonized
central limiter (van Leer 1977) instead of the generalized minmod
limiter we were using for previous work. We apply a geometrical
correction to the flux limiter that stabilizes the simulation for curvi-
linear coordinates (Mignone 2014).

The main original feature of the code is the “hyperbolic self-
gravity” solver, which speeds up the self-gravity calculation signif-
icantly (Hirai et al. 2016). We use a gravitation propagation factor
kg = 10 (see Hirai et al. 2016) and the Robin boundary condition
at the outer boundary for the simulations in this paper. The compu-
tational domain for the gravitational field is extended > 4 times be-
yond the outer boundary for the hydrodynamics to minimize the er-
rors propagating in from the simplified outer boundaries. The com-
putation thus requires more memory, but is still faster than using
traditional Poisson solvers.

Spherical coordinates are used for the explosion simulations
whereas cylindrical coordinates are used for the ejecta-companion
interaction simulations. The cell sizes are increased outwards in

a geometrical series in the r direction for spherical coordinates
and both r and z directions for the cylindrical coordinate system.
The minimum cell sizes ∆rmin and ∆zmin are chosen to resolve the
shortest density scale heights with > 10 grid points (see Appendix
B). Because we use a regular grid, the sizes of ∆r and ∆z can be
quite different for cells around the symmetry axis and the z = 0
plane, resulting in elongated cell shapes. This can potentially be
the source of some minor numerical issues, but we did not observe
any spurious motions related to the elongation in our simulations.

APPENDIX B: NUMERICAL TREATMENT OF THE RSG
CORE

Due to the steep pressure gradient and the severe Courant condi-
tions towards the centre of the star, it is common practice to re-
place the core with a point particle that only interacts with the en-
velope through gravity. The particle is assumed to have a “soft-
ened” potential to avoid the singularity at the particle position (e.g.
Ohlmann et al. 2017). The amount of mass that goes into the point
particle Mpt and the radial extent of the softening rs is a somewhat
arbitrary choice. Choosing larger values for Mpt and rs reduces the
computational cost, but increases the risk of creating spurious arti-
ficial errors. For our current purpose, the overall dynamics will not
be affected as long as the softening length rs is kept much smaller
than the stellar radius. There may be some spurious motions as the
forward shock traverses the softened region, but this will not affect
our overall results as long as the mass contained in this region is
small and the bound region is larger than the softened region.

We use a cubic spline form for the softened gravitational po-
tential φ′pt of the point particle (Eq. (A2) in Price & Monaghan
2007). For the gas within the softened region (r < rs), we construct
an artificial density and pressure distribution. There are 4 condi-
tions that the modified density and pressure distributions (ρm and
pm) should satisfy.

∇pm(r) + Gρm(r)
(

mm(r)
r2 + Mpt∇φ′pt(r, rs)

)
= 0, (B1)

pm(rs) = p(rs), (B2)

∇pm(rs) = ∇p(rs), (B3)

Mpt + mm(rs) = m(rs). (B4)

Here p(r) and m(r) denote the true pressure distribution and mass
coordinate of the original star and mm(r) is defined as

mm(r) ≡ 4π
∫ r

0
ρm(r ′)r ′2dr ′. (B5)

The first condition is for hydrostatic equilibrium. Note that the
gravitational force from the central point particle is softened, but
the self-gravity of the gas obeys Newtonian gravity. The second
and third conditions ensure a smooth connection to the pressure
distribution outside the softening radius and the fourth condition is
required to conserve the total mass. To obtain a unique solution, we
further require the entropy of the material in the softened region to
be constant. We define entropy as

S ≡ kb
µmu

ln

(
T

3
2

ρ

)
+

4aradT3

3ρ
, (B6)

where kb is the Boltzmann constant, mu the atomic mass unit, arad
the radiation constant and µ the mean molecular weight. Tempera-
ture T and the mean molecular weight µ are calculated from the
EoS (see Appendix C). A uniform entropy distribution helps to
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Figure B1. Density profile before and after the core-softening procedure
for the M2 = 16 M� star.

avoid developing spurious expansions or convective motions. We
solve Equations (B1)–(B4) under the assumption of constant en-
tropy (S(r) = S(rs)) using a shooting method. This gives a unique
solution for ρm(r), pm(r) and Mpt given the softening radius rs.

After replacing the central part with this artificial density and
pressure distribution, the steepest density gradient that needs to be
resolved is roughly the gradient at the softening length ∇ρ(rs). We
make our minimum gridsize 10 times smaller than this minimum
density scale height

∆rmin = ∆zmin =
1
10

ρ(rs)
ρ′(rs)

. (B7)

We choose a softening radius of rs = 22 (28) R� for our
16 (19) M� RSG model. In Figure B1 we show the density profile
of our core-softened star for the M2 = 16 M� model. Everything
outside the softening radius is unchanged from the original MESA
profile. The profile for the M2 = 19 M� is similarly constructed.
This profile along with the pressure profile is directly mapped onto
the hydrodynamical grid for the 2D simulations. With this proce-
dure we have tested that the core does not develop any artificial
motions at least for several dynamical timescales. We have tested
on spherical and cylindrical coordinates and it works in both cases.

APPENDIX C: NUMERICAL TREATMENT OF
RECOMBINATION ENERGY

Similar to some other hydrodynamical simulations that incorpo-
rate recombination energy, we account for recombination energy
by changing the EoS. Previous studies have implemented this by
using tabulated EoSs generated from more detailed codes (e.g.
Nandez et al. 2015). Here we use a slightly different approach
which is conceptually similar but more memory-efficient (and pos-
sibly computationally cheaper).

The physical quantities that are directly used in the hydrody-
namics are density ρ, momentum ρv, and total energy e. Specific
internal energy is computed by subtracting kinetic energy from the
total energy εint = e/ρ − 1

2 v2. For EoS A, the pressure simply fol-
lows from p = (γ − 1)ρεint, where γ = 5/3 is the adiabatic index.
For the other EoSs, we first compute the temperature T by finding

the root of

εint =
3
2

kbT
µ(xi)mu

+
aradT4

ρ
+ εion(xi), (C1)

and then the pressure can be computed from

p =
ρkbT
µ(xi)mu

+
aradT4

3
. (C2)

The mean molecular weight µ and ionization energy εion are func-
tions of ionization fractions xi = xi(ρ,T), where the index i runs
over the number of ionization states. EoS B does not include the
last term in Eq. (C1) and uses a fixed mean molecular weight, as-
suming that all the gas is always fully ionized. With the additional
ionization term, part of the recombination energy can be stored in
the third term until the ionization fraction changes and is released
as thermal energy. Because our equations are adiabatic and do not
include any radiation transport, all of the released energy will be
fully thermalized. This assumption is valid for optically thick re-
gions where radiative losses can be neglected. For the simulations
presented in this paper, the regions where recombination occurs are
mostly optically thick, justifying our adiabatic treatment.

Ionization fractions xi can in principle be obtained by solv-
ing the Saha equations. However, solving the Saha equations and
Eq. (C1) self-consistently is computationally demanding, given that
the EoS module is called heavily throughout the simulation. Instead
we perform analytical fits to the MESA EoS to obtain expressions
for xi . There are four main ionizations included in the MESA EoS,
which are for molecular hydrogen, ionization of hydrogen, single
and double ionizations of helium. Our fitting formulae are

εion =
4∑
i=1

εi xi, (C3)

µ = 4 [2(x1 + 2x2)X + (x3 + x4 − 1)Y + 2]−1 , (C4)

xi =
1
2

[
tanh

(
logT − Ti(log Q)

σi(log Q)

)
+ 1

]
, (C5)

Ti(θ) = ai(1 − fY ) log
(
εi

mu
kb

)
+ biθ, (C6)

σi(θ) = ciTi(θ)(1 + diθ), (C7)

where log Q ≡ log ρ − 2 logT + 12 in cgs units and Y is the
helium mass fraction. εi are the ionization energies for a given
mixture of gas ε1 =

1
2 XXH2, ε2 = XXH+, ε3 =

1
4YXHe+, ε4 =

1
4YXHe++ , where X and Y are the hydrogen and helium mass
fractions. The ionization energies for each element are XH2 =

4.36 × 1012 erg mol−1,XH+ = 1.312 × 1013 erg mol−1,XHe+ =
2.3723×1013 erg mol−1,XHe++ = 5.2505×1013 erg mol−1. Ti cor-
responds to the common logarithm of the ionization temperature
and σi the width of the transition in log temperature space. Values
of the fitting coefficients ai, bi, ci, di, f are given in Table C1.

The hyperbolic tangent function in Eq. (C5) can be computa-
tionally expensive, so we approximate it by

tanh(x) ∼ x5 + 105x3 + 945x
15(x4 + 28x2 + 63)

, (C8)

and we clip the function at |x | ∼ 3.647 so that the function does not
go beyond positive or negative unity. The approximation closely
resembles the tanh function so does not change our results. When
factorized appropriately, this only requires 10 primitive operations
(5 multiplications, 1 division and 4 summations) so is much more
computationally efficient than evaluating tanh functions.
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Table C1. Fitting coefficients for the ionization fractions. Note that a1 and
b1 change their values at a density ρt = 4 × 10−10 g cm−3.

i = 1 i = 2 i = 3 i = 4

ai 0.751 (ρ < ρt ) 0.821 0.829 0.846
0.753 (ρ ≥ ρt )

bi 0.000 (ρ < ρt ) 0.055 0.055 0.055
0.055 (ρ ≥ ρt )

ci 0.02 0.025 0.015 0.015
di 0.05 0.05 0.05 0.05
f 0.005
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Figure C1. Recombination energy in the MESA EoS as a function of tem-
perature for various values of logQ. The chemical composition is fixed to
X = 0.6 and Z = 0.02. Grey dashed curves are the fitting functions given
in Eqs.C3–C7. Although the fits are not colour-coded, it should be clear
which curve they are intended to fit. Species responsible for each transition
are labelled accordingly.

We compare our fitting functions to the MESA EoS in Fig-
ure C1. The recombination energy is extracted from the MESA EoS
by subtracting the contribution of ideal gas and radiation from the
internal energy given in the EoS table by

εion,MESA = εMESA −
3Pgas

2ρ
− aradT4

ρ
. (C9)

Here εMESA, Pgas are the specific internal energy and gas pressure
given in the EoS table, respectively. The four major transitions are
fit remarkably well for the range log Q . −5. The MESA EoS
curves show irregular features in the higher-temperature regions
(T > 3×104K) that are likely contributions from heavier elements,
but we do not attempt to model this part. In the higher-log Q range,
the He recombination temperatures are slightly underestimated in
the fitted functions.

This can be better observed in Figure C2 where we are look-
ing at Figure C1 from above. Each coloured region corresponds to
the plateaus seen in Figure C1. The transition temperatures given
in Eq. (C6) were fitted to the boundaries between the different re-
gions. The boundaries start bending upwards beyond log Q & −4,
meaning our fits break down. However, this region in the Q–T plane
is never reached in our simulations. We show various RSG mod-
els in the range 12 ≤ M/M� ≤ 20 M� as green curves. They
only occupy a very narrow range of the Q–T plane. The simula-
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Figure C2. 2D landscape of recombination energy in the MESA EoS as a
function of logQ and temperature with a fixed chemical composition X =

0.6, Z = 0.02. Grey dashed lines are drawn along fixed densities. White
lines show our fits to the ionization temperatures given by Eq. (C6) with the
fitting coefficients in Table C1. Green curves are various RSG models with
masses in the range 12 ≤ M/M� ≤ 20.

tion domain covers a much wider region, but only in the lower-
Q direction and not towards higher Q. For very low density cases
(ρ < 10−14 g cm−3) we simply use the transition temperatures at
ρ = 10−14 g cm−3. The fit was also carried out for the table with
different compositions (X = 0.4, 0.6, 0.8 and Z = 0, 0.01, 0.02).
The basic shape can be fit with the same function and we adjusted
minor deviations through the factor f . The matter in our simulation
has a composition of X ∼ 0.72,Y ∼ 0.27, which lies between the
various tables we have fit our functions to.

With these fits to the ionization energy and mean molecular
weight, Eq. (C1) becomes a single variable root finding problem.
Since our expression for the ionization energy has many inflection
points in the function, traditional root finding algorithms such as the
Newton-Raphson method do not converge unless the initial guess
is already close to the solution. Here we overcome this problem by
applying the novel W4 method (Okawa et al. 2018; Fujisawa et al.
2019) which is an iterative root finding algorithm for nonlinear sys-
tems of equations that can find solutions starting from arbitrary
guesses provided the root function is smooth and continuous. For
single variable problems the W4 method can be simplified as{

xn+1 = xn + ∆τpn
pn+1 = (1 − 2∆τ)pn − ∆τ f (xn)

f ′(xn)
(C10)

where f (x) = 0 is the equation to be solved, f ′(x) is the deriva-
tive and pn is a variable that is unrelated to f (x). It is known that
the method converges as long as the virtual time step is taken as
0 < ∆τ < 1. However, the method sacrifices computational time
to achieve global convergence, and the Newton-Raphson method is
much faster when the initial guess is close enough to the solution.
Thus we employ a hybrid method where we use the W4 method
until it reaches the vicinity of the solution (| f (x)/(x f ′(x))| < 0.01)
and then switch to the Newton-Raphson method until it converges
(| f (x)/(x f ′(x))| < 10−10). This allows us to make use of the fast
convergence of the Newton-Raphson method while acquiring the
global convergence of the W4 method at the same time.
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Since our method utilizes an analytical fit to a tabulated EoS,
the results are basically the same as directly using the EoS table.
However, our method has several advantages over tabular EoSs.
For example, it is known that when using EoS tables, the interpo-
lation scheme has a large influence on the thermodynamic consis-
tency (Swesty 1996). With crude interpolation schemes, this could
lead to unphysical entropy build-up that could cause trouble in the
long term. Since our EoS is expressed in an analytical functional
form, our method should naturally satisfy thermodynamic consis-
tency with an accuracy of the tolerance applied for the root finding.
Our method is also easy to customize. Various ionization energies
can be added or subtracted in a simple way. For example, we set
ε1 = ε2 = 0 when we want to effectively account for inefficient
thermalisation of hydrogen recombination energy in optically thin
regions (EoS C1). This still takes into account the change of mean
molecular weight due to the recombination through Eq. (C4).
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