
This item is likely protected under Title 17 of the U.S. Copyright Law. Unless on a Creative Commons 
license, for uses protected by Copyright Law, contact the copyright holder or the author. 
 
Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) 
platform.  

 
Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-
group@umbc.edu and telling us what having access to this work means to you and why it’s 
important to you. Thank you.  

 

mailto:scholarworks-group@umbc.edu
mailto:scholarworks-group@umbc.edu


The Power of GPUs in Machine Learning to Improve
Proton Beam Therapy for Cancer Treatment

Nithya Navarathna1 and Matthias K. Gobbert2

1Department of Biological Sciences, University of Maryland, Baltimore County
2Department of Mathematics and Statistics, University of Maryland, Baltimore County

Proton beam therapy utilizes proton beams to treat cancerous tumors while avoiding unnec-
essary radiation exposure to surrounding healthy tissues. Real-time imaging of the proton beams
while they travel through a patient’s body can make this form of radiotherapy more precise and
safer for the patient. The use of a Compton camera is one proposed method for real-time imaging
of the prompt gamma rays that are emitted by the proton beams. Unfortunately, some of the
Compton camera data is flawed, and the image reconstruction algorithm yields noisy and insuffi-
ciently detailed images to evaluate the proton delivery for the patient. Machine learning can be a
powerful tool to clean up the Compton camera images. Previous work used a deep residual fully
connected neural network, but the use of recurrent neural networks (RNNs) has been proposed,
since they use recurrence relationships to make potentially better predictions. In this work, RNN
architectures using two different recurrent layers are tested, the LSTM and the GRU. Although the
deep residual fully connected neural network achieves over 75% testing accuracy and our models
achieve only over 73% testing accuracy, the simplicity of our RNN models containing only 6 hidden
layers as opposed to 512 is a significant advantage.This will also cause the time to load the model
from the disk to be significantly faster, potentially enabling the use of Compton camera image
reconstruction in real-time during patient treatment. A graphics processing unit (GPU), known to
perform complex math calculations to display high-quality graphics, could enable the use of this
approach in a clinical setting since they are small in size and affordable.

1 Introduction

Proton beam therapy has gained popularity as a cancer treatment due to its many advantages.
With cancer being the second highest cause of death in the United States, radiation therapies have
been widely used as a treatment [9]. Also known as radiotherapy, radiation therapy uses high energy
particles such as x-rays, gamma rays, or protons, to damage the DNA of target cancer cells. X-ray
therapy is able to deliver dosage at the tumor site, and its radiation continues to travel through
the body until it exits the other side. This may potentially harm healthy surrounding tissues and
organs that are unnecessarily exposed to radiation. In contrast, proton beams have a finite range
that can be controlled, and deposit the majority of their energy just before they stop. This sharp
energy increase of the proton beam right before stopping is known as the Bragg peak. Since almost
no radiation is delivered beyond the Bragg peak, healthy tissue can be spared from unnecessary
radiation [9]. Thus, the Bragg peak allows proton therapy to be advantageous in delivering the
radiation dosage directly at the tumor site without travelling further into the body.

In order to take full advantage of the properties of proton therapy, we must have an efficient
technique to image the prompt gamma rays produced by the beam in real-time, as they travel
through the patient’s body. A Compton camera is one instrument that can be used to detect
the prompt gamma rays emitted when the proton beam travels through the body. Moreover, an
algorithm is available to reconstruct the beam’s image from the prompt gamma data, which then
provides an indirect image of the proton beam. Unfortunately, a lot of the raw data of the Compton
camera is flawed, and the reconstruction algorithm yields noisy and insufficiently detailed images
to evaluate the proton delivery for the patient [7, 8].
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Machine learning can be used to clean the raw Compton camera data by identifying and remov-
ing false data before image reconstruction [7,8]. Research efforts to clean the Compton camera data
have led to the use of neural networks. Shallow networks like the one in [7] use 1 to 2 hidden layers
to perform simple classifications of simulated prompt gamma data under ideal conditions that do
not represent the irradiation conditions encountered during clinical proton beam radiotherapy. This
shallow network in [7] is a binary classification network that simply determines which event data
are true events and should be used for reconstruction and which are false events that should not be
used for reconstruction. This is improved upon in [8] using the deep residual fully connected neural
network described in [3] for triple event classification. This neural network consists of 64 residual
blocks with 8 fully connected layers per block yielding a total of 512 hidden layers. Each layer
had 256 neurons per layer, a 45% dropout rate, and used leaky ReLU activation. More detailed
results and discussions about the impact of neural network processing on the use and viability of
Compton camera based imaging in clinical proton radiotherapy are the focus of [8], while providing
details on the network and its training are the focus of [3]. The full capabilities of the described
neural network are specified in [2], where preprocessing the data, all classification capabilities, and
postprocessing output data are described in detail. Other recent work [1, 10] focused on hyperpa-
rameter studies on the deep residual fully connected neural network from [3], varying batch sizes,
neurons, and layers. The use of recurrent neural networks (RNNs) is proposed in [1], since they use
recurrence relationships in sequence data sets to make potentially better predictions. The potential
for RNNs to be an improvement over feedforward neural networks (FNNs) is shown in [6].

In this work, we test RNN architectures using two different recurrent layers because of their
potential for classifying sequence data, the Long Short-term Memory (LSTM) (discussed in Section
3.1) and the Gated Recurrent Unit (GRU) (discussed in Section 3.2). The LSTM uses memory
cells with gates and a carry track to encode and learn from sequence data. The GRU uses two
gating units to encode and learn from sequence data. The goal in this change in type of network
architecture is to examine data as a sequence of interactions rather than one single event, but
preliminary results do not show any benefit. We use models with 4 GRU layers and with 4 LSTM
layers and achieve similar testing accuracy as the deep residual fully connected model from [3].
The model with 4 GRU layers outperforms the deep residual fully connected model in 3 classes
but has a larger gap (within 10%) in accuracy in the other 10 classes. The model with 4 LSTM
layer outperforms the previous deep residual fully connected model in only 2 classes but has a
smaller gap (within 6%) in accuracy in the other 11 classes. Although the deep residual fully
connected model achieves a slightly higher accuracy in nearly every class, the simplicity of our
RNN models containing only 6 hidden layers (4 recurrent and 2 fully connected) as opposed to
512 is an advantage. And importantly in a clinical setting, the time to load the model from disk
is significantly faster, potentially enabling the use of Compton camera image reconstruction in
real-time during patient treatment.

A graphics processing unit (GPU), known to perform complex math calculations to display
high-quality graphics, could enable the use of this approach in a clinical setting since they are small
in size and affordable. With this motivation, we use the available GPU partitions in the UMBC
High Performance Computing Facility (hpcf.umbc.edu) to test and compare their performance for
this application problem. HPCF has several GPU partitions in the clusters taki and ada.

The taki system has two GPU partitions 2013 and 2018. For 2018, This 1 GPU node has
four NVIDIA Tesla V100 GPUs (5120 computational cores over 84 SMs, 16 GB onboard memory)
connected by NVLink, two 18-core Intel Skylake CPUs, and 384 GB of memory (12 × 32 GB
DDR4 at 2666 MT/s). The 2013 GPU node contains 18 hybrid CPU/GPU nodes, each with two
NVIDIA K20 GPUs (2496 computational cores over 13 SMs, 4 GB onboard memory), two 8-core
Intel E5-2650v2 Ivy Bridge CPUs (2.6 GHz clock speed, 20 MB L3 cache, 4 memory channels), and
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64 GB of memory (8 × 8 GB DDR3). Networks built on Taki were built using Tensorflow v2.4.0
(www.tensorflow.org) with the bundled Keras module. We also used scikit-learn v0.23.dev0
(https://scikit-learn.org/stable/) to preprocess and normalize the data. Moreover pandas
v1.1.0 (https://pandas.pydata.org/) and numpy v1.18.1 (www.numpy.org) were also used to
help preprocess the data. Finaly we used the matplotlib v3.5.1 (www.matplotlib.org) library to
graph our results.

The ada system has 3 distinct node types. Four nodes each with 8 Nvidia RTX 2080 Ti GPUs
each with 11GB GPU memory. Seven nodes with 8 Nvidia Quadro RTX 6000 GPUs each with
24GB of GPU memory. Two nodes each with 8x Nvidia Quadro RTX 8000 GPUs each with 48GB
memory. Each node has 384 GB of CPU memory (12 × 32 GB DDR4 at 2933 MT/s) except the
two RTX 8000 nodes which have 768GB of CPU memory(12 × 64GB DDR4 at 2933 MT/s).
Networks built on ada were built with the software package Anaconda3 and Tensorflow v2.6.0 with
the bundled Keras module.

The remainder of this report is organized as follows: Section 2 provides the background on
proton beam therapy to treat cancer and the Compton camera to image prompt gamma rays.
Section 3 details the basics of machine learning and recurrent neural networks, while also providing
details on the LSTM and GRU. Section 4 contains selected application-oriented results using our
trained network, while Section 5 presents the performance results using the GPUs described above.

2 Application Background

2.1 Proton Beam Therapy

Radiation therapy is a form of cancer treatment that uses high doses of radiation to kill cancer
cells. X-ray therapy, a form of radiation therapy, is a common technique used for cancer treatment,
where the majority of the radiation dosage is delivered upon entering the body. Because of this,
the tumor does not receive as high of a concentrated dose as it should. In addition, X-rays will
continue to travel posterior into the human body until it exits out the other side. This is not ideal
as there is no need for extra radiation exposure within the body. Proton therapy on the other hand,
which is another form of radiation therapy, is more efficient in this manner. Rather than depositing
the majority of the dosage at the entry site, proton therapy works to deposit the majority of the
dosage at the tumor site itself, thus making the process more effective. Proton therapy also has an
advantage over X-ray therapy in the sense that the proton beam travels no further posterior into
the body than the site of the tumor, allowing for minimal exposure to surrounding tissue. To fully
take advantage of all of the benefits that proton therapy has to offer, we must have a sufficient
technique to monitor the proton beam’s path in real-time as it travel through the patient’s body.

When delivering a dosage to a tumor, the professional treating the patient will create a safety
margin which enlarges the treatment area to ensure that all parts of the tumor are guaranteed to
receive dosage. The safety margin is needed to account for slight movements in the patient during
treatment as well as slightly different positioning of the patient from one treatment to the next,
over several weeks. The availability of real-time information on the trajectory of the proton beam
through the patient’s body during a treatment could enable us to make the safety margin smaller
and use the optimal path. The use of Compton cameras is one proposed method for the real-time
imaging of prompt gamma rays that are emitted by the proton beams as they travel through the
body.
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2.2 Compton Camera

The Compton camera is a multi-stage detector that produces data used to generate images of
proton beams used in proton beam therapy [3]. As protons from the beam enter the body, they
interact with cells in the body causing the emission of prompt gamma rays. Some of these gamma
rays will collide with the Compton camera. An interaction is when a prompt gamma collides with
a stage of the Compton camera. For each interaction, the camera records x-, y-, z-coordinates and
the energy level of the scatter. The readout of interactions in a single period is called an event. The
raw output data from the camera for each interaction is in the form (ei, xi, yi, zi) where i = 1, 2, 3
for the three stages of the Compton camera, and ei is the energy level.

Image reconstruction algorithms exist that can recover the path of the proton beam from the
Compton camera data. The Compton camera’s capability to reconstruct full 3D images of the
proton beam range could be used with the patient’s CT scan to compare the planned treatment
dose and make adjustments. Radiotherapy treatment requires a conformity between the treatment
plan and the treatment delivery, making sure that patient’s bone and soft tissue landmarks are
aligned as they were at the time of treatment planning [9]. Having a patient change position,
wiggle, scratch, look the other way, or any other subtle movement could cause disruption in the
treatment plan. By obtaining reliable information regarding the patient from the reconstructed
images, clinicians have the opportunity to better ensure that the entire tumor receives the exact
dose as planned while making sure surrounding healthy tissues are safe.

Prompt gammas are emitted at speeds close to the speed of light consequently the camera is
unable to detect the true ordering of interactions in an event. The false events cause noise in the
image created impacting the usefulness of the image [3]. There are three different type of Compton
camera scatters.

(a) True Triples: In the True Triples event, the Compton camera will detect the path of the
prompt gamma. However, it is possible that the true path is some other ordering. There are a
total of 6 total combinations of True Triple scatters: 123, 132, 213, 231, 312, 321 and, as the data
stands, only the 123 ordering is usable.

(b) Double-to-Triples (DtoT): In the DtoT event, the Compton camera will detect the path
of a single prompt gamma as a true triple. However, in reality, there were two prompt gammas
who had varying paths. One prompt gamma could have detected as the first and third interaction
and the second prompt gamma could have been mistaken as the second interaction. Similar to
true triples, there are a total of 6 misdetection orderings: 124, 134, 214, 234, 324, 314. The second
prompt gamma interaction is classified as “4” in the misdetection orderings. In this case, without
processing the data, all 6 orderings are unusable.

(c) False Triples: In a false triples event, the Compton camera will detect a true triple whereas
in reality, there were actually three different prompt gammas. As a result, this entire event provides
no insight into the path of a single prompt gamma and must be discarded.

The Need for Machine Learning In order to make proton beam therapy more effective, real-
time imaging is needed to verify location and effectiveness of the proton beam, in particular the
location of the Bragg peak. Machine learning is capable of classifying which type of scatter event
occurred based upon data provided by the Compton camera. These classifications lead to removal of
unusable data which will clean the resulting image. A clearer image allows for treatment verification.
A sufficiently accurate machine learning model could produce an image that is clear enough to be
used in proton beam therapy as a form of treatment verification. A machine learning algorithm
will need approximately 90% testing accuracy to be useful for clinicians.
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3 Machine Learning

Machine learning is a type of artificial intelligence where a machine is trained to identify specific
trends and patterns to make predictions from data. In the case of Compton camera data, the
machine learning algorithm will try to predict the appropriate class for a scatter event. The main
benefit of machine learning is its efficiency in producing results that would take humans alone much
longer. There are four different ways that a machine can be taught: supervised, unsupervised,
semi-supervised, and reinforcement. Supervised learning is a form of learning where the machine
is provided a labeled data set that has regular input data as well as the desired output data. This
allows the machine to produce a model that has been fitted appropriately. Unsupervised learning
is used when one wants to identify hidden patterns within an unlabeled data set. This allows the
machine to identify any trends it finds in the data without special instruction. Semi-supervised
learning is a mixture of supervised and unsupervised where the model is provided some labeled
data and a large amount of unlabeled data. Reinforcement learning is similar to the way humans
learn where the machine will interact with the data and there will be either a positive or negative
reward depending on whether the machine does something the programmer wants or not. The
method used in this study is supervised learning because the data set contains both the data from
the scatter event and the corresponding label of which event scatter took place.

Recurrent neural networks (RNNs) are an efficient neural network used for time series tasks.
They work similar to a coupling process in biology. They rely on information from the previous
system or “loop” to move forward with the next. In this type of neural networks, the sequence or
order of the network is very important. The system can be read and executed differently if the
elements of both series are in different orders. In the case of RNNs, elements include an input layer,
hidden layers, and an output layer.

RNNs use back-propagation through time to illustrate gradients. The difference between RNN
back propagation and other methods such as in a feed forward network is that sum errors are
necessary at each time step because of the shared parameters throughout the network. There are
several types of RNNs that are distinguished by the pathways between inputs and outputs. RNNs
may also contain activation functions that allow a neuron to translate the input into a specific
output. Finally, there are a few RNN structures that vary depending on the desired use. There
are bidirectional recurrent neural networks, long short-term memory, and gated recurrent units.
Bidirectional recurrent networks rely on future data to generate predictions.

RNNs are a viable option for Compton camera data because of their ability to encode infor-
mation about previous events. Shaping an event in the Compton camera as a sequence of three
interactions each with five features, we have transformed the data produced by the Compton cam-
era to a sequence. Using the sequence of interactions the RNN will be able to predict the ordering
of interactions, i.e., the appropriate scatter.

3.1 Long Short-Term Memory

A Long Short-Term Memory (LSTM) neural network is a type of RNN that is traditionally used
for natural language processing and time series forecasting. The unique aspect of LSTM is that
it contains a memory cell. This memory cell is used to store certain pieces of information that
may be needed later in the training process, called a state. The memory cell has three gates to
determined the state: forget gate, input gate, and output gate. The forget gate controls what
stored information can be forgotten. The input gate controls what information should be used to
change the state of the memory cell, and the output gate controls which part of that information
is needed at a given time. As stated previously, RNNs use the output of one step and carry it
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over into the next step in addition to the new data input. The memory cell was added to combat
the main issue with RNNs which is long-term dependency where as more and more information
is fed into the RNN, it becomes less effective in learning because the network cannot remember
everything.

3.2 Gated Recurrent Unit

A Gated Recurrent Unit (GRU) is essentially a streamlined version of the LSTM in Section 3.1.
The GRU has gating units that modulate the flow of information inside of the unit. The GRU
factors in the previous short-term dependency with a reset gate by using a linear interpolation
between the previous activation function value and the current one. The GRU also factors in
previous long-term dependencies with an update gate by taking a linear sum between existing state
and the newly computed state. Unlike the LSTM the GRU does not have separate memory cells.

4 Machine Learning for Compton Camera Imaging

For our studies, we trained the neural network on a data set that was generated using a Monte
Carlo simulation and that consisted of 1,443,993 records and 15 features. These features represent
spatial coordinates, Euclidean distance, and energy deposition for each interaction. An interaction
is a grouping of three spatial coordinates and an energy level. Each row is either a triple, double-to-
triple, or a false triple and consists of three interactions each. Our training data set only consisted
of True Triples, Double-to-Triple scatter, and False events. Furthermore, when testing the neural
network we used datasets that used 150MeV (Mega electron Volt) beams with three different dosage
rates: 20kMU (kilo Monitor Unit), 100kMU, and 180kMU. The larger kMU values correspond to
more intense dosage rates. Both the training and testing datasets were reshaped to be sequentially
read. Therefore each record of 15 features was reshaped to 3 interactions of 5 features each: three
spatial coordinates, Euclidean distance, and energy deposition. Each record is fed into the neural
network as a sequence of 3 interactions. The testing data contains 37,151 testing data points
for 20kMU/min, 17,425 for 100kMU/min, and 12,254 for 180kMU/min from MCDE model test 1
150MeV. More details on these studies and results are available in [4, 5].

The key results of our work done are summarized in Table 4.1 and are detailed in [5]. The Model
column refers to the architecture of the model used. The first row shows the results of the deep
residual fully connected network (DRFCN) in [2]; this model has 512 fully connected layers (FCL).
All of the following rows correspond to the various models tested in [5] while 4 GRU represents the
model with 4 GRU layers and 2 dense layers of 128 and 64 neurons. 4 LSTM represents the model

Model Accuracy Load Time

DRFCN (512 FCL) 75.8% 47s

1 LSTM, 256 FCL 74.6% 24s

4 LSTM w/ more neurons 74.4% 15s

2 LSTM, 128 FCL 74.2% 13s

4 LSTM, 64 FCL 70.0% 11s

4 GRU 73.4% 10s

4 LSTM 73.2% 7s

Table 4.1: Comparison of top performing models with the deep residual fully connected network
(DRFCN) from [3].
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(a) 20kMU/min Uncleaned (b) 20kMU/min Cleaned

Figure 4.1: Image (a) uses testing data without the NN classification for data correction, called
“uncleaned” data. Image (b) uses testing data with NN classification for data correction, called the
“cleaned” data with the 4 layer LSTM model. Testing data used comes from MCDE model test1
150MeV. Results for additional treatment regimes are included in [4].

with 4 LSTM layers and 2 dense layers of 128 and 64 neurons. The Accuracy column represents the
overall testing accuracy of the model at the dosage rate of 100kMU/min. The Load Time column
represents the observed wall clock time in seconds to load the model from its saved state to an
active state, i.e., from disk to GPU memory.

The DRFCN model has the highest accuracy of 75.8% with the load time of 47s. The models
in the last two rows of the table have accuracies of 73.4% and 73.2% respectively while loading in
10s and 7s. These 4 GRU and 4 LSTM models are much simpler with only 6 hidden layers instead
of 512. In particular, they have a factor 85 fewer layers while being only 2% less accurate. These
two recurrent models are also 4 times faster to disk an advantage when treating the patient.

To illustrate the effect that network event classification can have on the PG images produced
from the camera data, reconstructed PG images are shown in Figure 4.1. The image in the left
column is the PG image reconstructed with raw data prior to neural network classification, called
the “uncleaned” data. The image in the right column is the PG image reconstructed with data
after it has been corrected based on the neural network classifications, called the “cleaned” data.
Since each PG image is from data collected during delivery of the same 150MeV proton beam, they
will have the same position and range even though they are reconstructed from data collected at
different dose rates. We observed an improved visual appearance of the beam in which the start
point and end point are now easily distinguishable at all three dose rates. The method used to
reconstruct these images is described in [3].

5 GPU Performance Tests on Taki and Ada Partitions

The tests in Table 5.1 were performed to compare the performances of the 2013 taki partition
with the 2018 taki partition, along with the three GPUs of ada- RTX 2080 Ti, RTX 6000, and
RTX 8000. All studies in the performance comparison study were run using a deep fully connected
neural network whose architecture is similar to the model in [3] with residual blocks and some
hyperparameter changes. The hyperparamters used for these tests include 128 layers with 256

7



neurons, a batch size of 8192, a learning rate of 1e-3, and varying epochs from 64 to 1024 epochs.
Table 5.1 record the performance times for each partition based on the number of epochs. The
taki 2018 partition performs the fastest with completing the job in 4 hours, 13 minutes, and 42
seconds for 1024 epochs. The slowest performance is that of the taki 2013 partition, which takes 15
hours, 49 minutes, and 31 seconds for the same number of epochs. All three ada partitions perform
similarly, and are slightly slower than the taki 2018 partition. The taki 2018 partition is at least
three times faster when compared to the taki 2013 partition, and is the most efficient partition to
use for future studies.

In Table 5.1, the taki 2018 GPU cluster was shown to have the fastest GPU node. The perfor-
mance of the GPU nodes on ada are very similar to those on taki 2018 GPU, but ada has many more
available GPUs. There are 56 RTX 6000 GPUs available and only 4 GPUs available on taki 2018.
The taki 2013 GPUs are too slow for the studies in this research. The number of high performance
GPUs on ada are a huge advantage for performing numerous simulations simultaneously.

The Load Time measurements from Table 4.1 report observations on a reference computer, a
basic laptop with an 11th Gen Intel Core i7–1165G7 CPU at 2.80 GHz with 16 GB of memory. The
laptop has Intel Optane Memory H10 with 512 GB Intel QLC 3D NAND solid state drive connected
by PCIe 3.0 x4 with NVMe interface. The GPU on the laptop is an Intel Iris Xe Graphics card.
On a large cluster like taki or ada, described in the end of Section 1, these times would in fact be
slower, since the central rotating disk storage is much larger and connected only via network cables
to the compute nodes. Even with high-performance fiber-optic cables, this is slower than direct
connection from solid state storage inside a laptop. However, such direct connection and use of
solid state storage is more realistic for the type of computer used in a clinical setting in a treatment
room.

The use of a GPU in the treatment laboratory can significantly decrease the load times, and it
is a realistic possibility since GPUs are small, affordable, and can easily fit in the treatment room.
More details on these studies and results are available in [4].
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(a) Performances with 64 epochs

Cluster Partition Total Time (hh:mm:ss)

taki 2013 00:59:49

taki 2018 00:16:01

ada RTX 2080 00:19:17

ada RTX 6000 00:20:32

ada RTX 8000 00:21:08

(b) Performances with 128 epochs

Cluster Partition Total Time (hh:mm:ss)

taki 2013 01:59:06

taki 2018 00:31:48

ada RTX 2080 00:39:16

ada RTX 6000 00:40:05

ada RTX 8000 00:41:06

(c) Performances with 256 epochs

Cluster Partition Total Time (hh:mm:ss)

taki 2013 04:57:11

taki 2018 01:03:21

ada RTX 2080 01:18:38

ada RTX 6000 01:20:04

ada RTX 8000 01:20:17

(d) Performances with 512 epochs

Cluster Partition Total Time (hh:mm:ss)

taki 2013 10:30:07

taki 2018 02:06:39

ada RTX 2080 02:38:19

ada RTX 6000 02:40:09

ada RTX 8000 02:41:34

(e) Performances with 1024 epochs

Cluster Partition Total Time (hh:mm:ss)

taki 2013 15:49:31

taki 2018 04:13:42

ada RTX 2080 05:09:07

ada RTX 6000 05:18:45

ada RTX 8000 05:25:41

Table 5.1: Table of taki and ada performances with varying epochs.
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