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In low-dimensional systems, indistinguishable particles can display statistics that interpolate between
bosons and fermions. Signatures of these “anyons” have been detected in two-dimensional quasiparti-
cle excitations of the fractional quantum Hall effect, however experimental access to these quasiparticles
remains limited. As an alternative to these “topological anyons,” we propose “statistical anyons” realized
through a statistical mixture of particles with bosonic and fermionic symmetry. We show that the frame-
work of statistical anyons is equivalent to the generalized exclusion statistics (GES) pioneered by Haldane,
significantly broadening the range of systems to which GES apply. We develop the full thermodynamic
characterizations of these statistical anyons, including both equilibrium and nonequilibrium behavior. To
develop a complete picture, we compare the performance of quantum heat engines with working mediums
of statistical anyons and traditional topological anyons, demonstrating the effects of the anyonic phase in
both local equilibrium and fully nonequilibrium regimes. In addition, methods of optimizing engine per-
formance through shortcuts to adiabaticity are investigated, using both linear response and fast-forward
techniques.
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I. INTRODUCTION

A unique aspect of quantum particles is that they may
be truly identical—that is to say there exists no method
or feature by which we would be able to distinguish one
from another. The linear nature of quantum mechanics
accounts for this in the form of a superposition state for
the system of all possible permutations of individual parti-
cle states [1]. Such a composition is not unique, with two
possible solutions distinguished by a phase of ±1 picked
up under particle exchange. The symmetric (+1) solution
defines a class of fundamental particles commonly called
bosons, while the antisymmetric (−1) solution defines a
class commonly called fermions.

This symmetrization requirement has a profound physi-
cal consequence in the form of exchange forces. A simple
evaluation of the separation distance between two identi-
cal particles (see, for example, Ref. [1]) shows that bosons
will tend to bunch together, while fermions will tend to
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be found farther apart. In fact, for fermions the probabil-
ity of two particles being found in the exact same state is
identically zero, which is the origin of the familiar Pauli
exclusion principle.

The field of quantum statistics was significantly
expanded when it was discovered by Leinaas and
Myrheim that the differences in topology in one- and
two-dimensional systems allows for the existence of a con-
tinuum of fractional statistics solutions, represented by a
general phase factor of eiπν [2],

�(r1, r2) = eiπν�(r2, r1). (1)

For ν = 2n, where n = 0, 1, 2, . . ., the bosonic case is
recovered, and for ν = 2n + 1 we obtain the fermionic
case. Shortly thereafter Wilczek proposed a realization of
these “any”-ons in the form of a two-dimensional quasi-
particle made up of a charged particle orbiting a magnetic
flux tube [3]. The name anyons signifies that interchange
of particles (accomplished by successive half-rotations of
each quasiparticle around the other) can produce an arbi-
trary phase between that of fermions and bosons as a
consequence of the Aharonov-Bohm effect [3].

The study of anyons was brought into the forefront
when it was proven by Arovas, Schrieffer, and Wilczek
that quasiparticles entering the fractional quantum Hall
effect possess not only fractional charge, but also obey
fractional statistics [4]. Interest in anyons received another
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boost when it was found that non-Abelian anyons [5]
could be used as key components in the development of a
fault-tolerant quantum computer. For non-Abelian anyons,
exchange (“braiding”) does not just introduce a complex
phase, but acts as a unitary transformation on the state.
In this manner, combinations of braids can act as quan-
tum logic gates [6]. As small local perturbations do not
change the braiding properties of the anyons, this method
of quantum computation is very robust against noise [6].
Experimental access to non-Abelian anyons remains a
challenge, however indirect evidence of non-Abelian any-
onic states has been found [7–9]. See Ref. [10] for a
more detailed review on topological quantum computa-
tion and the role of anyons. While non-Abelian anyons
are necessary for implementing topological quantum com-
putation, understanding the properties of Abelian anyons
can provide important insight into the general behavior of
anyons that may be useful in controlling their non-Abelian
counterparts.

Discussion of anyons in one dimension requires some
additional subtlety, as exchange by rotation is no longer
valid. In this context, Haldane introduced a dimension-
independent approach to anyonic statistics, generalized
exclusion statistics (GES), based on a generalization of
the Pauli exclusion principle [11]. In Haldane’s approach,
particle nature is quantified by a statistical interaction that
determines the degree to which two identical particles can
occupy the same state [11]. Notably, this approach clas-
sifies particle type solely on degree of repulsion and as
such identifies “hardcore-bosons” and fermions as equiv-
alent, despite differences in low-energy behavior [11].
While closely linked to Wilczek’s formulation of anyons,
Haldane’s GES anyons are distinctly different, as their
behavior is based on generalizing the exclusion principle,
rather than the exchange behavior [12].

Haldane’s work was expanded upon by Wu, who
derived the statistical distribution for an ideal anyon gas
[13]. This approach continued to receive attention when it
was shown that the Calogero-Sutherland model gas, con-
sisting of bosons or fermions in a harmonic potential with
an inverse square-law interaction, could be treated as a
system of noninteracting anyons obeying Haldane’s gen-
eralized exclusion statistics [14–19]. The same was found
to be true for a one-dimensional (1D) Lieb-Liniger [20]
model gas of interacting bosons, whose thermodynamics
were first studied by Yang and Yang [21,22], with the
distinction that the statistical interaction occurs between
particles of different momenta [23–26]. Notably, in the
case of the Lieb-Liniger model, the parameter controlling
the statistics cannot be directly identified with the coupling
constant of the interaction, as in the Calogero-Sutherland
model, except in the bosonic and fermionic limits [27].

Further work demonstrated that two-dimensional (2D)
trapped Bose gases with contact interactions can also be
treated as ideal systems obeying GES [28,29]. GES has

even been extended to “topological anyons,” such as those
proposed by Leinaas, Myrheim, and Wilczek [2,3], where
it has been found that dimensionally confined, interact-
ing topological anyons can be mapped to ideal topological
anyons that obey GES [30–41].

The statistical mechanics of both GES and topologi-
cal anyons have seen significant study. For GES anyons,
much of this work has focused on analyzing the distribu-
tion function [13,42–46], partition functions [14,15,18,47],
the virial coefficients [12,24,44], the equation of state
[13,15,24,47], and deriving thermodynamic behavior using
the thermodynamic Bethe ansatz [23,42,48,49]. In the case
of topological anyons, the analysis has followed similar
lines, with detailed examinations of partition functions
[50,51] and the virial coefficients [43,51–56]. Topological
anyon thermodynamics has also been studied in the con-
text of relativistic systems [57] and phase transitions [58].
For the case of non-Abelian topological anyons confined
to the lowest Landau level of a strong magnetic field, it has
been found that the virial coefficients are independent of
the statistics parameter [59].

While much focus has been placed on the statistical
mechanics of anyons, significantly less has been directed
towards examining the impact of anyonic statistics on tra-
ditionally studied thermodynamic systems such as heat
engines. The emerging field of quantum thermodynamics
[60] has also given rise to a resurgence of interest in quan-
tum control techniques in the form of shortcuts to adia-
baticity, finite-time methods for achieving a final quantum
state that would normally result only from infinitely slow
driving [61,62]. Both of these topics are directly relevant to
the development of quantum devices. Heat engines provide
the paradigmatic framework for studying the thermody-
namics of a system in a practical context, and quantum
heat engines have been used to model quantum devices
ranging from masers [63] to quantum computers [64].
Shortcuts to adiabaticity have a wide range of applications
from optimizing the performance of quantum engines to
enhancing the speed of quantum-information processing
in both gate-based and quantum-annealing paradigms [61].
As such, understanding how the thermodynamic behavior
of anyons affects heat-engine performance and shortcuts to
adiabaticity will help shed light on how their unique fea-
tures may be applied in quantum technologies, and how
future experiments may probe these features.

While the theoretical study of anyons is well established,
it is only in recent years that experimental techniques
have advanced to the point that detection of anyons is
feasible. For the case of fractional quantum Hall state
anyons, a popular detection method is based on implement-
ing quasiparticle interferometers whose interference effects
depend directly on the anyonic phase [65–68]. Numer-
ous experimental attempts have followed this approach
[69–74] but distinguishing signatures of the anyonic phase
from interference effects arising from other factors, such
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as Coulomb blockading and Aharonov-Bohm interference,
has proven elusive until recently [75].

The difficulty in accessing fractional quantum Hall
state anyons has led to alternative methods of experi-
mentally studying their properties. A promising route that
we focus on in this work is motivated by the celebrated
Hong-Ou-Mandel (HOM) effect first observed in photonic
interferometry [76].

In Sec. II we establish an implementation of anyons
from a statistical mixture of boson and fermion pairs,
which we refer to as “statistical anyons.” We show that
statistical anyons, despite different construction, behave
equivalently to Haldane’s generalized exclusion principle
anyons. In Sec. III we examine the equilibrium thermo-
dynamic properties of statistical and Abelian topological
anyons, including entropy, heat capacity, and free energy.
In Sec. IV we compare the performance of an endore-
versible quantum Otto engine with a working medium
of statistical anyons to one with a working medium of
topological anyons. In Sec. V, we extend our analysis of
the statistical anyon engine to the fully nonequilibrium
regime. In Sec. VI we explore the role of anyonic statistics
in the implementation of shortcuts to adiabaticity, which
can be used to enhance thermal machine performance by
increasing power without loss of efficiency. In Sec. VII we
conclude with a perspective on future research directions.

II. “STATISTICAL” ANYONS

In the typical HOM effect a pair of entangled pho-
tons are incident symmetrically on a two-port 50:50 beam
splitter. Assuming all other degrees of freedom of the pho-
tons are identical (such as frequency and polarization), the
initial bosonic spatial state is described by a symmetric
superposition of each input,

∣
∣ψB

i

〉 = 1√
2

(

|a〉1 |b〉2 + |b〉1 |a〉2

)

. (2)

The operation of the beam splitter evolves state |a〉 →
(1/

√
2)(|c〉 + i |d〉) and state |b〉 → (1/

√
2)(i |c〉 + |d〉)

with the imaginary component denoting the phase shift of
π picked up upon reflection. Carrying out this evolution on
each input state while keeping track of the particle indices
we find that the only states to survive are those in which
both photons exit the same beam-splitter port,

∣
∣
∣ψ

B
f

〉

= i√
2

(

|c〉1 |c〉2 + |d〉1 |d〉2

)

. (3)

Physically, this is a manifestation of the effective attrac-
tion between bosons (typically this is referred to as “boson
bunching”) [76].

The HOM effect can be extended to cases in which the
other degrees of freedom of the photons are not identical
[77]. Consider a case in which the photons are prepared

in a Bell state basis in polarization. The four possible Bell
pairs are

|�A〉 = 1√
2

(

|00〉 + |11〉
)

,

|�B〉 = 1√
2

(

|00〉 − |11〉
)

,

|�C〉 = 1√
2

(

|01〉 + |10〉
)

,

|�D〉 = 1√
2

(

|01〉 − |10〉
)

,

(4)

where here |0〉 and |1〉 represent orthogonal polarization
states. We can use this additional degree of freedom to
encode fermionic, and ultimately anyonic, statistics into
the behavior of the photons [78–81]. In this manner the
photons can be thought of as a “quantum substrate” on
which we construct our desired statistics.

We note that |�A〉, |�B〉, and |�C〉 are symmetric under
exchange, while |�D〉 is antisymmetric. As photons are
bosons, their overall wave function must still be symmet-
ric. This can occur in one of two ways: (i) a symmet-
ric spatial state paired with one of the three symmetric
polarization states,

∣
∣�B

i

〉 = 1√
2

(

|a〉1 |b〉2 + |b〉1 |a〉2

)

⊗ ∣
∣�j

〉

, (5)

where j = {A, B, C}, or (ii) an antisymmetric spatial state
paired with the antisymmetric polarization state,

∣
∣�F

i

〉 = 1√
2

(

|a〉1 |b〉2 − |b〉1 |a〉2

)

⊗ |�D〉 , (6)

Assuming it is nonpolarizing, the beam splitter acts only
on the spatial portion of the wave function. For case (ii), as
shown in Eq. (6), the output spatial state is

∣
∣
∣ψ

F
f

〉

= 1√
2

(

|c〉1 |d〉2 − |d〉1 |c〉2

)

, (7)

guaranteeing that both photons exit opposite ports of the
beam splitter. This is a result of the effective repulsion
between fermions, and can be seen as a manifestation of
the Pauli exclusion principle. Despite the fact that pho-
tons are fundamentally bosons, since the beam splitter
accesses only the antisymmetric portion of the overall
state, they behave exactly as fermions. Figure 1(a) sum-
marizes the possible outcomes for the two-photon input
states. Notably, both bunching and antibunching behav-
ior vanishes if the photons become distinguishable (say
by increasing the flight time for just one port of the beam
splitter) [77].
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FIG. 1. (a) All possible photon transmission and reflection
combinations. For symmetric (bosonic) states possibilities (i)
and (iv) interfere deconstructively while for antisymmetric
(fermionic) states they interfere constructively. (b) Representa-
tion of statistical anyons for N = 5. Top figure: N particle pairs
are incident, with blue particles representing pairs with symmet-
ric entanglement and red pairs with antisymmetric entanglement.
Bottom figure: The equivalent statistical anyonic representa-
tion for each particle pair, with particle size representing the
probability density of finding a particle at that output port.

This effect can be extended to anyonic statistics by intro-
ducing a phase that tunes between the symmetric and
antisymmetric Bell states. Phase control can be achieved
using a rotated polarization beam splitter [81], adjust-
ing path length [78,79], or introducing phase plates [80],
making this method of simulating anyonic behavior very
experimentally accessible. Here we propose, to the best
of our knowledge, a new and straightforward method of
introducing this anyonic phase through a statistical mixture
of symmetrically and antisymmetrically entangled photon
pairs. Consider an incident anyonic wave function of the
form,

∣
∣ψA

i

〉 = 1√
2

(

|a〉1 |b〉2 + eiπν |b〉1 |a〉2

)

. (8)

Applying the beam splitter unitary to Eq. (8), we see after
a few lines of algebra that the probability of both photons
exiting the same port is

Psame = 1
2

[1 + cos(πν)] . (9)

As ν is varied, we see that Psame interpolates between zero
and one. If we consider N photon pairs incident on the
beam splitter, of which some fraction are symmetrically
entangled and the rest antisymmetrically entangled, we
realize that the same behavior can be replicated on average
by simply changing the distribution of symmetrically and
antisymmetrically entangled pairs. In this framework ν is

a measure of the probability that any given pair in the mix-
ture is symmetrically entangled, ν = ν(pB). This behavior
is shown pictorial in Fig. 1(b).

We refer to this implementation as “statistical anyons”
in contrast to “topological anyons,” that appear in
Wilczek’s charge and flux tube realization [3], or in quasi-
particle excitations in the fractional quantum Hall regime
[4]. While both formulations pick up an anyonic phase
under particle exchange and display behavior interpolat-
ing between that of fermions and bosons, in the present
statistical anyon framework this is a result of averaging
over the behavior of a large number of particles, while
for topological anyons it is a property of the quasiparti-
cles themselves. Note that when we refer to topological
anyons, we are considering specifically Abelian particles,
whose exchange introduces a phase a eiπν [56].

From a topological standpoint, there is another impor-
tant distinction between statistical and topological anyons.
It is well established that the configuration space of topo-
logical anyon statistics is a representation of the braid
group, rather than the permutation group, as is the case
for bosonic and fermionic statistics [2,56]. This difference
arises as in two dimensions, two repeated exchanges is a
topologically distinct operation from doing nothing, while
in three dimensions these operations are topologically
equivalent [2,56]. This leads to the physical consequence
that the direction of the exchange is significant for topolog-
ical anyons, as two exchanges in the same direction will
result in a wave function different from the original by a
phase of e2iπν .

Since statistical anyons are constructed from an aver-
age over a mixture of bosons and fermions, two repeated
exchanges will always return the original wave function,
independent of exchange direction. The average phase for
any pair of particles in the mixture is then given by the
average over the bosonic and fermionic phase factors and
as such will always fall between −1 and 1. Thus the sta-
tistical anyon mixture corresponding to the topological
anyon phase of eiπν will be weighted such that the aver-
age phase of the mixture is cos[πν(pB)]. We can represent
the two-dimensional space of possible topological anyon
phases as a circle, with bosonic and fermionic phases given
by diametrically opposite points. The space of possible
averaged statistical anyon phases is then represented by
the diameter line of the circle. In this geometric picture
the averaged statistical anyon phase is the projection of
the corresponding topological anyon phase onto the real
axis. These differences between topological and statistical
anyons are illustrated graphically in Fig. 2.

We see from this comparison that, as a representation
of the braid group, topological anyons show increased
complexity in comparison to statistical anyons. This leads
to the motivating questions of this work: How does the
thermodynamics of topological and statistical anyons com-
pare? Can the simpler, more experimentally accessible
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eiπν

cos[πν(pB)]
+1−1

(a)

ψ1ψ2 ψ1ψ2 ψ1ψ2

ψ1ψ2ψ1ψ2

±ψ2ψ1eiπνψ2ψ1eiπνψ2ψ1

e2iπνψ1ψ2
(b)

FIG. 2. (a) Comparison between the exchange phases of topological and statistical anyons. For topological anyons the direction of
the exchange (clockwise or counterclockwise) determines the sign of the anyonic phase. As such, the space of possible topological
anyon exchange phases can be represented by a circle, with bosonic and fermionic symmetry lying on opposite sides. For statistical
anyons, the anyonic phase is an average over NB bosonic phase factors and NF fermionic phase factors. As such, the space of possible
statistical anyon phases is confined to a line between −1 and +1. (b) Comparison between topological and statistical anyons undergoing
two interchanges. For topological anyons two exchanges in opposite directions leave the wave function unchanged (left diagram), while
two exchanges in the same direction results in the original wave function multiplied by an additional phase of e2iπν (middle diagram).
For statistical anyons the direction of the exchange is irrelevant, with two exchanges always resulting in an unchanged wave function
(right diagram).

statistical anyons replicate any of the unique properties
of topological anyons? Do statistical anyons themselves
display intricate thermodynamic behavior that can be
exploited?

A. Statistical anyon wave function

To better understand the relationship between statisti-
cal and topological anyons, let us consider extending the
notion of statistical anyons beyond the realm of quantum
optics. For a single pair of bosonic particles the spatial
wave function is given by

�B(x) = 1
√

2(1 + δn1,n2)

[

ψn1(x)ψn2(y)+ ψn1(y)ψn2(x)
]

,

(10)

where ψn(x) is the normalized single-particle eigenstate
corresponding to quantum number n and x = (x, y). Note
that the normalization coefficient for bosons changes when
both particles occupy the same state, as in this case the un-
normalized wave function becomes identical to the wave
function of two distinguishable particles with an additional
factor of 2. Similarly, the wave function of a fermionic
particle pair is

�F(x) = 1√
2

[

ψn1(x)ψn2(y)− ψn1(y)ψn2(x)
]

. (11)

Here we require no δ function in the normalization, as two
fermions will never occupy the same state. The total wave

function for N independent particle pairs, of which NB of
the pairs are symmetric under exchange and NF = N − NB
of the pairs are antisymmetric under exchange is then

�(x1, x2, . . . , xN ) =
NB∏

j =1

�B(xj )

N
∏

k=NB+1

�F(xk). (12)

This wave function can be equivalently represented in the
framework of statistical anyons as

�(x1, x2, . . . , xN ) =
N
∏

j =1

�A(xj ), (13)

where

�A(xj ) = 1
√

2(1 + δn1,n2)
[ψn1(xj )ψn2(yj )

+ eiπνjψn1(yj )ψn2(xj )]. (14)

We pause here to note a significant difference between sta-
tistical and topological anyons. As we see in Eqs. (13)
and (14), the statistical anyon wave function can always
be constructed from a product of superpositions of the
single-particle wave functions. This is not generally true
for the wave function of topological anyons, outside of
the bosonic and fermionic limits of the anyonic phase
[43,51,56].
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The product in Eq. (13) must give NB symmetric wave
functions and NF antisymmetric wave functions. This con-
dition is fulfilled if the anyonic phase in Eq. (14) is given
by νj = �(j − NB − 1), where �(·) is the Heaviside step
function, using the convention �(0) = 1. In this frame-
work, the anyonic factor in Eq. (14) can be thought of
as giving the “average” phase picked up under exchange
for any one of the N pairs of particles. For large N we
can express the number of bosonic and fermionic parti-
cle pairs as NB = NpB and NF = NpF = N (1 − pB) where
pB (pF ) is the probability of a particle pair having bosonic
(fermionic) symmetry.

In the limit of a single two-particle system, the anyonic
wave function becomes

�A(x) = 1
√

2(1 + δn1,n2)

[

ψn1(x)ψn2(y)± ψn1(y)ψn2(x)
]

,

(15)

with the sign determined by whether pB is 0 or 1, as in real-
ity each individual pair of particles must be either bosons
or fermions.

B. Statistical anyons in second quantization

The statistical anyon framework can also be extended
to second quantization, from which we can determine
the appropriate commutation relations. For topological
anyons, the creation and annihilation operators can be
determined from the bosonic or fermionic operators via
the Jordan-Wigner transformation, and obey the following
commutation relations [82]:

a(xC)a(yC)− e−iπνa(yC)a(xC) = 0,

a(xC)a†(yC)− eiπνa†(yC)a(xC) = 0,

a†(xC)a(yC)− eiπνa(yC)a†(xC) = 0,

a†(xC)a†(yC)− e−iπνa†(yC)a†(xC) = 0.

(16)

Note that the commutation relations are dependent on the
curve C, which indicates the direction of the exchange
rotation. As the topological anyon operators are a repre-
sentation of the braid group, the phase picked up depends
on whether or not the exchange was performed clockwise
or counterclockwise (as illustrated in Fig. 2). We see that
ν = 0 restores the boson commutation relations and ν = 1
restores the fermion anticommutation relations.

Notably, for particles at the same position the anyonic
phase cancels out and the canonical commutation relation
reduces to [43,82]

a(xC)a†(xC)± a†(xC)a(xC) = 1, (17)

with the (+) occurring if the anyonic operators are con-
structed from transformed fermionic operators, and the (−)

if they are constructed from transformed bosonic oper-
ators. In general, topological anyons act as “hard-core”
particles for all ν other than ν = 0, obeying an exclusion
principle [43]. In this sense, the anyonic phase parameter
can be thought of as quantifying the degree of repulsion
between two identical particles [43].

To determine the commutation relations for statistical
anyon creation and annihilation operators, we follow a
similar approach to the construction of the statistical anyon
wave function in the first quantization. Let us consider
N Fock states. Starting each in the vacuum state, we can
construct a single occupancy state from the application of
the corresponding creation operator. We apply the bosonic
creation operator to NB states and the fermionic creation
operator to NF = N − NB states,

|1〉1 |1〉2 · · · |1〉N =
NB∏

j =1

b†
j |0〉j

N
∏

k=NB+1

f †
k |0〉k . (18)

We can equivalently represent this state in the statistical
anyon picture using a statistical anyon creation operator,

|1〉1 |1〉2 · · · |1〉N =
N
∏

j =1

s†
j |0〉j . (19)

The operator s†
j must reduce to the bosonic creation oper-

ator for j ≤ NB and to the fermionic creation operator
for j > NB. We can similarly define a statistical anyon
annihilation operator that must reduce to the bosonic and
fermionic annihilation operators under the same condi-
tions. With these restrictions, we can construct the statisti-
cal anyon commutation relations as follows:

s†
j sj − eiπ�(j −NB−1)sj s†

j = 1,

sj s†
j − eiπ�(j −NB−1)s†

j sj = 1,

s†
j s†

j − eiπ�(j −NB−1)s†
j s†

j = 0,

sj sj − eiπ�(j −NB−1)sj sj = 0.

(20)

In the limit of a single particle the canonical commutation
reduces to

sj s†
j ± s†

j sj = 1, (21)

as in reality the particle is either a boson or fermion.
This echoes Eq. (17), where the form of the commuta-
tion relation depends on whether the anyonic operators
are constructed from transformed fermionic or bosonic
operators.
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C. Statistical anyons and generalized exclusion
statistics

A notable difference between statistical and topological
anyons is the lack of an exclusion principle, except in the
fermionic limit. Instead, statistical anyons admit “partially
occupied” states that arise from averaging over the occu-
pancy of all N systems. In this sense, the statistical anyon
framework is more akin to Haldane’s generalized exclu-
sion statistics [11]. GES is constructed by extending the
Pauli exclusion principle through the definition of a param-
eterized differential relation that quantifies the change in
the dimension of the Hilbert space of a discrete-state
system upon a change in the particle number [11],

	dGES = −g	N . (22)

For bosons, with infinite possible state occupancy, the
dimension is independent of the particle number, thus g =
0. For fermions, subject to the full exclusion principle,
the dimension scales directly with each additional parti-
cle, thus g = 1. GES statistics anyons have been shown
to manifest in confined, interacting gasses, such as the
Calogero-Sutherland model gas [14,16,17,19]. Notably,
this implementation of GES anyons can be directly
mapped to topological anyons confined to the lowest Lan-
dau level [13,15,47,83–85]. More recently, it has been
shown that, in general, the thermodynamic potential for a
gas of particles with a discrete one-body spectrum obey-
ing GES can be constructed from a generalization of the
relation found for Calogero model GES anyons or lowest
Landau level topological anyons [47].

Other physical systems shown to host GES anyons
include Lieb-Liniger and hard-core Tonks-Girardeau
gasses with δ-function potentials [30,31,33–41,86] as well
as Hubbard chains [87,88], whose anyonic behavior can
be imitated in ultracold gasses [89]. More generally, it
has been shown that there exists a class of integrable
models solvable by the thermodynamic Bethe ansatz can
be recast in terms of ideal quasiparticles obeying GES
[16,23,42,48,49].

In the statistical anyon framework, the change in the
Hilbert-space dimension will be given by the sum of
the dimension change if the particles are bosons and the
dimension change if they are fermions, weighted by the

respective probabilities,

	dSA = pB	dB + pF	dF . (23)

Noting 	dB = 0 and 	dF = −	N , this simplifies to

	dSA = −pF	N . (24)

Comparing Eq. (24) to Eq. (22) we see that the parameter g
in the GES framework is identical to the fermion probabil-
ity in the statistical anyon framework. This demonstrates
that the statistical anyon framework is fully equivalent to
GES anyons.

The first indications that GES anyons could be described
in terms of bosons and fermions came when Murthy and
Shankar [14] noted that a Calogero-Sutherland model gas
could be described by ideal GES anyons, and that the
resulting partition function could be factored into bosonic
and fermionic components raised to the power of the GES
parameter g and g − 1, respectively. Here we have demon-
strated explicitly that GES can be constructed from the
average behavior of an ideal statistical mixture of bosons
and fermions, and identified the GES parameter with the
statistical weights of the mixture.

For bookkeeping ease, we conclude this section by com-
paring the features of topological, statistical, and GES
anyons in Table I.

III. EQUILIBRIUM THERMODYNAMICS OF
ANYONS

A. 1D statistical anyons

The first step in understanding the thermodynamics of
anyonic systems is to examine how the thermodynamic
quantities such as internal energy, entropy, and heat capac-
ity depend on the anyonic phase. To determine this, we
need the proper partition function for our system. Moti-
vated by the manifestation of GES in trapped, interacting
gasses, let us consider two statistical anyons in a 1D
harmonic potential. However, in this case we consider
the particles to be noninteracting. Trapped boson-fermion
mixtures have seen previous study both theoretically [90–
92] and experimentally [93–95], but this work has focused
primarily on effects on the ground-state configurations that
arise from interactions between the boson and fermion
species. In the statistical anyon framework we instead con-
sider the average collective behavior that arises in the ideal
gas limit of such a mixture.

TABLE I. Comparison of the features and behavior of topological, statistical, and GES anyons.

Dim. Rep. group Exclusion principle Origin of anyonic behavior

Topological 2D Braid (Abelian) Hard core for all ν �= 0 Complex phase introduced by exchange
Statistical Arbitrary Permutation Generalized exclusion Statistical average of bosonic and fermionic behavior
GES Arbitrary Permutation Generalized exclusion Generalization of state occupancy arising from

interparticle interactions
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The Hamiltonian for our system of harmonically con-
fined noninteracting statistical anyons reads

H = p2
1 + p2

2

2m
+ 1

2
mω2(x2

1 + x2
2). (25)

In the statistical anyon framework the partition function for
a pair of anyons evolving under this Hamiltonian is

ZSA = (ZB)
pB(ZF)

1−pB , (26)

where ZB is the partition function for two bosons and ZF
is the partition function for two fermions. See Appendix A
for a full derivation of the partition function. Note that, as
expected, Eq. (26) is identical to that of a GES Calogero-
Sutherland model gas [14], with the generalized exclusion
statistics parameter g replaced by 1 − pB. We see that,
in the statistical anyon framework, the anyonic behavior
arises purely out of the average properties, rather than from
an interaction term in the Hamiltonian.

Using Eq. (26) we can determine the internal energy,
free energy, entropy, and heat capacity as follows:

E = − ∂

∂β
ln(ZSA), F = − 1

β
ln(ZSA),

S = kBβ
2 ∂F
∂β

, C = −kBβ
2 ∂E
∂β

, (27)

where β is the inverse temperature and kB is Boltzmann’s
constant. Plugging Eq. (26) into Eq. (27) we find

E = 1
2
�ω [3 coth(β�ω)+ csch(β�ω)− 2pB + 1] ,

F = 1
β

ln
[

1
8

csch2
(
β�ω

2

)

− 1
4

csch(β�ω)

]

− pB�ω,

S = 1
2

kBβ�ω [3 coth(β�ω)+ csch(β�ω)+ 1] ,

+ kB ln
[

1
8

csch2
(
β�ω

2

)

− 1
4

csch(β�ω)

]

,

C = 1
2

kBβ
2
�

2ω2csch2(β�ω) [cosh(β�ω)+ 3] . (28)

Plots of each as a function of temperature are shown in
Fig. 3. We see that both the internal energy and free energy

are shifted by a constant proportional to pB. Physically this
offset arises from the generalized exclusion principle, as
outlined in Sec. II. The constant shifts the lowest energy
state of the system from the bosonic limit, with both par-
ticles in the ground state of the oscillator, to the fermionic
limit, with one particle in the ground state and the other in
the first excited state.

We find that the dependence on pB cancels out exactly
in the entropy and heat capacity, leaving them independent
of the anyonic phase. This is expected, as in the thermal
equilibrium state both fermions and bosons have an equiv-
alent, countably infinite, number of available states. Note
that the behavior of the heat capacity is consistent with
that of a one-dimensional, two-oscillator Einstein solid
[96]. However, since topological anyons do not exist in
one dimension, in order to properly compare their ther-
modynamic behavior to that of statistical anyons, we must
extend the above analysis to two dimensions.

B. 2D statistical anyons

We can repeat the thermodynamic analysis for two sta-
tistical anyons in a two-dimensional harmonic potential.
To avoid clutter, we give the full expressions for the
internal energy, free energy, entropy, and heat capacity in
Appendix B. We plot each as a function of temperature in
Fig. 4. In contrast to the one-dimensional case, we see that
now the entropy and heat capacity do depend on pB. The
origin of this difference is clear if we think of the entropy
for bosons and fermions in the zero-temperature limit. For
bosons, only one configuration is available—both parti-
cles in the ground state in both dimensions. However,
the fermion ground state is degenerate. The Pauli exclu-
sion principle requires that one particle must be in the
ground state and the other in the first excited state, but the
excited state can be in either dimension. This results in a
nonzero entropy at T = 0. The entropy of generic statis-
tical anyons interpolates smoothly between the boson and
fermion limits as pB changes from 1 to 0.

C. 2D topological anyons

The partition function for two topological anyons in a
two-dimensional harmonic potential has been previously
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FIG. 3. Equilibrium (a) internal energy, (b) free energy, (c) entropy, and (d) heat capacity for two statistical anyons in one dimension
with anyonic phase corresponding to pB = 1 (blue, dashed), pB = 1/2 (red, solid), and pB = 0 (green, dot dashed).
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FIG. 4. Equilibrium (a) internal energy, (b) free energy, (c) entropy, and (d) heat capacity for two statistical anyons in two dimensions
with anyonic phase corresponding to pB = 1 (blue, dashed), pB = 1/2 (red, solid), and pB = 0 (green, dot dashed).

derived (see, for example, Refs. [51,56]). It is given by

ZTA = e−β�ω(2+ν) + e−β�ω(4−ν)

(1 − e−β�ω)2(e−2β�ω)2
, (29)

where ν is the anyonic phase. The first thing we note is
that, unlike the statistical anyon and GES anyon partition
function, the topological anyon partition function cannot
be expressed as a function of the boson and fermion par-
tition functions. This arises from the increased complexity
of the topological anyon wave function. In the two-anyon
problem, the anyonic phase can be considered as a shift in
the value of the relative motion angular momentum [43].
However, accounting for the fact that the phase depends
on the direction of rotation (a consideration unique to the
braid group-based topological anyons) leads to a multi-
valued wave function [51]. Accounting for both branches
of the wave function results in the two separate anyonic
phase-dependent terms seen in the numerator of Eq. (29).

Following the same process as for the statistical anyons,
we determine the equilibrium internal energy, free energy,
entropy, and heat capacity for the two-anyon system, with
the full expressions given in Appendix B. Plots of each
as a function of temperature are given in Fig. 5. Here we
see qualitatively similar behavior to the two-dimensional
statistical anyons, with some notable differences. We see
that the entropy of topological anyons converges to zero
in the zero-temperature limit, indicating the existence of a
unique ground-state configuration for all values of ν except
ν = 1, corresponding to pure fermions. Another significant
discrepancy is seen in the behavior of the heat capacity.

For intermediate values of the anyonic phase we see that,
at low temperatures, the topological anyon heat capacity is
higher than that of both the bosonic and fermionic values.

Comparing Figs. 4 and 5 we see that, in each plot, for
the statistical anyons the line corresponding to pB = 1/2
remains evenly spaced between the bosonic and fermionic
limits, while for topological anyons the line corresponding
to ν = 1/2 bends more towards the fermionic behavior.
This difference has its origin in the complicated energy
spectrum that arises from the topological anyons’ “hard-
core” exclusion principle and multivalued wave function.
For topological anyons in a harmonic potential, the energy,
degeneracy, and level spacing all depend on ν [43,51]. In
the ground state, the energy eigenvalues corresponding to
the two branches of the wave function coincide only in the
fermionic limit, making ν = 1 the only degenerate ground
state and giving rise to the observed zero-temperature limit
of the entropy. However, as temperature increases, the
hard-core nature of topological anyons biases their ther-
modynamic behavior more towards the fermionic limit.

The unique behavior of the topological anyon heat
capacity arises from similar considerations. In the zero-
temperature limit, the internal energy of the topologi-
cal anyons interpolates linearly between the bosonic and
fermionic ground states for intermediate values of ν,
while at higher temperatures it converges to the fermionic
behavior. This transition between an even average of the
bosonic and fermionic behavior at zero temperature to
near-fermionic behavior at higher temperatures necessi-
tates a steeper positive slope of the internal energy at low
temperatures than either bosons or fermions. This, in turn,
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FIG. 5. Equilibrium (a) internal energy, (b) free energy, (c) entropy, and (d) heat capacity for two topological anyons with anyonic
phase corresponding to ν = 0 (blue, dashed), ν = 1/2 (red, solid), and ν = 1 (green, dot dashed).
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leads to a heat capacity for intermediate values of ν that
exceeds both bosons and fermions in this low-temperature
transition region.

In contrast, the statistical anyon energy spectrum is
a much simpler weighted average over the bosonic and
fermionic spectrums, leading to thermodynamic behavior
that is evenly spaced between the bosonic and fermionic
limits over all temperatures for pB = 1/2. This has notable
ramifications for thermodynamic applications of anyons,
as statistical anyons will retain their “intermediate” behav-
ior at higher temperature regimes.

D. Thermodynamic equivalence

In this section we have seen that statistical and topo-
logical anyons display different thermodynamic behavior.
This brings up the question: Is it possible to mimic the
richer behavior of topological anyons using the mathemat-
ically and experimentally simpler framework of statistical
anyons?

To determine the relation between the topological anyon
parameter ν, and the statistical anyon parameter pB we can
set their partition functions equal to each other and solve
for pB. This yields

pB = ln{cosh[(ν − 1)β�ω]}
ln [cosh(β�ω)]

. (30)

We see that in order to capture the more complicated
thermodynamic behavior pB becomes dependent on the
temperature and frequency parameters. If we take the
high-temperature limit of Eq. (30) we find a simpler,
parameter-independent relation,

pB = (ν − 1)2. (31)

We note that the approximate relation becomes exact for
ν = 0, 1, as the behavior of the statistical and topological
anyons must converge to the same bosonic and fermionic
limits. Notably, previous comparisons between Haldane’s
GES parameter and the topological anyon phase using the
second Virial coefficient have also determined a quadratic
polynomial relation [12].

Plotting the internal energy, free energy, entropy and
heat capacity for topological anyons and statistical anyons

using Eq. (31) in Fig. 6 we see that the statistical and topo-
logical anyon behavior rapidly converges. We note that
the parameter-independent approximation does not cap-
ture the low-temperature behavior of the topological anyon
heat capacity. To fully imitate this behavior, we must use
Eq. (30).

By applying Eq. (27) along with the relation in Eq. (30)
it is straightforward to see that the equations of state
for statistical and topological anyons become identical.
The ability to mimic the thermodynamic properties of
topological anyons using statistical anyons has important
ramifications from an experimental standpoint. The dif-
ficulty of detecting and manipulating topological anyons
in two-dimensional materials makes probing their ther-
modynamics exceedingly challenging. Statistical anyons
provide a straightforward alternative, both as a model to
test thermodynamic control of topological anyons or as
a replacement in applications that would rely on their
thermodynamics properties.

IV. ENDOREVERSIBLE ANYONIC ENGINE

Having established the equilibrium thermodynamic
behavior of both statistical and topological anyons, we now
continue our exploration of their behavior in the context
of heat engines. Studying the thermodynamic properties
of a system using the framework of cyclic heat engines
has a rich tradition as old as thermodynamics itself [60].
In equilibrium thermodynamics the optimal efficiency of
any heat-engine cycle is bounded by the Carnot effi-
ciency, regardless of the properties of the working medium
[97]. However, this efficiency is obtained in the limit of
infinitely slow, quasistatic strokes, resulting in zero power
output. A figure of merit of more practical use, the effi-
ciency at maximum power (EMP), was introduced by Cur-
zon and Ahlborn using the framework of endoreversible
thermodynamics [98–100]. Curzon and Ahlborn found the
EMP of a endoreversible Carnot engine to be

ηCA = 1 −
√

Tc

Th
, (32)

where Tc (Th) is the cold (hot) reservoir temperature [98].
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FIG. 6. Comparison of (a) internal energy, (b) free energy, (c) entropy, and (d) heat capacity of two topological anyons with phase
parameter ν, against two statistical anyons using phase parameter pB = (ν − 1)2. The lines correspond to ν = 0, pB = 1 (blue, dashed),
ν = 1, pB = 0 (green, dot dashed), ν = 1/2 (red, solid), and pB = 1/4 (black, dotted).
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In endoreversible thermodynamics the system is
assumed to be in a state of local equilibrium at all times,
but with dynamics that occur quickly enough that global
equilibrium with the environment is not achieved. This
results in a process that is locally reversible, but globally
irreversible [100]. It has been shown that the performance
of a quantum Otto engine is dependent on the stroke pro-
tocol [101–114] and the nature of the working medium
[115–129], with the EMP, in particular, being determined
by the form of the fundamental relation of the working
medium [130]. In Ref. [122] it was shown that the EMP
of an endoreversible quantum Otto engine with a single-
particle working medium can exceed the Curzon-Ahlborn
efficiency. It is of interest then to examine the role of
quantum statistics in the operation of such an engine.

In the following analysis we closely follow the method
established in Ref. [122]. Let us consider a working
medium of two anyons in a harmonic potential, evolving
under the Hamiltonian given in Eq. (25) with a time-
dependent frequency. The Otto cycle consists of four
strokes summarized graphically in Fig. 7.

(1) Isentropic compression
During this stroke the working medium remains in a

state of constant entropy, exchanging no heat with the envi-
ronment. Using the first law 	E = Q + W we can identify
the change in internal energy completely with work,

Wcomp = E(TB,ω2)− E(TA,ω1). (33)

(2) Isochoric heating
During this stroke the externally controlled work param-

eter (the trap frequency in the case of the harmonic engine)
is held constant, resulting in zero work. By the first law we

A

B

C

D

1

2

3

4

T h

T c

FIG. 7. Energy-frequency diagram of a quantum Otto cycle for
a harmonic trapping potential with a working medium of two
anyons.

can then identify the change in internal energy completely
with heat,

Qh = E(TC,ω2)− E(TB,ω2). (34)

Recalling the conditions of endoreversibility we note that
the working medium does not fully thermalize with the hot
reservoir during this stroke, giving us the condition TB ≤
TC ≤ Th [98]. The change in temperature during the stroke
depends on the properties of the working medium can be
determined using Fourier’s law [97],

dT
dt

= −αh[T(t)− Th], (35)

where αh is a constant determined by the heat capacity and
thermal conductivity of the working medium.

(3) Isentropic expansion
In exactly the same manner as the compression stroke,

we can identify the change in internal energy during the
expansion with work,

Wexp = E(TD,ω1)− E(TC,ω2). (36)

(4) Isochoric cooling
As in the heating stroke, we identify the change in

internal energy during this stroke with heat,

Qc = E(TA,ω1)− E(TD,ω1). (37)

The temperature change can again be determined from
Fourier’s law,

dT
dt

= −αc[T(t)− Tc], (38)

where TD > TA ≥ Tc.
The efficiency of the engine is given by the ratio of the

total work and the heat exchanged with the hot reservoir,

η = −Wcomp + Wexp

Qh
, (39)

and the power output by the ratio of the total work to the
cycle duration,

P = −Wcomp + Wexp

γ (τh + τc)
. (40)

Note that only the durations of the heating and cool-
ing strokes are accounted for explicitly, with γ serving
as a multiplicative factor that implicitly incorporates the
duration of the isentropic strokes [122].
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A. 1D statistical anyons

Combining the internal energy and entropy from
Eq. (28) with Eqs. (33), (34), and (36) and plugging it
all into Eq. (39) yields a complicated expression that can
be considerably simplified. First we note that from the
isentropic strokes we have the conditions

S(TA,ω1) = S(TB,ω2) and S(TC,ω2) = S(TD,ω1). (41)

Using Eq. (28) it is straightforward to verify that the
conditions in Eq. (41) are satisfied by

TAω2 = TBω1 and TCω1 = TDω2. (42)

Furthermore, Eqs. (35) and (38) can be fully solved to
yield,

TC − Th = (TB − Th)e−αhτh ,

TA − Tc = (TD − Tc)e−αcτc ,
(43)

where τh (τc) is the duration of the heating (cooling) stroke.
Combining Eq. (39) with Eqs. (42) and (43) yields a much
simplified form for the efficiency,

η = 1 − κ , (44)

where κ ≡ ω1/ω2 is the compression ratio. We note that
this efficiency is identical to classical, reversible Otto
efficiency, as well as the single-particle quantum Otto effi-
ciency found in Ref. [122] and is completely independent
of the quantum statistics of the working medium.

To find the EMP we next need to compute the power,
given by Eq. (45). Eliminating free parameters using the
same simplification process as we did for the efficiency we
arrive at the much more cumbersome expression,

P = (1 − κ)ω2�

γ (τh + τc)
[3 coth(�)− 3 coth(�)

+ csch (�)− csch (�)], (45)

where

� = κω2�
(

eαcτc+αhτh − 1
)

kB [κTh (eαhτh − 1) eαcτc + Tc (eαcτc − 1)]
,

� = κω2�
(

eαcτc+αhτh − 1
)

kB [κTh (eαhτh − 1)+ Tc (eαcτc − 1) eαhτh]
.

(46)

The first thing that we can note about this expression is
that the endoreversible power output does not depend on
the statistics of the working medium for one-dimensional
statistical anyons. This is consistent with the results of
Ref. [127], which showed differences in the performance
of a one-dimensional harmonic quantum Otto engine aris-
ing from the bosonic or fermionic nature of the working

medium are a feature of nonequilibrium performance. In
the case of endoreversible operation, the only effect of
the generalized exclusion principle is to shift the value
of the work expended during the compression stroke by
�pB(ω1 − ω2) and the work extracted during the expansion
stroke by �pB(ω2 − ω1). Thus when Wcomp and Wexp are
summed to determine the total work, these contributions
exactly cancel each other out.

We observe that the power vanishes for the case of
� = �. Examining Eq. (46) we see that these expressions
become equivalent in the limit κ → Tc/Th. This matches
with our physical intuition, as this limit corresponds to
quasistatic operation at Carnot efficiency. This provides
us with the parameter range � < � where the power out-
put is positive and the cycle operates as an engine. This is
typically referred to as the positive work condition.

To find the EMP we maximize Eq. (45) numerically with
respect to the compression ratio. The EMP as a function of
the ratio of bath temperatures for one-dimensional statis-
tical anyons is shown in Fig. 8, along with the EMP of
distinguishable particles, the Curzon-Ahlborn efficiency,
and the Carnot efficiency for comparison. Notably we
see that, while the EMP does not depend on the any-
onic phase, it does depend on whether or not the particles
of the working medium are distinguishable. In this case,
distinguishable refers to particles that remain sufficiently
spatially separated such that the overlap of their wave func-
tions is negligible, negating any behavior that would arise
from the exchange forces. Experimentally, we can con-
sider an engine consisting of two distinguishable particles
as equivalent to the joint output of two separate single-
particle engines situated across the lab from each other.
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FIG. 8. EMP as a function of the ratio of bath temperatures
for two distinguishable quantum particles (dot dashed, blue)
and two indistinguishable statistical anyons (dashed, green) in
one dimension. The Curzon-Ahlborn efficiency (bottom solid,
red) and the Carnot efficiency (top solid, black) are given in
comparison. Operation is in the quantum regime correspond-
ing to �ω2/kBTc = 10. Parameters are αc = αh = γ = 1, and
τc = τh = 0.5.
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We see that, at low temperature ratios, the EMP of the
indistinguishable, anyonic working medium outperforms
that of two distinguishable quantum particles. We also
note that for both indistinguishable and distinguishable
quantum working mediums the EMP is greater than the
Curzon-Ahlborn efficiency, confirming the results found in
Ref. [122].

B. 2D statistical anyons

It is straightforward to extend the previous analysis
to two dimensions. As noted in Sec. IV, in two dimen-
sions the entropy is no longer independent of the anyonic
phase, in the form of pB. Similarly, in the two-dimensional
endoreversible engine the pB dependence in the work
done on expansion and expended during compression no
longer cancel each other out, resulting in an anyonic
phase-dependent power output,

P = (1 − κ)ω2�

γ (τh + τc)

[

2 coth(�)− 2 coth(�)+ coth(�/2)

− coth(�/2)+ pB tanh(�)− pB tanh(�)
]

, (47)

where � and � are the same as given in Eq. (46). This
dependence manifests in the EMP at small values of the
bath-temperature ratio, shown in Fig. 9. We see that, as
in one dimension, all indistinguishable working mediums
show greater EMP than a working medium of two dis-
tinguishable quantum particles. We see further that the
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FIG. 9. EMP as a function of the ratio of bath temperatures
for two statistical anyons with pB = 1 (long dashed, brown),
pB = 1/2 (short dashed, green), pB = 0 (dotted, dark pink), and
two distinguishable quantum particles (dot dashed, blue) in two
dimensions. The Curzon-Ahlborn efficiency (solid, red) is given
in comparison. The bottom inset highlights the range of bath-
temperature ratios at which bosonic working mediums display
the greatest EMP and the top inset highlights the critical point
and transition to the region where fermionic working mediums
begin to outperform bosonic ones. Operation is in the quan-
tum regime corresponding to �ω2/kBTc = 10. Parameters are
αc = αh = γ = 1, and τc = τh = 0.5.

anyonic phase that gives maximum performance depends
on the bath temperature ratio. For temperature ratios
between around 0.1 and 0.25 we see that bosonic sym-
metry (pB = 1) gives the greatest enhancement to EMP
over distinguishable particles and fermionic symmetry
(pB = 0) the least. However, around Tc/Th = 0.1 there is
a crossing, after which the fermionic symmetry gives the
greatest enhancement to the EMP and bosonic symmetry
the least. Intermediate values of pB interpolate smoothly
between these limits. Interestingly, this transition indicates
the existence of a critical point at which the EMP becomes
equivalent for all values of pB.

The origin of this behavior can be traced to the fact
that, unlike in the one-dimensional case, the energy shift
arising from the generalized exclusion principle is temper-
ature dependent. In one dimension, while the magnitude
of each energy eigenvalue depends on whether the par-
ticles are bosons or fermions, the degeneracy does not.
In two dimensions, both the magnitude and degeneracy
of each energy state differ between bosons and fermions,
leading to the temperature-dependent shift in the internal
energy. Due to this temperature dependence, in general
the contributions to the work from pB on the compression
and expansion strokes no longer cancel out. The critical
point then corresponds to the unique ratio of bath temper-
atures such that these contributions become exactly equal,
leading to pB-independent performance.

C. 2D topological anyons

Using the partition function in Eq. (29) we can carry out
the endoreversible analysis for a harmonic quantum Otto
engine with a working medium of topological anyons. This
results in an expression for the power that is very similar
to the two-dimensional statistical anyon power, but with
an additional factor dependent on the anyonic phase within
the phase-dependent hyperbolic trigonometric terms,

P = (1 − κ)ω2�

γ (τh + τc)

{

2 coth(�)− 2 coth(�)+ coth(�/2)

− coth(�/2)+ (1 − ν) tanh
[

(1 − ν)�
]

− (1 − ν) tanh
[

(1 − ν)�
]}

. (48)

This results in richer behavior, with the power no longer
always being maximized by either the bosonic or fermionic
limit. Figure 10 shows the power as a function of the any-
onic phase for several different bath-temperature ratios. We
see that as the bath-temperature ratio increases, the anyonic
phase that maximizes the power output shifts from more
fermionic to more bosonic.

Again maximizing with respect to the frequency, we find
an EMP with complex dependence on the anyonic phase,
shown in Fig. 11. Consistent with the pure power, we see
that the anyonic EMP is no longer bounded by the bosonic
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FIG. 10. Power as a function of the anyonic phase for two
topological anyons at Tc/Th = 0.1 (dashed, green), Tc/Th =
0.2 (solid, red), and Tc/Th = 0.3 (dot dashed, blue). Parame-
ters are αc = αh = γ = τc = τh = 1, and κ = 0.5, along with
� = kB = 1.

and fermionic limits of the anyonic phase. The phase that
provides the maximum EMP is highly temperature depen-
dent, and we see intermediate values that provide both
better and worse EMP than either bosons or fermions. Fur-
thermore, the anyonic EMP can even fall below that of the
distinguishable particles. One such example for the case of
ν = 0.8 is shown in Fig. 12.
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T c/T h
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EMP

&

FIG. 11. EMP as a function of the ratio of bath temperatures
for two topological anyons with ν = 0 (long dashed, brown), ν =
1/2 (short dashed, green), ν = 0.25 (dot dash dashed, orange),
ν = 1 (dotted, dark pink), and two distinguishable quantum
particles (dot dashed, blue) in two dimensions. The Curzon-
Ahlborn efficiency (bottom solid, red) and Carnot efficiency (top
solid, black) are given in comparison. The bottom inset high-
lights a parameter region where an intermediate anyonic phase
(ν = 0.25) displays the greatest EMP and the top inset high-
lights a region of low-temperature ratios that exhibits multiple
crossings. Operation is in the quantum regime corresponding
to �ω2/kBTc = 10. Parameters are αc = αh = γ = 1, and τc =
τh = 0.5.
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FIG. 12. EMP as a function of the ratio of bath tempera-
tures for two topological anyons with ν = 0.8 (dashed, gray)
and two distinguishable quantum particles (dot dashed, blue).
The Curzon-Ahlborn efficiency (lower solid, red) and Carnot
efficiency (upper solid, black) are given in comparison. Opera-
tion is in the quantum regime corresponding to �ω2/kBTc = 10.
Parameters are αc = αh = γ = 1, and τc = τh = 0.5.

The origins of this more complicated behavior become
clear when comparing Eq. (47) and Eq. (48). We see that,
as in the case of the two-dimensional statistical anyons,
the energy shifts arising from the statistics no longer can-
cel out (except in the quasistatic limit of � = �), giving
rise to the two ν-dependent hyperbolic tangent terms in
Eq. (48). However, the more complicated energy spec-
trum arising from the hard-core restriction and multivalued
wave function results in an additional ν dependence in the
argument of the trigonometric functions. This highly non-
linear dependence is responsible for the large variations in
performance for intermediate values of ν seen in Figs. 11
and 12.

From the standpoint of pure performance, the existence
of temperature regimes where intermediate values of ν
exceed the bosonic EMP demonstrates an advantage for
topological anyons over statistical anyons as a working
medium. However, the complex dependence of the power
on ν also has the consequence that small variations in the
anyonic phase can lead to vastly different performance,
as seen for the case of ν = 0.8. From a quantum metrol-
ogy standpoint, the fact that performance is linked directly
to the anyonic phase for both statistical and topological
anyons indicates that thermal machines may be a useful
tool for detecting signatures of anyonic statistics. We note
that, using the parameter-dependent anyonic parameter in
Eq. (30), it is possible to fully capture the behavior of
a topological anyon heat engine using statistical anyons.
As Eq. (30) yields the same equations of state for statis-
tical and topological anyons, the endoreversible analysis
for both mediums will be identical, leading to exactly
equivalent performance.
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V. ANYONIC ENGINE: BEYOND
ENDOREVERSIBILITY

Under the conditions of endoreversiblity we have seen
that the engine performance depends on the anyonic phase
for both statistical and topological anyons in two dimen-
sions, but not for statistical anyons in one dimension. We
now move beyond the assumption of local equilibrium,
and consider a finite-time quantum Otto cycle with fully
nonequilibrium isentropic strokes. To focus on the effects
on engine performance arising solely from the quantum
statistics, we make the standard assumption that the ther-
malization time is short enough and the isochoric strokes
long enough that the working medium is in a state of
thermal equilibrium with the hot (cold) bath at point C
(A) in the cycle, removing the need to explicitly model
the interaction with the heat baths [102,104,105,107,127,
128,131,132].

For the full nonequilibrium treatment we restrict our
analysis to the case of one-dimensional statistical anyons,
as of the three working mediums we have explored so far
this was the only one that has not yet shown effects arising
from the nature of the quantum statistics. In order to calcu-
late the efficiency, power, and EMP of the engine, we must
determine the internal energies at points A, B, C, and D in
the cycle. These can be found from the density operator in
the typical fashion,

〈H 〉 = tr {ρH} . (49)

For N -independent particle pairs, the total density operator
is given by the product of the individual density operators
for each pair,

ρN =
NB∏

j =1

ρ
(j )
B

N
∏

k=NB+1

ρ
(k)
F , (50)

where ρB and ρF are the density operators of particle
pairs with bosonic and fermionic symmetry, respectively.
Combining Eqs. (49) and (50) we have

〈HN 〉 =
NB∑

j =1

tr
{

ρ
(j )
B Hj

}

+
N
∑

k=NB+1

tr
{

ρ
(k)
F Hk

}

= NB〈HB〉 + (N − NB)〈HF〉. (51)

Using NB = NpB we arrive at the expression for the inter-
nal energy of a single pair of statistical anyons,

〈HSA〉 = pB〈HB〉 + (1 − pB)〈HF〉. (52)

In Ref. [127] both the thermal state and time-evolved den-
sity operators are derived for two bosons and fermions in a
harmonic potential (for completeness, the full expressions

are provided in Appendix C). The corresponding internal
energies are

〈H 〉A = �ω1

2
[3coth(β1�ω1)+ csch(β1�ω1)∓ 1] ,

〈H 〉B = �ω2

2
Q∗

12 [3coth(β1�ω1)+ csch(β1�ω1)∓ 1] ,

〈H 〉C = �ω2

2
[3coth(β2�ω2)+ csch(β2�ω2)∓ 1] ,

〈H 〉D = �ω1

2
Q∗

21 [3coth(β2�ω2)+ csch(β2�ω2)∓ 1] .

(53)

Here the (−) corresponds to bosons and the (+) to
fermions. Q∗

12 and Q∗
21 are protocol-dependent dimension-

less parameters that measure the degree of adiabaticity of
the isentropic strokes [133]. Using Eqs. (52) and (53) we
can determine the engine efficiency and power output. The
full expressions are cumbersome and given in Appendix D.
We note that the engine behavior we find here is equivalent
to that found in Ref. [119] for an Otto engine with a work-
ing medium of a Calogero-Sutherland gas. However, our
underlying construction is very different, with the anyonic
nature of the working medium arising from a simple sta-
tistical average over bosons and fermions rather than an
additional interparticle interaction term.

To continue our analysis we must pick a specific proto-
col for the compression and expansion strokes. For sim-
plicity we choose the “sudden switch” protocol, which
corresponds to an instantaneous quench from the initial
to final frequency. For the sudden switch the adiabaticity
parameters are

Q∗
12 = Q∗

21 = 1 + κ2

2κ
, (54)

where κ = ω1/ω2.
Following the same method of performance analysis that

we used in the endoreversible case, we numerically maxi-
mize the power with respect to the frequency ratio in order
to determine the EMP. The EMP as a function of the bath-
temperature ratios is shown in Fig. 13. We immediately
see that in the case of nonequilibrium operation the perfor-
mance is no longer independent of the anyonic phase. We
note fermionic symmetry gives the worst EMP and bosonic
symmetry the best, with intermediate values of pB falling
between. In the parameter regimes explored we see no tran-
sitions between anyonic phases that provides the optimal
EMP, unlike the two-dimensional endoreversible engines.

In general we see that the EMP of the nonequilibrium
engine is significantly worse than in the endoreversible
case, no longer outperforming the Curzon-Ahlborn effi-
ciency. This is unsurprising, as the sudden switch pro-
tocol we have employed is far from adiabatic, resulting
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FIG. 13. Nonequilibrium EMP as a function of the ratio of bath temperatures for two statistical anyons in one dimension with
pB = 1 (long dashed, brown), pB = 1/2 (short dashed, green), pB = 0.25 (dot dash dashed, orange), pB = 0 (dotted, dark pink), and
two distinguishable quantum particles (dot dashed, blue). The Curzon-Ahlborn efficiency (lower solid, red) and Carnot efficiency (top
solid, black) are given in comparison. Plot (a) shows operation in the regime corresponding to �ω2/kBTc = 10 and (b) in the regime
corresponding to �ω2/kBTc = 1. We set τ = 1.

in significantly lower power due to the loss of energy to
nonadiabatic excitations. We also compare the EMP as we
transition from the deep quantum regime characterized by
�ω2/kBTc = 10 to a more classical regime characterized
by �ω2/kBTc = 1. We see that in the deep quantum regime
the indistinguishable particles give worse performance
than distinguishable quantum particles. As we transition
toward the more classical regime the gaps in EMP between
different values of the anyonic phase shrink, but we also
see that the indistinguishable particles begin to outper-
form the distinguishable ones. Figure 13(b) examines the
engine performance in the same parameter regime studied
in Ref. [127], where we see the same bosonic advantage
emerge.

In the case of topological anyons it seems likely that, as
in the statistical anyon case, moving to the fully nonequi-
librium regime would lead to significantly lower EMP
due to nonadiabatic excitations. However, verifying this
would require solving the full time-dependent Schrödinger
equation for two topological anyons in a two-dimensional
parametric harmonic potential. This is a challenging prob-
lem that we hope may be explored in future work, but is
beyond the scope of this paper.

VI. OPTIMIZATION OF ANYONIC ENGINES:
SHORTCUTS TO ADIABATICITY

As we saw in the previous section, nonadiabatic driving
significantly hinders engine performance through the loss
of energy to nonadiabatic excitations—an effect typically
referred to as “quantum friction.” To achieve completely
frictionless strokes, the cycle driving must be fully adi-
abatic, requiring infinite time and leading to zero power
output. This trade-off can be circumvented through the use

of “shortcuts to adiabaticity” (STA). STA refer to a set
of techniques that can produce the same final state of a
system in finite time that it would have achieved under
adiabatic driving [134]. There are numerous established
techniques to achieve this, including counterdiabatic driv-
ing [135–138], dynamical invariants [139], inversion of
scaling laws [140], the fast-forward approach [141–145],
optimal protocols [146–149], and time rescaling [150,151].
For a recent review on the topic of shortcuts see Ref. [61].
In this section we examine implementing optimal proto-
col and fast-forward STA for harmonic anyonic systems
in order to determine if the anyonic phase plays a role in
shortcut design.

A. Optimal protocol shortcut

We first examine the optimal protocol shortcut using
the phenomenological framework of linear response the-
ory [62,147]. This shortcut is based on separating the
total nonequilibrium work into two contributions, the qua-
sistatic work and the excess work,

〈W〉 = 〈WQS〉 + 〈Wex〉. (55)

Here 〈WQS〉 corresponds to the work carried out were the
process to be fully quasistatic, and 〈Wex〉 the work lost
due to nonequilibrium excitations. It has been shown that
there exist optimal protocols for which 〈Wex〉 vanishes,
leading to quasistatic performance in finite time. This is a
true STA, as for protocols where excess work vanishes no
nonadiabatic transitions between eigenstates occur [147].

Let us consider a process in which we begin with a
quantum system in thermal equilibrium with a reservoir at
inverse temperature β. The system is then decoupled from
the reservoir and driven by Hamiltonian H(t) ≡ H(λt)
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where λt is a time-dependent external control parameter,
λt ≡ λ0 + δλg(t). This process corresponds exactly to the
isentropic strokes of the harmonic Otto engine, with ω2

t as
the external control parameter.

If the external driving can be considered a weak pertur-
bation, we can derive an expression for the excess work
entirely from the equilibrium thermodynamic properties of
the system using the tools of linear response theory. In this
framework the excess work is given by [147]

〈Wex〉 = −(δλ)2
∫ tf

t0
dt
∂

∂t
g(t)

∫ t−t0

0
dsR(s) ∂

∂s
g(t − s),

(56)

where R(t) is the relaxation function. Note that typi-
cally the relaxation function is denoted by �(t), as in
Refs. [62,147]. Here we use R(t) to avoid confusion with
the wave function. The relaxation function is determined
by the quantum response function,

φ(t) = − ∂

∂t
R(t), (57)

which is in turn found from the equilibrium state,

φ(t) = 1
i�

tr {ρ0[A0, At]} . (58)

Here At is the generalized force,

A = ∂

∂λ
H(λ). (59)

Let us first determine the excess work for two bosons and
two fermions in one dimension. With these results we will
be able to construct the excess work for one-dimensional
statistical anyons. From the Hamiltonian in Eq. (25) we
determine the time-dependent generalized force,

At = 1
2

m
[

x2
1(t)+ x2

2(t)
]

. (60)

With Heisenberg’s equation of motion and some elemen-
tary commutator algebra we determine x(t), and from there
the commutator [A0, At]. Plugging this commutator into
Eq. (58) we can then take the trace. To simplify the neces-
sary integrals we first convert the thermal density operator
to its Wigner distribution representation. The full expres-
sion for the Wigner distribution for bosons and fermions
is given in Appendix C. In the Wigner distribution repre-
sentation x and p are converted from operators to simple
commuting variables. The resulting response functions are

φ(t) = �

4ω2
[3 coth(β�ω)+ csch(β�ω)∓ 1] sin(2tω),

(61)

where the (−) corresponds to bosons and the (+) to
fermions. From the response functions we can determine

the relaxation functions with a trivial integral,

R(t) = �

8ω2
[3 coth(β�ω)+ csch(β�ω)∓ 1] cos(2tω).

(62)

We now have all the pieces we need to calculate the excess
work from Eq. (56). For simplicity we take t0 = 0 and tf =
τ . We pick a simple linear protocol g(t) = t/τ , as it has
been shown that there exist zeros of the excess work for
a single particle in harmonic potential [147]. We find the
excess work for two bosons or fermions to be

〈Wex〉 = �(δω)2

16ω5
0τ

2
sin2(ω0τ)

×
[

3 coth(β�ω0)+ csch(β�ω0)∓ 1
]

. (63)

In Eqs. (50)–(52) we showed that, as the N particle density
operator is simply the product of the density operators of
each individual particle pair, the statistical anyon internal
energy is simply given by the weighted sum of the boson
and fermion internal energies. The exact same mathemat-
ical process can be applied here in the calculation of the
statistical anyon Wigner distribution, response function,
relaxation function, and excess work. Thus we have

〈WSA
ex 〉 = pB〈WB

ex〉 + (1 − pB)〈WF
ex〉. (64)

The statistical anyon excess work is plotted as a function of
τ in Fig. 14. We see first that excess work varies with the
anyonic phase, with fermions having the greatest excess
work and bosons the least. We note that its zeros, however,
are independent of the statistics. This is clear when exam-
ining Eq. (63). The statistics only come into play in the

1 2 3 4 5 6 7
t

0.001

0.002

0.003

· W exÒ 

FIG. 14. Excess work under linear driving as a function of the
driving time for two statistical anyons with pB = 1 (long dashed,
brown), pB = 0 (dotted, dark pink), pB = 1/2 (dashed, green),
pB = 3/4 (dot dashed, blue), and pB = 1/4 (solid, red) using a
linear protocol. Parameters are ω0 = β = � = 1, and δω = 0.1.
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FIG. 15. Excess work under shortcut protocol driving as a
function of the driving time for two statistical anyons with
pB = 1 (long dashed, brown), pB = 0 (dotted, dark pink), pB =
1/2 (dashed, green), pB = 3/4 (dot dashed, blue), and pB = 1/4
(solid, red) using the shortcut protocol. Parameters are ω0 = β =
� = 1, α = 1, κ = 2 and δω = 0.1.

form of a ∓1 within a multiplicative factor, which has no
bearing on the zeros of the function. We see that for a lin-
ear protocol the one-dimensional statistical anyon excess
work will vanish for all values of the anyonic phase when
τ = nπ/ω, where n ∈ Z.

In Ref. [147] it was also shown that there exists a family
of degenerate shortcut protocols that produce zeros of the
excess work for a single particle in a parametric harmonic
potential. This family take the form of

g(t) = t
τ

+ α sin(κπ t/τ), (65)

where κ ∈ Z and α ∈ R. The excess work from this pro-
tocol is shown for one-dimensional statistical anyons in
Fig. 15. We arrive at the same conclusion as in the case of
the linear protocol. While the excess work itself depends
on the statistics, the optimal shortcut protocol does not.
Examining Eq. (56) we can extend this conclusion to any
arbitrary protocol for the parametric harmonic potential.
Since the factor in the expression for the excess work by
which the bosons and fermions differ is independent of
time, it will be identical for any g(t).

B. Fast-forward shortcut

Having shown that the optimal protocol for achieving
a shortcut to adiabaticity for one-dimensional statistical
anyons in a harmonic Otto engine is independent of the
quantum statistics, we next turn to a different shortcut
implementation, the fast-forward method. Unlike the opti-
mal protocol, in which the shortcut is determined entirely
from the form of the thermal state and system Hamil-
tonian, the fast-forward shortcut is constructed using the
instantaneous eigenstates. Since these eigenstates depend

explicitly on the anyonic phase, we expect this dependence
to carry through to the shortcut. To apply this method
we introduce an auxiliary potential to the Schrödinger
equation,

i�
∂

∂t
�(x, t) = − �2

2m
∇2�(x, t)+ (V + Vaux)�(x, t),

(66)

where the form of Vaux ensures the final state of the system
after a finite time evolution is identical to that achieved
after an adiabatic evolution of the unperturbed system. Let
us consider the following ansatz for our time-dependent
wave function:

�(x, t) = ψ(x, Rt)eif (x,t)e− i
�

∫ t
0 ds ε(Rs), (67)

whereψ(x, Rt) is the instantaneous eigenstate of the unper-
turbed Schrödinger equation with eigenenergy ε(Rt),

ε(Rt)ψ(x, Rt) = − �2

2m
∇2ψ(x, Rt)+ Vψ(x, Rt). (68)

Our goal is now to find the phase, f (x, t), and auxiliary
potential Vaux such that the above ansatz and equation are
true. Imposing the condition that f (x, 0) = f (x, τ) (where
τ is the duration of the driving) ensures that the final state
is identical to that of the adiabatically driven unperturbed
equation, and our shortcut is achieved.

To simplify the following analysis we express ψ(x, Rt)

in polar representation:

ψ(x, Rt) = μ(x, Rt)eiγ (x,Rt). (69)

Combining Eqs. (69), (67), and (66), simplifying, and
separating the real and imaginary components we find

Vaux = −�
∂γ

∂t
− �

∂f
∂t

− �2

m
∇f ∇γ − �2

m
(∇f )2, (70)

and

2m
∂μ

∂t
+ 2�∇f ∇μ+ �μ∇2f = 0, (71)

where we write μ(x, Rt) = μ, γ (x, Rt) = γ , and f (x, t) =
f to simplify notation.

The shortcut method has a major caveat in that the aux-
iliary potential often becomes singular at the nodes of
the instantaneous eigenstates, limiting its applicability to
the ground state [152,153]. However, for the Lewis-Leach
family of Hamiltonians, of which the harmonic oscillator
is a member [154], it has been shown that the fast-forward
potential is independent of the energy level [143,152].
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1. Statistical anyons

As in the optimal protocol analysis let us first consider
the fast-forward shortcut for the case of two bosons and
two fermions, from which we will be able to construct the
statistical anyon shortcut. It is straightforward to extend
Eqs. (70) and (71) to a two-particle system,

Vaux = −�
∂γ

∂t
− �

∂f
∂t

− �2

m
(∇1f ∇1γ + ∇2f ∇2γ )

− �2

m
[

(∇1f )2 + (∇2f )2
]

, (72)

2m
∂μ

∂t
+ 2�(∇1f ∇1μ+ ∇2f ∇2μ)

+ �μ(∇2
1 f + ∇2

2 f ) = 0. (73)

As we seek shortcuts to optimize performance of our har-
monic Otto engine let us again consider a one-dimensional
harmonic potential. In this case we have R(t) = ω(t). We
can express μ(x1, x2,ωt) for both bosons and fermions in
terms of the single-particle harmonic oscillator eigenstates
in the typical fashion,

μ(x1, x2,ωt) = 1
√

2(1 + δn1,n2)

[

μn1(x1)μn2(x2)

± μn1(x2)μn2(x1)
]

, (74)

where

μn(x) = 1√
2nn!

(
mω
π�

)1/4

e− mωx2
2� Hn

(√

mω
�

x
)

. (75)

For a single particle in a harmonic potential Eq. (71) is
solved by [141,143]

f1(x,ωt) = − mω̇t

4πωt
x2. (76)

With this in mind, we take our ansatz for the two-particle
solution to be

f2(x1, x2,ωt) = − mω̇t

4πωt

(

x2
1 + x2

2

)

. (77)

We can see that for any protocol with ω̇0 = ω̇τ the shortcut
condition will be fulfilled, as f (x, 0) = f (x, τ). A sim-
ple example of a protocol that fulfills this condition is the
linear protocol, ω(t) = ω0 + αt, where α is a constant.

With Eqs. (77) and (74) we can directly verify that
our ansatz is correct by plugging in to Eq. (73). Since
γ (x1, x2,ωt) = 0 for both bosons and fermions, we can
immediately see that not only the phase, but also the
auxiliary potential will be identical for both bosons and

fermions. Using Eq. (72) we determine the explicit form
of the auxiliary potential to be

Vaux = −3mω̇t

8ω2

(

x2
1 + x2

2

)

. (78)

Following the same method we can extend this analysis to
two dimensions. For this case we take the ansatz,

f2(x1, x2, y1, y2ωt) = − mω̇t

4πωt

(

x2
1 + x2

2 + y2
1 + y2

2

)

, (79)

which we verify is a solution to Eq. (73). As in the
one-dimensional case, γ (x1, x2, y1, y2,ωt) = 0 so the aux-
iliary potential will again be identical for both bosons and
fermions.

Since the statistical anyon state is constructed from a
statistical average over the boson and fermion states, we
know that if there is no difference in the shortcut for bosons
and fermions, there will be none for statistical anyons. We
conclude that in both one and two dimensions the imple-
mentation of a fast-forward STA is independent of the
quantum statistics. This result is counter to our original
hypothesis that the difference in phase of the instantaneous
eigenstates should carry through to the design of the auxil-
iary potential. From the form of Eqs. (77) and (79) we can
see that, physically, the two-particle shortcut for the har-
monic oscillator potential is accomplished by driving each
particle individually.

2. Topological anyons

Our previous analysis has shown that the behavior of
topological anyons can have a richer dependence on the
anyonic phase. Furthermore, topological anyon eigenstates
are significantly more complex, and unlike bosonic or
fermionic states can not generally be separated into a
superposition of the single-particle states [43]. As the fast-
forward shortcut depends on the stationary eigenstate of
the system it is of interest to explore whether or not a short-
cut for topological anyons will show dependence on the
anyonic phase.

Let us again consider the situation of two anyons in
a harmonic potential. The time-independent Schrödinger
equation for this problem can be solved by separating the
Hamiltonian in Eq. (25) into the center of mass and relative
components [43,51,56],

H = �ω

(

− ∂2

∂Z∂Z∗ − 4
∂2

∂z∂z∗ + |Z|2 + |z|2
4

)

, (80)

where we use the complex coordinates zj = √

mw/�(xj +
iyj ) with j ∈ 1, 2. Here Z is the center-of-mass coordi-
nate, given by Z = (z1 + z2)/2 and z the relative coordi-
nate, given by z = z1 − z2. In two dimensions the anyonic
exchange symmetry is satisfied by two separate families of
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eigenstates. The harmonic oscillator ground states for each
are [51]

μ(I)g = Aνωzνe−|Z|2− |z|2
4 ,

μ(II)g = Aνω(z∗)2−νe−|Z|2− |z|2
4 ,

(81)

where Aν is an anyonic phase-dependent normalization
factor. We can construct any desired excited state from
these ground states by applying the appropriate raising
operators [51].

In order to determine the fast-forward shortcut for the
topological anyon system it will be convenient to con-
vert Eqs. (72) and (73) into the center-of-mass and relative
coordinate systems,

Vaux = − 1
ω

∂γ

∂t
− 1
ω

∂f
∂t

− ∂f
∂Z

∂γ

∂Z∗ − ∂γ

∂Z
∂f
∂Z∗ − ∂f

∂Z
∂f
∂Z∗

− 4
∂f
∂z
∂γ

∂z∗ − 4
∂γ

∂z
∂f
∂z∗ − 4

∂f
∂z
∂f
∂z∗ , (82)

∂μ

∂t
+ ω

[∂f
∂Z

∂μ

∂Z∗ + ∂μ

∂Z
∂f
∂Z∗ + μ

∂2f
∂Z∂Z∗

+ 4
∂f
∂z
∂μ

∂z∗ + 4
∂μ

∂z
∂f
∂z∗ + 4β

∂f
∂z∂z∗

]

= 0. (83)

Motivated by our results for the statistical anyons, we
choose the same ansatz for f (converted into the relative
and center-of-mass coordinate system),

f (Z, z,ωt) = − ω̇t

4ω2

(
1
2
|z|2 + 2|Z|2

)

. (84)

Plugging Eqs. (84) and (81) into Eq. (83) we see that
our ansatz is indeed a solution to the differential equation.
As before, we have γ (Z, z,ωt) = 0 in the center-of-mass
and relative coordinate system. Using Eq. (82) we can
construct the auxiliary potential,

Vaux = ω̇t
3

2ω4

(
1
2
|z|2 + 2|Z|2

)

. (85)

We see that, as in the case of the statistical anyons, the fast-
forward STA for topological anyons is independent of the
anyonic phase. This indicates that, counter to our original
intuition, the harmonic oscillator fast-forward shortcut is
truly independent of any exchange behavior, not just the
bosonic and fermionic limits.

While this result was derived for the ground state we
know that, since the harmonic oscillator Hamiltonian is a
member of the Lewis-Leach family [154], the above short-
cut will also hold for any excited state. This provides a
physical motivation for why the shortcut is independent

of the anyonic nature of the particles. Both the modified
hard-core nature of topological anyons and the generalized
exclusion statistics of statistical anyons affect how the par-
ticles will be distributed among the available states. Since
the same harmonic oscillator shortcut holds for all states,
it makes sense that it will be independent of the anyonic
phase.

VII. CONCLUDING REMARKS

A. Summary

In this work we have presented a dimension-
independent formulation of anyons, dubbed “statistical
anyons,” in which anyonic properties arise from averaging
over the behavior of a system consisting of a statisti-
cal mixture of particles with antisymmetric and symmet-
ric exchange properties. Motivated by the HOM effect,
we outlined a quantum optics implementation of statis-
tical anyons. We showed that the statistical anyons are
physically equivalent to Haldane’s generalized exclusion
statistics anyons, broadening the applicability of GES to
any system of indistinguishable particles for which such a
mixture can be constructed.

We determined the thermodynamic properties of statisti-
cal anyons in one and two dimensions, and compared them
to the thermodynamic properties of topological anyons.
We found that in two dimensions the internal energy, free
energy, entropy, and heat capacity all display a dependence
on the anyonic phase, but it is not as rich a dependence
as the topological anyons. However, we determined that,
with a parameter-dependent choice of the anyonic phase,
statistical anyons can exactly imitate the thermodynamic
behavior of topological anyons.

With the thermodynamic properties established, we con-
sidered a harmonic quantum Otto engine with a working
medium of statistical anyons. We found that in two dimen-
sions endoreversible engine performance depends on the
anyonic phase for both statistical anyons and topological
anyons. We found that for the nonequilibrium regime, even
in one dimension, the engine EMP for statistical anyons
depended on the anyonic phase.

Lastly, we examined the role of the anyonic phase in two
STA, the optimal protocol shortcut and the fast-forward
shortcut. We found both shortcut methods are independent
of the anyonic nature of the particles. In the case of the
fast-forward method, this independence can be considered
to arise from the fact that the shortcut does not depend on
the energy level for a harmonic potential.

B. Impacts and future directions

In this work we have taken a device-oriented approach
for examining the thermodynamic properties of anyons,
using the framework of heat engines. This method is
motivated by the history of thermodynamics, as a field
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developed around the optimization of thermal machines,
and is an approach commonly used in modern quantum
thermodynamics [60]. To the authors’ knowledge, this
approach has only been applied in two previous works,
both based around Calogero-Sutherland GES anyons [105,
119]. However, we believe this work is the first to analyze
heat engines and shortcuts for topological anyons, and to
make an explicit comparison between both the GES and
topological implementations of anyons in this context.

While functionally equivalent to GES, statistical anyons
present a new paradigm both theoretically and experi-
mentally that extends GES to a range of new settings,
including Bose-Fermi mixtures [90–95], optimechanical
systems [155], and surface plasmonics [156]. While they
lack the non-Abelian properties necessary for implement-
ing topological quantum computation, they do provide an
experimentally tractable method of examining the ther-
modynamic behavior of Abelian topological anyons. This
opens up the door to searching for general thermody-
namic signatures that may provide alternative methods of
detecting and controlling both Abelian and non-Abelian
anyons.

Using statistical anyons we have connected topics across
various subfields of physics, including the Hong-Ou-
Mandel effect from quantum optics, heat engines from
quantum thermodynamics, GES from quantum statistical
mechanics, fractional exchange statistics from topological
states of matter, and shortcuts to adiabaticity from quan-
tum control. The establishment of the statistical anyon
framework opens up a multitude of new possible research
directions and questions for the study of anyons. There
remains much to be explored about the thermodynamics
of statistical anyons, including Gibbs mixing for statisti-
cal anyons [157] and the behavior of autonomous quantum
engines with statistical anyon working mediums. We have
shown in this work that the performance of a cyclic quan-
tum engine is sensitive to the anyonic phase, and we
would expect the same to be true for autonomous engines.
Implementing the latter in an optical or plasmonic setting
has metrological implications as an alternative device for
detecting signatures of anyonic behavior.

It would be of interest to compare statistical anyons to
other methods of generating anyonic behavior not cov-
ered in this work, such as N00N states subject to Bloch
oscillations [158], quasiholes in Bose-Einstein conden-
sates [159], or particles possessing ambiguous statistics
[160]. Statistical anyons may also have the potential to pro-
vide simpler implementations or experimental analogs for
other applications of anyons, including Haldane insulators
[161,162] or anyon beams [163]. Anyonic statistics has
also been applied to more exotic systems, such as black-
hole gasses [160,164], for which statistical anyons may
provide a tractable theoretical tool. Finally, a particularly
interesting possibility for statistical anyons is the intro-
duction of interparticle interactions. We have shown that

noninteracting statistical anyons are capable of recreating
GES, which historically has been limited to interacting
systems. By combining these paradigms, we add signifi-
cant complexity to statistical behavior of the particles. It
is intriguing to wonder if this additional complexity may
be leveraged to expand the state space of possible any-
onic phases, effectively recreating the braiding statistics of
topological anyons. We leave this multitude of questions
open for exploration in future works.
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APPENDIX A: STATISTICAL ANYON HARMONIC
OSCILLATOR PARTITION FUNCTION

In this Appendix we derive an expression for the parti-
tion function of two statistical anyons in a harmonic poten-
tial. We begin with the definition of the partition function
for N -independent pairs of particles in the position basis,

ZN
A = tr

{

e−βH} =
N
∏

j =1

∫

dxj

∫

dyj
〈

xj yj
∣
∣ e−βHj

∣
∣xj yj

〉

,

(A1)

where

Hj =
p2

xj
+ p2

yj

2m
+ 1

2
mω2(x2

j + y2
j ). (A2)

Inserting the identity in the energy basis I = ∑∞
n(j )1 ,n(j )2 =0

∣
∣
∣n(j )1 n(j )2

〉 〈

n(j )1 n(j )2

∣
∣
∣ twice leads to

ZN
A =

N
∏

j =1

∫

dxj

∫

dyj

∞
∑

n(j )1 ,n(j )2 =0

∞
∑

m(j )1 ,m(j )2 =0

�∗
A(xj , yj )

×�A(xj , yj )e−β�ω(m(j )1 +m(j )2 +1)

×
〈

n(j )1 n(j )2 |m(j )
1 m(j )

2

〉

. (A3)

Here �A(xj , yj ) is given by Eq. (14), where

ψn(x) = 1√
2nn!

(
mω
π�

)1/4

e− mωx2
2� Hn

(√

mω
�

x
)

. (A4)

After evaluating the inner product, the integration over
each xj and yj can be carried out with application of the
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Hermite polynomial orthogonality to yield

ZN
A =

N
∏

j =1

∞
∑

n(j )1 ,n(j )2 =0

1
4

e−β�ω(n(j )1 +n(j )2 +1)

× (2 + e−iπ�(j −NB+1)δ
n(j )1 ,n(j )2

+ eiπ�(j −NB+1)δ
n(j )1 ,n(j )2

), (A5)

where δn1,n2 is the Kronecker delta. In order to evaluate the
step functions we separate the product into one from 1 to
NB and a second from NB + 1 to N ,

ZN
A =

NB∏

j =1

∞
∑

n(j )1 ,n(j )2 =0

1
2

e−β�ω(n(j )1 +n(j )2 +1)(1 + δ
n(j )1 ,n(j )2

)

N
∏

j =NB+1

∞
∑

n(j )1 ,n(j )2 =0

1
2

e−β�ω(n(j )1 +n(j )2 +1)(1 − δ
n(j )1 ,n(j )2

).

(A6)

Here we can immediately recognize the individual par-
tition functions for two bosons and two fermions in
harmonic potential,

ZB =
∞
∑

n1,n2=0

1
2
(1 + δn1,n2)e

−β�ω(n1+n2+1),

ZF =
∞
∑

n1,n2=0

1
2
(1 − δn1,n2)e

−β�ω(n1+n2+1). (A7)

Thus we can rewrite our anyonic partition function in the
simple form,

ZN
A =

NB∏

j =1

Z(j )B

NF∏

k=1

Z(k)F = ZNB
B ZNF

F = (ZpB
B ZpF

F )
N . (A8)

Here we use the fact that for large N we can express the
number of bosonic and fermionic particle pairs as NB =
NpB and NF = NpF = N (1 − pB) where pB (pF ) is the
probability of a particle pair having bosonic (fermionic)
symmetry.

The boson and fermion partition functions can be writ-
ten in closed form as

ZB = 1
8

csch2
(
βω�

2

)

+ 1
4

csch(βω�),

ZF = 1
8

csch2
(
βω�

2

)

− 1
4

csch(βω�). (A9)

With this, we arrive at a closed-form expression for the
partition function of a single pair of statistical anyons,

ZA =
[

1
8

csch2
(
βω�

2

)

+ 1
4

csch(βω�)

]pB

×
[

1
8

csch2
(
βω�

2

)

− 1
4

csch(βω�)

]1−pB

. (A10)

APPENDIX B: EQUILIBRIUM
THERMODYNAMIC QUANTITIES

In this Appendix we give the full expressions for the
internal energies, free energies, entropies, and heat capac-
ities of statistical anyons and topological anyons in one-
and two-dimensional harmonic potentials.

1. 2D statistical anyons

Plugging the respective partition functions for two bosons and two fermions in a harmonic potential into Eq. (26), and
substituting that into Eq. (27) we arrive at the following expressions for the thermodynamic properties of two-dimensional
statistical anyons:

E = �ω

[

2 coth
(

1
2
β�ω

)

+ tanh
(

1
2
β�ω

)

− pB tanh(β�ω)

]

(B1)

F = − 1
β

ln
{

1
8

[cosh(β�ω)]pB csch2
(

1
2
β�ω

)

csch2(β�ω)

}

(B2)

S = kBβ�ω

[

2 coth
(

1
2
β�ω

)

+ tanh
(

1
2
β�ω

)

− pB tanh(β�ω)

]

+ kB ln
{

1
8

[cosh(β�ω)]pB csch2
(

1
2
β�ω

)

csch2(β�ω)

}

(B3)

C = 1
2

kBβ
2
�

2ω2
[

2 csch2
(

1
2
β�ω

)

− sech2
(

1
2
β�ω

)

+ 2pB sech2 (β�ω)

]

(B4)
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2. 2D topological anyons

Plugging Eq. (29) into Eq. (27) we determine the following expressions for the thermodynamic properties of topological
anyons:

E = �ω

{

coth
(

1
2
β�ω

)

+ 2 coth(β�ω)+ (ν − 1) tanh[β�ω(1 − ν)]
}

(B5)

F = 1
β

ln
{

8 sech[β�ω(ν − 1)] sinh2
(

1
2
β�ω

)

sinh2(β�ω)

}

(B6)

S = kBβ�ω

{

coth
(

1
2
β�ω

)

+ 2 coth(β�ω)+ (ν − 1) tanh[β�ω(1 − ν)]
}

+ kB ln
{

1
8

cosh[β�ω(ν − 1)]csch2
(

1
2
β�ω

)

csch2 (β�ω)

}

(B7)

C = 1
2

kBβ
2
�

2ω2
{

csch2
(

1
2
β�ω

)

+ 4csch2 (β�ω)+ 2(ν − 1)2sech2 [β�ω(ν − 1)]
}

. (B8)

APPENDIX C: 1D BOSON AND FERMION DENSITY OPERATORS AND WIGNER DISTRIBUTIONS

In this Appendix we give the full expressions for the thermal state and time-evolved density operators for a nonequi-
librium harmonic quantum Otto engine with a working medium of 1D bosons and fermions. We also include the thermal
state Wigner distribution applied in the determination of the optimal protocol shortcut. In each expression the top sign of
each plus and minus denotes the boson expression and the bottom sign the fermion expression.

The thermal-state density operator in position representation is given by

ρ0(x1, x2, y1, y2) = 1
Z

mω
2π� sinh (β�ω)

×
[

e− mω
4�

{[(x1+y1)
2+(x2+y2)

2] tanh (β�ω/2)+[(x1−y1)
2+(x2−y2)

2] coth (β�ω/2)}

± e− mω
4�

{[(x2+y1)
2+(x1+y2)

2] tanh (β�ω/2)+[(x2−y1)
2+(x1−y2)

2] coth (β�ω/2)}
]

. (C1)

Solving the time-dependent Schrödinger equation by means of the appropriate evolution operator for the isentropic strokes
of the engine yields the time-evolved density operator,

ρt(x1, x2, y1, y2) = mω
2π�(Y2

t + X 2
t ω

2)

(

e∓β�ω − 1
)

×
{

e
m

2�(Y2
t +X 2

t ω
2)

[

i(x2
1+x2

2−y2
1 −y2

2 )(YtẎt+XtẊtω2)−ω(x2
1+x2

2+y2
1 +y2

2 )coth(β�ω)+2ω(x1y1+x2y2)csch(β�ω)
]

± e
m

2�(Y2
t +X 2

t ω
2)

[

i(x2
1+x2

2−y2
1 −y2

2 )(YtẎt+XtẊtω2)−ω(x2
1+x2

2+y2
1 +y2

2 )coth(β�ω)+2ω(x2y1+x1y2)csch(β�ω)
]}

. (C2)

Here Xt and Yt are solutions to the equation of motion of the classical time-dependent harmonic oscillator,

Ẍt + ω2(t)Xt = 0. (C3)

The two-particle Wigner distribution is found by carrying out the integral,

W(x1, p1, x2, p2) = 1
4π2�2

∫

du1

∫

du2 ρ
(

x1 + u1

2
, x2 + u2

2
, x1 − u1

2
, x2 − u2

2

)

e− ip1u1
� e− ip2u2

� . (C4)
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For the thermal state the Wigner distribution is

W0(x1, p1, x2, p2) = sech2 (β�ω/2)
π2�2[csch2 (β�ω/2)± 2csch (β�ω)]

×
(

e− [p2
1 +p2

2 +m2(x2
1+x2

2)ω
2]tanh(β�ω/2)

mω� ± 2e
−[p2

1 +p2
2 +m2(x2

1+x2
2)ω

2]coth(β�ω)+2(p1p2+m2ω2x1x2)csch(β�ω)

mω�

)

. (C5)

APPENDIX D: NONEQUILIBRIUM ENGINE CHARACTERIZATIONS: 1D STATISTICAL ANYONS

In this Appendix we give the full expressions for the power and efficiency of a nonequilibrium harmonic quantum Otto
engine with a working medium of 1D statistical anyons.

P = �

2τ

{

(2pB − 1) [(Q21 − 1) ω1 + (Q12 − 1) ω2] + 3 (ω2 − Q21ω1) coth (β2ω2�) (D1)

+ 3 (ω1 − Q12ω2) coth (β1ω1�)+ (ω2 − Q21ω1) csch (β2ω2�)+ (ω1 − Q12ω2) csch (β1ω1�)
}

η = 1 + ω1

ω2

{
3 coth (β1ω1�)+ csch (β1ω1�)+ 2 (Q21 − 1) pB − Q21 [3 coth (β2ω2�)+ csch (β2ω2�)+ 1] + 1
3 coth (β2ω2�)+ csch (β2ω2�)+ 2 (Q12 − 1) pB − Q12 [3 coth (β1ω1�)+ csch (β1ω1�)+ 1] + 1

}

. (D2)
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