
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works. Access to this work was provided by the University of Maryland, Baltimore County
(UMBC) ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-
SOAR) platform.

Please provide feedback

Please support the ScholarWorks@UMBC repository by
emailing scholarworks-group@umbc.edu and telling us
what having access to this work means to you and why
it’s important to you. Thank you.

mailto:scholarworks-group@umbc.edu

Flow-based Service Type Identification using Deep
Learning

Mona Elsaadawy, Petar Basta, Yunjia Zheng, Bettina Kemme
McGill University
Montreal, Canada

first.last@mail.mcgill.ca, kemme@cs.mcgill.ca

Mohamed Younis
University of Maryland Baltimore County

Baltimore, Maryland, USA
younis@umbc.edu

Abstract—Automatic identification of the service type used by
network flows (e.g., HTTP and MySQL) is an essential part
of many cloud management and monitoring tasks for quality
of service, security monitoring, resource allocation, etc. Several
studies have adapted deep learning models for accurate service
type identification of network traffic. These models vary in how
the message flow data is used and what datasets are considered.
There are no published guidelines on selecting the best approach
for automating the service identification process. In this paper,
we opt to fill such a technical gap and provide a detailed study
of the trade-offs of different deep-learning based approaches
for service type identification of network traffic. Towards this
end, we generate flow-based datasets for a wide range of service
types that are commonly deployed in the cloud. We consider two
different deep learning models that have shown promising results
in this context, and show their performance for both payload-
and header-based datasets, considering fundamental parameters
such as dynamic service port configuration, flow direction and
the packet order in the flow stream.

Index Terms—Service type identification, Convolutional neural
network, Deep learning, Recurrent neural network.

I. INTRODUCTION

Cloud applications are often deployed as multi-tier or multi-
component systems where the individual components provide
a specific service type. A classical example is a multi-
tier architecture with a web-server front-end, a MemCached
backend for caching purposes, and a MySQL database for
persistence. The scope has further expanded to include repli-
cated services, distributed services. e.g., multi-node Cassandra
key-value storage, or computational services such as Spark.
Inferring the service types of the individual components is
crucial for various cloud management tasks such as QoS pro-
visioning, identifying faults, resource allocations, and security
monitoring. A Service Type Classifier (STC) is a tool that
identifies the service and/or application type associated with
a network connection by analyzing the messages exchanged
through this connection. Service types are typically determined
by the used client/server protocol. While HTTP is widely
used in cloud applications, many software systems, such as,
MySQL, MemCached, etc., have their own communication
protocol. In addition, the exchanged messages between client
and server in these software systems follow protocol-specific
patterns.

Existing techniques for STC can be grouped based on the
methodology used. When services have predefined static port
settings, then a port-based methodology works well. Deep
packet inspection (DPI) techniques match message formats

with predefined protocol-specific characteristics [1], requiring
to maintain an up-to-date rule database for all relevant ser-
vices. Meanwhile, flow statistics-based approaches make use
of the stochastic profile of network flows such as transmission
length, packets arrival times, and flow duration, to group pack-
ets into specific application/service categories [2]. Traditional
machine learning classifiers, such as logistic regression, deci-
sion trees and support vector machines are commonly used for
such purpose. More recently, deep learning has been exploited
as STC. The interesting aspect is that the statistical flow
characteristics (features) are extracted automatically. Deep
learning approaches avoid the need for detailed knowledge
of the service specifics and message formats. Hence, in this
paper, we focus on deep learning models.

In existing deep-learning based STCs, network flows are
considered as a time-based sequence of data, just as video
frames or text words, which can be fed to sequence-based
learning models for classification purposes. In header-based
approaches [3], [4], the learning features are extracted from
the packet header of underlying TCP/UDP communication
protocol. Examples of header-based learning features include
source/destination port numbers, number of transmitted bytes,
and packet inter-arrival time. The flows belonging to the same
service type should have a local similarity in the values of
those header-based features, which enables the deep learning
model to identify different service types. In payload-based
approaches [5], the learning features are extracted from the
first bytes of the message payload, i.e., the header information
of the service type’s communication protocol. Thus, the URL
string can be found for HTTP-based protocols, and the put/get
headers for caching services, etc. One can expect header-
based analysis to have a smaller model training time as the
number of extracted features is limited, and also work better
for secured communication as the packet-header information is
not encrypted. However, as the learning features are limited,
the STC accuracy might not be good enough. If one of the
features is the port number, a header-based approach will work
well when standard ports are used, but likely less so with
dynamic port numbers.

In this paper, we conduct a thorough analysis of using
deep learning for STC considering various service types that
are commonly used in multi-component cloud applications.
In particular, we generate a large flow-based dataset for a
wide range of commonly used service types and provide a
performance comparison for both header-based and payload-
based approaches that demonstrates their trade-offs. We con-978-1-6654-0522-5/21/$31.00 ©2021 IEEE

sider RNN and a combination of CNN and RNN architectures
that have shown to outperform other approaches [3], [5].
Moreover, we analyze the sensitivity of these approaches to
crucial parameters such as dynamic configuration of service
port numbers, flow direction and the location of packets in
the flow stream.

II. RELATED WORK

Several studies have focused on network traffic classifi-
cation, including rule-based or statistical correlation-based
approaches [1]. Many of these studies have adapted general
machine learning techniques. Some approaches use supervised
learning, such as random forests [6], multi-layer perceptron,
C4.5 decision tree, and support vector machines [7]. Singh et
al. [8] use unsupervised K-means to form groups of different
applications based on the similarity of their network traffic.
However, most traditional machine learning models require
tedious feature engineering to reduce data complexity and find
appropriate parameters to be fed to the machine learning algo-
rithm. Thus, the contribution of this paper has been inspired
by recent work that has explored the use of deep learning
models to classify network traffic. For instance, Wang et al.
[4] have introduced a CNN model to differentiate between
malware traffic and normal traffic using the flow ID. Similarly,
Martı́n et al. [3] have applied several architectures of RNN and
CNN models to detect the service type of network flows, while
using packet-header information as learning data. On the other
hand, Lim et al. [5], use packet payload for training two deep
learning models, with focus on predicting the application type
within HTTP-based web traffic. In most of these approaches
the model automatically learns the features without manual
feature extraction. However, so far only a limited set of design
parameters is considered, such as the flow time-series length
and payload size.

III. DATASET PREPROCESSING

In this study, we have built datasets by collecting Packet
Capture (PCAP) traces using tcpdump from a wide set of
applications that use various service types. The considered
service types are HTTP, various database systems as well as
caching services. We present the details of the applications and
the service types they use in Section V. We have formulated
two dataset types: header-based and payload-based. For both
types, the learning unit is a network flow that is labeled with
a particular service type. We have collected the PCAPs as per
each service type to serve as ground truth for the STC.

A network flow is defined for a pair of two communication
endpoints defined by their IP addresses and port numbers,
and includes the packets transferred using a specific transport
protocol (TCP or UDP). To prepare an input record for our
learning model, we take N consecutive packets of a network
flow (representing a time-series) and represent each of the
packets in form of a feature vector of length X . We use Min-
Max Normalization to scale the feature values between 0 and
1 to enhance the learning process.

A. Header- and Payload-based datasets

To represent the network flow profile in our header-based
dataset, we follow a similar approach as [3] and explicitly

extract four meaningful features from each packet’s header: the
number of bytes in the packet payload, the TCP window size
(set to zero for UDP), packet inter-arrival time, and direction
of the packet. In contrast to [3], our default evaluations use
a dataset that does not include the packet port number as a
learning feature as we expect that including the port number
might lead to poor learning outcome when dynamic port
numbers are deployed. However, we have constructed a variant
of the header-based dataset that considers the service port
number to investigate its effect on the STC performance.

For our payload-based dataset, we adopt the pre-processing
methodology proposed in [5], where each byte of the payload
data of a packet is converted into an image pixel (i.e., 256
possible values). According to a pre-defined image size value
X , the first X bytes of packet payload are extracted as the
pixels of an image. In case the packet payload data is less
than X , we use zero-padding to match X . We discard any
packet with no payload such as the flow’s control packets.

B. General Design Parameters

When evaluating the performance of the approaches, we
considered a wide range of parameters during flow extraction.
Some of them were fixed after some preliminary testing, the
effect of others will be presented in detail in Section V.

Number N of analyzed packets per flow: The considered
length of the flow sequence is an important parameter [3],
[5]. We considered 20, 60 and 100 packets of each network
flow for both header-based and payload-based datasets. Our
preliminary results show that longer sequences are good for
payload-based models, while header-based approaches work
better with lower number of N . The more packets are consid-
ered per flow, the more the header-based model has difficulty
to distinguish between different service types. Thus, N is set
to 20 for the header-based dataset and 100 for the payload-
based dataset in the experiments presented here.

Extracted payload size X: For the header-based approach,
X is fixed as we explicitly extract the features. In contrast,
X is a configurable parameter for the payload-based datasets.
Thus, we have tested with extracting the first 9, 12, 16, 20,
25, 36 and 1024 bytes of each packet. Our results showed that
a relatively large packet size is beneficial. Therefore, X is set
to 36 in the experiments presented in this paper. However,
compared to [5], very large X values, such as 1024 bytes,
were not beneficial for our STC. We believe the reason is
that [5] classifies different applications, most of them running
over HTTP such as Facebook and Google, while we aim in
classifying service types, such as HTTP or MySQL. Thus, for
us the relevant information can be found in the first few bytes
of the payload, which holds the header information of a service
type, e.g., the HTTP or MySQL header. Larger payloads will
have a larger portion of application-specific data which is good
for application identification, yet misleading for service type
identification.

Flow direction: Given a pair of communicating endpoints
(e.g., a client and a server), a bidirectional flow contains
the sequence of the packets as they are exchanged in both
directions. In contrast, unidirectional flows contain only the
packets that go in one direction, and there are typically two
such unidirectional flows for each endpoint pair. Unidirectional

flows are guaranteed to have the packets that belong to a single
service request or response one after the other in the sequence,
while in bidirectional flows they might be interleaved with
messages that travel in the other direction. Bidirectional flows
might better reflect the timing in handshake protocols at the
beginning of a connection or can better correlate requests and
responses. In the literature, [5] only construct unidirectional
flows and [3], [4] only construct bidirectional flows. In con-
trast, we have created both unidirectional and bidirectional
datasets for both our header- and payload-based approaches.

Position of packets in the flow: In the published work both
for header- and payload-based datasets, the N packets taken
are always extracted from the beginning of the connection.
Thus, the flow contains the packets of the handshake pro-
tocol to set up the connection. However, the service type
identification might become necessary at a random time after
establishing a connection, and when sniffing the network
packets to create the flow only happens at that time, then the
flow does not contain these handshake messages. As this might
influence the STC performance, our default datasets contain
the first messages exchanged for a connection while derived
datasets do not contains these first messages.

IV. DEEP LEARNING MODELS

We have chosen the two deep-learning models that have
shown to work best for STC.
- Multi-layer Long Short Term Memory (LSTM): is well-
suited for time-series data. LSTM utilizes circulation structure
to reflect previous learning data into the current ones for
sequential data learning. According to [5], the three-layer
LSTM model architecture provides best application identifica-
tion results. The flow-based datasets are applied to the input
layer of the three-layer LSTM model, and processed by LSTM
cells sequentially until a final classification result is produced.
We refer to this model as 3-LSTM.
- Combined CNN and LSTM model: This architecture
integrates convolutional neural network (CNN) and LSTM.
The feature maps of input data are first extracted through
the convolution layer, and then used as a refined sequential
data input to the LSTM model. CNNs are commonly used
for image classification. A kernel (filter) action is used to
automatically produce feature maps by extracting location
invariant patterns from the image. The matrix formed by the
time-series of payload data or the feature vectors of header
information, described in Section III, can present a correlated
local behavior, similar to images, and enable adaption of these
models in the context of network traffic classification [3].

According to [3], chaining two CNN layers and one LSTM
layer achieves good classification performance. Chaining sev-
eral CNNs allows automatic extraction of complex features
from the input datasets. A reshaping process is then performed
on the output of the last convolution layer before passing it
to the LSTM layer. The feature maps produced by the CNN
layer will be processed by LSTM layer cells sequentially, and
a final classification result is produced. We refer to this model
as CNN+LSTM.

V. EXPERIMENTAL EVALUATION

This section reports the STC performance for the header-
based and payload-based datasets discussed in Section III,
while applying the deep learning models of Section IV.

A. Validation Environment and Datasets
The training of the service type identification models is

performed on a Ubuntu 16.04 LTS machine with 64GB RAM
and two GPU cards (NVIDIA GTX 1080Ti 12GB), using
Keras 2.3.1 with a TensorFlow-gpu 2.1 backend, operated with
Python 3.7.7. We use the sequential model-based optimization
SMBO [9] to find the optimal hyper-parameters for the afore-
mentioned deep learning models with respect to our datasets.
In addition, we have validated the produced hyper-parameters
by K-fold cross-validation. In particular, we separate each
flow-based dataset into learning and test datasets. Further,
we separate 20% of the learning data for validation, and the
verification of the model is performed on the basis of the given
SMBO hyper-parameter set and the k-fold value. Due to space
constrains, we provide the details and values of those hyper-
parameters for each dataset-model pair in [10].

Datasets, Services and Applications: Having a traditional
service architecture in mind, we have aimed at having classical
service types such as HTTP-based services, database systems,
and caching services in our repertoire. We also wanted to see
how good the STC is if the services are conceptually very
similar. Thus, apart of HTTP, we have included four relational
database systems (DB2, MySQL, PostgreSQL, MonetDB), the
distributed NoSQL database system Cassandra, and two key-
value caches (Redis and Memcached). Furthermore, we have
included the distributed compute platform Spark as an example
of a distributed data processing service commonly used in
the cloud. For each of them, we have collected traces for
various applications. A summary is provided in Table I which
also indicates which applications are used for training and
which for testing. The TeaStore benchmark [11], the YCSB
benchmark [12], and three small-scale in-house developed
applications are used to generate traces for HTTP, the database
systems and the caching services. For HTTP traffic, we
additionally use the dataset provided by the UPC’s Broadband
Communications Research Group [13]. The caching systems
use different formats for data storage in order to evaluate the
capability of deep learning models of recognizing the cache
service despite the different data format. For Spark traces, we
run several Spark-Bench workloads [14]. In total, the dataset
contains around 20,000 unidirectional network flows with 10
distinct labeled services [10]. HTTP flows made up around
44% of all our flows, less than 1% for Spark and the data
management flows between Cassandra server nodes. The rest
is equally distributed among the other service types.

B. Performance Metrics
Our setup is, in principle, a multi-class classification prob-

lem. For each service, we determine the correctly labeled
flows (correctly labeled as belonging to the service or not
belonging to the service), and the not correctly labeled flows.
From there we model performance in terms of accuracy, recall,
precision and F1-score for each dataset-model pair. The F1-
score represents the weighted average of the precision and

TABLE I: Services and applications used for model training and testing (AL: ArrayList, LL: LinkedList, JS: Json String).
Teastore YCSB UPC’s dataset Netflix University Venues

HTTP Test. Test. Train (67%)/ Test (33%). - - -
PostgreSQL - Train/Test. - Test. Train Train
MySQL Test. Test. - Test. Train. Train.
DB2 - - - Test. Train. Train.
MonetDB - - - Test. Train. Train.
Cassandra Multiple nodes Train/Test. - Test. Train. Train.
Memcached - Train/Test. - Test(all data formats). Train (AL) /Test(LL & JS). Train (AL) /Test(LL & JS).
Redis Train/Test. - Test(all data formats). Train (AL) /Test(JS). Train (AL) /Test(JS).

TABLE II: Classification performance aggregated metrics vs. network models
for header-based and payload-based datasets.

Header-based datasets
Unidirectional flows Bidirectional flows

Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision
3-LSTM [5] 0.525 0.480 0.525 0.557 0.782 0.796 0.782 0.861

CNN+LSTM [3] 0.490 0.444 0.490 0.502 0.808 0.818 0.808 0.864
Payload-based datasets

Unidirectional flows Bidirectional flows
Accuracy F1-Score Recall Precision Accuracy F1-Score Recall Precision

3-LSTM [5] 0.940 0.940 0.940 0.955 0.937 0.937 0.937 0.952
CNN+LSTM [3] 0.942 0.942 0.942 0.954 0.948 0.949 0.948 0.958

recall, and offers a more accurate indication of the classifica-
tion performance in particular when the dataset is unbalanced.
For some of the results, we show the performance aggregated
over all services using a weighted average calculated using
scikit-learn. We have run each test five times and report the
average. The standard deviations are always below 0.1.

C. Experiment Results
1) Impact of Network Model: Table II shows the aggregated

service type identification performance for the 3-LSTM and
CNN+LSTM deep learning models described in Section IV.
The table shows results for header-based and payload-based
datasets with unidirectional and bidirectional flows with the
packets extracted from the beginning of the connection.

a) Header-based dataset: Using unidirectional flows for the
header-based dataset achieves a maximum of around 52%
accuracy and 48% F1-score by the 3-LSTM model while
the bidirectional flows improve the STC performance to be
higher than 78% accuracy and 79% F1-score. It seems that the
correlation between the incoming and outgoing messages for a
service type is crucial for better recognition of the service type
in the header-based dataset. While CNN+LSTM slightly out-
performs 3-LSTM for the bidirectional header-based dataset,
3-LSTM performs slightly better for the unidirectional one.

As an extra experiment, we have evaluated the impact of
adding source and destination port numbers as extra learning
features for the header-based dataset. We consider two types
of test data; the first contains the same service port numbers as
the training dataset, while the second has alternative standard
port numbers for each service, e.g., 8079 instead of 8080 for
HTTP and 33060 instead of 3306 for MySQL. We run the
two tests against CNN+LSTM. The first test data results in
93.8% accuracy and 93.6% F1-score, increasing performance
compared to when we ignored port numbers. In contrast, using
alternative port numbers for the services decreases the identifi-
cation accuracy and F1-score significantly to around 60% and
57%, respectively. This shows that the performance of header-
based deep learning models that consider the service port
numbers is tightly correlated to the static service configuration.

b) Payload-based dataset: Table II shows that the classifi-
cation performance of unidirectional and bidirectional flows
in the payload-based dataset is quite similar for both models
with CNN+LSTM performing slightly better for bidirectional

Fig. 1: F1 score for various service types vs. network models for both payload
and header-based datasets.

flows. Overall, the performance on the payload-based datasets
is significantly better than for header-based datasets.

2) Performance on a per-service basis: Having a closer
look at the performance for the individual services, Figure 1
shows the F1-score for each service label achieved by both
models for the bidirectional payload-based and header-based
datasets. The F1-score for the payload-based dataset is high
for both models and above 87% for nearly all services. Only
exception is the poor performance of CNN-LSTM for Spark.

We had a closer look at the confusion matrices (not shown
in a figure), and observed some misclassifications between
DB systems. For example, 20% of PostgreSQL flows were
misclassified as DB2 by the 3-LSTM model, while the same
percentage of PostgreSQL flows were misclassified as MySQL
by the CNN+LSTM model. We found a similar pattern for
Memcached and Redis. For instance, the CNN+LSTM model
misclassified around 10% of Redis cases as MemCached while
the 3-LSTM model misclassified 15% of Memcached flows
as Redis. In fact, Memcached and Redis requests have a fair
amount of similarity in their wording for commands such as
GET, SET, APPEND; and also in their reply messages. While
still being a wrong classification, labeling a service as being
of the ”same kind” might be viewed as more acceptable than
classifying it as something completely different.

For the header-based dataset, the confusion matrices show
a lot more variation. Misclassifications happen across all
services with no clear preferences for services that are similar.
It appears that the header data does not reveal too much
commonality among services of the same kind.

3) The impact of the packet positions in the flow: We now
want to look at the influence that the messages exchanged at
the start of the connection have on prediction performance.
We only look at bidirectional flows and CNN+LSTM as
they tend to have better performance overall. For the header-
based dataset, we consider the versions with and without port

With service port Without service port

Header-based dataset Payload-based dataset

Fig. 2: The impact of the extracted packets position in the flow in both header-
based and payload-based datasets.

TABLE III: Training time (in seconds) of different deep learning models for
header-based and payload-based datasets.

Header-based dataset Payload-based dataset
Unidirectional flows Bidirectional flows Unidirectional flows Bidirectional flows

3-LSTM [5] 89.383 42.001 178.505 156.567
CNN+LSTM [3] 177.276 55.714 286.817 130.528

numbers. Figure 2 shows the aggregated accuracy and F1-score
for both header-based and payload-based datasets when the 20
resp. 100 packets were taken from either the start or the middle
of the network flows. In the header-based dataset with port
numbers, not having the first messages of a flow decreases the
F1-score by 33%, while around 76% F1-score loss happens in
the header-based dataset that excludes the port numbers. This
shows that header-based approaches in scenarios with dynamic
ports can only work reasonably well if they can learn the
service type’s flow characteristics from the first handshaking
packets between the service and client. Once the model misses
extracting those first packets from the service flow, it wouldn’t
be able to recognize the service type anymore. But even if
standard ports are used and the model learning considers them,
not having access to the handshake messages significantly
reduces performance. On the other hand, the payload-based
dataset performance is only slightly affected when skipping
the first packets in the flow. This is because the model can
infer the service type from the service type headers in the
request and response messages.

4) Training time: Table III shows the training times for the
3-LSTM and CNN+LSTM models on the different datasets.
The training time grows with the increase in the number
of learning features (header-based has 4 compared to 36 in
payload-based), flows in the training dataset (unidirectional
has double as many flows as bidirectional) and model com-
plexity. For the latter, the number of model layers and their
type influence the model training time. While 3-LSTM and
CNN+LSTM have the same number of layers, the latter
requires more model training time for most of the datasets. For
instance, for the unidirectional payload-based dataset, which
has many learning features, the training time of CNN+LSTM
is around 60% higher than that of 3-LSTM. However, the
STC performance is improved by only 0.2%, as shown in
Table II. Similarly, the CNN+LSTM model increases the STC

performance for the bidirectional header-based dataset by only
2% with around 32% overhead in the training time compared
to the 3-LSTM model. Thus, there is a trade-off to be made.

D. Summary
In general, payload-based approaches outperform the

header-based ones with accuracy and F1-score always higher
than 93%. Furthermore, for header-based approaches, having
access to the first handshaking packets in the flow stream and
working on bidirectional flows are both important for high
service type identification accuracy. Both these things are not
so important for payload-based approaches to work well. A
further advantage of payload-based datasets is that if the data
is mislabeled, the wrong label often belongs to a ”similar”
service type, e.g., another caching or database system.

VI. CONCLUSION

In this paper, we have provided a comprehensive study of
the use of deep learning models in service type identification of
network flows. We have compared the performance of RNN
and a combination of RNN and CNN models, while using
header-based and payload-based data for training. We have
highlighted the trade-offs and the impact of various parameters
on the classification performance and required model training
time. Future work includes extending the scope by considering
more application traces and service types, and studying how
encryption and compression can be handled by deep-learning.

REFERENCES

[1] M. Finsterbusch, C. Richter, E. Rocha, J. Muller, and K. Hanssgen,
“A survey of payload-based traffic classification approaches,” IEEE
Commun. Surv. Tutorials, vol. 16, no. 2, pp. 1135–1156, 2014.

[2] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, and Y. Guan, “Network
traffic classification using correlation information,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 1, pp. 104–117, 2013.

[3] M. L. Martı́n, B. Carro, A. Sánchez-Esguevillas, and J. Lloret, “Network
traffic classifier with convolutional and recurrent neural networks for
internet of things,” IEEE Access, vol. 5, pp. 18 042–18 050, 2017.

[4] W. Wang, M. Zhu, X. Zeng, X. Ye, and Y. Sheng, “Malware traffic
classification using convolutional neural network for representation
learning,” in ICOIN 2017, Da Nang, Vietnam, pp. 712–717.

[5] H.-K. Lim, J.-B. Kim, K. Kim, Y.-G. Hong, and Y.-H. Han, “Payload-
based traffic classification using multi-layer lstm in software defined
networks,” Applied Sciences, vol. 9, no. 12: 2550, 2019.

[6] Q. Wang, A. Yahyavi, B. Kemme, and W. He, “I know what you did
on your smartphone: Inferring app usage over encrypted data traffic,” in
IEEE Conf. on Communications and Network Security (CNS), 2015.

[7] M. Shafiq, X. Yu, and D. Wang, “Network traffic classification using
machine learning algorithms,” in Advances in Intelligent Systems and
Interactive Applications. Springer, 2018, pp. 621–627.

[8] H. Singh, “Performance analysis of unsupervised machine learning
techniques for network traffic classification,” in Proc. 5th Int’l Conf. on
Advanced Comp. Comm. Tech., Washington, DC, 2015, pp. 401–404.

[9] A. Thammano and P. Poolsamran, “SMBO: A self-organizing model of
marriage in honey-bee optimization,” Expert Syst. Appl., vol. 39, no. 5,
pp. 5576–5583, 2012.

[10] “Service type classifier project.” 2020. [Online]. Available: https:
//www.cs.mcgill.ca/∼kemme/disl/STC.html

[11] e. a. Jóakim von Kistowski, “TeaStore: A Micro-Service Reference
Application for Benchmarking, Modeling and Resource Management
Research,” in Proc. of MASCOTS ’18, 2018.

[12] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proc. of
SoCC’10, Indianapolis, Indiana, USA, 2010, pp. 143–154.

[13] V. Carela-Español, T. Bujlow, and P. Barlet-Ros, “Is our ground-truth for
traffic classification reliable?” in PAM, Los Angeles, CA, USA, 2014, ser.
Lecture Notes in Computer Science, vol. 8362. Springer, pp. 98–108.

[14] M. Li, J. Tan, Y. Wang, L. Zhang, and V. Salapura, “Sparkbench:
a spark benchmarking suite characterizing large-scale in-memory data
analytics,” Clust. Comput., vol. 20, no. 3, pp. 2575–2589, 2017.

	sheet2
	a21-elsaadawy

