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Adiabatic evolution due to the conservative scalar self-force during
orbital resonances
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We calculate the scalar self-force experienced by a scalar point-charge orbiting a Kerr black hole along
r@-resonant geodesics. We use the self-force to calculate the averaged rate of change of the charge’s orbital

energy (E), angular momentum (L), and Carter constant (Q), which together capture the leading-order
adiabatic, secular evolution of the point-charge. Away from resonances, only the dissipative (time

antisymmetric) components of the self-force contribute to (E), (L.), and (Q). We demonstrate, using a new
numerical code, that during rf resonances conservative (time symmetric) scalar perturbations also

contribute to (Q) and, thus, help drive the adiabatic evolution of the orbit. Furthermore, we observe that the

relative impact of these conservative contributions to (Q> is particularly strong for eccentric 2:3
resonances. These results provide the first conclusive numerical evidence that conservative scalar

perturbations of Kerr spacetime are nonintegrable during r@ resonances.

DOI: 10.1103/PhysRevD.106.064042

I. INTRODUCTION

Future space-based gravitational wave observatories,
such as the Laser Interferometer Space Antenna (LISA)
[1-3], will extend gravitational wave science into the low-
frequency, milli-Hertz (mHz) regime. Sensitivity to a new
frequency band will facilitate the observation of new
astrophysical sources, including extreme-mass-ratio inspi-
rals (EMRIs) [4], binaries in which a stellar-mass compact
object (mass u ~ 10 M) gradually inspirals into a massive
black hole (mass M ~ 10° M). EMRIs are characterized
by their small mass-ratios € = u/M ~ 1077—=10~* and the
multiperiodic structure of their long inspirals. A typical
EMRI possesses three orbital frequencies] [5]—the azimu-
thal frequency €2, of the small body’s revolution about the
massive black hole, the radial frequency Q, of the small
body’s libration between pericenter and apocenter, and the
polar frequency €, of the small body’s nutating orbital
plane. The orbital frequencies slowly evolve as the small
body completes >e~! orbital cycles before merger. The
orbital evolution is imprinted in the gravitational waves
radiated by the binary, leading to signals filled with rich
harmonic structure that persist for months to years in the
mHz band. Consequently, the cumulative signal-to-noise
ratios of these sources will range from tens to hundreds,
providing unprecedented tests of general relativity and
high-precision measurements of EMRI masses and
spins [6,7].

*zachary.nasipak@nasa.gov
'If we neglect the spin of the smaller compact object.
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An interesting feature of EMRIs is that, due to their
evolving tri-periodic motion, many EMRIs will experience
special orbital configurations known as orbital resonances.
Resonances occur when at least two frequencies of motion
form a rational low-integer ratio (e.g., Q,/Q, = 1/2). For
EMRIs, transient orbital r@ resonances—resonances that
form between Q, and Qz—are particularly important.2
They persist for a resonant timescale T,., ~ Me™'/2, and,
depending on the orbital phase at which the EMRI enters
the resonance, they can enhance or diminish the binary’s
gravitational wave emission [15—17]. This alters the inspi-
ral by speeding up or slowing down the system’s adiabatic
loss of orbital energy and angular momentum (and Carter
constant), which leaves a measurable impact on the
gravitational waveform [18]. Almost all EMRIs are
expected to encounter at least one r@ resonance as they
emit observable mHz gravitational waves [19]. Therefore,
failing to accurately model these resonances can hamper
the detection and characterization of EMRIs by future
space-based gravitational wave detectors [16,18,20]. In this
work, we model the impact of different perturbative effects
on the leading-order evolution of a binary as it passes
through different ré-resonances.

*Other orbital resonances are either astrophysically improb-
able, such as sustained r6 resonances [8], or they are expected to
have a weak, immeasurable effect on EMRI gravitational wave
signals, such as r¢p and 0¢ resonances [9,10]. EMRIs can also
experience other resonances, such as tidal resonances [11-14],
which we do not consider in this work.

© 2022 American Physical Society
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A. Modeling EMRISs via the self-force

EMRIs are naturally modeled within the framework of
perturbation theory and the self-force. In the self-force
approach, the small body is treated as a perturbing particle
orbiting in the stationary background spacetime associated
with the massive black hole [21,22]. As the small body
orbits in this background, it interacts with its own pertur-
bations, resulting in a gravitational self-force (GSF) that
provides O(e) corrections to the motion. The conservative
(time symmetric) perturbations induce a GSF that is
responsible for nonsecular changes in the orbit, while
the dissipative (time antisymmetric) perturbations lead to
a GSF that drives the adiabatic inspiral of the small body
and can be connected to the orbit-averaged gravitational
wave fluxes out at infinity and down the massive black hole
horizon.

The cumulative impact of the self-force on EMRI
dynamics can be further understood via a two-timescale
analysis [23]. At leading adiabatic order, only the averaged
first-order dissipative self-force contributes to the evolution
of the orbital (and gravitational wave) phase, which
accumulate like ~e~!. This defines the inspiral timescale
Tinep ~ Me™'. At subleading post-1 adiabatic order, the
oscillatory pieces of the first-order dissipative self-force
and conservative self-force induce small shifts in the orbital
parameters, which vary on the orbital timescale T,y ~ M.
Additionally, the accumulation of the averaged second-
order self-force contributes at this order. Altogether, the
post-1 adiabatic effects produce O(1) corrections to the
cumulative phase. Therefore, to generate EMRI waveforms
that meet LISA’s subradian phase accuracy requirement,
one must calculate the averaged dissipative components of
the GSF to a precision >e~!, since their errors can grow
secularly over the inspiral, while the oscillatory pieces of
the GSF will have their errors suppressed by O(¢) relative
to the leading adiabatic order and thus only need to be
computed to a few digits of precision.

However, this picture is complicated for systems that
pass through at least one orbital 6 resonance. Due to the
presence of a new timescale 7T, resonances produce a
post-1/2 adiabatic correction that impacts the phase at
O(e~'/?). In the following section we review the source of
this half-order correction and how it impacts the accuracy
requirements for self-force calculations.

B. Action-angle variables and EMRI resonances

To better understand the impact of these transient
resonances, we can describe EMRI dynamics in terms of
action-angle variables, as proposed in [23]. In this multi-
scale action-angle framework, the fast orbital evolution of
the system (over timescales T'y,) is captured by the angle
variables w = (w,, wy,w,), whose time-derivatives give us

the frequencies of motion (at leading-order). The actions J
then describe the slow-time evolution of the system over

T}yp- Orbital quantities, such as the orbital energy E, orbital
angular momentum L, and the Carter constant Q (defined
in Sec. II A), provide one suitable set of actions, leading to
the equations of motion,
e =Qc(J)+0(e). T=eFT(J.w)+0(e), (1)
where x = dx/dt; J= (E,L.,Q); J is used to represent E,
L, or Q; and C is used to represent r, €, or ¢.3 The F7 are
forcing functions that are constructed from the self-force

and, at leading order, can be expressed as double Fourier
expansions in the angle variables,

Z kan

k=—00 n=—00

el (kwg+nw, ) (2)

where the Fourier coefficients fkjn only depend on J , and
the forcing functions do not explicitly depend on w, due to
the rotational Killing symmetry of Kerr spacetime. We
can further separate our forcing functions into terms that
only depend on the dissipative self-force, and those that
only depend on the conservative, i.e., 7 = F  + Fopus.
Based on the symmetries of the dissipative and
conservative pieces, the dissipative contributions reduce
to discrete cosine series,

| cos(nw,)

+22Ref0n

+ 22 > Relf{, ()]

k=1 n#0

123 Relff ()]
k=1

dlSS(J W) fOO

cos(kwy + nw,)
cos(kwy), (3)

while the conservative contributions reduce to discrete sine
series,

fcom J, W

—ZZ Im[fd (J
2303 )

k=1 n#0

- 2§:Im[fk‘70(J)] sin(kwy). (4)
k=1

)] sin(nw,)

sin(kwg + nw,.)

Integrating (1) over a period T, the oscillatory pieces
of the forcing functions will rapidly vary and destructively
interfere with one another. Thus the leading-order adiabatic

3In other words we use J to denote a function or coefficient

that is related to E or L, or Q, while 7 is used for quantities that
depend on E and L, and Q.
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evolution is given by the averaged, nonoscillatory piece of
each forcing function. Away from resonances, the only
nonoscillatory terms are the zero modes from the dissipa-
tive contributions,

(T) ~ e(FT) me(Fi,) mefin (D). (5)

However, as the system approaches a resonance, nonzero
(k,n)-modes become stationary and contribute to the
secular evolution of the system. This can be seen by
expanding the angle variables around the exact moment
of resonance f.s, when Q,(f.)/Qy(tes) = QF*/QF° =
B,/ Py with ... By € Z. Introducing the condensed notation
Xy, = kxg + nx, for any arbitrary parameter x, the phase
takes the expanded form

1.
Wi (1) = WSS + QIS A7 + Egigfmz +0(AP), (6)
where Af =1 — ¢ and Wi = wy, (t,s). Whenever

np. + kfo =0, (7)

Qi =0, and stationary (i.e.,
Wi (1) ® W) as long as QU5 (1 — f,,)* < 1. Because

the phase becomes

QI ~ ¢, this criteria is met when |1 — f,os| < Me™"/2 ~ T\
This defines the resonant timescale. Therefore any modes
that satisfy the resonant condition of (7) will contribute to
the secular evolution of the system for a period 7',

(T me(FTym Y eff(Neuli) (8)

kpo 1B, =0

Equation (8) differs from (5) in two key ways. First, the
averages depend on the initial angles or phases at resonance
wiy. Second, the averages include potential contributions
from both dissipative and conservative perturbations. This
poses a new problem for numerical models. Errors in the
initial values of wy, or the values of Im[f{ ] are usually
suppressed away from resonances, but during a resonance
they can accumulate and become magnified by O(e™'/?).
The exact magnification of the errors will depend on the
relative strength of the Fourier coefficients f to the
dominant mode f670- Numerically evaluating these coef-
ficients can, therefore, provide insight into how these errors
grow during a resonance.

Flux-inspired mode-sum expressions for (E), (L,), and
(Q) provide an efficient method for determining the
dissipative contributions Re[ fg,] using the asymptotic
behavior of the perturbing gravitational field [17], but
these results do not easily extend to conservative perturba-
tions. While these conservative perturbations could still
vanish at leading order during resonances [15], i.e.,
(F, ‘C%ns) =~ 0, previous authors have hypothesized that they

will contribute to the average rate of change of the Carter

constant, (Q) [24-26], breaking the integrability of the
Hamiltonian conservative system at resonance [27]. There
have been attempts to extend asymptotic mode-sum meth-
ods to include conservative contributions [24], but the
regularization of these conservative perturbations (see
Sec. I C) complicates these procedures. Instead we can
calculate fkjn, and thereby the conservative and dissipative

contributions to <j ), if we know the values of the GSF
along a resonance. However, while GSF calculations have
been performed along generic orbits in Kerr spacetime, to
date these GSF calculations have not been extended to ré
resonances [28].

C. Paper overview

In this paper we make use of a scalar toy model to
evaluate how, during 70 resonances, the conservative
contributions to the self-force impact the adiabatic evolu-
tion of EMRIs. Using this model, we also study how
numerical errors can propagate during these resonances.
For our scalar model we consider a scalar point charge g on
a r6@-resonant geodesic in Kerr spacetime. The charge
experiences a geodesic scalar self-force (SSF), which is
akin to the GSF. Neglecting the GSF and treating ¢*/(uM)
as a small parameter, the scalar self-forced equations of
motion take the same perturbative form as (1), but with e
replaced by ¢/ M. Much like the GSF, the SSF “pushes” the
particle away from a geodesic as it sources the gradual
evolution of the orbital parameters E, L, and Q. This work
is an extension of previous results published by the author
[29]. In [29], we presented the first numerical results of the
SSF along rf-resonant geodesics. However, the systematic
uncertainty in our SSF results was too large to make
definitive statements about the impact of the conservative
SSF on the secular evolution of our two-body system. In
this work, we have built a new C++ code that is orders of
magnitude faster than our previous Mathematica code and
incorporates new algorithms that have greatly reduced our
numerical and systematic errors, allowing us to accurately
calculate (E), (L,), and (Q) via (1) and (8).

The paper is organized as follows. To set notation, in
Sec. I we review Kerr geodesics, the SSF, and the average
rate of change of the orbital constants, (E), (L), and (Q).
For brevity, we will collectively refer to these average rates
of change simply as adiabatic or secular averages, since
they grow secularly with time. Furthermore, we will use

(J) to represent all three secular averages. In Sec. III, we
describe the methods employed by our new C++ code
for computing the SSF along rf resonances and then
calculating the resulting averaged secular evolution of

the orbital quantities, (7). We highlight two new tech-
niques used by our new code: (1) a Teukolsky solver that
combines confluent Heun expansions, series of hyper-
geometric functions, and numerical integrators to solve

064042-3



ZACHARY NASIPAK

PHYS. REV. D 106, 064042 (2022)

the Teukolsky equation; and (2) a new application of mode-
sum regularization that directly regularizes the Fourier

harmonics that describe (7). In Sec. IV, we demonstrate,
with new numerical results, that the conservative perturba-
tions do contribute to the secular evolution of Q, breaking
the integrability of the conservative scalar system at
resonance [27]. We conclude with a discussion of these
results in Sec. V. For this paper we use the metric signature
(— + ++), the sign conventions, where applicable, of [30],
and units such that c = G = 1.

II. BACKGROUND

We employ the same resonant scalar model and SSF
formalism used in [29]. The zeroth-order background
motion is given by a geodesic x/, in Kerr spacetime G
(Sec. I A). The motion of the scalar charge g sources a
scalar field @™ (Sec. II B), and the charge interacts with a
regular component of this field ®R, thus experiencing a
SSF F, (Sec. IIC). The SSF then drives the secular
evolution of the energy, angular momentum, and Carter
constant that parametrize the charge’s motion, (E), (L.),
and <Q> respectively (Sec. I D). To establish notation, in
the following section we provide a brief overview of how
we construct these quantities.

A. Bound geodesics in Kerr spacetime

We consider a point particle with mass y on a bound
geodesic in a Kerr background g,,. In Boyer-Lindquist
coordinates (¢, r, 6, ¢) the Kerr line element reads

2M z
ds* = —(1 - r)dzz +Kdr2

z

4Mar sin® @

+ 2de? — dtde

sin? @
>

(P + @ —@Asi o), (9)

where M is the Kerr mass parameter, a the Kerr spin
parameter, ¥ = r> 4+ a’cos’f, and A = r> —2Mr + a>.
The worldline and four-velocity of the particle are denoted
by xj = (t,.7,.0,.¢,) and u* = dx)/dz, respectively,
where 7 is the particle’s proper time.

To solve for x/, we leverage the three Killing symmetries
of Kerr spacetime: the time Killing vector é’(‘t> = ¢",, the
azimuthal Killing vector 5’(‘ 5 = g} and the Killing tensor
K* [31]. (See Eq. (C23) in [29] for an explicit definition of
K*.) Projecting these Killing symmetries onto the four-
velocity of the particle provides us with four constants of
motion: the particle mass p, the orbital energy
E = —5’(‘ i = ~Up, the z-component of the orbital angular
momentum L, = f’(‘ ol = Uy and the (scaled) Carter

constant Q =K*u,u,—(L,—aE)*=K—(L,—aE)* [32].

With these conserved quantities, we obtain four first-
order ordinary differential equations (ODEs) for x%,, which
decouple when parametrized in terms of the Mino(-Carter)
time parameter 4 [21,32],

=L = Vy(r,) + Vig(0,), (10)

o= 1 /V.(r,). (1)
%: +1/Vo(6,), (12)

d¢
d—/lpz V¢,(rp) +V¢9(9p) (13)
where d) = X~'dz, and the potential functions are given by

V,(r) = P*(r) = A(r* + K).
Vy(0) = Q — L2cot*d — a*(1 — E?)cos?0,

r2 2
Vi(r) = Za P(r), V() = aL, — a*Esin®0,
V(r) = % (r),  Vy(0) = Lesc?0—aE,  (14)

with P(r) = (r? + a®>)E —alL..
To choose values of (E, L_, Q) that correspond to bound
geodesics, we introduce the orbital parameters

_ 2rmin"‘max — Tmax ~ "min
p - ’ e = ’ (15)
M(rmin + rmax) Tmin + F'max
X = cos <g - é’min), (16)

where p is the semilatus rectum, e is the orbital eccentricity,
and x is (the projection of) the orbital inclination. The
minimum radius ry,;,, maximum radius r,,,, and minimum
polar angle 6,;, = & — 6, represent the turning points of
the geodesic. We first choose values of (p, e, x), then obtain
the corresponding values of (E, L., Q) using the methods
of [5]. Once the constants of motion have been determined,
we solve (10)—(13) using spectral integration methods
[33,34], which provide exponentially convergent numerical
approximations of the geodesic solutions.

The resulting bound solutions can be separated into
terms that are periodic and terms that grow secularly. The
radial and polar motion are completely periodic, with Mino
time periods,

Fmax d Ormax do
A,:Z/ _— A9=2/ . (17)
Tmin Vr(r> emin VG (0)

and corresponding frequencies,
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Tr:2—ﬂ, ngz—ﬂ
r A9

(18)
Therefore, we represent the radial and polar motion by
rp,(A) = Ar(Y, ) = Ar(Y, A+ 27),  (19)
0,(1) = A0 (Yya) = A0 (Tyd +27).  (20)
On the other hand, coordinate time 7, and the azimuthal
angle of the particle ¢, not only oscillate with respect to the

radial and polar frequencies, but they also accumulate with
rates

r 0 r [
T =104+ T, =10+ @)
where

. 1 [A 1 [
1 = [Mvitgan 10 = [T v,
(22)

o _ L [™ 0 _ 1 [
T, —A—rA Varlrp)dd: Xy =73 | Vaol6,)dd
(23)

We represent their evolution as
t,(2) = T,A+ AL(Y,0) + A (Tph),  (24)
¢p(2) = Tyd+ APU(T,2) + AP (Tph),  (25)

where A7), Ar("), and Agp(") all share the same periodic
structure, and likewise for Ar@, AG©, and Ag®.

The exact form of the oscillatory terms in (19), (20), (24),
and (25) depends on the initial conditions of the bound
geodesic. However, it is possible to relate geodesics that
share the same orbital constants, but different initial
conditions. To do so we first define a fiducial geodesic
*#(A) with initial conditions (at A = 0)

AI;’ (O) = (ip (O)’ ?17 (0)7 91) (O)» ¢p (O)) = (O’ Fmin»> Omins 0)
a"(0) = 1’29(0) =0. (26)

Then any geodesic with arbitrary initial conditions

xp(0) = (1,(0).7,(0).0,(0).9,(0)) = (to. ro. 6. o)
ug

w(0) =up.  u’(0)= (27)

can be expressed in terms of the fiducial solutions,

tp (l) = ’rt/1 + Ai(r)(‘]r + qu) - A?(r)(CIrO)
+ A9 (gy + qgo) — A9 (ggo) + 1o, (28)

rp(A) = AN (g, + q,9), (29)
0,(4) = Aé(e)(‘]e + qo0) (30)

$,(A) = Yyd+ AP (q, + 4,0) — AP (q,0)
+ Aé%(g)(% + qo0) — A(}(a)(%o) +¢o, (31

where we have defined the phase variables ¢, = 1,1 and
qo = TM.“ The initial phases ¢,, and g4, are set by the
initial conditions (ry, u() and (6, ug), respectively, and all
hatted quantities are constructed assuming the fiducial
conditions of (26).

Together the Mino time frequencies also define the
fundamental frequencies of the bound geodesic with
respect to coordinate time,

T, T,
Q=-" Q=2
r Tt 0 frt

Q,=-2. (32)
When at least two of these frequencies are commensurate,
the geodesic is said to be resonant. In this work, we are
interested in 70 resonances, where Q./Q, = f,./py with
P, Po € Z. For rf resonances, we define the resonant Mino
frequency, resonant Mino period, and resonant fundamental
frequency

T, T, 2 T
T=—"~=_2, A=—, Q=—, 33
5 " Fy T T, Y

respectively.

An important feature of nonresonant geodesics is that
they are ergodic or space-filling. Given an infinite amount
of Mino time, a nonresonant orbit will uniformly sample
every point on the two-torus spanned by the phase variables
q, and ¢,. In practice, this means that any nonresonant
geodesic is directly related to a fiducial geodesic up to some
trivial translation in time and azimuth. To change the initial
conditions, we can simply pick new values of 7, and ¢,.
Due to the Killing symmetries of Kerr, time and azimuthal
translations do not impact quantities such as the SSF or the
secular rate of change of the orbital quantities, e.g., (E)
Therefore, we can choose fiducial initial conditions when
we model nonresonant geodesics without loss of generality.

In contrast, resonant geodesics are not ergodic but
follow restricted tracks through coordinate space (and on
the g, — qo two-torus). Furthermore, different choices of
initial conditions ¢,, and ggy can also lead to unique

“The phase variables ¢, and g, are equivalent to the geodesic
limit (¢ — 0) of the angle variables w, and wy introduced in Sec. I
if we had parametrized our equations in terms of A instead of .
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trajectories (e.g., Fig. 2 in [29]). Unlike nonresonant
geodesics, rd resonances will only map to fiducial geo-
desics if they simultaneously pass through r.;, and .
This only occurs if the condition

9e0 _9r0
ﬁé‘ ﬂr

is satisfied for some integer N. Generally (34) is not met.
Nevertheless, two rf resonances can be mapped onto one
another provided they share the same initial resonant phase
(modulo 27)

= 22N (34)

d00 40
== —— 35
"B B (33)

and the same orbital parameters (e.g., E, L., and Q).
Therefore, when constructing the SSF or (Q) (see Secs. I1 C
and I D), we must take into account their dependence on
the initial phases. In practice, due to the interdependence of
4,0 and ggy in (35), we set ¢, = 0 and parametrize our
initial conditions in terms of gy, without loss of generality,
when dealing with r@ resonances.

B. Scalar perturbations of Kerr spacetime

We now consider that our point-mass u, orbiting on a
geodesic xh,, also possesses a scalar charge g. The charge
sources a scalar field @ (per unit charge ¢) that satisfies the
Klein-Gordon equation

49"V, V,®(x) = ~4mp(v), (36)
where p is the scalar charge density,

8(r—r,)d(cos@ —cos@,)5(p — ¢),)
Vi (r) + Vip(0) '

p(x) = g (37)

Transforming to the frequency domain, we can solve
(36) via separation of variables [32,35,36]. We then obtain
the physical retarded solution ®™ by imposing causal
boundary conditions at the black hole horizon r, = M +
VM? — a* and infinity. When ®™ is reconstructed back
into the time-domain, the only frequencies that contribute
are those that correspond to the discrete frequency spec-
trum of the charge’s bound motion,

[P I’I/IQ¢ + ng + I’IQ,. (38)

As a result, the scalar field can be expressed as a discrete
mode-sum,

q)rel ()C

ZR]mkn

Jjmkn

jmkn a)eim(ﬁe—iwmk"l, (39)

where we have introduced the compact notation,

Z N i ZJ kzioo n:ioo ' (40)

The polar dependence in (39) is captured by the scalar
spheroidal harmonics S, (@) [37,38], which satisfy

d
{ﬁ —cot ;- a’w?,, sin’0
2
m
+ 2maa)mkn - W + }“jmkn Sjmkn(e) =0, (41)

where 4,1, is the spheroidal eigenvalue. In the limit
AW,y = 0, Ajpn = 1(1+ 1) and (41) reduces to the spheri-
cal harmonic equation. Therefore, the S, can be expressed
as rapidly convergent sums of spherical harmonics,

Sjmk" lm¢ Z jmknYlm 9 ¢ (42)
=0

where the coupling coefficients bi. satisfy a three-term

mkn
recursion relation [39,40].
The radial dependence in (39) is captured by the

Teukolsky solutions R, (r), which satisfy the inhomo-

geneous spin-0 radial Teukolsky equation

d? d
dr ) + GT( ) + Ujmkn( ) ijkn(r)

dr = ijkn(r)’ (43)

with causal boundary conditions [36], where

Gr(r) = 2 =M) X M) (44)
4+ adw,,, —ma?* A;
U4y (0) = 2V =] (g5

and Zj,,;,, is the radial component of the mode-decomposed
source, p, given in (37). The causal boundary conditions are
captured by the unit-normalized ingoing and upgoing
homogeneous solutions, which have the respective asymp-
totic behaviors,

R]_mkn(r —r)~ e Pkl (46)
eiwmknr*
Kimialr = 00) === (47)

where p,, = @i — ma/(2Mr,.) is the horizon-shifted
frequency, and r, is the tortoise coordinate defined by the
differential relation dr,/dr = (r* + a*)/A.

While we could reconstruct @™ using (39), the resulting
field exhibits Gibbs ringing in the source region r;, <
r < rpax due to the pointlike distributional source in (37).
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Therefore, we circumvent the Gibbs phenomenon by
applying the method of extended homogeneous solutions
[41-43]. Outside the source region (r < ry;, and r > Fpax)

R, 4, simply reduces to the homogeneous solutions R Sk

multlphed by complex normalization coefficients C7, k>

R;?’:Lkn(r < rmin) - C/mknRj_mkn( ) (48)
R;?:zkn(r > rmax) Cj_mkn jmkn( ) (49)

The C]m,m, also known as Teukolsky amplitudes, are
calculated using the standard method of variation of
parameters, as outlined in [29,34]. Importantly, varying
the initial phases of the scalar charge’s orbit will change

ijkn by an overall phase factor [17,44]
C/imkn = i (10:0,0-q00- ¢O)C/mkn» (50)

where the fiducial coefficients C7, mkn are calculated assum-

ing fiducial initial conditions (26), and the phase factor &,
is given by

Emkn (T0- 410+ 490+ Do)
= m(Ad") (g,0) + 8 (gm) — o) — kg
— @ (A1) (q,0) + AT (qg0) — 19) = ngyo-  (51)
Consequently, in the vacuum regions of spacetime @, can

be reconstructed from an exponentially convergent sum
over the homogeneous radial solutions R

Jjmkn>®

oo l
DU (r < Fig) = Z wi (6. 7)Y(0.9). (52)

1=0 m=—
= _(x>7 (53)
(I)ret<r > rmax = zoo: z[: lm t r Ylm 0 ¢) (54)
— @+ (x), (55)

where we have introduced the extended homogeneous
mode functions,

l//lm 2 r) Z Z Z wljmkn(r lwmk”t (56)
k=—00 n==00 j=|m|
l//lijmkn(r) = bﬁ'mkncjimknRjimkn(r)' (57)

To obtain @™ over the entire radial domain, we simply
extend our homogeneous solutions into the source re-
gion, e.g.,

O (t,r,0.¢) = D (t.7.0.4)0(r,(t) — 1)
+OF(t,r,0,0)0(r —r,(1)).  (58)

While v, (¢, r) and w;,,, (r) are not formal solutions of
our inhomogeneous Teukolsky wave equations, summing
over all of the extended harmonic modes results in a
convergent field solution that is free of Gibbs ringing and
accurately represents @' over the entire spacetime domain
up to the charge’s worldline x%.

C. Scalar self-force

Now we take into account the backreaction of the scalar
field on the charge g. This produces a SSF F, (per unit
charge squared) that drives the inspiral of the particle [45],

u'V, (uu®) = ¢*F°. (59)
While the field @™ formally diverges along the charge’s
worldline (where the SSF is evaluated), only a regular
component of the field contributes to the SSF. This regular
contribution is completely captured by the Detweiler-
Whiting regular field ®R [46],

= lim g* V@K, (60)

X=X,

though it is often convenient to further decompose ®® into
its conservative and dissipative pieces, ®R = @ | Pdiss,
resulting in conservative and dissipative contributions to
the self-force,
Fgons —_ vaq)cons’ ngss — vaq)diss’ (61)
respectively. The dissipative scalar perturbations are asso-
ciated with the radiative field @ = 1 (@™ — @) that

drives the inspiral of the scalar charge, where ®*% is the
advanced field solution of (36). While ®™! and ®*" diverge
along the worldline, their singular behaviors perfectly
cancel when constructing @4, resulting in a smooth,
well-defined field along the worldline. The remaining
conservative scalar perturbations @ = @R — @diss only
source nonsecular changes in the motion when the system
is not in resonance. In this work, we investigate whether
this behavior also extends to resonances.

To calculate these conservative perturbations, we
first construct the regular field from the difference
DR = @™ — @S, where @ is the Detweiler-Whiting sin-
gular field. Like @™, ®S satisfies (36), but with non-
radiative boundary conditions that result in a solution that
captures the local, singular behavior of the field. Therefore,
®S also diverges at the location of the charge, requiring a
regularization procedure that delicately handles the sub-
traction of @™ and @S, In this work we employ mode-sum
regularization [47,48], in which the divergent quantities
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Frt =V, @ and FS = V,®5 are decomposed onto a
spherical harmonic basis, resulting in finite multipole
moments (spherical harmonic /-modes) that can be sub-
tracted mode by mode,

(Fat' = Fat). (62)
=0

F,= lim
x—*tx,

The + notation takes into account that Fit*' and Fy' are
discontinuous at x’;,; therefore, their values depend on the
radial direction from which we approach the worldline. While
we only need to regularize F’™, in practice we first compute
F, via (62) and then use it to construct FS°" and F4i,

An advantage of this mode-sum approach is that F5-' can
be expressed as a series of /-independent regularization
parameters, which are constructed by expanding ®° in the
local neighborhood of x%, [46,48,49],

1
ol = +5 4421+ 1) + B,
2n)

© n (
Dg
+;k (20 4+ 2k 4+ 1)(21 =2k + 1)

(63)

The higher-order parameters, D((IZ"), are not strictly needed
for convergence. They vanish when summed over all
[-modes,

© n D(Zn)
“ =0, 64
IZ L (214 2k + 1)(21 =2k + 1) (64)

but each additional D((f”) that we incorporate in our mode-
sum regularization increases the rate at which the sumin (62)
converges. Including parameters up to n = n,,,, results in
(62) converging like /=2 +1)_ This is particularly useful in
our numerical calculations, where we are forced to truncate
the sum at some finite / = [,,,. In this work, we make use of
A, B,, and D,(xz), which were analytically derived by
Heffernan [50] and are available on Zenodo [51].

Using our results from Sec. II B, it is straightforward

to construct the time, radial, and azimuthal components
of Fret,l
at

[

1
Ftt = 3" P =" oy, (6.1)Y,,(0.4).  (65)

m=—I m=—

[
=" 0w (1.1 (0.9).  (66)

m=—I

ret,/ ret,lm __
Frevl — § Fret

m=-1

Fret 1

rel Im __
ot = Z Fy

m=-1

l
Z imwﬁn(t’ r) Ylm(ev ¢) (67)

m=—1

Assembling the polar component is more complicated.
Taking the polar derivative of (52)—(58) results in a series of
spherical harmonic derivatives,

1
Fit' =yt (1.1)09Y 1, (0. ). (68)

m=—

instead of the spherical harmonic basis needed for our
regularization scheme. Unfortunately, simply reexpanding
(68) onto a basis of spherical harmonics is computationally
impractical due to the strong coupling between 9d,Y,, and
Y. [43].

To circumvent this issue, we follow the methods of [43]
and multiply @™ by a suitable window function f(x) so
that the combination fd,Y;,, can be reexpressed as a finite
series of spherical harmonics. If the windowed, unregular-
1zed self-force field,

Fg'(x) = Volf (x) @™ (x)]
= [(x)0p®"™ (x) + @™ (x)dpf (x),  (69)

reduces to F'¥*(x) as we approach the worldline (i.e., F*?' —
Fj'as x* — x’,‘,), then we can calculate F, via the mode-
sum regularization of Fi'(x),’

o]

Fg = lim

(~ v Dy’
Py - B, ——). (70)
X—>kx, =0 (2[ — 1)(2[ + 3)

where we have made use of the fact that A, = A 4 = Oalong
all geodesics in Kerr spacetime. For a general choice of
f(x), the new regularization parameters B, and Déz) will

differ from the original analytically known parameters By
and Dﬁ,z), because our window function will also change the
structure of the singular field. To ensure that By = B, and
[)éz) = Déz), we must choose f(x) so that the singular
structure of ®S is preserved at its first few leading orders.
(See Appendix A for more details.) This is achieved
if f(cos@) =1+ O(cos® —cos@,)*.
Therefore, we introduce the window function

3

£0.0,) =" a;(0,) cos’ Osin, (71)

=0
where

5Alternatively, we can think of this window function method as
a process for choosing a different extension of the self-force
operator away from the particle’s worldline, i.e., V, = f(x)V,,
as done in [28].
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2 —7cos*8, + 8cos*0,(1 — cos?6,)

a(6y) = 2sin 0, - ()
-2 tm)

a(0,) = L=® COS; 2{711(719—: cos”6y) , (74)

a(0,) = cos6,(3 4+ 2cos?6,) ' 75)

2sin’ 0,

With this window function, we get a finite coupling
between the spherical harmonics and their derivatives,

£(0.0,)09Y 1,(0, ) = Z B (0,)Y 1 m(0.9). (76)

n=—4

where /Jgfn) is defined in Appendix A. As a result,

i
Fret,l ret,lm
Fai - E : Fﬁi

m=-1

= Z ZﬁlJrnm

m=—Iln=-4

l//l+n m([ r) Ylm (6 ¢) (77)

which is amenable to mode-sum regularization.

The final step before mode-sum regularizing the SSF is
to construct the retarded self-force multipole contributions
along the worldline of our point charge. To do so, we follow
the methods outlined in [29]. First, we assume that our
point charge is following a fiducial resonant geodesic
X, given by (28)=(31) with 1, = q,0 = qgo = po =
We then construct F ffjt’l via (65)—(67) and (77) and evaluate
both F' and F5! along %, e.g.,

Foi'(t.r.0.9) = F'(i,(2).7,(2).0,(2). §,(2)).
When evaluating the mode functions along the worldline,

the terms that accumulate linearly with A cancel, allowing

us to instead parametrize F ;‘11 , F Zi and F, in terms of the

phase variables ¢, and g, [28,29]. Therefore, in a slight
abuse of notation, we use F(q,. qo), F5'(q,.qp), and
F(g,.qy) to denote the retarded self-force multipole
contributions, the singular self-force multipole contribu-
tions, and the regularized SSF evaluated along a fiducial
geodesic, respectively.

To assemble the dissipative and conservative contribu-
tions to the self-force, we leverage the symmetries of Kerr
spacetime to relate F9% and F to F, [23,29],

A 1. A

Fglss(qw QB) = E [F(I(Qr’ CIH) - e(a)F(z(Z” — 4y 2r - 610)]’

A 1 4 ~

F™(4r.a0) = 5 [Falar q0) + €@Fa(2m = q,. 27 = gp)],
(78)

where €(4) = (=1,1,1,-1).

Using these fiducial self-force quantities, we can also
evaluate the SSF for a resonant geodesic with nonfiducial
initial conditions ¢,y #0 and ggy # 0 via the shifting
relation [29],

Fo(qr90: 0. 900) = Folqr + G0- 90 + qo0)-  (79)

The shifting relation holds for Ff;il(q,,qe;qro, Geo) and

F zi(qr, 905 9,0 400)> as well. Therefore, by computing the
fiducial SSF quantities along a two-dimensional grid
spanned by ¢, and g, we efficiently capture the evolution
of the SSF along a whole family of resonant geodesics that
share the same orbital constants and frequencies, but differ
in their initial conditions.

D. Secular evolution of E, L, and Q

Once we determine the SSF, we examine its impact on
the evolution of the charge. First, we reexpress the
equations of motion (59) in terms of y, E, L_, and Q,

E = _qzuaFm (80)
dE dL
g -¢*a,, d—rz = 612%, (81)
9 _ 2¢*KH 2¢%(L E 82
E_ q u,a, — C]( ;—a )(a¢+aat), ( )

where a* is the self-acceleration of the scalar charge,

u" du
= (g" + uwu)F, = F' ———. 83
pa = (g + ) e (D)
The leading-order, adiabatic evolution of our system is
captured by the secular rate of change of these orbital
quantities, (41), (E), (L.), and (Q). The brackets denote an

orbit-average with respect to coordinate time,

(X) = % A " x(n)ar, (84)

where T is the orbital period. We can integrate (80)
analytically,’ leading to the trivial result (j) =O0.

®The evolution of the mass is given by u(t) = puy—
g®OR[x%(1)], where u, is an integration constant commonly
referred to as the charge’s bare mass.
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Following [52], we reexpress the remaining orbit-averages
as integrals over Mino time. Therefore, for a scalar charge

. R . 7
g on a r@-resonant geodesic with initial orbital phase g,
the secular evolution due to the SSF is given by

2
o4

A/\
/ 15(C Yok + qoo)di. (85)
0

where J is used to represent E, L, or Q, and the integrands
are given by

I, =%,a,. (86)
1o =258, [k"i,a, - (L, — aE)(ay + aa,)]. (87)

Note that all hatted quantities are evaluated along a fiducial
geodesic that shares the same frequencies as the scalar
charge’s orbit.

As discussed in Sec. I, the averages in (85) will vary with
the choice of initial phase ggy. This is in contrast to
nonresonant orbits, which have no phase dependence.
Therefore, we define the double average

1 2n
a 27TA 0

(o / T aw)didam  (88)

to capture the piece of the secular evolution that is inde-
pendent of g4y. Computing this double average is equivalent
to computing (j ) by naively assuming that our resonant
geodesics are nonresonant. The phase dependence of our
resonant averages is then captured by the residual averages,

(68T) =(T) = (T o (89)

To compute these averages, we first take into account
that our orbit averages in (85) will depend on both F45 and
F¢°™. Therefore, any quantity that depends on the self-force
can be decomposed into a conservative contribution and a
dissipative contribution, e.g.,

(50) = (60)9 + (30)°™. (90)

Henceforth, quantities with a “cons” label are calculated using
only F$°", while any quantity with a “diss” label is calculated
using only F45, Furthermore, we can decompose quantities
into their contributions from both F™ and F5', e.g.,

[Se]

(60) = |3 (600)% = (60)%) - 60 o)

1=0

These decompositions allow us to effectively mode-sum
regularize the secular quantities themselves, rather than

"Recall from Sec. IT A that, due to the coupling between the
radial and polar motion, we can set g,y = 0 without loss of
generality, provided we allow gg, to be nonzero.

regularizing the self-force and then computing the averaged
rates of change. For example, we find that regularizing
<5Q>C°“S significantly reduces systematic uncertainties in
our final results, as we will discuss in Sec. III.

Based on the symmetries of the conservative perturba-
tions [see (78)] and global flux-balance arguments
[21,53,54], (E)®" = (L,)*°" = ((0))&™ = 0. This is in
agreement with nonresonant orbits, where conservative
perturbations have no impact on the leading-order secular
evolution. However, as discussed in [24-26], during r0
resonances these same symmetry and flux-balance argu-

ments no longer guarantee that (5Q)°" will vanish.

Therefore, we compute <6Q>°°“S for a scalar charge on
several different rf-resonant orbits.

III. NUMERICAL METHODS AND
IMPLEMENTATION

To carry out our calculations we developed a new
numerical code in C++, which we will refer to as CPP.
CPP consists of a driver program that calculates, for a
scalar charge following a resonant geodesic, the average
rate of change of its orbital energy, angular momentum, and
Carter constant—(E), (L), and (Q)—due to the SSF. The
driver program calls on eight separate modules, each of
which implements a different piece of the self-force
problem outlined in Sec. II:

(1) a geodesic module that determines the background

motion of a perturbing particle,

(2) a harmonic module that evaluates the frequency-
domain harmonics of the self-force experienced by a
perturbing particle,

(3) a spheroidal harmonic module that solves for the
spheroidal harmonics,

(4) a radial Teukolsky module that solves for the
homogeneous radial Teukolsky solutions,

(5) a source integration module that calculates the
normalization constants (Teukolsky amplitudes)
due to the presence of a perturbing point-source,

(6) a self-force module that sums over the harmonics to
construct unregularized modes of the self-force,

(7) a secular evolution module that determines the
averaged rate of change of the background orbital
quantities due to a perturbing force, and

(8) a regularization module that regularizes divergent
self-force data.

One advantage of writing this new code is that CPP,
which only relies on floating-point arithmetic at double
precision, is much faster and less memory-intensive than
our old arbitrary-precision Mathematica code, which we
used in previous investigations of the SSF [29,34]. From
here on, we refer to the Mathematica code as MMA. With
CPP, a typical SSF calculation (for a single resonance with
all initial conditions taken into account) completes in ~300
CPU hours on a laptop with a 2.4 GHz 8-core Intel Core 19
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processor. As a result, SSF calculations complete in less
than a day when mode computations are distributed across
the laptop’s cores with MPI [55]. For comparison, com-
parable SSF calculations took over 15,000 CPU hours with
MMA, and had to be performed in parallel on a cluster for
several weeks. Another benefit of CPP is that is relies on
freely available, open-access software—such as GSL
[56,57] and Boost [58]—making it far more accessible
than MMA, which relies on proprietary software.

Another advantage is that, due to its modular design, CPP
can easily be generalized to the problem of calculating the
GSF in radiation gauges. In fact, our spheroidal harmonic,
radial Teukolsky, and source integration modules have
already been generalized to handle gravitational perturba-
tions. However, for the purposes of this work, we will only
focus on the numerical implementation of the SSF problem.
In Sec. III A we describe the CPP driver program and how it
generates the results presented in Sec. IV, while detailed
descriptions of the CPP modules are found in Appendix B.

CPP implements many of the same numerical methods
used by MMA and outlined in [29,34], but we highlight two
key differences between these two codes. The first is that in
MMA we determine the radial Teukolsky solutions using
semianalytic series of hypergeometric functions derived by
Mano, Suzuki, and Takasugi (MST) [59,60] that are evalu-
ated at high levels of precision. In contrast, CPP computes
the radial Teukolsky solutions using a combination of
routines that are better adapted to the limits of double
precision, including adaptive step-size numerical integra-
tion, asymptotic expansions, and the MST series. (See B 5.)
This required the development of a special functions C++
library that computes a number of functions in the complex
domain, particularly hypergeoemtric functions.

The second key difference is that in MMA we first
regularize the SSF, and then we use the regularized data F,,

to compute (E), (L,), (Q) as functions of the initial
resonant phase ¢gy. Therefore, uncertainties and errors
introduced to F, by our MMA regularization procedure

are propagated to (E), (L,), (Q). In CPP we first calculate
the mode contributions to the secular rates of change using
the unregularized SSF modes F fff_f , and then we regularize
the coefficients of the Fourier series that represent our orbit-
averaged quantities. (See B 7 and B 8.) Directly regulariz-
ing the Fourier coefficients of (E), (L.), (Q) significantly
reduces estimated uncertainties due to mode-sum regulari-
zation. We expand on this new regularization scheme in
Sec. IIT A.

A. Driver program

1. Input

The driver program requires the following initial inputs:
(1) The orbital parameters (a,e,x) that describe the
background resonant geodesic of our scalar charge,

(2) the resonant ratio f3,/f, of the radial and polar
frequencies;
(3) the geodesic sampling number N, = 2", where
Nyeo € 75
(4) the SSF sampling number Nggrp = 2"s5F, where
Ngsp € Z7 < Nge,; and
(5) the maximum SSF [-mode [,,,.
In this work, we typically set ng, = 12, ngsp = 8, and
Inax = 25.

2. Computing the background geodesic

Given this input, the program first determines the value
of p that produces the resonance Y,/Yy=pf,./Po.
After completing the orbital inputs (a, p, e, x), the program
constructs the fiducial geodesic functions described in
Sec. IIA wusing the geodesic module outlined in
Appendix B 1. The functions are evaluated at N,
evenly spaced points in ¢, and g, resulting in the

discretely sampled values A%; = {A?l(-rr), A?Ef), Af‘l(-:), A@E:}),
AP AP, where iy ig = 0,1, ..., Nggo — 1.

3. Constructing SSF data

After the program constructs the geodesic data, it
calculates the unregularized SSF /-modes ﬁff;l [see (62)]
using the SSF module described in Appendix B 2.
The program samples these modes on an Nggp X Nggp
grid in g, and ¢y, leading to the discrete mode values

F ffyj j,» Where the grid points are indexed by the integers
jrvjé) — O, 1, "'7NSSE —11.

After computing F ffi ijo for 0 <1 <y, the program
constructs a number of quantities that are related to the SSF.
First it evaluates the regularization parameters on the same

Ngsp X Nggr grid as the SSF using the regularization
module in Appendix B8. Like £/

at.j.jo’
sampled parameters are referred to as A Byjj,»
ij) j,- Next, it constructs the /-mode contributions to the

dissipative SSF using (78),

the discretely

@rio® and

Fdlss,l

1, . o
_ (et _ ret,/
at i = 5 Fatjjy = €@F );

at;Nssp—j,—1.Nssp—1—Jjp

which do not require any regularization. After that, the
program constructs the partially regularized self-force
quantities,

A

R R 1
—Al N
F;e; = ng’; e T EA(,JV »Q2I+1). (92)

By removing the leading-order singular behavior in (92),
fret—A,l fret—A,l . s

Fy i and F7 7 should agree to machine precision in
the absence of additional numerical error. Therefore, taking
their difference gives us an estimate of the overall
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: : pret,l
numerical error in F, i

program constructs a third self-force quantity,

. Furthermore, using (92), the

raret—A,l

a+.j.jo Jr = Nsplilv
fret—A,l Fret—A,l .
as.irjo =\ Fa-irio Jr <N (93)
1 ( frret=A,l Fret—A,l . )
2(Fa—,j,j9 +Fa+.j,jg) Jr _Nsplm

where N is the value of j, that minimizes the difference
|A?§-f) — /Tmin"max |.® For eccentric orbits and high frequ-
encies, we encounter large cancellations between the
extended homogeneous functions when constructing the
self-force. As observed by previous authors (e.g., [61]),
these cancellations become more severe the farther one
extends the homogeneous functions into the radial libration
region of the perturbing point source. Consequently,
Fret—A.I

at.jj, tends to accumulate larger numerical errors when
ret—A,l

the scalar charge is closer to 7y, while F,” A

from larger numerical errors when the charge is closer to
Fret—A,l

as.jrjo
region where its numerical error is best mitigated.

suffers

Fmax- Lherefore, makes use of each solution in the

Similarly, the program computes the new quantity
7-diss,l . foret—A,l . 7diss, [ :
Fosij, by replacing F . on  with F 7. in (93).

Finally, the driver program constructs the following con-
tributions to the conservative SSF,

focons+S—A,l __ goret—=A,l _ g-diss,/

aivjrja - Faivjrjﬁ aivjrjé]’ (94)
frcons+S—A,l __ foret—A,l _ f-diss,]

aSiis = Fasiis = Fasiin (95)

4. Evaluating the dissipative averages

Next, the program uses the secular evolution module in

Appendix B 7 to construct the orbit averages (7)%® =
(T)diss 4 (8T)%s defined in (88) and (89). Rather than
directly evaluating <j )4iss for each value of gy, the secular
evolution module represents each average as a Fourier series
with respect to g, and, given some self-force data, directly
computes the Fourier coefficients of each series.

For the dissipative averages, the Fourier coefficients are
purely real and the Fourier sums reduce to discrete cosine
series,

2
; iss q z Jdiss
() =;f67d ; (96)
K.
(570 = 23" P sk 97
~u Z kK COSKggo, (97)
k=1

¥This condition was found through numerical experimentation.

. L‘7 ~ .
f»kj,dlss — kaj.l,dlss‘ (98)
1=0

The secular evolution module constructs three estimates for
the Fourier coefficients F kjl’dlss using the self-force /-modes

F gif’l and F g;ss'l. The driver program then uses the values of
L and K ; and the set of coefficients 7, that minimize

the total estimated uncertainty in (7 )& and (5.7)%.
This uncertainty arises due to several sources of numeri-
57 S5F 45 que to the

cal error: (1) 67 ;}”", the estimated error in F¢;
numerical error in F45; (2) 5k‘71'di‘ss, the estimated error in

F kj ;% introduced by the numerical methods in the secular

~J .diss

evolution module; (3) 6¢;,..» the estimated error from

truncating the sum over [ in (98); and (4) o5, the

estimated error from truncating the sum over k in (97).
Based on the convergence criteria established in our SSF
module, we expect our dissipative SSF data to be accurate
to a precision of ~e; = 107'°. Assuming that this pro-
duces a similar error of error in the Fourier coefficients
leads to the conservative estimate

6{&“ ~ (5 X €q1) X |fg;‘_fss . (99)

The uncertainty &g i on the other hand, is computed by

the secular evolution module as described in Appendix B 7.

Meanwhile, the program estimates &7 to be the maxi-

~7.diss ~.7.SSF 77 diss 7 diss
mum of 677", &3>, and |Fy 7 + Fi 0| To get an

intermediate estimate for the uncertainty in F kj 4iss - denoted

by &%, the driver program use the standard method of
propagation of error and adds the contributing errors in
quadrature,

(B0 )? = (30une)” + D _67™)? + (%)) (100)
=0

Then the final truncation error o4

maximum value of 5%’;“5 and | F %‘Jdi“|. Consequently, the

is taken to be the

program approximates the uncertainty in (5J Y4iss o be

K.
i 4q* ~ 7 diss\2 N | dis 2
(055 =~ | @) + >[50 coskawl” | (101)
[y
while the uncertainty in (J)& is given by
ol = 57" /u. We find that the self—fqrce data IA*" g‘;s’l
tends to best minimize the uncertainties 6% and 6§

5. Evaluating the conservative averages

The conservative averages are efficiently described by
discrete sine series,
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Ky

. 247 5z
<5j>cons — i Im |:Z fkj.cons sin kCIg():| s (102)
u

k=1

where the Fourier coefficients are purely imaginary
and (J)§™ =0. Once again, the driver program
first uses the secular evolution module to calculate the
[-mode contributions to f’:kj’cons using the SSF data
freopstS=AL and e tS=AL Like the dissipative case, this
>
leads to three estimates for the /-dependent Fourier coef-
ficients F gl'conSJ“s_A. However, unlike the dissipative case,

naively summing over F ,;7 ;€ontS4 Jeads to a divergent
result and, thus, these coefficients need to be regularized.
(See Figs. 2 and 3.) Much like the SSF itself, these Fourier
coefficients are amenable to mode-sum regularization.
Therefore, the program uses the secular evolution module
to generate Fourier coefficient regularization parameters,
F kj’B and F ,{’D , by replacing SSF data with the regulari-
A2

zation parameters B, and D’ as input.

The program then submits Fy 574, F kjlion”S_A,
.7-' 7B and j’: D to the regularization module described in
Appendlx B 8 This module produces three estimates for
the regularized Fourier coefficients F3 ™. The regulari-
zation module also outputs estimated uncertainties for these
regularized coefficients, which we refer to as 6—,{ €O “While
the conservative averages are subject to all of the same
errors as the dissipative averages, the uncertainty intro-
duced by regularization, 6,;7 €O " dominates other sources of
error, such as the error introduced by the secular evolution

module, 57", and the numerical error introduced by the

SSF data, &, ,SSF Therefore, the program simply approx-
imates the uncertainty in (5.7)<™ as

4q4
o=

ﬁw+zwmmmﬂ,ma

where, as before, the uncertainty due to truncating our

Fourier series, 515%™, is taken to be the maximum value of

62 <O and | F z;°“3|. Likewise, the program uses the value
of K7 and the SSF data that minimize o37°. We find that

this is usually best satisfied by F flo;”s Al and K ;7 = 2.

IV. SECULAR GROWTH OF THE ORBITAL
CONSTANTS DURING RESONANCES

We use the CPP code outlined in Sec. III to calculate the
average rate of change of E, L, and Q due to the SSF for
the resonant orbits listed in Table I. From here on we use J
to denote E, L, or Q. In Sec. IV A we verify the accuracy of
our dissipative averages, <] )diss by analyzing their con-
vergence and comparing them to the asymptotic behavior

TABLE 1. The orbital parameters of the resonant geodesics
studied in Sec. IV. The values of p are truncated at four significant
digits for brevity. The integers . and f, are defined by the

relation f,/fy =Y,/ Ty.

Label a/M p e X Br/Po
e02.12 0.9 4.508 0.2 cos /4 1/2
€02.23 0.9 6.643 0.2 cos /4 2/3
€05.12 0.9 4.607 0.5 cos /4 1/2
€05.23 0.9 6.707 0.5 cosm/4 2/3

of the scalar field. Then in Sec. IVB we validate the
conservative averages, <5J )OS, by analyzing their con-
vergence from mode-sum regularization and verifying that
(8E)*™ and (SL.)*°™ vanish as we expect from flux-
balance arguments. After validating our new methods and
code, we demonstrate in Sec. IV C that (6Q)°" does not
vanish for the resonances considered in this work.
Furthermore we estimate the error that is introduced to
the leading-order evolution if we neglect these conservative
contributions. To simplify notation, we set M = g = 1 for
the remainder of this section.

A. Validation tests: Dissipative perturbations

First we verify that the coefficients .7-' ‘7 4 converge
exponentially with /. We find that the k = 0 and k=2
modes consistently exhibit exponential convergence for
each orbit in Table I, while higher-order k-modes are
dominated by numerical noise at larger values of /. To
illustrate this behavior, in Fig. 1 we plot the magnitude of
FL® for the €02.23 orbit in Table I. The error bars
represent the estimated uncertainty in each coefficient.
Note that we do not include any odd k-modes, because
they vanish due to the symmetries of Kerr spacetime. We
see that the higher modes possess large uncertainties and do
not exponentially decay but instead vary around ~107'4,
Ultimately, this behavior is consistent with the numerical
accuracy of our SSF results, which we expect to be accurate
down to ~107!3 based on our code’s mode-sum conver-
gence criteria outlined in Appendix B 2. Furthermore, we
see that the mode content of the dissipative averages is
largely captured by the k = 0 and k& = 2 Fourier modes,
while the higher modes are suppressed by several orders of
magnitude. Therefore, our numerical errors in the higher
modes do not have a significant impact on our calculations
of < j>diss.

Next, we validate our calculations of (7)% using a
standard flux-balance comparison [21,53,54]. Due to
global conservation laws, the average rate of change of
E and L —which we can interpret as the local work and
torque performed on our charge by the SSF—must be
balanced by the flux of energy and angular momentum
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FIG. 1. The /-mode convergence of the Fourier coefficients .7-'

E, L,, or Q—for a 2:3 resonant orbit defined by the parameters (a/M D€, x) =

J diss

that describe the dissipative averages (J Vdiss__where J represents
(0.9,6.643,0.2, cos #/4). Because the odd k-modes

vanish, we only plot the even modes k = (0, 2,4, 6). The magnitude of the coefficients rapidly decay with both / and k. Therefore, we
see that modes with k > 2 tend to be dominated by numerical error, especially at higher values of /.

radiated by the scalar field at infinity, (E)%, and (L,)%,,
and the horizon, (E)’, and (L)%,

(E) = ~(E)fig +{E)3) = ~(E)aa. (104)

(L) = —({L )iy + (L)) = ~(Ldug- (105)

While a flux-balance law does not exist for the Carter
constant, we can still relate (Q)¥ to the asymptotic
behavior of the scalar field at the horizon and infinity
[17,24,44,62], which we refer to as (Q)*, and (Q)%,’
leading to a similar condition

~(Q)rg: (106)

(0) = —((Q)ia +(Q)3) =
For a scalar charge on a resonant orbit, these radiative
averages reduce to

H/oo
JmN ’

7 Z:é""—4ﬂZZ >

Jj=0 m=—j N=—c0

E : § : Amknpi’nk/ ’w+ ]mkanmk’ "

N (K.n')y

<‘—7>]OSnN = Z Z Ajk mk’n’cjmkncjmk/ ’s

(kn)y (Kn")y

ij

(107)

where @2 = 12 + a?, an overbar denotes complex con-

jugation, and » k.n),, Tefers to a sum over all integer k and n
values that satisfy kfy + nf, = N. The coefficients are

“Despite the suggestive naming, we emphasize that (Q)Z;‘d and
(Q)%, are not fluxes.

related to the frequencies and orbital constants via

AL = Dpns Aanan = m, and
1
EAr%kn - kT@ + Opn (aLZ - azE - TSG))

~m(L,—aE~"TY). (108)

Just like (E), (L), and (Q), these averages depend on ggy,
and therefore are efficiently described by Fourier series.
The calculation of their Fourier coefficients, which we

denote as Fy ™, is described in Appendix F.

Thus, we calculate (7),,4 and the corresponding Fourier
coefficients F' kj 4 for the resonances listed in Table I. We
then compare these coefficients to F kj diss yia (104)—(106).
In Tables II and III, we report the values of 73 and the
absolute error between F7 % and FJ™ for each reso-
nance. We report all k-modes that our code uses when
evaluating (7). Interestingly, there are instances where
our code includes modes in which the magnitude of F/**
is less than its uncertainty. While the values of these
individual modes are highly uncertain, our code still
incorporates these modes because they improve our overall
uncertainty estimate for (7)95. From Table II, we see that
the absolute errors always fall under the estimated uncer-
tainty of our results, demonstrating that our coefficients are
not only accurate, but that our estimated uncertainties
account for the dominant sources of numerical error in
our dissipative data.

B. Validation tests: Conservative perturbations
To validate the conservative averages calculated by our
new code, we test the [-mode convergence of the Fourier

coefficients 7 “°™ that describe (7)<™. Mode-sum regu-
larization of the conservative perturbations leads to the
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TABLE II.
averages (E)9sS and (L

coefficient and its estimated error. For example, —2.184(3 £ 3) x 107 is equivalent to (—2.1843 x 107%) &
(2.8 x 10713). We include additional significant figures in our error estimates when they are

2.8) x 10713 is equivalent to (5 x 107!4) £

The third and fifth columns list values for the Fourier coefficients F f A4S and Fye
.4 respectively—for the resonances listed in Table I. In parentheses we report the last significant digit of each

Lediss__\which describe the dissipative

(3 x 10713), while (0.5 &

larger than the magnitude of our coefficient values. The fourth and sixth columns then report the absolute difference between F kj‘diss and

F kj"md, the Fourier coefficients of the asymptotic averages given in (107). Note that to properly compare these coefficients we add them
together due to the minus sign in (104).
Orbit k j’_—kE.diss |j_—f,diss + j_—f.rad| J_-é Jdiss |_7_-é Jdiss + _7_-2 rad|
e02.12 0 -5.53491867(1+£9) x 107 2.1 x 10713 —4.14427631(8 +£5)  x 1073 23x 10712

2 —2.184(3 £3) x 1077 52x 10714 —3.028(1 £2) x 1078 2.1 x 10713

4 —(1+4) x 10713 1.3x 10713 (0.08 £2.07) x 10713 2.7x 1071
e02.23 0 —-1.317244272(8 £7) x 107* 1.2 x 1071 —-1.674686519(5£8) x 1073 44 %1071

2 4.2406(7 £ 7) x 1070 1.4 x 10714 6.6172(1 £ 8) x 1078 6.1 x 10714

4 -(3£7) x 10714 2.3 x 1071 (2+£38) x 10713 4.1 x 1071
e05.12 0 —5.86478(5+5) x 1074 33x 10710 —3.56366(6 £ 2) x 1073 1.4 %1077

2 =5.(2+1) x 1078 3.1x 10710 -758+£3) x 1077 12 x107°

4 —(0.01 £3.57) x 1077 4.8 x 10712 (0.02 £8.57) x 1077 9.9 x 10712
e0523 0 —1.293567(9 +2) x 1074 1.6 x 10713 —1.3291823(9 £ 2) x 1073 1.3 x 1071

2 5.09(2+£3) x 1078 6.3 x 10712 7.516(8 +6) x 1077 4.4 x 10712

4 —(0.3£2.8) x 10712 4.6 x 10714 (3+6) x 1071 4.6 x 10714

6 —(0.01 £5.49) x 10712 1.4 x 10714 (0.005 £4.971) x 10712 9.1 x 10716
TABLE III.  The third and fifth columns list values for the Fourier coefficients ™ and Im[F ™| —which describe the averages

(Q>‘““ and (Q)“’“S, respectively—for the resonances listed in Table I. We report the estimated uncertainty in each coefficient using the
same conventions described in Table II. The fourth column reports the absolute difference between F4* and F2™,

Orbit k ﬁ-kQ,diss |‘7~_-kQ,diss + ]N_-kQ,radl Im[j_-kQ.COHS]
€02.12 0 —1.32198762(0 +£2) x 1072 8.7 x 10712 0
2 6.345(0 +7) x 1078 1.9 x 10712 25(8+1) x1078
4 —(0.84+6.6) x 10712 1.8 x 10713 2+7) x 10711
€02.23 0 —6.33151483(7+3) x 1073 1.1x 10713 0
2 —2.0993(2 + 3) x 1077 1.5x 10713 -73(1+£2) x1078
4 -(3+£3) x 10712 8.9 x 10714 —(0.1+£12) x 10710
€05.12 0 —1.177592(6 + 9) x 1072 1.1 x107° 0
2 2084 1) x 1076 1.6 x 10710 (1+£3) x 1076
4 —(0.1 £3.0) x 1078 7.8 x 10710 -
€05.23 0 —5.059826(2 =+ 3) x 1073 1.0 x 10710 0
2 —2.470(7 £+ 2) x 1076 1.6 x 10710 -1.(0£2) x10°°
4 -(342) x 10710 2.9 x 1071 —(0.4+24) x1077

algebraic convergence of F{;*™ with /. As we include the

A, By, and Dg, ) parameters in our mode-sum regularization,
we expect the regularized values of F' kj ;™ to fall-off like 1°,
[72 and [7*, respectively. The rates of convergence are

demonstrated in Figs. 2 and 3, where we plot | F%; c(’“S’LS_A|

(red circles), |.7:Q cons+5—A j’-'le | (blue triangles), and
|.7:Q°°“S+S_A—.7-"k’, —.7-",(,[ /(21—1)/(21+3)]| (orange dia-
monds). Figure 2 plots the coefficients for the 02.23

resonance, while Fig. 3 plots the coefficients for ¢05.23.
The error bars display the estimated uncertainty in each

coefficient. Note that this estimated uncertainty only takes
into account errors due to truncating our (formally infinite)
self-force mode-sums, not the errors due to catastrophic
cancellations when evaluating the sums. We find that, much
like the dissipative coefficients, the k=2 and k=4
conservative coefficients largely exhibit the expected decay
rates in /, though the kK = 4 modes become contaminated by
numerical error at higher values of /. The higher k-modes are
almost entirely dominated by numerical error but are also
orders of magnitude smaller than the kK = 2 mode. Thus, they
can be neglected without introducing significant error to

(Yo, For low eccentricities, the numerical error is well
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FIG. 2. The /[-mode convergence of the Fourier coefficients that describe (Q)®™ for the €02.23 orbit in Table I. The red circles

.B

represent | F ,g'lcons+s_A |, which decays like [°; the blue triangles represent | F ,%COHHS_A — FZP|, which decays like /=2; and the orange

diamonds represent |]i',g}°°“s+s_A - j—',%B - F2P/21-1)/(21 +3)

, which decays like [~*. Because the odd k-modes vanish, we only

plot the even modes k = (2,4, 6). The error bars represent the estimated uncertainty in each coefficient.
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FIG. 3. Similar to Fig. 2, the /-mode convergence of the Fourier coefficients that describe (Q)C""S as one includes more regularization

parameters, but this time for the €05.23 orbit in Table 1.

captured by our uncertainty estimates and therefore can
largely be attributed to the truncation of the SSF mode-sum.
On the other hand, for higher eccentricities, our uncertainty
estimates do not capture the poor convergence at higher
[-modes and thus are most likely due to the large cancella-
tions in the extended homogeneous solutions, as discussed
in Sec. III A. Nonetheless, in the absence of these errors, the
conservative coefficients converge as expected.

Finally, we produce one last validation test for our
conservative data using the conservative averages
(SE)*™ and (SL,)°™. Based on the flux-balance laws
in (104), the secular evolution of the energy and angular
momentum should be driven by purely dissipative pertur-
bations. Therefore, (SE)°°™ and (SL,)°°" must vanish for
all values of gp. We find that (E)®" = (L ) =(
within the estimated uncertainties of our calculations

for all of the resonances listed in Table I. As an example,
in Fig. 4 we plot (SE)¥s and (SE)°°™, along with their
estimated uncertainties, for the ¢02.12 resonance.

While our code produces nonzero values for (SE)cm,
these values are always orders of magnitude smaller than
the dissipative average <5E>diss. More importantly, they are
also smaller than the estimated uncertainty in (§E)<ns
and, consequently, consistent with zero. We observe

similar behavior in (SL,)°™ and across all of the orbits
in Table 1.

C. Conservative contributions to (Q)
In Table III we report the values of Im[FZ™] for the
resonances in Table 1. (Recall that FZ™ is purely

,c0n5] for

imaginary.) We find nonzero values of Im[j—" B
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FIG. 4. Residual variations (5E)9 (solid black line) and (5E)<° (red dashed line) as functions of the initial resonant phase ¢ for the
¢02.12 resonance in Table I. The shaded (gray) region estimates the uncertainty in (§£)°°™. The plot on the left shows both (5E)% and
(8E)<s, while the plot on the right only depicts (§£)<°™ and its region of uncertainty.

the €02.12, €02.23, €05.23 resonances. On the other hand,
all of the conservative coefficients of the ¢05.12 resonance
are consistent with zero due to the large numerical errors in
our calculation of the SSF at higher eccentricities. We
observe that | F2°™| is always comparable in magnitude to
| FZ95) | with the coefficients differing roughly by a factor
of two across all of the resonances. Furthermore,

Im[FZC™] and FZU differ in sign for the 1:2
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resonances, but share the same sign for the 2 :3 resonances.
For both (504 and (5Q)°™, increasing the eccentricity
increases the magnitude of the coefficients, a behavior that
mirrors the gravitational case [17]. Decreasing the semi-
latus rectum p of the resonances also produces larger
coefficients, but the k = 2 mode actually makes a larger
relative contribution to (Q) in the 2:3 resonances when
compared to the 1:2 resonances. In other words, while
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FIG. 5. Residual variations <5Q)diss (solid black line) and (5Q>°°“S (red dashed line) as functions of the initial resonant phase gy for
the resonances in Table I. The shaded (gray) region estimates the uncertainty in (5Q>C°"S.

064042-17



ZACHARY NASIPAK

PHYS. REV. D 106, 064042 (2022)

103§

1074

relative error in (Q)

relative error in (Q)

460

1 1 1
& 107k €05.23| =
= ok YA
£ ] ¥ E
I i 1
(] 10_ - " —
z i i i i
< . " " " 4
g 10°F ! i i 1
E n n 1] 3
1 i . i i 1
0 ’ir T 3n 2r

2

460

T T T T E
S 10‘35— e05.12 3
= 10 SN
o 3 3
5 F ¥ ]
o 107k t | | -
2 ; | | | ;
< 3 1 1 1 ]
RIS T
L " " " 3
q i . i i 1
0 '2—' T 3n 2

2

d60

FIG. 6. Relative errors in (Q) if we neglect (5Q) (solid black lines) or if we neglect (5Q)°°™. These relative errors, denoted by A, and
A onss are defined in (109) and (110), respectively. The shaded (gray) region gives the range of errors that are consistent with A, due to

the estimated uncertainty in (5Q)<".

|FEoms| 4 | FL9| is greater for the 1:2 resonances, the
ratio (|[FL™| + |[FLU)) /| FEM| is greater for the 2:3
resonances.

In Fig. 5 we use our coefficients to evaluate and plot
(6Q)%ss (solid black lines) and (5Q)¢°™ (dashed red lines)
as functions of gy, along with the estimated uncertainty in
(8Q)<s (gray shaded region). Again, this demonstrates
that (5Q)°™ is generally nonvanishing for all but the
€05.12 resonance. Furthermore, comparing these plots with
those of previous investigations of the SSF during reso-
nances [29], we see a drastic improvement in our uncer-
tainty estimate.'” In fact, the uncertainties in (5Q)%™ for
the low eccentricity resonances are so small that the regions
of uncertainty (the gray shaded regions) are smaller than the
dashed red line plotting (5Q)™. Even if our error
estimates were off by an order of magnitude, we would
still observe nonvanishing values of (5Q)™, clearly

'The conservative variations reported in this paper are
opposite in sign to those plotted in our previous paper [29].
We believe this is due to a plotting mistake in our previous paper,
where we mistakenly set ggo = —¢go-

demonstrating that so-called “conservative” scalar pertur-
bations do not necessarily conserve the integrability of our
perturbed system, but contribute to the leading-order
secular evolution of the scalar charge.

Finally, we consider the relative error that is introduced
to (Q) if we neglect the impact of gy on the secular
evolution,

()

) <6Q>diss + <5Q>cons
(0)

o 1 1®

Ares. = ‘1_

and the relative error due to neglecting potential contribu-
tions from conservative perturbations,

(0)o + (50
()

In Fig. 6 we plot A (solid black lines) and A, (red
dashed lines) for all of the resonances listed in Table I. The
gray shaded regions reflect the range of potential errors one

may have due to the estimated uncertainty in (Q)™. The
quantity A, effectively estimates the post-1/2 adiabatic
error that the resonance introduces to the orbital phase of

o

5‘ cons
Acons_ll_ _’< Q> .
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the inspiraling scalar charge. Therefore, we see that
neglecting the conservative perturbations induces an error
that is equal in magnitude to the standard post-1/2
adiabatic error.

V. CONCLUSION

In this work we calculated the averaged time rate of
change of the Carter constant, (Q), due to the SSF for a
scalar charge following several different rf-resonant geo-
desics. To perform these calculations, we built a new code
in C++ that is several orders of magnitude faster than the old
Mathematica code used in previous investigations of the
SSE. This code makes use of several new algorithms,
including a module that numerically integrates the
Teukolsky equation using a combination of MST and
confluent Heun expansions to populate boundary data,
the creation of a window function that enables the appli-
cation of new analytically known regularization parame-
ters, and a new regularization scheme that uses mode-sum
regularization to directly regularize the Fourier coefficients
of our secular averages, (E), (L,), and (Q). We found that
our results are consistent with previous investigations of the
SSF and satisfy known conservation and balance laws, thus
validating our new code.

Using our results, we demonstrated that during these
resonances the secular evolution of the Carter constant due
to purely conservative perturbations, (Q)", does not
vanish, but its value varies with the initial phase of the
resonance, ¢gqg, as predicted by [24,26]. This is the first
conclusive numerical evidence that during rf resonances
motion in Kerr spacetime is no longer integrable under
conservative scalar perturbations [27]. This is in contrast to
nonresonant orbits, where (Q)<" vanishes exactly, and the
perturbed conservative system remains integrable.

Additionally, we find that (Q)®°" is comparable in
magnitude to (5Q)%, the residual variation in the secular
evolution of Q under purely dissipative perturbations.
Essentially, ignoring the conservative perturbations at
leading order will introduce a post-1/2 adiabatic error to
the orbital phase of the inspiraling scalar charge, and this
error appears to be equal in magnitude to the error
introduced by ignoring resonances altogether. Therefore,
it is vital that these conservative contributions are computed

accurately, since any errors introduced to (Q)®™ will
accumulate over the resonance and the rest of the inspiral.
This will be a challenge for highly eccentric orbits, which
are susceptible to large numerical errors that arise from
catastrophic cancellations in the self-force mode sum, just
as we saw for the €05.12 resonance studied in this work.
Frequency-domain effective source regularization or hyper-
boloidal compactification may be able to ameliorate these
issues, but these remain topics for future work.
Furthermore, it remains to be seen if (Q)® will also
vanish when driven by purely gravitational perturbations.

Many of the methods and code that were designed for this
work can be generalized to the gravitational case.
Therefore, moving forward we will compute (Q) due to
the GSF for a point mass on a resonant geodesic. If,
surprisingly, (Q)<™ does vanish in the gravitational case,
this may hint at some additional unknown symmetries that
are not captured by our scalar perturbation model.
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APPENDIX A: WINDOW FUNCTION

We aim to find a suitable window function f(cos 6) that
allows us to easily recast Fre” in (68) onto a basis of
spherical harmonics [i.e., (77)] w1th0ut changing the value
of the self-force along the worldline and without altering
our mode-sum regularization procedure.

First we examine how applying an arbitrary window
function will alter the regularization parameters in (63).
These regularization parameters are derived from the
multipoles of the singular SSF contribution, which are
defined by

F3'(t,r) Z/ dQFS(1,7,0,0)Y,,,(0.4). (A1)

where dQ = dcosfd¢ and an overbar denotes complex
conjugation. As shown in [50,63,64], F can be rewritten as
an expansion away from the worldline,

FS tr, 9 ¢ i ((13" -2) —2n— n—3

n=1

(A2)

where p? = (9,50 Ax”)? + §,3Ax*AxP; a hat denotes a
quantity that is evaluated along the worldline x%;

Ax* = x* — x%; and the expansion terms have the form

P
Bg( = bya,..q A Ax® .. Ax?, where b, ,, ,, are coef-
ficients that do not depend on ¢, r, 6, or ¢. The variable
€ &« Ax is a bookkeeping variable for tracking the singular
“order” of each term.

To construct the regularization parameters, one inserts
this expansion into (Al) and takes the limit as x* — x7,
leading to the regularization quantities,
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FI2 = 62 lim

Jim, Z / aar, 5.
Ar*()’

F[ 1 _ ! Z /dQYlm [_:|
(6n+4)
[2n+l] e2n-1) Z /dQY,m[ 4n+5} . (A3)
Ar=0

m=—

After evaluating these integrals, the regularization para-
meters are then given by

_ 1 _
Fill =2Az@i+1).  Fo'=BE

n -1
Fi2m = p@m [H(zz —1=2k)(21+ 1 + 2k)
k=1

Now consider the effect of multiplying the SSF by some
window function f(cos ). Then, to preserve our regulari-
zation scheme, our regularization parameters must be
calculated by similarly weighting the singular SSF con-
tribution F5(t, r,0, ¢) by this window function, leading to
the new parameters

2]
2 lim

Jim Z / dQY,mf B ,
_IZ/dQYzm[fB ]

9
m=— Ar=0

F[

(6n+4)

(2 By
FL2HI _ g(2n-1) Z / dQy,, {%] . (A4
m=— Ar=0

If we expand our window function f(cos®) around the
worldline, then we have f(z=-cos®) = f+ (d.f)
(z—2z,)e+1(2F)(z—z,)% + O(¢*). Inserting this
expansion into the integrals above, any terms O(e) or
greater will vanish as we approach the worldline.
Therefore, if ]AC =1, ()Zj” 0, (32} 0, then we have that
AZ =A% +0(e) and BE = BE + O(e).

However, if we want to make use of the higher-order
regularization parameter ng (assuming it is known), then
we must choose a window function that satisfies the four
conditions f = 1 and d,f = 0, 02f = 0, and 3> = 0. One
particular window function that satisfies these conditions is

3
f(6:6,) = Z a(0,) cos* §sin 6,

k=0

(AS)

where

2 —7cos?8, + 8cos*0,(1 — cos?,)

%(0,) = 2sin 0, - (A)
a(0,) = Seos gggn—: ;pCOSz %) ’ (A7)

(6,) = 1-8 Coszzip 11(719;r cos? 0, L (A8)

(0,) cos6,(3 + 2cos?6,) ' (A9)

7
2sin’ 0,
By applying this window function to F rgi’l, we can
reexpand the derivatives of spherical harmonics in terms
of spherical harmonics using the following relations,

SinHaHYlm = _(l + 1)Clel—l,m + lClJrl,mYlJrl,m’

Ccos eYlm = Clel—l,m + Cl+1,mYl+1,mv (AIO)
where
P —m?
Cipn =\ All
fm 20+ 1)(2[ - 1) (All)
Combining these relations, we find that
k+1
cost 0sin00sY 1 = > 0¥ (AL2)
n=—k—1
where
n.k) n— n
Zint) = By + B NC L, (A13)

with (initial) conditions

55;1»0) = _(l + l)Clm’ ZE?nO) =0,

(+1,0)
lcl+l,m’

éllm
and the requirement that { Efn’k) vanishes if [n| > k+ 1.
With this window function, we get a finite coupling

between the derivative of the spherical harmonics and the
spherical harmonics themselves

f(9,9 )aBYlm 6 ¢ Z ﬁ[m Yl+n m(a ¢) (A14)
n=-4
where
3
Bin 6) = > aul6,)1," (AL5)
k=0
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Making use of this expansion, our windowed self-force
quantity Fyi' = fFi!, when expressed on a basis of

spherical harmonics, takes the form

! 4
Rt = 3 (S A ) Vi (216)

m=—1 \n=-4

which is amenable to mode-sum regularization.

APPENDIX B: DESCRIPTION OF CPP MODULES

1. Geodesic module

The geodesic module performs the following numerical

routines:

(1) Given the orbital parameters (a, p, e, x) and sample
number N, = 2"=, where ny, € Z", we use
spectral integration methods [33,34] to calculate
the orbital constants (E,L.,Q), the Mino time
frequencies Y,, and the fiducial geodesic functions
Ax = {AT0), AT AR ADD AT AP} defi-
ned in Sec. IT A.

(2) We then sample our functions at N, evenly spaced
points on the intervals ¢, € [0,27) and g € [0, 27),

e.g.,
A(r a(F _ 2mj,
Arﬁ.’_) =AM (q,,), Grj, = (B1)
geo
P C) N (U - 27Tjg
MDY = A0 (qp),). 0, = N (B2)

where j.;9=0,1,..., Ny, — 1.
(3) Finally, we output the discretely sampled geodesic

functions, which we denote as AX; = {A?(f) , A?E»Z),

A1) ADO) A5 A 5(0) ;
A7 A0, Ag A '}, along with (E, L., Q)
and T,.

2. SSF module

Given output from the geodesic module, the SSF module
constructs the unregularized SSF modes £
(1) As initial input, the user must specify a maximum
spherical multipole mode [ = [,,, and a sample
number Nggp = 255" where nggp € Z < nge,. The

module then generates F"*"" for —I, < m < L.
The coupling between the spherical and spheroidal
harmonics makes it much more efficient to pick a
value of m and calculate several /-modes at once,
rather than to calculate modes on an individual
(I, m)-basis. Typically we set [, =25 and
ngsg = 8. We also parallelize this part of the
calculation, distributing the m-modes across sepa-
rate cores.

(2) Given a specific value of m, the module generates
the modes ™" for |m| < I < Iy, using (65)—(67)
and (77). These modes are evaluated on a two-
dimensional Nggg X Nggg grid spanned by ¢, €
[0,27) and gy € [0,27). As a result, the code out-
puts discretely sampled modes

poret,lm ret,lm
at,j,.jo Fai

(41, 90,,): (B3)
where ¢, ; and g, ;, are given by (B1) and (B2) but
with N, replaced by Nggp.

(3) We then construct the modes F™"" for |m| <1<
I max from the extended homogeneous function (and
its derivatives) yi , oy, o, via (56). This
requires a three-fold summation of the harmonic
functions w;;,,, and 0., [see (57)] over the
mode numbers j, k, and n. We denote this summa-
tion by

ret lm ret,ljmkn
D S B B AT
k=—00 n==00 j=|m|

. freLljmk -
where the harmonics £, /""" are computed via the

harmonic module in Appendix B 3.
(4) Beginning with the outermost sum in (B4), given the
values [, and m, we compute

ﬂ
ret Im ~ § : ret Imk 2 : ret Imk
Foy Jrlo atjjo T at.jrjo
k=k k=kinji+1
ko—1
2 : ret Imk
+ ax.jjo’ (BS)

mm

for all values |m| < I < [, To execute this sum we
first set kg = —m — 4 and k;,;; = —m + 4. Since the
(I, m, k)-modes tend to peak near k = —m [65],
initially summing over this range tends to capture
the most dominant modes before we start testing for
convergence of the sum.

We then continue the sum for k > k;;; and k < k.
The sums are truncated based on the two conver-
gence criteria,

poret,Imk
@)

aimg ret,Imk | < |ﬁret,lm.k+Ak|
5

< € and [Foy 7 atjirjo

”//

t,lmk
(b) |F;ei;njg| < €DpBL»

where Ak = 1 when k < ky and Ak = —1 when k > k;y;,
epgr, refers to the precision to which doubles are repre-
sented by our compiler, and Ba, j,j, denotes the regulariza-
tion parameter B, [see (63)] evaluated along the fiducial
geodesic at the discrete points (g,.; , gy ;,). Furthermore, in
this work we set €,,; = 107!9. We truncate the sums when
all of the modes k € [kyax — 5, kmax] a0d k € [kpin» kmin + 3]
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satisfy at least one of the convergence criteria set above for
all I, j,, and j,.
We require six k-modes to satisfy the convergence

criteria before truncating the sum. Note that Fffilj";f"

vanishes when [+ m + k = odd for most self-force com-
ponents. In this case, only half of the modes are useful for
testing convergence. Consequently, even though six modes
must satisfy the convergence criteria, most of the time only
three of those six modes are nonvanishing.

Additionally, we normalize our results by the coefficient
Ba, j.j, When testing for convergence, because this is the last
divergent piece of the singular self-force contribution that
we must subtract from our harmonic modes.

Furthermore, for larger eccentricity orbits, the mode sum
is prone to catastrophic cancellation. When this occurs,
precision loss can prevent the convergence criteria from
being met for a sufficient number of neighboring k-modes.
To prevent the sum from never truncating in this scenario,
we set the hard limits k., > kg — keuorr AN Kpax < Kinie +
Keutott With Keyeot = Imax + 50.

(5) Given [, m, and k, we compute

ret Imk ~ ret,lmkn ret Imkn
Fol Jro Z ai.jrje Z at,j,jo
n=n n=n,+1
no—1
poret,lmkn
+ E : F(l:t.j,j(.) ’ (B6)
n= nmma}

for all values |m| <1< I,,. The sums are con-
structed so that we only sum over positive frequen-
cies. Negative frequencies are determined from the
symmetries of the mode functions and, therefore, are

incorporated into the values of F ffjtl;”’]‘:'

harmonic module (see Appendix B 3). Thus,
Nminfw] 18 given by the requirement that Ok 2
0 and @,y -1 < 0. The (I, m, k,n)-modes tend

to peak in magnitude near lower values of n and
Wpin- Therefore, if npipe =2 —8, then we set
no = Npinw] + 1, else ng =—8. We then set
Ninit = No + 16. Based on trial and error, we find
that these choices of n, and n;,; tend to capture the
modes with the largest magnitudes in our initial sum.

We then continue the sum for n > n;,; and
n < ng. The n-mode summation is truncated using
the same convergence criteria as the k-mode sum-

mation [see Step (4)], only we replace F° ;eilj”‘fg with

via the

Fi"" and Ak with An. We truncate the sums

when all of the modes n € [n,x — 4, npa and n €
[Mmins Pmin + 4] satisfy either (4a) or (4b) for all [, j,,
and j,. Like the k-mode sum, we also set the hard
limits Pmin 2 Nmin|w] and Mmax < Rinit T Mthreshold with

Ninreshold = 120(1 — €2)™3/2 + |k|, where e is the

eccentricity of the orbit. The formula for g eghold
was determined through numerical experimentation.
(6) Given [, m, k, and n, we compute

ret Imkn Fret Jjmkn
ai/,/e ~ Z at.jrjo

(B7)

j=lml

for all values |m| < I < [, where j., is set by the
alternate convergence criteria

gret,ljamkn
at.jjo
gret,/lmkn
at.j.jg

< €coupling s

which must be satisfied for all /, j,, and j,. Addi-
tionally, we require [+ j.« = even, since all [+
Jmax = odd modes vanish. In this work we set
€coupling = 1078, The convergence of these modes
is fairly uniform, leading to the simplified conver-
gence condition.

(7) Given L, j, m, k, and n, we compute F' ff;lj";k" for
all values |m| < [ < [, using the harmonic module
described in Appendix B 3.

(8) Once all I:“ffjt’l'" are calculated, we sum over the
m-modes,

!
Fret,l _ ret,lm
Fol = Fal,

m=—I

(B8)

giving us discretely sampled unregularized SSF
ret,/

[-modes, Fa;] j,» in the range 0 <1 < Iy,
3. Harmonic module

The harmonic module produces the individual self-force
harmonics

pret,ljmkn . i

F;iy ! = _lwmk"wﬁmkn(r) Ylm (‘97 ¢)€ zar,,,k,,t’ (B9)
poret,l jmkr —ig
Fl:i = arl//lijmkn( )Ylm (e ¢) )mAn (Blo)

Fyy e = Z ﬁz+nm (6 W iin i ()Y 1 (0, @) e ~iomiat,
n=—4
(B11)
Fret Ajmkn iml//;;mkn (I”) Ylm(e’ ¢)e—iwmlmt. (B 12)

The harmonics are then sampled along a fiducial resonant
geodesic by taking (t,7,0,¢) — (i,. ,,,9,,,(]5,,) When
these modes are evaluated along the geodesic worldline,
the linear terms in ?p and q;ﬁp cancel,
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A

m¢p - wmkn,ip = mA(;l\S(” (qr) + mA‘;ﬁ(e)(Cla)
- wmknA,i(r)(Qr) —ng,

- wnlknA;(g)(QH) - kgB? (Bl3)
leaving us with functions that depend on Mino time
through the periodic angle variables, g, or g,.

Therefore, we construct F' fil"mk" as follows:

(1) Given geodesic data and the mode numbers
(I, j,m,k,n), we use the spheroidal harmonic mo-
dule in Appendix B 4 to calculate the coefficients

b;mkn; the spheroidal eigenvalue 4;,;,; and the
harmonic Sj,,,, which is evaluated at the discrete
polar positions A@ﬁ-z).

(2) Next we calculate the homogeneous radial Teukol-
sky solutions and their derivatives, Rfmkn and
6,Rj[mkn, using the radial Teukolsky module in

Appendix B 5. The solutions are evaluated at the

discrete radial positions A?ﬁ?.

(3) We then supply these discretely sampled functions to
our source integration module in Appendix B 6,
which calculates the normalization coefficients (or
Teukolsky amplitudes) C‘jimkn.

(4) The code then evaluates the coupling terms ﬂg;? and
the spherical harmonics Y, at the discrete polar
positions A@;‘?.

(5) Given the coefficients C7,,z,,. blpn» and /)’EZB, along
with the discrete samplings of Rjimk”, (3,Rfmkn, and

ret,ljmkn

Y., we construct the (sampled) harmonics F ko

using (B9)—(B12).

4. Spheroidal harmonic module

The spheroidal harmonic module calculates the coupling
coefficients bjm o and the spheroidal eigenvalue 4,,,, and
then evaluates the scalar spheroidal harmonics S, with
spheroidicity y,,x, = aw,, at the points 6; via the follow-
ing algorithm

(1) Given harmonic numbers j and m and the spheroi-

dicity y,.1» We first solve for the coupling coef-
ficients bj.mkn and spheroidal eigenvalues 4, via
an eigenvalue problem [39,40],

KN, bY oY

mkn bjmkn = Aimkn bjmkn s (B 14)

where KY, is a known N x N matrix. As one

increases N, the eigenvalue converges to the value
. . . "'N

of the spheroidal eigenvalue, i.e., A1, & Ajmin-

Additionally, the components of eigenvectors
N . (zN.|m| 7N,|m|+1 7 N,|m|+N—-1
bjmkn - (bjm]m ) bjmkn s ey bjmkn ) converge

to the values of the spherical-spheroidal coupl-

. - . N, i<l 1<lyy
ing coefficients for [ <., i.e., b N b

Jjmkn Jjmkn*

Therefore, we set the cutoff mode [, to be the
minimum value of [/ > [, such that

|E§\’I;,ll]:‘;;| < €pBL- (BIS)
(2) The module begins with an initial value

N = [« + 30, and then increases N in increments
of 10 until we meet the convergence criteria

7N-10,]
‘1 _ Jjmkn

< €eigens (B16)

7N,
Jjmkn

for all [ < lgysr- In this work we set €gjgen = 10715
Eigenvalues and eigenvectors are calculated using

the GSL eigensystems library [57].
(3) Given the coefficients b;m > We then construct S,
via the spherical harmonic expansion in (42), which
is evaluated at the presampled points 6;. We calcu-
late the spherical harmonics using the GSL special

functions library.

5. Radial Teukolsky module

The radial Teukolsky module calculates the homo-

geneous solutions R;,,, and 9,Rj,,, using the hyper-

boloidal transformation proposed by Zenginoglu [66],

W (1) = reEOmIRE, (1), (B17)

where ¢(r) = 4-In"—=and k = /1 — a*>/M*. This trans-
formation removes the leading-order oscillatory behavior
of the homogeneous solutions, thereby improving the speed
of our numerical solver. Therefore, the module first gen-
erates initial data for \P;tmkn and O,Tj[mkn at the boundary
points 7. and then numerically integrate the transformed
Teukolsky equation (Cl) given in Appendix C.
Hyperboloidal solutions are stored at user-specified radial
points, which are then transformed back to the radial
Teukolsky solutions.

We use a combination of methods to generate the initial
data. The first method we refer to as the series algorithm.
For the series algorithm, we first recast the Teukolsky
equation into the form of the confluent Heun equation (D1).
We then use the Frobenius method to expand the confluent
Heun solution associated with W7, ~around the regular
singular point at »r = r, [see (D5)], and we perform an
asymptotic expansion about » = oo for the confluent Heun

solution associated with ‘I’j*mkn [see (D10)]. The trans-

formation between the confluent Heun and radial
Teukolsky solutions, along with the series expansions
about the singular points are provided in Appendix D.
The advantage of transforming to (D1) is that the coef-
ficients of the confluent Heun expansions satisfy simple
three-term recurrence relations, making it straightforward
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to compute the expansions to very high order. In some
cases, however, the series algorithm will suffer catastrophic

cancellation when evaluating V7, away from the horizon,

while the asymptotic series may not decay rapidly enough

to sufficiently approximate W7 min At finite radii.

Therefore, we also make use of a second method, which
we refer to as the MST algorithm. For the MST algorithm,
we generate initial solutions using the semi-analytic func-
tion expansions proposed by Mano-Suzuki-Takasugi
(MST) [59,60] and expanded upon by Fujita and
Tagoshi [67]. In this MST method, one expresses the
homogeneous Teukolsky solutions as series of hypergeo-
metric functions. For these series to converge one must first
solve for the eigenvalue v—known as the renormalized
angular momentum—which then determines the coeffi-
cients of these series. Typically one solves for v using
approximate low-frequency expansions [67], root-finding
methods [68], or monodromy techniques [69,70]. The MST
series solutions, along with these methods for computing v,
are well-behaved for lower frequencies, but for large values
of j and w,,;, the MST method often suffers from
catastrophic cancellations.

Our old MMA code circumvented this issue by using
arbitrary numerical precision, but with CPP we are
restricted to the regions of parameter space that do not
experience this large precision loss. We implement the
MST expansions in CPP using the same methods as MMA,
which are described in Sec. III B of [34] and Sec. V. 3.2 in
[71]. However, to the best of our knowledge, there is no
open-source C++ library that computes hypergeometric
functions in the complex domain without using arbitrary
precision. Therefore, we designed our own special func-
tions library to implement the MST expansions in C++ and
we keep track of any precision lost during the MST
calculation to estimate potential errors in our MST sol-
utions due to catastrophic cancellation.

As aresult, given the mode numbers j and m, frequency
@i spheroidal eigenvalue 4;,,, and an array of
N radial sample points r; where i=0,1,...,N and
ro<r <---<ry, we construct the homogeneous
Teukolsky solutions as follows:

(1) First we define the initial radial points rj; =

ry +0.01M and rl, =50M. If rp, > ro.

then ri; =09(rp—r,), and if rmu < ry, then
IJ'I_llt =TIy + 20M.

(2) Next we construct the initial data for W% mikn @nd

at the boundaries ri;.

0 ‘I’jm,m First we try to

calculate the initial data using the series algorithm.
If the series algorithm does not meet the conver-
gence criteria described in Appendix D when evalu-
ated at i, and @, i, < 0.01, then we solve for
the initial values using the MST method. If the
estimated fractional error of an MST solution is

> 1078 or w,,ri, > 0.01, then we move our
initial radial point closer to the boundary, and repeat
our initial value calculations, beginning with the
series algorithm. For the (+) solutions we double the
outer radial points, 7. — 2rt. . and for the (-)
solutions we half the distance to the horizon,
(Fipse — r+) = (e — r+)/2. We iterate this process
until our initial value solutions converge.
(3) After we determine the initial values of W, ik and
0, 9% “min> We solve (C1) using an explicit embedded
Runge-Kutta Prince-Dormand (8,9) method and an
adaptive stepper from the GSL ODE library. We
store solutions at the radial points r = r;, and the

stored values of ‘Pjimkn and 9 ‘ijkn are finally

transformed back to the Teukolsky solutions R+
and 0,R%

Jjmkn

“mkn DY 1nverting (B17) and its derivative.

6. Source integration module

Given discrete samplings of S, and RE “mien> along with
the output from the geodesic module, we calculate the
normalization constants Cﬁnk" using spectral source inte-
gration methods. The details of this procedure are discussed
in [33.,34].

At large frequencies, these integrals become highly
oscillatory and experience large numerical cancellations.
This is not an issue when constructing the field outside the
source region, where our mode-sum over the homogeneous
solutions converges rapidly, and, therefore, we do not need
to evaluate these highly oscillatory integrals. However,
when extended into the source region, the homogeneous
solutions are less efficient at capturing the behavior of the
perturbing field, as noted by van de Meent and Shah [61].
In practice, this means that the further we extend our
homogeneous solutions, the more extended homogeneous
modes we need to include in our mode-sum to accurately
calculate the self-force. Therefore, for particularly eccentric
orbits of e ~ 0.4, higher-frequency modes can make a
dominant contribution to our self-force calculation, and
these modes will also have large numerical errors due to the

catastrophic cancellations encountered when computing
C'jimkn. If the maximum value encountered in our spectral
integral is more than 14 orders of magnitude greater than

the computed value of % mkn» then we consider all precision

to be lost in our calculation and set C% imkn = 0. This is one
of the dominant sources of numerical error in our self-force

calculations.

7. Secular evolution module

Given a background geodesic and a force f5 " acting on a
scalar charge following that geodesic, the secular evolution
module computes the resulting average rate of change of
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the scalar charge’s orbital energy, angular momentum, and
Carter constant due to f5 . We denote the secular averages

as (E)&", (L_)&", and (Q)&". They are found by replacing
pa" with pdeen = (¢ + w'u”)f5™" in (85)—(87). This
module works for any arbitrary force, provided that the
input data for f5 " are structured like the output data from
the SSF module and f5™ is real. _
We compute (E)&", (L,)&", and (Q)&" using the
following numerical procedures:
(1) We start with two inputs: (1) worldline data from the
geodesic module and (2) force data f5;  that is
sampled on an N x N grid in ¢, and g,. With this

data we construct the integrands 15", 15", and 75"

using (86)—(87) but replacing a* with den.

(2) Next we evaluate (85) using spectral integration
methods [33]. Because the resonant averages depend
on ¢y, rather than returning a single number, our
spectral integrator returns a set of coefficients
{.7-'0‘7,.7:‘17, ...,j:{,gcn_]}. These coefficients are re-

lated to the averages via the discrete Fourier series

Ngen—1

. 2 ~ ~ .
<J>genz%Re [fg + > F e—lk%o], (B18)
k=1

where Re[X] is the real part of X and again we use J
to represent E, L_, or Q. Details of the integration
can be found in Appendix E.

(3) To test the accuracy of (B18), we down-sample the

force data f%; ; toaN/2 x N/2 grid and repeat our
calculations. We then estimate the error in our
Fourier coefficients by taking the fractional differ-
ence between our original Fourier coefficients Fr.
and those produced by down-sampling the in-
put data.

(4) We then output the coefficients F f, F éz, and F ,?
and their estimated errors for 0 <k <N gen — 1.

From this output, we can evaluate (E)&", (L_)&",

and (Q)&" for any initial phase gy, using (B18).

8. Regularization module

The first part of the regularization module computes the
SSF regularization parameters A,, B,, and Dg) [see (63)]:
(1) Given data from the geodesic module and a sample
number Nggp, we evaluate A,, B,, and Do,2 on an

Ngse X Nggr grid spanned by ¢, and gg. This results

in the discretely sampled parameters A, ; ;.. By j,»
) . .
and D, ;. This slamphng is analogous to the
: rret,lm -
construction of F; ;7" in (B3).

While we can regularize the SSF (or some quantity that
depends on the SSF) with only these three parameters, the
resulting mode-sum over [/ [see (62)] will only decay like
I=*. Consequently, truncating the sum at some /,,, gives us

a truncation error that scales like [52,. If we use values of
Imax ~ O(20), the standard mode-sum regularization will
only produce regular SSF data that is known to about two
digits of precision. However, we can reduce the error in our
regularized data by fitting for the higher-order regulariza-
tion parameters.

Therefore the second part of our regularization module
fits for the regular component HR of a formally divergent
self-force quantity H using the known higher-order struc-
ture of the singular component H® given in (63). We
perform this fit by modifying the procedure proposed by
van de Meent and Shah [61]. First we decompose H into a
series of spherical harmonic /-modes, H', from which we
define the finite, but unregularized quantity,

lcul l cut

L= Y H =S () (B19)
=0 =0
= H}EUI + HISCIH’ (BZO)

where H = H, as o — oo, while H} and H} refer to
the regular and singular pieces of H,_, respectively.

We then assume, based on the singular expansion in (63),
that H} ~takes the form

HS =5 H I+ 17 4 H (Lo + 1)
Icul o0 n D(zn)
He
* . (B21)
=0 ;k:1 (214+2k+1)(21 -2k + 1)

where H*, H?, and H?") are the [-independent regulari-
zation parameters for the divergent quantity H.
Furthermore, we approximate that Hy ~ H® for a suffi-
ciently large choice of /., since the regular multipole
contributions H®! should decay exponentially with /. This
gives us the approximate model

1
Hy m HS 4 5 HY (o + 1) + HP (low + 1)
lcul New N HD(Zn)

- . (B22
222 o na—wrn B2

Using known values of H,; , we fit for the set of unknown

parameters { HR, HA, H®, ..., HP(?"«)} where we truncate
this set of free parameters at n.,,. From our fits we estimate
HR_If any of the regularization parameters are known, then
we modify our model by moving the known parameters to
the left-hand side of (B22) and fitting for the remaining
unknowns.

Therefore, we estimate H® using the following fitting
procedure:
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(1) Given H' in the range 0 < [ < [, and some set of
known regularization parameters {H4, H®, ...,
HPC")Y we construct H  for 12 < Loy < lpa.

(2) Next we define the tuning parameters /. mi, and
Leut,max> Which select the values of H,_ that are used
in our fit. As noted in [61], if we choose a value of
Iy that is too low, then the approximation in (B22)
becomes less accurate and will not produce a good
estimate of HR. On the other hand, if we choose a
value of [, that is too high, then we may include
[-modes that are dominated by numerical error, and
this error will bias our fits. Because we do not know
a priori which values of [, are too low or too high,
we allow the tuning parameters to vary in the ranges
12 < lcut,min < lmax and lcut,min < lcut,max < lmax-

(3) Given values for [l mins leutmax» and 7ngy, we
perform a least squares fit of (B22) using the set
of known values {H; JH; }and

cut,min ’ lcuLmin‘Fl L cut,max

the set of known parameters {H*, HE, ..., HP?")}
This gives us a set of fit values for
{HR, HPC"'+2) HPCra)} We refer to this set
of fits as i1, = {AR, fz?(zn/”), fz?(2”°“‘)}.

(4) We repeat step 3 for all acceptable values of I,y min»
Leutmax> and gy max (1.€., we require the number of
known parameters to be greater than the number of
free parameters), giving us a several different /2, sets.
Note that we restrict n., to the range 3 < n., < 6.

(5) We then repeat steps 3—4, but this time we leave the
highest-order known parameter H”?") as an un-
known variable. This gives us fits for the set
{HR, gPC"),  HPCn)} which we denote
as hy = {hY, ﬁg(zn/), iz?un"“‘)}.

(6) Next, we take the ten sets of izl that best fit the data
H,; and the ten sets of h, that best minimize

|R") — gP@1)| Combining these twenty sets,
we construct a set of twenty fits for H® (i.e., ten
values of 78 and ten of /%).

(7) Finally we produce two estimates for the uncertainty
in our fitted value of HR. First we estimate its
uncertainty o® by taking the median absolute
deviation of the combined set of AR and A% values.
Second, we estimate its uncertainty to be the
standard deviation of this same set. If the standard
deviation is greater than the median absolute
deviation, then we take this to be the final uncer-
tainty in HR, and the value of H® is given by the
mean of our combined set of R and /¥ values. If the
median absolute deviation is greater than the stan-
dard deviation, then we take this to be the final
uncertainty in AR, and the value of HR is given by
the median of our combined set.

The above fitting procedure gives a simple estimate for HR,
but neglects how errors in the input data H' may impact the

fitting procedure. A more sophisticated algorithm could
incorporate these errors, but we leave that for future work.
We find that our method gives consistent estimates even
when varying [, or the number of known regularization
parameters. Therefore, the robustness of the current algo-
rithm is sufficient for this work.

APPENDIX C: HYPERBOLOIDAL
TRANSFORMATIONS OF THE RADIAL
TEUKOLSKY EQUATION

As mentioned in Appendix B 3, we make use of the
hyperboloidal transformation (B17) to put the radial
Teukolsky equation into a form that is more amenable
for numerical integration. The transformed homogeneous
equations then take the forms

d?

i

d

Gni1kn(r) o U;'tmkn(r> T_?:mkn(r) =0,

dr (C1)

where the potentials are given by

2[a*> +rM — ir(ma & (r* + a®) 0]

G = ,
mkn(r) rA
2ia(m + aw,y,) At + 2Mr + 2a?
U'imkn(r) = ( k ) + jmk 5
/ rA r’A
2maw,,., (r* +a*)(1 £ 1

APPENDIX D: CONFLUENT HEUN EQUATION
AND EXPANSIONS ABOUT ITS
SINGULAR POINTS

The confluent Heun equation takes the general form

d*w YCcH Och dw  acuz — qcn
—+(—+ + & —+——Fw =0,
dz? < z  z—1 CH> dz z2(z—-1)

(D1)

where acy, Ycns Ocu> €ch, and gcy are free parameters. It
has regular singularities at z=0 and z =1, and an
irregular singularity of Poincaré rank 1 at 7 = co. This
matches the singular structure of the radial Teukolsky
equation (43). Therefore, we can reexpress (43) in terms
of (D1) via the following transformations,

ecuk(z = 1) = w(r—ry), (D2)

R(z) = zfen(z — 1)Peneicentay (), (D3)
where ecy = 2Mw, k = \/1 =%, y = a/M, acy = *ie_
and bCH = :l:ie_, €4 = (GCH + TCH)/Z’ and TcH =
(ecu — my)/k. Note that we have dropped the mode
subscripts, i.e., Rj,, > R and @, — o, to simplify
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notation. The Teukolsky variables are then related to the
confluent Heun parameters via

Yeu=1+2acy,
6cn=1+2bcp,
ECH — :l:2i€CHK,

acy = F2iecyk(1 Fiecy +acuy +ben),

1
QCHZ/I—E@%:H—T%H) +ecumy —egy(1-x)

—ben—acy —2acuben Tiecuk(1+2acy),  (D4)
where 4 is the spheroidal eigenvalue. For simplicity we take
bcy = ie_ and acy = —ie_ from here on.

After recasting the Teukolsky equation in this confluent
Heun form, we use the Frobenius method to generate series
expansions of the confluent Heun solutions about z = 1,
which corresponds to the regular singular point » = r of
the Teukolsky equation. We then connect the confluent
Heun expansion to R™, giving

I N e AT
R=r o). o9
where
f_(r) — ptrans (rzzwi;(__) o (r— r+)—ie+ e—io(r=ry) , (D6)

and the series coefficients satisfy a three-term recurrence
relation,

Ainain—l + Bgnagn + Cg,nain+1 = O’ (D7)
with
Ay, =acy +ecu(n+4, = 1),
BE,, =n? + ”l(YCH + 5CH —écy T+ 20, — 1)
+ A (ycu + 6cn — €cn + 4 — 1) — qcns
Cy,=—(n+1+h)(n+ren +h), (D8)

and the monodromy eigenvalue 4, = 1 — ycy. Series coef-
ficients are generated recursively using the initial condi-
tions a;_; =0 and a5, = 1. In this work we take the
amplitude in (D6) to be
Blrans — 2—is+Kie_ ei€+’ (Dg)

so that (D5) matches the normalization of R™(r) in our
MST series calculations.

Similarly, we generate asymptotic expansions of the
confluent Heun solutions about z = oo. Connecting these
series expansions to R, we find that

and the series coefficients satisfy the three-term recurrence
relation,

A;r,na;r.n—l + Btnatn + C;r,na;r,nJrl = O’ (Dlz)
where
A1+,n = —(acy + ecu(n —1))(acy + ecu(n —rcu))
B, = agy + acuecu((1 — fon + 2n) + ecn)
+ egy(n(1 = fcu + ecu + 1) — qen).
Cl, = —(n+ Dedy, (D13)

with afy =1, ai_; =0, and fcy = ycu + Scn- In this
work we take the amplitude in (D11) to be

trans __ AHie
Cans — diecn

(D14)

so that (D10) matches the normalization of R*(r) in our
MST series calculations.

We can connect (D5) and (D10) to the hyperboloidal
functions W+ and their derivatives via (B17), allowing us to
generate initial values for our numerical solvers. (D5)
converges for (r — r+)/(2Mx) < 1, and therefore is suit-
able for generating initial values for the radial Teukolsky
solutions at the initial radial point r; <r, + 0.01M,
provided x > 0.005 or y?> < 0.999975. This condition is
met in this work. However, because the coefficients are
complex and can alternate sign, it is possible for (D5) to
experience catastrophic cancellation before converging to
some required precision goal. Therefore, when computing
initial data with this expansion, we track any potential
precision loss. If more than 4 digits of precision are lost
before the series converges to a precision < 107!3, then we
consider the Frobenius expansion method to have failed.

On the other hand, (D10) does not formally converge,
just as we expect for an asymptotic series, with the
coefficients growing like af, ~nay,_ /ecy as n — co.
However, for small values of (2Mk)/(r —r_) the series
will initially decay. Therefore, when we truncate the sum at
some finite value of j, (D10) provides a sufficiently
accurate approximation of R™. We evaluate (D10) at r;f, >
50M and perform the sum until the last two terms meet the
convergence criteria,
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-1

< €pBL- (DlS)

J_ ot + —k+j
‘ <Z al’k (rinit . r_> j)
+
= ay 2Mk
If this convergence criteria is not met before the series

begins to diverge, then we consider the asymptotic series
method to have failed.

APPENDIX E: SPECTRAL INTEGRATION OF
THE SECULAR AVERAGES

Consider some real-valued function 7 that depends on
the worldline of the scalar charge as it follows a resonant
geodesic. Then its evolution in Mino time A can be
parametrized in terms of the angle variables ¢, = 1,4
and gy = Yyk,e.g., 7(q,, q9)- Now we average J over one
resonant Mino period A via the integral,

1 (A
(J) = KA J(q, =T, A q9 = Yol + qgo)dA, (El)

where gg, sets the initial phase of the charge’s resonant
motion at A = 0.

To numerically evaluate (E1), first we take the two-
dimensional discrete Fourier transform (DFT) of 7,

N—-1 N—
~ 277:b 27[& - rak-t+bn
7 - Z Z < >ezm<%>, (E2)
=0 b=

and then we approximate the integrand as a truncated
Fourier series

N/2 NJ2
F[J] = fo + 2Re Z kajne—l(kqﬁnqr)
k=1 n=1
N/2 N/2
+2Re Z ka y_pe(kao=na,)
N/2 N2

+2Re Z fihe ™ + 2Re Z fi eminar, (E3)
k=1 n=1

where Re[f] refers to the real part of f. In (E3) we have
taken advantage of the fact that, because [J is real,

iL=7 x.—n- For sufficiently large values of N, the series
representation F[7] faithfully approximates 7 to machine
precision [33], i.e.,

1= < o (B4)

In general, we do not know the minimum value of N that
meets this criteria before we construct F[7].

Finally, we evaluate (El) by replacing J with
F[J]. Only the zero-frequency modes will contribute to
the integral. Because ¢, =T1,/f,="y/fop=7T (sce

Sec. IT A), the integral reduces to a sum over the (k,n)-
modes that satisfy fgk — f,n =0 with k > 0 and n > 0.
This gives a Fourier series representation of (7),

N/
(J)~ Fy +2Re Y Fyekam, (ES)

where F 0‘7 = fojo,

i 1.
g_ 124
T = Tin-powsp,
t

= floor [ 2”BN] ., (E6)

(4

and floor[X] refers to the largest integer that is less
than X.

APPENDIX F: FOURIER REPRESENTATION OF
RADIATIVE AVERAGES

Because the radiative averages (7 )Z:ém in (107) will
vary with respect to gy, we can express each average as a

Fourier series,

<j>zém _ ]_—j Moo ZREZj:bj.H/ooe—ibqgo’ (F1)
b=1

where we have taken advantage of the fact that 7 277,71/ ® =

F ‘ZZ;H/ * since <j )Z:d/ ® is real-valued. The advantage of this
Fourier representation is that the sum in (F1) is rapidly
convergent. Thus, in a numerical calculation we can
truncate the series after summing over just the first few
terms. This means we only need to calculate the first few
coefficients (e.g., b < 8) in order to accurately approximate
"7 H/oo
< >rad

efficient method for calculating F ;)7 "® using the fiducial

for any value of gy. As an example, we outline an

normalization coefficients C*mkn,

though these methods

generalize to F bj M as well.
Using (50) and (107), the coefficients take the form

Fo =S Ao

JmN (kn)y (K.n')y

=7 [*dqy i(b+k—k')
X C]mkncjmk’ //O' ﬂe qSO’ (Fz)

471,2 Z ‘7:277/‘2’0’ (F3)

Jj=0 k=—0

Fogw = Z Z A K(N=pok)/, ©PmN

m=—j N=

~

x Ct

+
ik (N=01) 5, C im0 N~pob—pok) /e (F4)
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where ,,y = m&, + NQ. First we find that when b =0
our expressions reduce to our nonresonant mode-sum
expressions for our averaged quantities,

~ 1 ~
o J + 2
FoT = y ]%Amk(f\’—/)’ok)/ﬂ,wmlv |ijk(1v—12) /B,
471' Z'Amkn Dpmin | C]mkn |2 (FS)
Jjmkn

just as we expect.

While we can calculate -7'—?70.17 directly from (F2), in
practice we use the symmetries of the amplitudes to
simplify this expression and only sum over positive
frequency modes w,,y > 0. Separating the w,,y > 0 and

W,y <0 terms in (F3), we find that ﬁl{/ ]:—bJ .
FJMe = FIM® tells us that the

Combining this with

Fourier coefficients must be purely real. Taking advantage
of these properties, we can arrange our sums so that we
only need to consider m and N values such that @,y > 0,

j:g’oo = _Z Z v By

jk @,y>0
At ~t
X C ik (N=pok) /8, C m(b-+8) (N ~b~ok) 15,
T qJ
Bion = Ao, + A b) Vo 5, (Fo)
Furthermore, because the mode amplitudes € mkn Vanish if

Jj+m+k=odd, .7-'“7°°—01fb—0dd So we only need

to calculate F° zjhfx’ for »' > 0. This is consistent with what
H/ oo

we see in full numerical calculations of (7)//
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