
 

 

This work was written as part of one of the author's official duties as an Employee of the United States 
Government and is therefore a work of the United States Government. In accordance with 17 U.S.C. 
105, no copyright protection is available for such works under U.S. Law. 
 
 
Public Domain Mark 1.0 
 
https://creativecommons.org/publicdomain/mark/1.0/ 
 

 

Access to this work was provided by the University of Maryland, Baltimore County (UMBC) 
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR) platform.  

 

Please provide feedback 

Please support the ScholarWorks@UMBC repository by emailing scholarworks-group@umbc.edu and 
telling us what having access to this work means to you and why it’s important to you. Thank you.  

 

https://creativecommons.org/publicdomain/mark/1.0/
mailto:scholarworks-group@umbc.edu


Adiabatic evolution due to the conservative scalar self-force during
orbital resonances

Zachary Nasipak *

NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland, 20771, USA

(Received 14 July 2022; accepted 30 August 2022; published 23 September 2022)

We calculate the scalar self-force experienced by a scalar point-charge orbiting a Kerr black hole along
rθ-resonant geodesics. We use the self-force to calculate the averaged rate of change of the charge’s orbital

energy h _Ei, angular momentum h _Lzi, and Carter constant h _Qi, which together capture the leading-order
adiabatic, secular evolution of the point-charge. Away from resonances, only the dissipative (time

antisymmetric) components of the self-force contribute to h _Ei, h _Lzi, and h _Qi. We demonstrate, using a new
numerical code, that during rθ resonances conservative (time symmetric) scalar perturbations also

contribute to h _Qi and, thus, help drive the adiabatic evolution of the orbit. Furthermore, we observe that the

relative impact of these conservative contributions to h _Qi is particularly strong for eccentric 2∶3
resonances. These results provide the first conclusive numerical evidence that conservative scalar
perturbations of Kerr spacetime are nonintegrable during rθ resonances.

DOI: 10.1103/PhysRevD.106.064042

I. INTRODUCTION

Future space-based gravitational wave observatories,
such as the Laser Interferometer Space Antenna (LISA)
[1–3], will extend gravitational wave science into the low-
frequency, milli-Hertz (mHz) regime. Sensitivity to a new
frequency band will facilitate the observation of new
astrophysical sources, including extreme-mass-ratio inspi-
rals (EMRIs) [4], binaries in which a stellar-mass compact
object (mass μ ∼ 10 M⊙) gradually inspirals into a massive
black hole (mass M ∼ 106 M⊙). EMRIs are characterized
by their small mass-ratios ϵ ¼ μ=M ∼ 10−7–10−4 and the
multiperiodic structure of their long inspirals. A typical
EMRI possesses three orbital frequencies1 [5]—the azimu-
thal frequency Ωϕ of the small body’s revolution about the
massive black hole, the radial frequency Ωr of the small
body’s libration between pericenter and apocenter, and the
polar frequency Ωθ of the small body’s nutating orbital
plane. The orbital frequencies slowly evolve as the small
body completes ≳ϵ−1 orbital cycles before merger. The
orbital evolution is imprinted in the gravitational waves
radiated by the binary, leading to signals filled with rich
harmonic structure that persist for months to years in the
mHz band. Consequently, the cumulative signal-to-noise
ratios of these sources will range from tens to hundreds,
providing unprecedented tests of general relativity and
high-precision measurements of EMRI masses and
spins [6,7].

An interesting feature of EMRIs is that, due to their
evolving tri-periodic motion, many EMRIs will experience
special orbital configurations known as orbital resonances.
Resonances occur when at least two frequencies of motion
form a rational low-integer ratio (e.g., Ωr=Ωθ ¼ 1=2). For
EMRIs, transient orbital rθ resonances—resonances that
form between Ωr and Ωθ—are particularly important.2

They persist for a resonant timescale Tres ∼Mϵ−1=2, and,
depending on the orbital phase at which the EMRI enters
the resonance, they can enhance or diminish the binary’s
gravitational wave emission [15–17]. This alters the inspi-
ral by speeding up or slowing down the system’s adiabatic
loss of orbital energy and angular momentum (and Carter
constant), which leaves a measurable impact on the
gravitational waveform [18]. Almost all EMRIs are
expected to encounter at least one rθ resonance as they
emit observable mHz gravitational waves [19]. Therefore,
failing to accurately model these resonances can hamper
the detection and characterization of EMRIs by future
space-based gravitational wave detectors [16,18,20]. In this
work, we model the impact of different perturbative effects
on the leading-order evolution of a binary as it passes
through different rθ-resonances.

*zachary.nasipak@nasa.gov
1If we neglect the spin of the smaller compact object.

2Other orbital resonances are either astrophysically improb-
able, such as sustained rθ resonances [8], or they are expected to
have a weak, immeasurable effect on EMRI gravitational wave
signals, such as rϕ and θϕ resonances [9,10]. EMRIs can also
experience other resonances, such as tidal resonances [11–14],
which we do not consider in this work.
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A. Modeling EMRIs via the self-force

EMRIs are naturally modeled within the framework of
perturbation theory and the self-force. In the self-force
approach, the small body is treated as a perturbing particle
orbiting in the stationary background spacetime associated
with the massive black hole [21,22]. As the small body
orbits in this background, it interacts with its own pertur-
bations, resulting in a gravitational self-force (GSF) that
provides OðϵÞ corrections to the motion. The conservative
(time symmetric) perturbations induce a GSF that is
responsible for nonsecular changes in the orbit, while
the dissipative (time antisymmetric) perturbations lead to
a GSF that drives the adiabatic inspiral of the small body
and can be connected to the orbit-averaged gravitational
wave fluxes out at infinity and down the massive black hole
horizon.
The cumulative impact of the self-force on EMRI

dynamics can be further understood via a two-timescale
analysis [23]. At leading adiabatic order, only the averaged
first-order dissipative self-force contributes to the evolution
of the orbital (and gravitational wave) phase, which
accumulate like ∼ϵ−1. This defines the inspiral timescale
T insp ∼Mϵ−1. At subleading post-1 adiabatic order, the
oscillatory pieces of the first-order dissipative self-force
and conservative self-force induce small shifts in the orbital
parameters, which vary on the orbital timescale Torb ∼M.
Additionally, the accumulation of the averaged second-
order self-force contributes at this order. Altogether, the
post-1 adiabatic effects produce Oð1Þ corrections to the
cumulative phase. Therefore, to generate EMRI waveforms
that meet LISA’s subradian phase accuracy requirement,
one must calculate the averaged dissipative components of
the GSF to a precision ≳ϵ−1, since their errors can grow
secularly over the inspiral, while the oscillatory pieces of
the GSF will have their errors suppressed by OðϵÞ relative
to the leading adiabatic order and thus only need to be
computed to a few digits of precision.
However, this picture is complicated for systems that

pass through at least one orbital rθ resonance. Due to the
presence of a new timescale Tres, resonances produce a
post-1=2 adiabatic correction that impacts the phase at
Oðϵ−1=2Þ. In the following section we review the source of
this half-order correction and how it impacts the accuracy
requirements for self-force calculations.

B. Action-angle variables and EMRI resonances

To better understand the impact of these transient
resonances, we can describe EMRI dynamics in terms of
action-angle variables, as proposed in [23]. In this multi-
scale action-angle framework, the fast orbital evolution of
the system (over timescales Torb) is captured by the angle
variables w⃗ ¼ ðwr; wθ; wϕÞ, whose time-derivatives give us

the frequencies of motion (at leading-order). The actions J⃗
then describe the slow-time evolution of the system over

T insp. Orbital quantities, such as the orbital energy E, orbital
angular momentum Lz, and the Carter constant Q (defined
in Sec. II A), provide one suitable set of actions, leading to
the equations of motion,

_wC ¼ ΩCðJÞ þOðϵÞ; _J ¼ ϵFJ ðJ; wÞ þOðϵ2Þ; ð1Þ

where _x ¼ dx=dt; J⃗ ¼ ðE;Lz;QÞ; J is used to represent E,
Lz, or Q; and C is used to represent r, θ, or ϕ.3 The FJ are
forcing functions that are constructed from the self-force
and, at leading order, can be expressed as double Fourier
expansions in the angle variables,

FJ ðJ; wÞ ≈
X∞
k¼−∞

X∞
n¼−∞

fJknðJÞe−iðkwθþnwrÞ; ð2Þ

where the Fourier coefficients fJkn only depend on J⃗, and
the forcing functions do not explicitly depend on wϕ due to
the rotational Killing symmetry of Kerr spacetime. We
can further separate our forcing functions into terms that
only depend on the dissipative self-force, and those that
only depend on the conservative, i.e., FJ ¼ FJ

diss þ FJ
cons.

Based on the symmetries of the dissipative and
conservative pieces, the dissipative contributions reduce
to discrete cosine series,

FJ
dissðJ; wÞ ≈ fJ00ðJÞ þ 2

X∞
n¼1

Re½fJ0nðJÞ� cosðnwrÞ

þ 2
X∞
k¼1

X
n≠0

Re½fJknðJÞ� cosðkwθ þ nwrÞ

þ 2
X∞
k¼1

Re½fJk0ðJÞ� cosðkwθÞ; ð3Þ

while the conservative contributions reduce to discrete sine
series,

FJ
consðJ; wÞ ≈ −2

X∞
n¼1

Im½fJ0nðJÞ� sinðnwrÞ

− 2
X∞
k¼1

X
n≠0

Im½fJknðJÞ� sinðkwθ þ nwrÞ

− 2
X∞
k¼1

Im½fJk0ðJÞ� sinðkwθÞ: ð4Þ

Integrating (1) over a period T insp, the oscillatory pieces
of the forcing functions will rapidly vary and destructively
interfere with one another. Thus the leading-order adiabatic

3In other words we use J to denote a function or coefficient
that is related to E or Lz or Q, while J⃗ is used for quantities that
depend on E and Lz and Q.
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evolution is given by the averaged, nonoscillatory piece of
each forcing function. Away from resonances, the only
nonoscillatory terms are the zero modes from the dissipa-
tive contributions,

h _J i ≈ ϵhFJ i ≈ ϵhFJ
dissi ≈ ϵfJ00ðJÞ: ð5Þ

However, as the system approaches a resonance, nonzero
ðk; nÞ-modes become stationary and contribute to the
secular evolution of the system. This can be seen by
expanding the angle variables around the exact moment
of resonance tres, when ΩrðtresÞ=ΩθðtresÞ ¼ Ωres

r =Ωres
θ ¼

βr=βθ with βr; βθ ∈ Z. Introducing the condensed notation
xkn ¼ kxθ þ nxr for any arbitrary parameter x, the phase
takes the expanded form

wknðtÞ ¼ wres
kn þ Ωres

knΔtþ
1

2
_Ωres
knΔt2 þOðΔt3Þ; ð6Þ

where Δt ¼ t − tres and wres
kn ¼ wknðtresÞ. Whenever

nβr þ kβθ ¼ 0; ð7Þ

Ωres
kn ¼ 0, and the phase becomes stationary (i.e.,

wknðtÞ ≈ wres
kn ) as long as 1

2
_Ωres
kn ðt − tresÞ2 ≲ 1. Because

_Ωres
kn ∼ ϵ, this criteria is met when jt − tresj≲Mϵ−1=2 ∼ Tres.

This defines the resonant timescale. Therefore any modes
that satisfy the resonant condition of (7) will contribute to
the secular evolution of the system for a period Tres,

h _J i ≈ ϵhFJ i ≈
X

kβθþnβr¼0

ϵfJknðJÞe−iwknðtresÞ: ð8Þ

Equation (8) differs from (5) in two key ways. First, the
averages depend on the initial angles or phases at resonance
wres
kn . Second, the averages include potential contributions

from both dissipative and conservative perturbations. This
poses a new problem for numerical models. Errors in the
initial values of wkn or the values of Im½fJkn� are usually
suppressed away from resonances, but during a resonance
they can accumulate and become magnified by Oðϵ−1=2Þ.
The exact magnification of the errors will depend on the
relative strength of the Fourier coefficients fJkn to the
dominant mode fJ00. Numerically evaluating these coef-
ficients can, therefore, provide insight into how these errors
grow during a resonance.
Flux-inspired mode-sum expressions for h _Ei, h _Lzi, and

h _Qi provide an efficient method for determining the
dissipative contributions Re½fJkn� using the asymptotic
behavior of the perturbing gravitational field [17], but
these results do not easily extend to conservative perturba-
tions. While these conservative perturbations could still
vanish at leading order during resonances [15], i.e.,
hFJ

consi ≈ 0, previous authors have hypothesized that they

will contribute to the average rate of change of the Carter
constant, h _Qi [24–26], breaking the integrability of the
Hamiltonian conservative system at resonance [27]. There
have been attempts to extend asymptotic mode-sum meth-
ods to include conservative contributions [24], but the
regularization of these conservative perturbations (see
Sec. II C) complicates these procedures. Instead we can
calculate fJkn, and thereby the conservative and dissipative
contributions to h _J i, if we know the values of the GSF
along a resonance. However, while GSF calculations have
been performed along generic orbits in Kerr spacetime, to
date these GSF calculations have not been extended to rθ
resonances [28].

C. Paper overview

In this paper we make use of a scalar toy model to
evaluate how, during rθ resonances, the conservative
contributions to the self-force impact the adiabatic evolu-
tion of EMRIs. Using this model, we also study how
numerical errors can propagate during these resonances.
For our scalar model we consider a scalar point charge q on
a rθ-resonant geodesic in Kerr spacetime. The charge
experiences a geodesic scalar self-force (SSF), which is
akin to the GSF. Neglecting the GSF and treating q2=ðμMÞ
as a small parameter, the scalar self-forced equations of
motion take the same perturbative form as (1), but with ϵ
replaced by q=M. Much like the GSF, the SSF “pushes” the
particle away from a geodesic as it sources the gradual
evolution of the orbital parameters E, Lz, andQ. This work
is an extension of previous results published by the author
[29]. In [29], we presented the first numerical results of the
SSF along rθ-resonant geodesics. However, the systematic
uncertainty in our SSF results was too large to make
definitive statements about the impact of the conservative
SSF on the secular evolution of our two-body system. In
this work, we have built a new C++ code that is orders of
magnitude faster than our previous Mathematica code and
incorporates new algorithms that have greatly reduced our
numerical and systematic errors, allowing us to accurately
calculate h _Ei, h _Lzi, and h _Qi via (1) and (8).
The paper is organized as follows. To set notation, in

Sec. II we review Kerr geodesics, the SSF, and the average
rate of change of the orbital constants, h _Ei, h _Lzi, and h _Qi.
For brevity, we will collectively refer to these average rates
of change simply as adiabatic or secular averages, since
they grow secularly with time. Furthermore, we will use
h _J i to represent all three secular averages. In Sec. III, we
describe the methods employed by our new C++ code
for computing the SSF along rθ resonances and then
calculating the resulting averaged secular evolution of
the orbital quantities, h _J i. We highlight two new tech-
niques used by our new code: (1) a Teukolsky solver that
combines confluent Heun expansions, series of hyper-
geometric functions, and numerical integrators to solve
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the Teukolsky equation; and (2) a new application of mode-
sum regularization that directly regularizes the Fourier
harmonics that describe h _J i. In Sec. IV, we demonstrate,
with new numerical results, that the conservative perturba-
tions do contribute to the secular evolution of Q, breaking
the integrability of the conservative scalar system at
resonance [27]. We conclude with a discussion of these
results in Sec. V. For this paper we use the metric signature
ð−þþþÞ, the sign conventions, where applicable, of [30],
and units such that c ¼ G ¼ 1.

II. BACKGROUND

We employ the same resonant scalar model and SSF
formalism used in [29]. The zeroth-order background
motion is given by a geodesic xμp in Kerr spacetime gμν
(Sec. II A). The motion of the scalar charge q sources a
scalar field Φret (Sec. II B), and the charge interacts with a
regular component of this field ΦR, thus experiencing a
SSF Fα (Sec. II C). The SSF then drives the secular
evolution of the energy, angular momentum, and Carter
constant that parametrize the charge’s motion, h _Ei, h _Lzi,
and h _Qi, respectively (Sec. II D). To establish notation, in
the following section we provide a brief overview of how
we construct these quantities.

A. Bound geodesics in Kerr spacetime

We consider a point particle with mass μ on a bound
geodesic in a Kerr background gμν. In Boyer-Lindquist
coordinates ðt; r; θ;ϕÞ the Kerr line element reads

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2

þ Σdθ2 −
4Mar sin2 θ

Σ
dtdϕ

þ sin2 θ
Σ

ððr2 þ a2Þ2 − a2Δ sin2 θÞdϕ2; ð9Þ

where M is the Kerr mass parameter, a the Kerr spin
parameter, Σ ¼ r2 þ a2 cos2 θ, and Δ ¼ r2 − 2Mrþ a2.
The worldline and four-velocity of the particle are denoted
by xμp ¼ ðtp; rp; θp;ϕpÞ and uμ ¼ dxμp=dτ, respectively,
where τ is the particle’s proper time.
To solve for xμp we leverage the three Killing symmetries

of Kerr spacetime: the time Killing vector ξμðtÞ ¼ gμt, the

azimuthal Killing vector ξμðϕÞ ¼ gμϕ, and the Killing tensor

Kμν [31]. (See Eq. (C23) in [29] for an explicit definition of
Kμν.) Projecting these Killing symmetries onto the four-
velocity of the particle provides us with four constants of
motion: the particle mass μ, the orbital energy
E ¼ −ξμðtÞuμ ¼ −ut, the z-component of the orbital angular

momentum Lz ¼ ξμðϕÞuμ ¼ uϕ, and the (scaled) Carter

constant Q¼Kμνuμuν−ðLz−aEÞ2¼K−ðLz−aEÞ2 [32].

With these conserved quantities, we obtain four first-
order ordinary differential equations (ODEs) for xμp, which
decouple when parametrized in terms of the Mino(-Carter)
time parameter λ [21,32],

dtp
dλ

¼ VtrðrpÞ þ VtθðθpÞ; ð10Þ

drp
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VrðrpÞ

q
; ð11Þ

dθp
dλ

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VθðθpÞ

q
; ð12Þ

dϕp

dλ
¼ VϕrðrpÞ þ VϕθðθpÞ: ð13Þ

where dλ ¼ Σ−1dτ, and the potential functions are given by

VrðrÞ ¼ P2ðrÞ − Δðr2 þ KÞ;
VθðθÞ ¼ Q − L2

zcot2θ − a2ð1 − E2Þcos2θ;

VtrðrÞ ¼
r2 þ a2

Δ
PðrÞ; VtθðθÞ ¼ aLz − a2Esin2θ;

VϕrðrÞ ¼
a
Δ
PðrÞ; VϕθðθÞ ¼ Lzcsc2θ − aE; ð14Þ

with PðrÞ ¼ ðr2 þ a2ÞE − aLz.
To choose values of ðE; Lz;QÞ that correspond to bound

geodesics, we introduce the orbital parameters

p ¼ 2rminrmax

Mðrmin þ rmaxÞ
; e ¼ rmax − rmin

rmin þ rmax
; ð15Þ

x ¼ cos

�
π

2
− θmin

�
; ð16Þ

where p is the semilatus rectum, e is the orbital eccentricity,
and x is (the projection of) the orbital inclination. The
minimum radius rmin, maximum radius rmax, and minimum
polar angle θmin ¼ π − θmax represent the turning points of
the geodesic. We first choose values of ðp; e; xÞ, then obtain
the corresponding values of ðE;Lz;QÞ using the methods
of [5]. Once the constants of motion have been determined,
we solve (10)–(13) using spectral integration methods
[33,34], which provide exponentially convergent numerical
approximations of the geodesic solutions.
The resulting bound solutions can be separated into

terms that are periodic and terms that grow secularly. The
radial and polar motion are completely periodic, with Mino
time periods,

Λr ¼ 2

Z
rmax

rmin

drffiffiffiffiffiffiffiffiffiffiffi
VrðrÞ

p ; Λθ ¼ 2

Z
θmax

θmin

dθffiffiffiffiffiffiffiffiffiffiffiffi
VθðθÞ

p ; ð17Þ

and corresponding frequencies,
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ϒr ¼
2π

Λr
; ϒθ ¼

2π

Λθ
: ð18Þ

Therefore, we represent the radial and polar motion by

rpðλÞ ¼ ΔrðrÞðϒrλÞ ¼ ΔrðrÞðϒrλþ 2πÞ; ð19Þ

θpðλÞ ¼ ΔθðθÞðϒθλÞ ¼ ΔθðθÞðϒθλþ 2πÞ: ð20Þ

On the other hand, coordinate time tp and the azimuthal
angle of the particle ϕp not only oscillate with respect to the
radial and polar frequencies, but they also accumulate with
rates

ϒt ¼ ϒðrÞ
t þϒðθÞ

t ; ϒϕ ¼ ϒðrÞ
ϕ þϒðθÞ

ϕ ; ð21Þ

where

ϒðrÞ
t ¼ 1

Λr

Z
Λr

0

VtrðrpÞdλ; ϒðθÞ
t ¼ 1

Λθ

Z
Λθ

0

VtθðθpÞdλ;

ð22Þ

ϒðrÞ
ϕ ¼ 1

Λr

Z
Λr

0

VϕrðrpÞdλ; ϒðθÞ
ϕ ¼ 1

Λθ

Z
Λθ

0

VϕθðθpÞdλ:

ð23Þ

We represent their evolution as

tpðλÞ ¼ ϒtλþ ΔtðrÞðϒrλÞ þ ΔtðθÞðϒθλÞ; ð24Þ

ϕpðλÞ ¼ ϒϕλþ ΔϕðrÞðϒrλÞ þ ΔϕðθÞðϒθλÞ; ð25Þ

where ΔtðrÞ, ΔrðrÞ, and ΔϕðrÞ all share the same periodic
structure, and likewise for ΔtðθÞ, ΔθðθÞ, and ΔϕðθÞ.
The exact form of the oscillatory terms in (19), (20), (24),

and (25) depends on the initial conditions of the bound
geodesic. However, it is possible to relate geodesics that
share the same orbital constants, but different initial
conditions. To do so we first define a fiducial geodesic
x̂μðλÞ with initial conditions (at λ ¼ 0)

x̂μpð0Þ ¼ ðt̂pð0Þ; r̂pð0Þ; θ̂pð0Þ; ϕ̂pð0ÞÞ ¼ ð0; rmin; θmin; 0Þ
ûrð0Þ ¼ ûθð0Þ ¼ 0: ð26Þ

Then any geodesic with arbitrary initial conditions

xμpð0Þ ¼ ðtpð0Þ; rpð0Þ; θpð0Þ;ϕpð0ÞÞ ¼ ðt0; r0; θ0;ϕ0Þ
urð0Þ ¼ ur0; uθð0Þ ¼ uθ0 ð27Þ

can be expressed in terms of the fiducial solutions,

tpðλÞ ¼ ϒtλþ Δt̂ðrÞðqr þ qr0Þ − Δt̂ðrÞðqr0Þ
þ Δt̂ðθÞðqθ þ qθ0Þ − Δt̂ðθÞðqθ0Þ þ t0; ð28Þ

rpðλÞ ¼ Δr̂ðrÞðqr þ qr0Þ; ð29Þ

θpðλÞ ¼ Δθ̂ðθÞðqθ þ qθ0Þ; ð30Þ

ϕpðλÞ ¼ ϒϕλþ Δϕ̂ðrÞðqr þ qr0Þ − Δϕ̂ðrÞðqr0Þ
þ Δϕ̂ðθÞðqθ þ qθ0Þ − Δϕ̂ðθÞðqθ0Þ þ ϕ0; ð31Þ

where we have defined the phase variables qr ¼ ϒrλ and
qθ ¼ ϒθλ.

4 The initial phases qr0 and qθ0 are set by the
initial conditions ðr0; ur0Þ and ðθ0; uθ0Þ, respectively, and all
hatted quantities are constructed assuming the fiducial
conditions of (26).
Together the Mino time frequencies also define the

fundamental frequencies of the bound geodesic with
respect to coordinate time,

Ωr ¼
ϒr

ϒt
Ωθ ¼

ϒθ

ϒt
Ωϕ ¼ ϒϕ

ϒt
: ð32Þ

When at least two of these frequencies are commensurate,
the geodesic is said to be resonant. In this work, we are
interested in rθ resonances, where Ωr=Ωθ ¼ βr=βθ with
βr; βθ ∈ Z. For rθ resonances, we define the resonant Mino
frequency, resonant Mino period, and resonant fundamental
frequency

ϒ ¼ ϒr

βr
¼ ϒθ

βθ
; Λ ¼ 2π

ϒ
; Ω ¼ ϒ

ϒt
; ð33Þ

respectively.
An important feature of nonresonant geodesics is that

they are ergodic or space-filling. Given an infinite amount
of Mino time, a nonresonant orbit will uniformly sample
every point on the two-torus spanned by the phase variables
qr and qθ. In practice, this means that any nonresonant
geodesic is directly related to a fiducial geodesic up to some
trivial translation in time and azimuth. To change the initial
conditions, we can simply pick new values of t0 and ϕ0.
Due to the Killing symmetries of Kerr, time and azimuthal
translations do not impact quantities such as the SSF or the
secular rate of change of the orbital quantities, e.g., h _Ei.
Therefore, we can choose fiducial initial conditions when
we model nonresonant geodesics without loss of generality.
In contrast, resonant geodesics are not ergodic but

follow restricted tracks through coordinate space (and on
the qr − qθ two-torus). Furthermore, different choices of
initial conditions qr0 and qθ0 can also lead to unique

4The phase variables qr and qθ are equivalent to the geodesic
limit (ϵ → 0) of the angle variables wr and wθ introduced in Sec. I
if we had parametrized our equations in terms of λ instead of t.
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trajectories (e.g., Fig. 2 in [29]). Unlike nonresonant
geodesics, rθ resonances will only map to fiducial geo-
desics if they simultaneously pass through rmin and θmin.
This only occurs if the condition

qθ0
βθ

−
qr0
βr

¼ 2πN ð34Þ

is satisfied for some integer N. Generally (34) is not met.
Nevertheless, two rθ resonances can be mapped onto one
another provided they share the same initial resonant phase
(modulo 2π)

q0 ¼
qθ0
βθ

−
qr0
βr

; ð35Þ

and the same orbital parameters (e.g., E, Lz, and Q).
Therefore, when constructing the SSF or h _Qi (see Secs. II C
and II D), we must take into account their dependence on
the initial phases. In practice, due to the interdependence of
qr0 and qθ0 in (35), we set qr0 ¼ 0 and parametrize our
initial conditions in terms of qθ0, without loss of generality,
when dealing with rθ resonances.

B. Scalar perturbations of Kerr spacetime

We now consider that our point-mass μ, orbiting on a
geodesic xμp, also possesses a scalar charge q. The charge
sources a scalar field Φ (per unit charge q) that satisfies the
Klein-Gordon equation

qgμν∇μ∇νΦðxÞ ¼ −4πρðxÞ; ð36Þ

where ρ is the scalar charge density,

ρðxÞ ¼ q
δðr − rpÞδðcos θ − cos θpÞδðϕ − ϕpÞ

VtrðrÞ þ VtθðθÞ
: ð37Þ

Transforming to the frequency domain, we can solve
(36) via separation of variables [32,35,36]. We then obtain
the physical retarded solution Φret by imposing causal
boundary conditions at the black hole horizon rþ ¼ M þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
and infinity. When Φret is reconstructed back

into the time-domain, the only frequencies that contribute
are those that correspond to the discrete frequency spec-
trum of the charge’s bound motion,

ωmkn ¼ mΩϕ þ kΩθ þ nΩr: ð38Þ

As a result, the scalar field can be expressed as a discrete
mode-sum,

ΦretðxÞ ¼
X
jmkn

Rret
jmknðrÞSjmknðθÞeimϕe−iωmknt; ð39Þ

where we have introduced the compact notation,

X
jmkn

¼
X∞
j¼0

Xj

m¼−j

X∞
k¼−∞

X∞
n¼−∞

: ð40Þ

The polar dependence in (39) is captured by the scalar
spheroidal harmonics SjmknðθÞ [37,38], which satisfy

�
d2

d2θ
− cot θ

d
dθ

− a2ω2
mknsin

2θ

þ 2maωmkn −
m2

sin2θ
þ λjmkn

�
SjmknðθÞ ¼ 0; ð41Þ

where λjmkn is the spheroidal eigenvalue. In the limit
aωmkn → 0, λjmkn → lðlþ 1Þ and (41) reduces to the spheri-
cal harmonic equation. Therefore, the Sjmkn can be expressed
as rapidly convergent sums of spherical harmonics,

SjmknðθÞeimϕ ¼
X∞
l¼0

bljmknYlmðθ;ϕÞ; ð42Þ

where the coupling coefficients bljmkn satisfy a three-term
recursion relation [39,40].
The radial dependence in (39) is captured by the

Teukolsky solutions Rret
jmknðrÞ, which satisfy the inhomo-

geneous spin-0 radial Teukolsky equation

�
d2

dr2
þGTðrÞ d

dr
þ UT

jmknðrÞ
�
RjmknðrÞ ¼ ZjmknðrÞ; ð43Þ

with causal boundary conditions [36], where

GTðrÞ ¼ 2ðr −MÞ
Δ

; ð44Þ

UT
jmknðrÞ ¼

½ðr2 þ a2Þωmkn −ma�2
Δ2

−
λjmkn

Δ
; ð45Þ

and Zjmkn is the radial component of the mode-decomposed
source, ρ, given in (37). The causal boundary conditions are
captured by the unit-normalized ingoing and upgoing
homogeneous solutions, which have the respective asymp-
totic behaviors,

R−
jmknðr → rþÞ ∼ e−ipmknr� ; ð46Þ

Rþ
jmknðr → ∞Þ ∼ eiωmknr�

r
; ð47Þ

where pmkn ¼ ωmkn −ma=ð2MrþÞ is the horizon-shifted
frequency, and r� is the tortoise coordinate defined by the
differential relation dr�=dr ¼ ðr2 þ a2Þ=Δ.
While we could reconstruct Φret using (39), the resulting

field exhibits Gibbs ringing in the source region rmin ≤
r ≤ rmax due to the pointlike distributional source in (37).
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Therefore, we circumvent the Gibbs phenomenon by
applying the method of extended homogeneous solutions
[41–43]. Outside the source region (r < rmin and r > rmax)
Rret
jmkn simply reduces to the homogeneous solutions R�

jmkn

multiplied by complex normalization coefficients C�
jmkn,

Rret
jmknðr < rminÞ ¼ C−

jmknR
−
jmknðrÞ; ð48Þ

Rret
jmknðr > rmaxÞ ¼ Cþ

jmknR
þ
jmknðrÞ: ð49Þ

The C�
jmkn, also known as Teukolsky amplitudes, are

calculated using the standard method of variation of
parameters, as outlined in [29,34]. Importantly, varying
the initial phases of the scalar charge’s orbit will change
C�
jmkn by an overall phase factor [17,44]

C�
jmkn ¼ eiξmknðt0;qr0;qθ0;ϕ0ÞĈ�

jmkn; ð50Þ

where the fiducial coefficients Ĉ�
jmkn are calculated assum-

ing fiducial initial conditions (26), and the phase factor ξmkn
is given by

ξmknðt0; qr0; qθ0;ϕ0Þ
¼ mðΔϕ̂ðrÞðqr0Þ þ Δϕ̂ðθÞðqθ0Þ − ϕ0Þ − kqθ0

− ωmknðΔt̂ðrÞðqr0Þ þ Δt̂ðθÞðqθ0Þ − t0Þ − nqr0: ð51Þ

Consequently, in the vacuum regions of spacetime Φret can
be reconstructed from an exponentially convergent sum
over the homogeneous radial solutions R�

jmkn,

Φretðr < rminÞ ¼
X∞
l¼0

Xl

m¼−l
ψ−
lmðt; rÞYlmðθ;ϕÞ; ð52Þ

¼ Φ−ðxÞ; ð53Þ

Φretðr > rmaxÞ ¼
X∞
l¼0

Xl

m¼−l
ψþ
lmðt; rÞYlmðθ;ϕÞ; ð54Þ

¼ ΦþðxÞ; ð55Þ

where we have introduced the extended homogeneous
mode functions,

ψ�
lmðt; rÞ ¼

X∞
k¼−∞

X∞
n¼−∞

X∞
j¼jmj

ψ�
ljmknðrÞe−iωmknt; ð56Þ

ψ�
ljmknðrÞ ¼ bljmknC

�
jmknR

�
jmknðrÞ: ð57Þ

To obtain Φret over the entire radial domain, we simply
extend our homogeneous solutions into the source re-
gion, e.g.,

Φretðt; r; θ;ϕÞ ¼ Φ−ðt; r; θ;ϕÞΘðrpðtÞ − rÞ
þΦþðt; r; θ;ϕÞΘðr − rpðtÞÞ: ð58Þ

While ψ�
lmðt; rÞ and ψ�

ljmknðrÞ are not formal solutions of
our inhomogeneous Teukolsky wave equations, summing
over all of the extended harmonic modes results in a
convergent field solution that is free of Gibbs ringing and
accurately represents Φret over the entire spacetime domain
up to the charge’s worldline xμp.

C. Scalar self-force

Now we take into account the backreaction of the scalar
field on the charge q. This produces a SSF Fα (per unit
charge squared) that drives the inspiral of the particle [45],

uμ∇μðμuαÞ ¼ q2Fα: ð59Þ

While the field Φret formally diverges along the charge’s
worldline (where the SSF is evaluated), only a regular
component of the field contributes to the SSF. This regular
contribution is completely captured by the Detweiler-
Whiting regular field ΦR [46],

Fα ¼ lim
x→xp

gαβ∇βΦR; ð60Þ

though it is often convenient to further decompose ΦR into
its conservative and dissipative pieces,ΦR ¼ Φcons þΦdiss,
resulting in conservative and dissipative contributions to
the self-force,

Fcons
α ¼ ∇αΦcons; Fdiss

α ¼ ∇αΦdiss; ð61Þ

respectively. The dissipative scalar perturbations are asso-
ciated with the radiative field Φdiss ¼ 1

2
ðΦret −ΦadvÞ that

drives the inspiral of the scalar charge, where Φadv is the
advanced field solution of (36). WhileΦret andΦadv diverge
along the worldline, their singular behaviors perfectly
cancel when constructing Φdiss, resulting in a smooth,
well-defined field along the worldline. The remaining
conservative scalar perturbations Φcons ¼ ΦR −Φdiss only
source nonsecular changes in the motion when the system
is not in resonance. In this work, we investigate whether
this behavior also extends to resonances.
To calculate these conservative perturbations, we

first construct the regular field from the difference
ΦR ¼ Φret −ΦS, where ΦS is the Detweiler-Whiting sin-
gular field. Like Φret, ΦS satisfies (36), but with non-
radiative boundary conditions that result in a solution that
captures the local, singular behavior of the field. Therefore,
ΦS also diverges at the location of the charge, requiring a
regularization procedure that delicately handles the sub-
traction of Φret and ΦS. In this work we employ mode-sum
regularization [47,48], in which the divergent quantities
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Fret
α ¼ ∇αΦret and FS

α ¼ ∇αΦS are decomposed onto a
spherical harmonic basis, resulting in finite multipole
moments (spherical harmonic l-modes) that can be sub-
tracted mode by mode,

Fα ¼ lim
x→�xp

X∞
l¼0

ðFret;l
α� − FS;l

α�Þ: ð62Þ

The � notation takes into account that Fret;l
α and FS;l

α are
discontinuous at xμp; therefore, their values depend on the
radial direction fromwhichwe approach theworldline.While
we only need to regularize Fcons

α , in practice we first compute
Fα via (62) and then use it to construct Fcons

α and Fdiss
α .

An advantage of this mode-sum approach is that FS;l
α� can

be expressed as a series of l-independent regularization
parameters, which are constructed by expanding ΦS in the
local neighborhood of xμp [46,48,49],

FS;l
α� ¼ � 1

2
Aαð2lþ 1Þ þ Bα

þ
X∞
n¼1

Yn
k¼1

Dð2nÞ
α

ð2lþ 2kþ 1Þð2l − 2kþ 1Þ : ð63Þ

The higher-order parameters, Dð2nÞ
α , are not strictly needed

for convergence. They vanish when summed over all
l-modes,

X∞
l¼0

Yn
k¼1

Dð2nÞ
α

ð2lþ 2kþ 1Þð2l − 2kþ 1Þ ¼ 0; ð64Þ

but each additional Dð2nÞ
α that we incorporate in our mode-

sum regularization increases the rate atwhich the sum in (62)
converges. Including parameters up to n ¼ nmax results in
(62) converging like l−2ðnmaxþ1Þ. This is particularly useful in
our numerical calculations, where we are forced to truncate
the sum at some finite l ¼ lmax. In this work, wemake use of

Aα, Bα, and Dð2Þ
α , which were analytically derived by

Heffernan [50] and are available on Zenodo [51].
Using our results from Sec. II B, it is straightforward

to construct the time, radial, and azimuthal components
of Fret;l

α� ,

Fret;l
t� ¼

Xl

m¼−l
Fret;lm
t� ¼

Xl

m¼−l
∂tψ

�
lmðt; rÞYlmðθ;ϕÞ; ð65Þ

Fret;l
r� ¼

Xl

m¼−l
Fret;lm
r� ¼

Xl

m¼−l
∂rψ

�
lmðt; rÞYlmðθ;ϕÞ; ð66Þ

Fret;l
ϕ� ¼

Xl

m¼−l
Fret;lm
ϕ� ¼

Xl

m¼−l
imψ�

lmðt; rÞYlmðθ;ϕÞ: ð67Þ

Assembling the polar component is more complicated.
Taking the polar derivative of (52)–(58) results in a series of
spherical harmonic derivatives,

Fret;l
θ� ¼

Xl

m¼−l
ψ�
lmðt; rÞ∂θYlmðθ;ϕÞ; ð68Þ

instead of the spherical harmonic basis needed for our
regularization scheme. Unfortunately, simply reexpanding
(68) onto a basis of spherical harmonics is computationally
impractical due to the strong coupling between ∂θYlm and
Ylm [43].
To circumvent this issue, we follow the methods of [43]

and multiply Φret by a suitable window function fðxÞ so
that the combination f∂θYlm can be reexpressed as a finite
series of spherical harmonics. If the windowed, unregular-
ized self-force field,

F̃ret
θ ðxÞ ¼ ∇θ½fðxÞΦretðxÞ�

¼ fðxÞ∂θΦretðxÞ þΦretðxÞ∂θfðxÞ; ð69Þ

reduces to Fret
θ ðxÞ as we approach the worldline (i.e., F̃ret

θ →
Fret
θ as xμ → xμp), then we can calculate Fθ via the mode-

sum regularization of F̃ret
θ ðxÞ,5

Fθ ¼ lim
x→�xp

X∞
l¼0

�
F̃ret;l
θ� − B̃θ −

D̃ð2Þ
θ

ð2l − 1Þð2lþ 3Þ
�
: ð70Þ

where we have made use of the fact that Ãθ ¼ Ãϕ ¼ 0 along
all geodesics in Kerr spacetime. For a general choice of

fðxÞ, the new regularization parameters B̃θ and D̃ð2Þ
θ will

differ from the original analytically known parameters Bθ

andDð2Þ
θ , because our window function will also change the

structure of the singular field. To ensure that B̃θ ¼ Bθ and

D̃ð2Þ
θ ¼ Dð2Þ

θ , we must choose fðxÞ so that the singular
structure of ΦS is preserved at its first few leading orders.
(See Appendix A for more details.) This is achieved
if fðcos θÞ ¼ 1þOðcos θ − cos θpÞ4.
Therefore, we introduce the window function

fðθ; θpÞ ¼
X3
j¼0

αjðθpÞ cosj θ sin θ; ð71Þ

where

5Alternatively, we can think of this window function method as
a process for choosing a different extension of the self-force
operator away from the particle’s worldline, i.e., ∇α → fðxÞ∇α,
as done in [28].
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α0ðθpÞ ¼
2 − 7 cos2 θp þ 8 cos4 θpð1 − cos2 θpÞ

2 sin7 θp
; ð72Þ

α1ðθpÞ ¼
3 cos3 θpð1þ 4 cos2 θpÞ

2 sin7 θp
; ð73Þ

α2ðθpÞ ¼
1 − 8 cos2 θpð1þ cos2 θpÞ

2 sin7 θp
; ð74Þ

α3ðθpÞ ¼
cos θpð3þ 2 cos2 θpÞ

2 sin7 θp
: ð75Þ

With this window function, we get a finite coupling
between the spherical harmonics and their derivatives,

fðθ; θpÞ∂θYlmðθ;ϕÞ ¼
X4
n¼−4

βðnÞlm ðθpÞYlþn;mðθ;ϕÞ; ð76Þ

where βðnÞlm is defined in Appendix A. As a result,

F̃ret;l
θ� ¼

Xl

m¼−l
Fret;lm
θ�

¼
Xl

m¼−l

X4
n¼−4

βð−nÞlþn;mðθpÞψ�
lþn;mðt; rÞYlmðθ;ϕÞ; ð77Þ

which is amenable to mode-sum regularization.
The final step before mode-sum regularizing the SSF is

to construct the retarded self-force multipole contributions
along the worldline of our point charge. To do so, we follow
the methods outlined in [29]. First, we assume that our
point charge is following a fiducial resonant geodesic
x̂μp given by (28)–(31) with t0 ¼ qr0 ¼ qθ0 ¼ ϕ0 ¼ 0.
We then construct Fret;l

α� via (65)–(67) and (77) and evaluate
both Fret;l

α� and FS;l
α� along x̂μp, e.g.,

Fret;l
α� ðt; r; θ;ϕÞ → Fret;l

α� ðt̂pðλÞ; r̂pðλÞ; θ̂pðλÞ; ϕ̂pðλÞÞ:

When evaluating the mode functions along the worldline,
the terms that accumulate linearly with λ cancel, allowing
us to instead parametrize Fret;l

α� , FS;l
α�, and Fα in terms of the

phase variables qr and qθ [28,29]. Therefore, in a slight
abuse of notation, we use F̂ret;l

α� ðqr; qθÞ, F̂S;l
α�ðqr; qθÞ, and

F̂αðqr; qθÞ to denote the retarded self-force multipole
contributions, the singular self-force multipole contribu-
tions, and the regularized SSF evaluated along a fiducial
geodesic, respectively.
To assemble the dissipative and conservative contribu-

tions to the self-force, we leverage the symmetries of Kerr
spacetime to relate F̂diss

α and F̂cons
α to F̂α [23,29],

F̂diss
α ðqr; qθÞ ¼

1

2
½F̂αðqr; qθÞ − ϵðαÞF̂αð2π − qr; 2π − qθÞ�;

F̂cons
α ðqr; qθÞ ¼

1

2
½F̂αðqr; qθÞ þ ϵðαÞF̂αð2π − qr; 2π − qθÞ�;

ð78Þ

where ϵðαÞ ≐ ð−1; 1; 1;−1Þ.
Using these fiducial self-force quantities, we can also

evaluate the SSF for a resonant geodesic with nonfiducial
initial conditions qr0 ≠ 0 and qθ0 ≠ 0 via the shifting
relation [29],

Fαðqr; qθ; qr0; qθ0Þ ¼ F̂αðqr þ qr0; qθ þ qθ0Þ: ð79Þ

The shifting relation holds for Fret;l
α� ðqr; qθ; qr0; qθ0Þ and

FS;l
α�ðqr; qθ; qr0; qθ0Þ, as well. Therefore, by computing the

fiducial SSF quantities along a two-dimensional grid
spanned by qr and qθ, we efficiently capture the evolution
of the SSF along a whole family of resonant geodesics that
share the same orbital constants and frequencies, but differ
in their initial conditions.

D. Secular evolution of E, Lz, and Q

Once we determine the SSF, we examine its impact on
the evolution of the charge. First, we reexpress the
equations of motion (59) in terms of μ, E, Lz, and Q,

dμ
dτ

¼ −q2uαFα; ð80Þ

dE
dτ

¼ −q2at;
dLz

dτ
¼ q2aϕ; ð81Þ

dQ
dτ

¼ 2q2Kμνuμaν − 2q2ðLz − aEÞðaϕ þ aatÞ; ð82Þ

where aμ is the self-acceleration of the scalar charge,

μaμ ¼ ðgμν þ uμuνÞFν ¼ Fμ −
uμ

q2
dμ
dτ

: ð83Þ

The leading-order, adiabatic evolution of our system is
captured by the secular rate of change of these orbital
quantities, h_μi, h _Ei, h _Lzi, and h _Qi. The brackets denote an
orbit-average with respect to coordinate time,

hXi ¼ 1

T

Z
T

0

XðtÞdt; ð84Þ

where T is the orbital period. We can integrate (80)
analytically,6 leading to the trivial result h _μi ¼ 0.

6The evolution of the mass is given by μðtÞ ¼ μ0−
qΦR½xμpðtÞ�, where μ0 is an integration constant commonly
referred to as the charge’s bare mass.
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Following [52], we reexpress the remaining orbit-averages
as integrals over Mino time. Therefore, for a scalar charge
q on a rθ-resonant geodesic with initial orbital phase qθ0,

7

the secular evolution due to the SSF is given by

h _J i ¼ q2

μΛϒt

Z
Λ

0

ÎJ ðϒrλ;ϒθλþ qθ0Þdλ; ð85Þ

where J is used to represent E, Lz, orQ, and the integrands
are given by

ÎE ¼ −Σ̂pât; ÎLz
¼ Σ̂pâϕ; ð86Þ

ÎQ ¼ 2Σ̂p½K̂μνûμâν − ðLz − aEÞðâϕ þ aâtÞ�: ð87Þ
Note that all hatted quantities are evaluated along a fiducial
geodesic that shares the same frequencies as the scalar
charge’s orbit.
As discussed in Sec. I, the averages in (85) will vary with

the choice of initial phase qθ0. This is in contrast to
nonresonant orbits, which have no phase dependence.
Therefore, we define the double average

hh _J ii0 ¼
1

2πΛ

Z
2π

0

Z
Λ

0

_J ðλ; qθ0Þdλdqθ0 ð88Þ

to capture the piece of the secular evolution that is inde-
pendent of qθ0. Computing this double average is equivalent
to computing h _J i by naively assuming that our resonant
geodesics are nonresonant. The phase dependence of our
resonant averages is then captured by the residual averages,

hδ _J i ¼ h _J i − hh _J ii0: ð89Þ

To compute these averages, we first take into account
that our orbit averages in (85) will depend on both Fdiss

α and
Fcons
α . Therefore, any quantity that depends on the self-force

can be decomposed into a conservative contribution and a
dissipative contribution, e.g.,

hδ _Qi ¼ hδ _Qidiss þ hδ _Qicons: ð90Þ

Henceforth, quantitieswith a “cons” label are calculatedusing
onlyFcons

α , while any quantity with a “diss” label is calculated
using only Fdiss

α . Furthermore, we can decompose quantities
into their contributions from both Fret;l

α� and FS;l
α�, e.g.,

hδ _Qicons ¼
�X∞
l¼0

ðhδ _Qiret;l� − hδ _QiS;l� Þ
�
− hδ _Qidiss: ð91Þ

These decompositions allow us to effectively mode-sum
regularize the secular quantities themselves, rather than

regularizing the self-force and then computing the averaged
rates of change. For example, we find that regularizing
hδ _Qicons significantly reduces systematic uncertainties in
our final results, as we will discuss in Sec. III.
Based on the symmetries of the conservative perturba-

tions [see (78)] and global flux-balance arguments
[21,53,54], h _Eicons ¼ h _Lzicons ¼ hh _Qiicons0 ¼ 0. This is in
agreement with nonresonant orbits, where conservative
perturbations have no impact on the leading-order secular
evolution. However, as discussed in [24–26], during rθ
resonances these same symmetry and flux-balance argu-
ments no longer guarantee that hδ _Qicons will vanish.
Therefore, we compute hδ _Qicons for a scalar charge on
several different rθ-resonant orbits.

III. NUMERICAL METHODS AND
IMPLEMENTATION

To carry out our calculations we developed a new
numerical code in C++, which we will refer to as CPP.
CPP consists of a driver program that calculates, for a
scalar charge following a resonant geodesic, the average
rate of change of its orbital energy, angular momentum, and
Carter constant—h _Ei, h _Lzi, and h _Qi—due to the SSF. The
driver program calls on eight separate modules, each of
which implements a different piece of the self-force
problem outlined in Sec. II:
(1) a geodesic module that determines the background

motion of a perturbing particle,
(2) a harmonic module that evaluates the frequency-

domain harmonics of the self-force experienced by a
perturbing particle,

(3) a spheroidal harmonic module that solves for the
spheroidal harmonics,

(4) a radial Teukolsky module that solves for the
homogeneous radial Teukolsky solutions,

(5) a source integration module that calculates the
normalization constants (Teukolsky amplitudes)
due to the presence of a perturbing point-source,

(6) a self-force module that sums over the harmonics to
construct unregularized modes of the self-force,

(7) a secular evolution module that determines the
averaged rate of change of the background orbital
quantities due to a perturbing force, and

(8) a regularization module that regularizes divergent
self-force data.

One advantage of writing this new code is that CPP,
which only relies on floating-point arithmetic at double
precision, is much faster and less memory-intensive than
our old arbitrary-precision Mathematica code, which we
used in previous investigations of the SSF [29,34]. From
here on, we refer to the Mathematica code as MMA. With
CPP, a typical SSF calculation (for a single resonance with
all initial conditions taken into account) completes in ∼300
CPU hours on a laptop with a 2.4 GHz 8-core Intel Core i9

7Recall from Sec. II A that, due to the coupling between the
radial and polar motion, we can set qr0 ¼ 0 without loss of
generality, provided we allow qθ0 to be nonzero.
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processor. As a result, SSF calculations complete in less
than a day when mode computations are distributed across
the laptop’s cores with MPI [55]. For comparison, com-
parable SSF calculations took over 15,000 CPU hours with
MMA, and had to be performed in parallel on a cluster for
several weeks. Another benefit of CPP is that is relies on
freely available, open-access software—such as GSL
[56,57] and Boost [58]—making it far more accessible
than MMA, which relies on proprietary software.
Another advantage is that, due to its modular design, CPP

can easily be generalized to the problem of calculating the
GSF in radiation gauges. In fact, our spheroidal harmonic,
radial Teukolsky, and source integration modules have
already been generalized to handle gravitational perturba-
tions. However, for the purposes of this work, we will only
focus on the numerical implementation of the SSF problem.
In Sec. III Awe describe the CPP driver program and how it
generates the results presented in Sec. IV, while detailed
descriptions of the CPP modules are found in Appendix B.
CPP implements many of the same numerical methods

used byMMA and outlined in [29,34], but we highlight two
key differences between these two codes. The first is that in
MMA we determine the radial Teukolsky solutions using
semianalytic series of hypergeometric functions derived by
Mano, Suzuki, and Takasugi (MST) [59,60] that are evalu-
ated at high levels of precision. In contrast, CPP computes
the radial Teukolsky solutions using a combination of
routines that are better adapted to the limits of double
precision, including adaptive step-size numerical integra-
tion, asymptotic expansions, and the MST series. (See B 5.)
This required the development of a special functions C++

library that computes a number of functions in the complex
domain, particularly hypergeoemtric functions.
The second key difference is that in MMA we first

regularize the SSF, and then we use the regularized data Fα

to compute h _Ei, h _Lzi, h _Qi as functions of the initial
resonant phase qθ0. Therefore, uncertainties and errors
introduced to Fα by our MMA regularization procedure
are propagated to h _Ei, h _Lzi, h _Qi. In CPP we first calculate
the mode contributions to the secular rates of change using
the unregularized SSF modes F̂ret;l

α� , and then we regularize
the coefficients of the Fourier series that represent our orbit-
averaged quantities. (See B 7 and B 8.) Directly regulariz-
ing the Fourier coefficients of h _Ei, h _Lzi, h _Qi significantly
reduces estimated uncertainties due to mode-sum regulari-
zation. We expand on this new regularization scheme in
Sec. III A.

A. Driver program

1. Input

The driver program requires the following initial inputs:
(1) The orbital parameters ða; e; xÞ that describe the

background resonant geodesic of our scalar charge,

(2) the resonant ratio βr=βθ of the radial and polar
frequencies;

(3) the geodesic sampling number Ngeo ¼ 2ngeo, where
ngeo ∈ Zþ;

(4) the SSF sampling number NSSF ¼ 2nSSF, where
nSSF ∈ Zþ < ngeo; and

(5) the maximum SSF l-mode lmax.
In this work, we typically set ngeo ¼ 12, nSSF ¼ 8, and
lmax ¼ 25.

2. Computing the background geodesic

Given this input, the program first determines the value
of p that produces the resonance ϒr=ϒθ ¼ βr=βθ.
After completing the orbital inputs ða; p; e; xÞ, the program
constructs the fiducial geodesic functions described in
Sec. II A using the geodesic module outlined in
Appendix B 1. The functions are evaluated at Ngeo

evenly spaced points in qr and qθ, resulting in the

discretely sampled values Δx̂i ¼ fΔt̂ðrÞir
;Δt̂ðθÞiθ

;Δr̂ðrÞir
;Δθ̂ðθÞiθ

;

Δϕ̂ðrÞ
ir
;Δϕ̂ðθÞ

iθ
g, where ir; iθ ¼ 0; 1;…; Ngeo − 1.

3. Constructing SSF data

After the program constructs the geodesic data, it
calculates the unregularized SSF l-modes F̂ret;l

α� [see (62)]
using the SSF module described in Appendix B 2.
The program samples these modes on an NSSF × NSSF
grid in qr and qθ, leading to the discrete mode values
F̂ret;l
α�;jrjθ

, where the grid points are indexed by the integers
jr; jθ ¼ 0; 1;…; NSSF − 1.
After computing F̂ret;l

α�;jrjθ
for 0 ≤ l ≤ lmax, the program

constructs a number of quantities that are related to the SSF.
First it evaluates the regularization parameters on the same
NSSF × NSSF grid as the SSF using the regularization
module in Appendix B 8. Like F̂ret;l

α�;jrjθ
, the discretely

sampled parameters are referred to as Âα;jrjθ , B̂α;jrjθ , and

D̂ð2Þ
α;jrjθ

. Next, it constructs the l-mode contributions to the
dissipative SSF using (78),

F̂diss;l
α�;jrjθ

¼ 1

2
ðF̂ret;l

α�;jrjθ
− ϵðαÞF̂

ret;l
α�;NSSF−jr−1;NSSF−1−jθÞ;

which do not require any regularization. After that, the
program constructs the partially regularized self-force
quantities,

F̂ret−A;l
α�;jrjθ

¼ F̂ret;l
α�;jrjθ

∓ 1

2
Âα;jrjθð2lþ 1Þ: ð92Þ

By removing the leading-order singular behavior in (92),
F̂ret−A;l
αþ;jrjθ

and F̂ret−A;l
α−;jrjθ should agree to machine precision in

the absence of additional numerical error. Therefore, taking
their difference gives us an estimate of the overall
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numerical error in F̂ret;l
α�;jrjθ

. Furthermore, using (92), the
program constructs a third self-force quantity,

F̂ret−A;l
α≶;jrjθ ¼

8>>><
>>>:

F̂ret−A;l
αþ;jrjθ

jr > Nsplit;

F̂ret−A;l
α−;jrjθ jr < Nsplit;

1
2
ðF̂ret−A;l

α−;jrjθ þ F̂ret−A;l
αþ;jrjθ

Þ jr ¼ Nsplit;

ð93Þ

where Nsplit is the value of jr that minimizes the difference

jΔr̂ðrÞjr
− ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rminrmax
p j.8 For eccentric orbits and high frequ-

encies, we encounter large cancellations between the
extended homogeneous functions when constructing the
self-force. As observed by previous authors (e.g., [61]),
these cancellations become more severe the farther one
extends the homogeneous functions into the radial libration
region of the perturbing point source. Consequently,
F̂ret−A;l
αþ;jrjθ

tends to accumulate larger numerical errors when

the scalar charge is closer to rmin, while F̂ret−A;l
α−;jrjθ suffers

from larger numerical errors when the charge is closer to
rmax. Therefore, F̂

ret−A;l
α≶;jrjθ makes use of each solution in the

region where its numerical error is best mitigated.
Similarly, the program computes the new quantity
F̂diss;l
α≶;jrjθ by replacing F̂ret−A;l

α�;jrjθ
with F̂diss;l

α�;jrjθ
in (93).

Finally, the driver program constructs the following con-
tributions to the conservative SSF,

F̂consþS−A;l
α�;jrjθ

¼ F̂ret−A;l
α�;jrjθ

− F̂diss;l
α�;jrjθ

; ð94Þ

F̂consþS−A;l
α≶;jrjθ ¼ F̂ret−A;l

α≶;jrjθ − F̂diss;l
α≶;jrjθ : ð95Þ

4. Evaluating the dissipative averages

Next, the program uses the secular evolution module in
Appendix B 7 to construct the orbit averages h _J idiss ¼
hh _J iidiss0 þ hδ _J idiss defined in (88) and (89). Rather than
directly evaluating h _J idiss for each value of qθ0, the secular
evolutionmodule represents each average as a Fourier series
with respect to qθ0 and, given some self-force data, directly
computes the Fourier coefficients of each series.
For the dissipative averages, the Fourier coefficients are

purely real and the Fourier sums reduce to discrete cosine
series,

hh _J iidiss0 ¼ q2

μ
F̃ J ;diss

0 ; ð96Þ

hδ _J idiss ¼ 2q2

μ

XKJ

k¼1

F̃ J ;diss
k cos kqθ0; ð97Þ

F̃ J ;diss
k ¼

XLJ

l¼0

F̃ J ;diss
k;l : ð98Þ

The secular evolution module constructs three estimates for
the Fourier coefficients F̃ J ;diss

k;l using the self-force l-modes
F̂diss;l
α� and F̂diss;l

α≶ . The driver program then uses the values of

LJ and KJ and the set of coefficients F̃ J ;diss
k;l that minimize

the total estimated uncertainty in hh _J iidiss0 and hδ _J idiss.
This uncertainty arises due to several sources of numeri-

cal error: (1) σ̃J ;SSF
k;l� , the estimated error in F̃ J ;diss

k;l due to the
numerical error in F̂diss;l

α ; (2) σ̃J ;diss
k;l� , the estimated error in

F̃ J ;diss
k;l introduced by the numerical methods in the secular

evolution module; (3) σ̃J ;diss
k;trunc, the estimated error from

truncating the sum over l in (98); and (4) σJ ;diss
trunc , the

estimated error from truncating the sum over k in (97).
Based on the convergence criteria established in our SSF
module, we expect our dissipative SSF data to be accurate
to a precision of ∼ϵtol ¼ 10−10. Assuming that this pro-
duces a similar error of error in the Fourier coefficients
leads to the conservative estimate

σ̃J ;SSF
k;l� ≈ ð5 × ϵtolÞ × jF̃ J ;diss

0;l� j: ð99Þ

The uncertainty σ̃J ;diss
k;l� , on the other hand, is computed by

the secular evolution module as described in Appendix B 7.
Meanwhile, the program estimates σ̃J ;diss

k;trunc to be the maxi-

mum of σ̃J ;diss
k;LJ

, σ̃J ;SSF
k;LJ

, and jF̃ J ;diss
k;LJ

þ F̃ J ;diss
k;LJþ1j. To get an

intermediate estimate for the uncertainty in F̃ J ;diss
k , denoted

by σ̃J ;diss
k , the driver program use the standard method of

propagation of error and adds the contributing errors in
quadrature,

ðσ̃J ;diss
k Þ2¼ðσ̃J ;diss

k;truncÞ2þ
XLJ

l¼0

½ðσ̃J ;diss
k;l Þ2þðσ̃J ;SSF

k;l Þ2�: ð100Þ

Then the final truncation error σJ ;diss
trunc is taken to be the

maximum value of σ̃J ;diss
KJ

and jF̃ J ;diss
KJ

j. Consequently, the
program approximates the uncertainty in hδ _J idiss to be

ðσdissδJ Þ2 ¼ 4q4

μ2

�
ðσ̃J ;diss

trunc Þ2 þ
XKJ

k¼1

jσ̃J ;diss
k cos kqθ0j2

�
; ð101Þ

while the uncertainty in hh _J iidiss0 is given by
σdissJ 0

¼ q2σ̃J ;diss
0 =μ. We find that the self-force data F̂diss;l

α≶
tends to best minimize the uncertainties σdissJ 0

and σdissδJ .

5. Evaluating the conservative averages

The conservative averages are efficiently described by
discrete sine series,8This condition was found through numerical experimentation.
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hδ _J icons ¼ 2q2

μ
Im

�XKJ

k¼1

F̃ J ;cons
k sin kqθ0

�
; ð102Þ

where the Fourier coefficients are purely imaginary
and hh _J iicons0 ¼ 0. Once again, the driver program
first uses the secular evolution module to calculate the
l-mode contributions to F̃ J ;cons

k using the SSF data
F̂consþS−A;l
α� and F̂consþS−A;l

α≶ . Like the dissipative case, this
leads to three estimates for the l-dependent Fourier coef-
ficients F̃ J ;consþS−A

k;l . However, unlike the dissipative case,

naively summing over F̃ J ;consþS−A
k;l leads to a divergent

result and, thus, these coefficients need to be regularized.
(See Figs. 2 and 3.) Much like the SSF itself, these Fourier
coefficients are amenable to mode-sum regularization.
Therefore, the program uses the secular evolution module
to generate Fourier coefficient regularization parameters,
F̃ J ;B

k and F̃ J ;D
k , by replacing SSF data with the regulari-

zation parameters B̂α and D̂ð2Þ
α as input.

The program then submits F̃ J ;consþS−A
k;l� , F̃ J ;consþS−A

k;l≶ ,
F̃ J ;B

k , and F̃ J ;D
k to the regularization module described in

Appendix B 8. This module produces three estimates for
the regularized Fourier coefficients F̃ J ;cons

k . The regulari-
zation module also outputs estimated uncertainties for these
regularized coefficients, which we refer to as σ̃J ;cons

k . While
the conservative averages are subject to all of the same
errors as the dissipative averages, the uncertainty intro-
duced by regularization, σ̃J ;cons

k , dominates other sources of
error, such as the error introduced by the secular evolution
module, σ̃J ;cons

k;l , and the numerical error introduced by the

SSF data, σ̃J ;SSF
k;l . Therefore, the program simply approx-

imates the uncertainty in hδ _J icons as

ðσconsδJ Þ2¼ 4q4

μ2

�
ðσ̃J ;cons

trunc Þ2þ
XKJ

k¼1

jσ̃J ;cons
k sinkqθ0j2

�
; ð103Þ

where, as before, the uncertainty due to truncating our
Fourier series, σ̃J ;cons

trunc , is taken to be the maximum value of
σ̃J ;cons
KJ

and jF̃ J ;cons
KJ

j. Likewise, the program uses the value
of KJ and the SSF data that minimize σconsδJ . We find that

this is usually best satisfied by F̂consþS−A;l
α≶ and KJ ¼ 2.

IV. SECULAR GROWTH OF THE ORBITAL
CONSTANTS DURING RESONANCES

We use the CPP code outlined in Sec. III to calculate the
average rate of change of E, Lz, and Q due to the SSF for
the resonant orbits listed in Table I. From here on we use J
to denote E, Lz, orQ. In Sec. IVAwe verify the accuracy of
our dissipative averages, h _J idiss, by analyzing their con-
vergence and comparing them to the asymptotic behavior

of the scalar field. Then in Sec. IV B we validate the
conservative averages, hδ _J icons, by analyzing their con-
vergence from mode-sum regularization and verifying that
hδ _Eicons and hδ _Lzicons vanish as we expect from flux-
balance arguments. After validating our new methods and
code, we demonstrate in Sec. IV C that hδ _Qicons does not
vanish for the resonances considered in this work.
Furthermore we estimate the error that is introduced to
the leading-order evolution if we neglect these conservative
contributions. To simplify notation, we set M ¼ q ¼ 1 for
the remainder of this section.

A. Validation tests: Dissipative perturbations

First we verify that the coefficients F̃ J ;diss
k;l converge

exponentially with l. We find that the k ¼ 0 and k ¼ 2

modes consistently exhibit exponential convergence for
each orbit in Table I, while higher-order k-modes are
dominated by numerical noise at larger values of l. To
illustrate this behavior, in Fig. 1 we plot the magnitude of
F̃ J ;diss

k;l for the e02.23 orbit in Table I. The error bars
represent the estimated uncertainty in each coefficient.
Note that we do not include any odd k-modes, because
they vanish due to the symmetries of Kerr spacetime. We
see that the higher modes possess large uncertainties and do
not exponentially decay but instead vary around ∼10−14.
Ultimately, this behavior is consistent with the numerical
accuracy of our SSF results, which we expect to be accurate
down to ∼10−13 based on our code’s mode-sum conver-
gence criteria outlined in Appendix B 2. Furthermore, we
see that the mode content of the dissipative averages is
largely captured by the k ¼ 0 and k ¼ 2 Fourier modes,
while the higher modes are suppressed by several orders of
magnitude. Therefore, our numerical errors in the higher
modes do not have a significant impact on our calculations
of h _J idiss.
Next, we validate our calculations of h _J idiss using a

standard flux-balance comparison [21,53,54]. Due to
global conservation laws, the average rate of change of
E and Lz—which we can interpret as the local work and
torque performed on our charge by the SSF—must be
balanced by the flux of energy and angular momentum

TABLE I. The orbital parameters of the resonant geodesics
studied in Sec. IV. The values of p are truncated at four significant
digits for brevity. The integers βr and βθ are defined by the
relation βr=βθ ¼ ϒr=ϒθ.

Label a=M p e x βr=βθ

e02.12 0.9 4.508 0.2 cos π=4 1=2
e02.23 0.9 6.643 0.2 cos π=4 2=3
e05.12 0.9 4.607 0.5 cos π=4 1=2
e05.23 0.9 6.707 0.5 cos π=4 2=3

ADIABATIC EVOLUTION DUE TO THE CONSERVATIVE … PHYS. REV. D 106, 064042 (2022)

064042-13



radiated by the scalar field at infinity, h _Ei∞rad and h _Lzi∞rad,
and the horizon, h _EiHrad and h _LziHrad,

h _Ei ¼ −ðh _EiHrad þ h _Ei∞radÞ ¼ −h _Eirad; ð104Þ

h _Lzi ¼ −ðh _LziHrad þ h _Lzi∞radÞ ¼ −h _Lzirad: ð105Þ

While a flux-balance law does not exist for the Carter
constant, we can still relate h _Qidiss to the asymptotic
behavior of the scalar field at the horizon and infinity
[17,24,44,62], which we refer to as h _QiHrad and h _Qi∞rad,9
leading to a similar condition

h _Qi ¼ −ðh _QiHrad þ h _Qi∞radÞ ¼ −h _Qirad; ð106Þ

For a scalar charge on a resonant orbit, these radiative
averages reduce to

h _J iH=∞
rad ¼ 1

4π

X∞
j¼0

Xj

m¼−j

X∞
N¼−∞

h _J iH=∞
jmN ;

h _J iHjmN ¼
X
ðk;nÞN

X
ðk0;n0ÞN

AJ
mknpmk0n0ϖ

2þC−
jmknC̄

−
jmk0n0 ;

h _J i∞jmN ¼
X
ðk;nÞN

X
ðk0;n0ÞN

AJ
mknωmk0n0C

þ
jmknC̄

þ
jmk0n0 ; ð107Þ

where ϖ2þ ¼ r2þ þ a2, an overbar denotes complex con-
jugation, and

P
ðk;nÞN refers to a sum over all integer k and n

values that satisfy kβθ þ nβr ¼ N. The coefficients are

related to the frequencies and orbital constants via
AE

mkn ¼ ωmkn, A
Lz
mkn ¼ m, and

1

2
AQ

mkn ¼ kϒθ þ ωmknðaLz − a2E −ϒðθÞ
t Þ

−mðLz − aE −ϒðθÞ
ϕ Þ: ð108Þ

Just like h _Ei, h _Lzi, and h _Qi, these averages depend on qθ0,
and therefore are efficiently described by Fourier series.
The calculation of their Fourier coefficients, which we
denote as F̃ J ;rad

k , is described in Appendix F.

Thus, we calculate h _J irad and the corresponding Fourier
coefficients F̃ J ;rad

k for the resonances listed in Table I. We
then compare these coefficients to F̃ J ;diss

k via (104)–(106).
In Tables II and III, we report the values of F̃ J ;diss

k and the
absolute error between F̃ J ;diss

k and F̃ J ;rad
k for each reso-

nance. We report all k-modes that our code uses when
evaluating h _J idiss. Interestingly, there are instances where
our code includes modes in which the magnitude of F̃ J ;diss

k
is less than its uncertainty. While the values of these
individual modes are highly uncertain, our code still
incorporates these modes because they improve our overall
uncertainty estimate for h _J idiss. From Table II, we see that
the absolute errors always fall under the estimated uncer-
tainty of our results, demonstrating that our coefficients are
not only accurate, but that our estimated uncertainties
account for the dominant sources of numerical error in
our dissipative data.

B. Validation tests: Conservative perturbations

To validate the conservative averages calculated by our
new code, we test the l-mode convergence of the Fourier
coefficients F̃ J ;cons

k that describe h _J icons. Mode-sum regu-
larization of the conservative perturbations leads to the

FIG. 1. The l-mode convergence of the Fourier coefficients F̃ J ;diss
k;l that describe the dissipative averages h _J idiss—where J represents

E, Lz, or Q—for a 2∶3 resonant orbit defined by the parameters ða=M;p; e; xÞ ¼ ð0.9; 6.643; 0.2; cos π=4Þ. Because the odd k-modes
vanish, we only plot the even modes k ¼ ð0; 2; 4; 6Þ. The magnitude of the coefficients rapidly decay with both l and k. Therefore, we
see that modes with k > 2 tend to be dominated by numerical error, especially at higher values of l.

9Despite the suggestive naming, we emphasize that h _QiHrad and
h _Qi∞rad are not fluxes.
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algebraic convergence of F̃ J ;cons
k;l with l. As we include the

Aα,Bα, andD
ð2Þ
α parameters in ourmode-sum regularization,

we expect the regularized values of F̃ J ;cons
k;l to fall-off like l0,

l−2 and l−4, respectively. The rates of convergence are
demonstrated in Figs. 2 and 3, where we plot jF̃Q;consþS−A

k;l j
(red circles), jF̃Q;consþS−A

k;l − F̃Q;B
k;l j (blue triangles), and

jF̃Q;consþS−A
k;l −F̃Q;B

k;l −F̃Q;D
k;l =ð2l−1Þ=ð2lþ3Þj (orange dia-

monds). Figure 2 plots the coefficients for the e02.23
resonance, while Fig. 3 plots the coefficients for e05.23.
The error bars display the estimated uncertainty in each

coefficient. Note that this estimated uncertainty only takes
into account errors due to truncating our (formally infinite)
self-force mode-sums, not the errors due to catastrophic
cancellations when evaluating the sums. We find that, much
like the dissipative coefficients, the k ¼ 2 and k ¼ 4
conservative coefficients largely exhibit the expected decay
rates in l, though the k ¼ 4modes become contaminated by
numerical error at higher values of l. The higher k-modes are
almost entirely dominated by numerical error but are also
orders ofmagnitude smaller than the k ¼ 2mode.Thus, they
can be neglected without introducing significant error to
h _J icons. For low eccentricities, the numerical error is well

TABLE II. The third and fifth columns list values for the Fourier coefficients F̃E;diss
k and F̃Lz;diss

k —which describe the dissipative
averages h _Eidiss and h _Lzidiss, respectively—for the resonances listed in Table I. In parentheses we report the last significant digit of each
coefficient and its estimated error. For example, −2.184ð3� 3Þ × 10−9 is equivalent to ð−2.1843 × 10−9Þ � ð3 × 10−13Þ, while ð0.5�
2.8Þ × 10−13 is equivalent to ð5 × 10−14Þ � ð2.8 × 10−13Þ. We include additional significant figures in our error estimates when they are
larger than the magnitude of our coefficient values. The fourth and sixth columns then report the absolute difference between F̃J ;diss

k and
F̃J ;rad

k , the Fourier coefficients of the asymptotic averages given in (107). Note that to properly compare these coefficients we add them
together due to the minus sign in (104).

Orbit k F̃E;diss
k jF̃E;diss

k þ F̃E;rad
k j F̃Lz;diss

k jF̃Lz;diss
k þ F̃Lz;rad

k j
e02.12 0 −5.53491867ð1� 9Þ × 10−4 2.1 × 10−13 −4.14427631ð8� 5Þ × 10−3 2.3 × 10−12

2 −2.184ð3� 3Þ × 10−9 5.2 × 10−14 −3.028ð1� 2Þ × 10−8 2.1 × 10−13

4 −ð1� 4Þ × 10−13 1.3 × 10−13 ð0.08� 2.07Þ × 10−13 2.7 × 10−15

e02.23 0 −1.317244272ð8� 7Þ × 10−4 1.2 × 10−14 −1.674686519ð5� 8Þ × 10−3 4.4 × 10−13

2 4.2406ð7� 7Þ × 10−9 1.4 × 10−14 6.6172ð1� 8Þ × 10−8 6.1 × 10−14

4 −ð3� 7Þ × 10−14 2.3 × 10−15 ð2� 8Þ × 10−13 4.1 × 10−15

e05.12 0 −5.86478ð5� 5Þ × 10−4 3.3 × 10−10 −3.56366ð6� 2Þ × 10−3 1.4 × 10−9

2 −5.ð2� 1Þ × 10−8 3.1 × 10−10 −7.5ð8� 3Þ × 10−7 1.2 × 10−9

4 −ð0.01� 3.57Þ × 10−9 4.8 × 10−12 ð0.02� 8.57Þ × 10−9 9.9 × 10−12

e05.23 0 −1.293567ð9� 2Þ × 10−4 1.6 × 10−13 −1.3291823ð9� 2Þ × 10−3 1.3 × 10−11

2 5.09ð2� 3Þ × 10−8 6.3 × 10−12 7.516ð8� 6Þ × 10−7 4.4 × 10−12

4 −ð0.3� 2.8Þ × 10−12 4.6 × 10−14 ð3� 6Þ × 10−11 4.6 × 10−14

6 −ð0.01� 5.49Þ × 10−12 1.4 × 10−14 ð0.005� 4.971Þ × 10−12 9.1 × 10−16

TABLE III. The third and fifth columns list values for the Fourier coefficients F̃Q;diss
k and Im½F̃Q;cons

k �—which describe the averages
h _Qidiss and h _Qicons, respectively—for the resonances listed in Table I. We report the estimated uncertainty in each coefficient using the
same conventions described in Table II. The fourth column reports the absolute difference between F̃Q;diss

k and F̃Q;rad
k .

Orbit k F̃Q;diss
k jF̃Q;diss

k þ F̃Q;rad
k j Im½F̃Q;cons

k �
e02.12 0 −1.32198762ð0� 2Þ × 10−2 8.7 × 10−12 0

2 6.345ð0� 7Þ × 10−8 1.9 × 10−12 2.5ð8� 1Þ × 10−8

4 −ð0.8� 6.6Þ × 10−12 1.8 × 10−13 ð2� 7Þ × 10−11

e02.23 0 −6.33151483ð7� 3Þ × 10−3 1.1 × 10−13 0
2 −2.0993ð2� 3Þ × 10−7 1.5 × 10−13 −7.3ð1� 2Þ × 10−8

4 −ð3� 3Þ × 10−12 8.9 × 10−14 −ð0.1� 1.2Þ × 10−10

e05.12 0 −1.177592ð6� 9Þ × 10−2 1.1 × 10−9 0
2 2.0ð8� 1Þ × 10−6 1.6 × 10−10 ð1� 3Þ × 10−6

4 −ð0.1� 3.0Þ × 10−8 7.8 × 10−10 −
e05.23 0 −5.059826ð2� 3Þ × 10−3 1.0 × 10−10 0

2 −2.470ð7� 2Þ × 10−6 1.6 × 10−10 −1.ð0� 2Þ × 10−6

4 −ð3� 2Þ × 10−10 2.9 × 10−11 −ð0.4� 2.4Þ × 10−7
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captured by our uncertainty estimates and therefore can
largely be attributed to the truncation of the SSF mode-sum.
On the other hand, for higher eccentricities, our uncertainty
estimates do not capture the poor convergence at higher
l-modes and thus are most likely due to the large cancella-
tions in the extended homogeneous solutions, as discussed
in Sec. III A. Nonetheless, in the absence of these errors, the
conservative coefficients converge as expected.
Finally, we produce one last validation test for our

conservative data using the conservative averages
hδ _Eicons and hδ _Lzicons. Based on the flux-balance laws
in (104), the secular evolution of the energy and angular
momentum should be driven by purely dissipative pertur-
bations. Therefore, hδ _Eicons and hδ _Lzicons must vanish for
all values of qθ0. We find that h _Eicons ¼ h _Lzicons ¼ 0
within the estimated uncertainties of our calculations

for all of the resonances listed in Table I. As an example,
in Fig. 4 we plot hδ _Eidiss and hδ _Eicons, along with their
estimated uncertainties, for the e02.12 resonance.
While our code produces nonzero values for hδ _Eicons,
these values are always orders of magnitude smaller than
the dissipative average hδ _Eidiss. More importantly, they are
also smaller than the estimated uncertainty in hδ _Eicons
and, consequently, consistent with zero. We observe
similar behavior in hδ _Lzicons and across all of the orbits
in Table I.

C. Conservative contributions to h _Qi
In Table III we report the values of Im½F̃Q;cons

k � for the
resonances in Table I. (Recall that F̃Q;cons

k is purely
imaginary.) We find nonzero values of Im½F̃Q;cons

k � for

FIG. 2. The l-mode convergence of the Fourier coefficients that describe h _Qicons for the e02.23 orbit in Table I. The red circles
represent jF̃Q;consþS−A

k;l j, which decays like l0; the blue triangles represent jF̃Q;consþS−A
k;l − F̃Q;B

k;l j, which decays like l−2; and the orange

diamonds represent jF̃Q;consþS−A
k;l − F̃Q;B

k;l − F̃Q;D
k;l =ð2l − 1Þ=ð2lþ 3Þj, which decays like l−4. Because the odd k-modes vanish, we only

plot the even modes k ¼ ð2; 4; 6Þ. The error bars represent the estimated uncertainty in each coefficient.

FIG. 3. Similar to Fig. 2, the l-mode convergence of the Fourier coefficients that describe h _Qicons as one includes more regularization
parameters, but this time for the e05.23 orbit in Table I.
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the e02.12, e02.23, e05.23 resonances. On the other hand,
all of the conservative coefficients of the e05.12 resonance
are consistent with zero due to the large numerical errors in
our calculation of the SSF at higher eccentricities. We
observe that jF̃Q;cons

2 j is always comparable in magnitude to
jF̃Q;diss

2 j, with the coefficients differing roughly by a factor
of two across all of the resonances. Furthermore,

Im½F̃Q;cons
k � and F̃Q;diss

2 differ in sign for the 1∶2

resonances, but share the same sign for the 2∶3 resonances.
For both hδ _Qidiss and hδ _Qicons, increasing the eccentricity
increases the magnitude of the coefficients, a behavior that
mirrors the gravitational case [17]. Decreasing the semi-
latus rectum p of the resonances also produces larger
coefficients, but the k ¼ 2 mode actually makes a larger
relative contribution to h _Qi in the 2∶3 resonances when
compared to the 1∶2 resonances. In other words, while

FIG. 4. Residual variations hδ _Eidiss (solid black line) and hδ _Eicons (red dashed line) as functions of the initial resonant phase qθ0 for the
e02.12 resonance in Table I. The shaded (gray) region estimates the uncertainty in hδ _Eicons. The plot on the left shows both hδ _Eidiss and
hδ _Eicons, while the plot on the right only depicts hδ _Eicons and its region of uncertainty.

FIG. 5. Residual variations hδ _Qidiss (solid black line) and hδ _Qicons (red dashed line) as functions of the initial resonant phase qθ0 for
the resonances in Table I. The shaded (gray) region estimates the uncertainty in hδ _Qicons.

ADIABATIC EVOLUTION DUE TO THE CONSERVATIVE … PHYS. REV. D 106, 064042 (2022)

064042-17



jF̃Q;cons
2 j þ jF̃Q;diss

2 j is greater for the 1∶2 resonances, the
ratio ðjF̃Q;cons

2 j þ jF̃Q;diss
2 jÞ=jF̃Q;diss

0 j is greater for the 2∶3
resonances.
In Fig. 5 we use our coefficients to evaluate and plot

hδ _Qidiss (solid black lines) and hδ _Qicons (dashed red lines)
as functions of qθ0, along with the estimated uncertainty in
hδ _Qicons (gray shaded region). Again, this demonstrates
that hδ _Qicons is generally nonvanishing for all but the
e05.12 resonance. Furthermore, comparing these plots with
those of previous investigations of the SSF during reso-
nances [29], we see a drastic improvement in our uncer-
tainty estimate.10 In fact, the uncertainties in hδ _Qicons for
the low eccentricity resonances are so small that the regions
of uncertainty (the gray shaded regions) are smaller than the
dashed red line plotting hδ _Qicons. Even if our error
estimates were off by an order of magnitude, we would
still observe nonvanishing values of hδ _Qicons, clearly

demonstrating that so-called “conservative” scalar pertur-
bations do not necessarily conserve the integrability of our
perturbed system, but contribute to the leading-order
secular evolution of the scalar charge.
Finally, we consider the relative error that is introduced

to h _Qi if we neglect the impact of qθ0 on the secular
evolution,

Δres ¼
����1 − hh _Qii0

h _Qi

���� ¼
���� hδ _Qidiss þ hδ _Qicons

h _Qi

����; ð109Þ

and the relative error due to neglecting potential contribu-
tions from conservative perturbations,

Δcons ¼
����1 − hh _Qii0 þ hδ _Qidiss

h _Qi

���� ¼
���� hδ _Qicons

h _Qi

����: ð110Þ

In Fig. 6 we plot Δres (solid black lines) and Δcons (red
dashed lines) for all of the resonances listed in Table I. The
gray shaded regions reflect the range of potential errors one
may have due to the estimated uncertainty in h _Qicons. The
quantity Δres effectively estimates the post-1=2 adiabatic
error that the resonance introduces to the orbital phase of

FIG. 6. Relative errors in h _Qi if we neglect hδ _Qi (solid black lines) or if we neglect hδ _Qicons. These relative errors, denoted byΔres and
Δcons, are defined in (109) and (110), respectively. The shaded (gray) region gives the range of errors that are consistent withΔcons due to
the estimated uncertainty in hδ _Qicons.

10The conservative variations reported in this paper are
opposite in sign to those plotted in our previous paper [29].
We believe this is due to a plotting mistake in our previous paper,
where we mistakenly set qθ0 → −qθ0.
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the inspiraling scalar charge. Therefore, we see that
neglecting the conservative perturbations induces an error
that is equal in magnitude to the standard post-1=2
adiabatic error.

V. CONCLUSION

In this work we calculated the averaged time rate of
change of the Carter constant, h _Qi, due to the SSF for a
scalar charge following several different rθ-resonant geo-
desics. To perform these calculations, we built a new code
in C++ that is several orders of magnitude faster than the old
Mathematica code used in previous investigations of the
SSF. This code makes use of several new algorithms,
including a module that numerically integrates the
Teukolsky equation using a combination of MST and
confluent Heun expansions to populate boundary data,
the creation of a window function that enables the appli-
cation of new analytically known regularization parame-
ters, and a new regularization scheme that uses mode-sum
regularization to directly regularize the Fourier coefficients
of our secular averages, h _Ei, h _Lzi, and h _Qi. We found that
our results are consistent with previous investigations of the
SSF and satisfy known conservation and balance laws, thus
validating our new code.
Using our results, we demonstrated that during these

resonances the secular evolution of the Carter constant due
to purely conservative perturbations, h _Qicons, does not
vanish, but its value varies with the initial phase of the
resonance, qθ0, as predicted by [24,26]. This is the first
conclusive numerical evidence that during rθ resonances
motion in Kerr spacetime is no longer integrable under
conservative scalar perturbations [27]. This is in contrast to
nonresonant orbits, where h _Qicons vanishes exactly, and the
perturbed conservative system remains integrable.
Additionally, we find that h _Qicons is comparable in

magnitude to hδ _Qidiss, the residual variation in the secular
evolution of Q under purely dissipative perturbations.
Essentially, ignoring the conservative perturbations at
leading order will introduce a post-1=2 adiabatic error to
the orbital phase of the inspiraling scalar charge, and this
error appears to be equal in magnitude to the error
introduced by ignoring resonances altogether. Therefore,
it is vital that these conservative contributions are computed
accurately, since any errors introduced to h _Qicons will
accumulate over the resonance and the rest of the inspiral.
This will be a challenge for highly eccentric orbits, which
are susceptible to large numerical errors that arise from
catastrophic cancellations in the self-force mode sum, just
as we saw for the e05.12 resonance studied in this work.
Frequency-domain effective source regularization or hyper-
boloidal compactification may be able to ameliorate these
issues, but these remain topics for future work.
Furthermore, it remains to be seen if h _Qicons will also

vanish when driven by purely gravitational perturbations.

Many of the methods and code that were designed for this
work can be generalized to the gravitational case.
Therefore, moving forward we will compute h _Qi due to
the GSF for a point mass on a resonant geodesic. If,
surprisingly, h _Qicons does vanish in the gravitational case,
this may hint at some additional unknown symmetries that
are not captured by our scalar perturbation model.
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APPENDIX A: WINDOW FUNCTION

We aim to find a suitable window function fðcos θÞ that
allows us to easily recast Fret;l

θ� in (68) onto a basis of
spherical harmonics [i.e., (77)] without changing the value
of the self-force along the worldline and without altering
our mode-sum regularization procedure.
First we examine how applying an arbitrary window

function will alter the regularization parameters in (63).
These regularization parameters are derived from the
multipoles of the singular SSF contribution, which are
defined by

FS;l
α ðt; rÞ ¼

Xl

m¼−l

Z
4π

0

dΩFS
αðt; r; θ;ϕÞȲlmðθ;ϕÞ; ðA1Þ

where dΩ ¼ d cos θdϕ and an overbar denotes complex
conjugation. As shown in [50,63,64], FS

α can be rewritten as
an expansion away from the worldline,

FS
αðt; r; θ;ϕÞ ¼

X∞
n¼1

Bð3n−2Þ
α ρ−2n−1ϵn−3; ðA2Þ

where ρ2 ¼ ðĝαβûαΔxβÞ2 þ ĝαβΔxαΔxβ; a hat denotes a
quantity that is evaluated along the worldline xαp;
Δxα ¼ xα − xαp; and the expansion terms have the form

BðkÞ
α ¼ ba1a2…akΔx

a1Δxa2…Δxak , where ba1a2…ak are coef-
ficients that do not depend on t, r, θ, or ϕ. The variable
ϵ ∝ Δx is a bookkeeping variable for tracking the singular
“order” of each term.
To construct the regularization parameters, one inserts

this expansion into (A1) and takes the limit as xα → xαp,
leading to the regularization quantities,
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F½−2�
α ¼ ϵ−2 lim

Δr→0�

Xl

m¼−l

Z
dΩȲlm

Bð1Þ
α

ρ3
;

F½−1�
α ¼ ϵ−1

Xl

m¼−l

Z
dΩȲlm

�
Bð4Þ
α

ρ5

�
Δr¼0

;

F½−2nþ1�
α ¼ ϵð2n−1Þ

Xl

m¼−l

Z
dΩȲlm

�
Bð6nþ4Þ
α

ρ4nþ5

�
Δr¼0

: ðA3Þ

After evaluating these integrals, the regularization para-
meters are then given by

F½−2�
α ¼ 1

2
A�
α ð2lþ 1Þ; F½−1�

α ¼ B�
α ;

F½−2nþ1�
α ¼ Dð2nÞ

α

�Yn
k¼1

ð2l − 1 − 2kÞð2lþ 1þ 2kÞ
�−1

:

Now consider the effect of multiplying the SSF by some
window function fðcos θÞ. Then, to preserve our regulari-
zation scheme, our regularization parameters must be
calculated by similarly weighting the singular SSF con-
tribution FS

αðt; r; θ;ϕÞ by this window function, leading to
the new parameters

F̃½−2�
α ¼ ϵ−2 lim

Δr→0�

Xl

m¼−l

Z
dΩȲlm

fBð1Þ
α

ρ3
;

F̃½−1�
α ¼ ϵ−1

Xl

m¼−l

Z
dΩȲlm

�
fBð4Þ

α

ρ5

�
Δr¼0

;

F̃½−2nþ1�
α ¼ ϵð2n−1Þ

Xl

m¼−l

Z
dΩȲlm

�
fBð6nþ4Þ

α

ρ4nþ5

�
Δr¼0

; ðA4Þ

If we expand our window function fðcos θÞ around the
worldline, then we have fðz ¼ cos θÞ ¼ f̂ þ ð∂zf̂Þ
ðz − zpÞϵþ 1

2
ð∂2z f̂Þðz − zpÞ2ϵ2 þOðϵ3Þ. Inserting this

expansion into the integrals above, any terms OðϵÞ or
greater will vanish as we approach the worldline.
Therefore, if f̂ ¼ 1, ∂zf̂ ¼ 0, ∂2z f̂ ¼ 0, then we have that
Ã�
α ¼ A�

α þOðϵÞ and B̃�
α ¼ B�

α þOðϵÞ.
However, if we want to make use of the higher-order

regularization parameter Dð2Þ
θ (assuming it is known), then

we must choose a window function that satisfies the four
conditions f̂ ¼ 1 and ∂zf̂ ¼ 0, ∂2z f̂ ¼ 0, and ∂

3
z f̂ ¼ 0. One

particular window function that satisfies these conditions is

fðθ; θpÞ ¼
X3
k¼0

αkðθpÞ cosk θ sin θ; ðA5Þ

where

α0ðθpÞ ¼
2 − 7 cos2 θp þ 8 cos4 θpð1 − cos2 θpÞ

2 sin7 θp
; ðA6Þ

α1ðθpÞ ¼
3 cos3 θpð1þ 4 cos2 θpÞ

2 sin7 θp
; ðA7Þ

α2ðθpÞ ¼
1 − 8 cos2 θpð1þ cos2 θpÞ

2 sin7 θp
; ðA8Þ

α3ðθpÞ ¼
cos θpð3þ 2 cos2 θpÞ

2 sin7 θp
: ðA9Þ

By applying this window function to Fret;l
θ� , we can

reexpand the derivatives of spherical harmonics in terms
of spherical harmonics using the following relations,

sin θ∂θYlm ¼ −ðlþ 1ÞClmYl−1;m þ lClþ1;mYlþ1;m;

cos θYlm ¼ ClmYl−1;m þ Clþ1;mYlþ1;m; ðA10Þ

where

Clm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 −m2

ð2lþ 1Þð2l − 1Þ

s
: ðA11Þ

Combining these relations, we find that

cosk θ sin θ∂θYlm ¼
Xkþ1

n¼−k−1
ζðn;kÞlm Ylþn;m: ðA12Þ

where

ζ̃ðn;kÞlm ¼ ζ̃ðn−1;k−1ÞClþn;m þ ζ̃ðnþ1;k−1ÞClþnþ1;m; ðA13Þ

with (initial) conditions

ζ̃ð−1;0Þlm ¼ −ðlþ 1ÞClm; ζ̃ð0;0Þlm ¼ 0;

ζ̃ðþ1;0Þ
lm ¼ lClþ1;m;

and the requirement that ζ̃ðn;kÞlm vanishes if jnj > kþ 1.
With this window function, we get a finite coupling

between the derivative of the spherical harmonics and the
spherical harmonics themselves

fðθ; θpÞ∂θYlmðθ;ϕÞ ¼
X4
n¼−4

βðnÞlm ðθpÞYlþn;mðθ;ϕÞ; ðA14Þ

where

βðnÞlm ðθpÞ ¼
X3
k¼0

αkðθpÞζ̃ðn;kÞlm : ðA15Þ

ZACHARY NASIPAK PHYS. REV. D 106, 064042 (2022)

064042-20



Making use of this expansion, our windowed self-force
quantity F̃ret;l

θ� ¼ fFret;l
θ� , when expressed on a basis of

spherical harmonics, takes the form

F̃ret;l
θ� ¼

Xl

m¼−l

�X4
n¼−4

βð−nÞlþn;mψ
�
lþn;m

�
Ylm; ðA16Þ

which is amenable to mode-sum regularization.

APPENDIX B: DESCRIPTION OF CPP MODULES

1. Geodesic module

The geodesic module performs the following numerical
routines:
(1) Given the orbital parameters ða; p; e; xÞ and sample

number Ngeo ¼ 2ngeo, where ngeo ∈ Zþ, we use
spectral integration methods [33,34] to calculate
the orbital constants ðE;Lz;QÞ, the Mino time
frequencies ϒα, and the fiducial geodesic functions
Δx̂ ¼ fΔt̂ðrÞ;Δt̂ðθÞ;Δr̂ðrÞ;Δθ̂ðθÞ;Δϕ̂ðrÞ;Δϕ̂ðθÞg defi-
ned in Sec. II A.

(2) We then sample our functions at Ngeo evenly spaced
points on the intervals qr ∈ ½0; 2πÞ and qθ ∈ ½0; 2πÞ,
e.g.,

Δr̂ðrÞjr
¼ Δr̂ðrÞðqr;jrÞ; qr;jr ¼

2πjr
Ngeo

; ðB1Þ

Δθ̂ðθÞjθ
¼ Δθ̂ðθÞðqθ;jθÞ; qθ;jθ ¼

2πjθ
Ngeo

; ðB2Þ

where jr=θ ¼ 0; 1;…; Ngeo − 1.
(3) Finally, we output the discretely sampled geodesic

functions, which we denote as Δx̂j ¼ fΔt̂ðrÞjr
;Δt̂ðθÞjθ

;

Δr̂ðrÞjr
;Δθ̂ðθÞjθ

;Δϕ̂ðrÞ
jr
;Δϕ̂ðθÞ

jθ
g, along with ðE;Lz;QÞ

and ϒα.

2. SSF module

Given output from the geodesic module, the SSF module
constructs the unregularized SSF modes F̂ret;l

α� :
(1) As initial input, the user must specify a maximum

spherical multipole mode l ¼ lmax and a sample
number NSSF ¼ 2nSSF where nSSF ∈ Zþ ≤ ngeo. The
module then generates F̂ret;lm

α� for −lmax ≤ m ≤ lmax.
The coupling between the spherical and spheroidal
harmonics makes it much more efficient to pick a
value of m and calculate several l-modes at once,
rather than to calculate modes on an individual
ðl; mÞ-basis. Typically we set lmax ¼ 25 and
nSSF ¼ 8. We also parallelize this part of the
calculation, distributing the m-modes across sepa-
rate cores.

(2) Given a specific value of m, the module generates
the modes F̂ret;lm

α� for jmj ≤ l ≤ lmax using (65)–(67)
and (77). These modes are evaluated on a two-
dimensional NSSF × NSSF grid spanned by qr ∈
½0; 2πÞ and qθ ∈ ½0; 2πÞ. As a result, the code out-
puts discretely sampled modes

F̂ret;lm
α�;jrjθ

¼ F̂ret;lm
α� ðqr;jr ; qθ;jθÞ; ðB3Þ

where qr;jr and qθ;jθ are given by (B1) and (B2) but
with Ngeo replaced by NSSF.

(3) We then construct the modes F̂ret;lm
α� for jmj ≤ l ≤

lmax from the extended homogeneous function (and
its derivatives) ψ�

lm, ∂tψ
�
lm, ∂rψ

�
lm via (56). This

requires a three-fold summation of the harmonic
functions ψ�

ljmkn and ∂rψ
�
ljmkn [see (57)] over the

mode numbers j, k, and n. We denote this summa-
tion by

F̂ret;lm
α�;jrjθ

¼
X∞
k¼−∞

X∞
n¼−∞

X∞
j¼jmj

F̂ret;ljmkn
α�;jrjθ

; ðB4Þ

where the harmonics F̂ret;ljmkn
α�;jrjθ

are computed via the
harmonic module in Appendix B 3.

(4) Beginning with the outermost sum in (B4), given the
values lmax and m, we compute

F̂ret;lm
α�;jrjθ

≈
Xkinit
k¼k0

F̂ret;lmk
α�;jrjθ

þ
Xkmax

k¼kinitþ1

F̂ret;lmk
α�;jrjθ

þ
Xk0−1
k¼kmin

F̂ret;lmk
α�;jrjθ

; ðB5Þ

for all values jmj ≤ l ≤ lmax. To execute this sum we
first set k0 ¼ −m − 4 and kinit ¼ −mþ 4. Since the
ðl; m; kÞ-modes tend to peak near k ¼ −m [65],
initially summing over this range tends to capture
the most dominant modes before we start testing for
convergence of the sum.
We then continue the sum for k > kinit and k < k0.

The sums are truncated based on the two conver-
gence criteria,

(a)

���� F̂ret;lmk
α�;jrjθ

B̂α;jrjθ

���� < ϵtol and jF̂ret;lmk
α�;jrjθ

j < jF̂ret;lm;kþΔk
α�;jrjθ

j,

(b) jF̂ret;lmk
α�;jrjθ

j ≤ ϵDBL,

where Δk ¼ 1 when k < k0 and Δk ¼ −1 when k > kinit,
ϵDBL refers to the precision to which doubles are repre-
sented by our compiler, and B̂α;jrjθ denotes the regulariza-
tion parameter Bα [see (63)] evaluated along the fiducial
geodesic at the discrete points ðqr;jr ; qθ;jθÞ. Furthermore, in
this work we set ϵtol ¼ 10−10. We truncate the sums when
all of the modes k∈ ½kmax−5;kmax� and k ∈ ½kmin; kmin þ 5�
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satisfy at least one of the convergence criteria set above for
all l, jr, and jθ.
We require six k-modes to satisfy the convergence

criteria before truncating the sum. Note that F̂ret;ljmkn
α�;jrjθ

vanishes when lþmþ k ¼ odd for most self-force com-
ponents. In this case, only half of the modes are useful for
testing convergence. Consequently, even though six modes
must satisfy the convergence criteria, most of the time only
three of those six modes are nonvanishing.
Additionally, we normalize our results by the coefficient

B̂α;jrjθ when testing for convergence, because this is the last
divergent piece of the singular self-force contribution that
we must subtract from our harmonic modes.
Furthermore, for larger eccentricity orbits, the mode sum

is prone to catastrophic cancellation. When this occurs,
precision loss can prevent the convergence criteria from
being met for a sufficient number of neighboring k-modes.
To prevent the sum from never truncating in this scenario,
we set the hard limits kmin ≥ k0 − kcutoff and kmax ≤ kinit þ
kcutoff with kcutoff ¼ lmax þ 50.

(5) Given lmax, m, and k, we compute

F̂ret;lmk
α�;jrjθ

≈
Xninit
n¼n0

F̂ret;lmkn
α�;jrjθ

þ
Xnmax

n¼ninitþ1

F̂ret;lmkn
α�;jrjθ

þ
Xn0−1

n¼nmin½ω�

F̂ret;lmkn
α�;jrjθ

; ðB6Þ

for all values jmj ≤ l ≤ lmax. The sums are con-
structed so that we only sum over positive frequen-
cies. Negative frequencies are determined from the
symmetries of the mode functions and, therefore, are
incorporated into the values of F̂ret;lmkn

α�;jrjθ
via the

harmonic module (see Appendix B 3). Thus,
nmin½ω� is given by the requirement that ωmknmin½ω� ≥
0 and ωmk;nmin½ω�−1 < 0. The ðl; m; k; nÞ-modes tend
to peak in magnitude near lower values of n and
ωmkn. Therefore, if nmin½ω� ≥ −8, then we set
n0 ¼ nmin½ω� þ 1, else n0 ¼ −8. We then set
ninit ¼ n0 þ 16. Based on trial and error, we find
that these choices of n0 and ninit tend to capture the
modes with the largest magnitudes in our initial sum.
We then continue the sum for n > ninit and

n < n0. The n-mode summation is truncated using
the same convergence criteria as the k-mode sum-
mation [see Step (4)], only we replace F̂ret;lmk

α�;jrjθ
with

F̂ret;lmkn
α�;jrjθ

and Δk with Δn. We truncate the sums
when all of the modes n ∈ ½nmax − 4; nmax� and n ∈
½nmin; nmin þ 4� satisfy either (4a) or (4b) for all l, jr,
and jθ. Like the k-mode sum, we also set the hard
limits nmin ≥ nmin½ω� and nmax ≤ ninit þ nthreshold with
nthreshold ¼ 120ð1 − e2Þ−3=2 þ jkj, where e is the

eccentricity of the orbit. The formula for nthreshold
was determined through numerical experimentation.

(6) Given lmax, m, k, and n, we compute

F̂ret;lmkn
α�;jrjθ

≈
Xjmax

j¼jmj
F̂ret;ljmkn
α�;jrjθ

; ðB7Þ

for all values jmj ≤ l ≤ lmax, where jmax is set by the
alternate convergence criteria

���� F̂
ret;ljmaxmkn
α�;jrjθ

F̂ret;llmkn
α�;jrjθ

���� < ϵcoupling;

which must be satisfied for all l, jr, and jθ. Addi-
tionally, we require lþ jmax ¼ even, since all lþ
jmax ¼ odd modes vanish. In this work we set
ϵcoupling ¼ 10−18. The convergence of these modes
is fairly uniform, leading to the simplified conver-
gence condition.

(7) Given lmax, j, m, k, and n, we compute F̂ret;ljmkn
α�;jrjθ

for
all values jmj ≤ l ≤ lmax using the harmonic module
described in Appendix B 3.

(8) Once all F̂ret;lm
α� are calculated, we sum over the

m-modes,

F̂ret;l
α�;jrjθ

¼
Xl

m¼−l
F̂ret;lm
α�;jrjθ

; ðB8Þ

giving us discretely sampled unregularized SSF
l-modes, F̂ret;l

α�;jrjθ
, in the range 0 ≤ l ≤ lmax.

3. Harmonic module

The harmonic module produces the individual self-force
harmonics

F̂ret;ljmkn
t� ¼ −iωmknψ

�
ljmknðrÞYlmðθ;ϕÞe−iωmknt; ðB9Þ

F̂ret;ljmkn
r� ¼ ∂rψ

�
ljmknðrÞYlmðθ;ϕÞe−iωmknt; ðB10Þ

F̂ret;ljmkn
θ� ¼

X4
n¼−4

βð−nÞlþn;mðθ̂pÞψ�
lþn;jmknðrÞYlmðθ;ϕÞe−iωmknt;

ðB11Þ

F̂ret;ljmkn
ϕ� ¼ imψ�

ljmknðrÞYlmðθ;ϕÞe−iωmknt: ðB12Þ

The harmonics are then sampled along a fiducial resonant
geodesic by taking ðt; r; θ;ϕÞ → ðt̂p; r̂p; θ̂p; ϕ̂pÞ. When
these modes are evaluated along the geodesic worldline,
the linear terms in t̂p and ϕ̂p cancel,
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mϕ̂p − ωmknt̂p ¼ mΔϕ̂ðrÞðqrÞ þmΔϕ̂ðθÞðqθÞ
− ωmknΔt̂ðrÞðqrÞ − nqr

− ωmknΔt̂ðθÞðqθÞ − kqθ; ðB13Þ

leaving us with functions that depend on Mino time
through the periodic angle variables, qr or qθ.
Therefore, we construct F̂ret;ljmkn

α� as follows:
(1) Given geodesic data and the mode numbers

ðl; j;m; k; nÞ, we use the spheroidal harmonic mo-
dule in Appendix B 4 to calculate the coefficients
bljmkn; the spheroidal eigenvalue λjmkn; and the
harmonic Sjmkn, which is evaluated at the discrete

polar positions Δθ̂ðθÞjθ
.

(2) Next we calculate the homogeneous radial Teukol-
sky solutions and their derivatives, R�

jmkn and
∂rR�

jmkn, using the radial Teukolsky module in
Appendix B 5. The solutions are evaluated at the

discrete radial positions Δr̂ðrÞjr
.

(3) We then supply these discretely sampled functions to
our source integration module in Appendix B 6,
which calculates the normalization coefficients (or
Teukolsky amplitudes) Ĉ�

jmkn.
(4) The code then evaluates the coupling terms βðnÞlm and

the spherical harmonics Ylm at the discrete polar

positions Δθ̂ðθÞjθ
.

(5) Given the coefficients Ĉ�
jmkn, b

l
jmkn, and βðnÞlm , along

with the discrete samplings of R�
jmkn, ∂rR

�
jmkn, and

Ylm, we construct the (sampled) harmonics F̂ret;ljmkn
α�;jrjθ

using (B9)–(B12).

4. Spheroidal harmonic module

The spheroidal harmonic module calculates the coupling
coefficients bljmkn and the spheroidal eigenvalue λjmkn, and
then evaluates the scalar spheroidal harmonics Sjmkn with
spheroidicity γmkn ¼ aωmkn at the points θj via the follow-
ing algorithm
(1) Given harmonic numbers j and m and the spheroi-

dicity γmkn, we first solve for the coupling coef-
ficients bljmkn and spheroidal eigenvalues λjmkn via
an eigenvalue problem [39,40],

KN
mknb⃗

N
jmkn ¼ λ̃Njmknb⃗

N
jmkn; ðB14Þ

where KN
mkn is a known N × N matrix. As one

increases N, the eigenvalue converges to the value
of the spheroidal eigenvalue, i.e., λ̃Njmkn ≈ λjmkn.
Additionally, the components of eigenvectors

b⃗Njmkn ≐ ðb̃N;jmj
jmkn ; b̃

N;jmjþ1
jmkn ;…; b̃N;jmjþN−1

jmkn Þ converge
to the values of the spherical-spheroidal coupl-
ing coefficients for l ≤ lcut, i.e., b̃N;l≤lcut

jmkn ≈ bl≤lcutjmkn.

Therefore, we set the cutoff mode lcut to be the
minimum value of l > lmax such that

jb̃N;lcut
jmkn j < ϵDBL: ðB15Þ

(2) The module begins with an initial value
N ¼ lmax þ 30, and then increases N in increments
of 10 until we meet the convergence criteria

����1 − b̃N−10;l
jmkn

b̃N;l
jmkn

���� < ϵeigen; ðB16Þ

for all l ≤ lcutoff . In this work we set ϵeigen ¼ 10−13.
Eigenvalues and eigenvectors are calculated using

the GSL eigensystems library [57].
(3) Given the coefficients bljmkn, we then construct Sjmkn

via the spherical harmonic expansion in (42), which
is evaluated at the presampled points θj. We calcu-
late the spherical harmonics using the GSL special
functions library.

5. Radial Teukolsky module

The radial Teukolsky module calculates the homo-
geneous solutions R�

jmkn and ∂rR�
jmkn using the hyper-

boloidal transformation proposed by Zenginoǧlu [66],

Ψ�
jmknðrÞ ¼ re−iðmφ�ωmknr�ÞR�

jmknðrÞ; ðB17Þ

where φðrÞ ¼ a
2Mκ ln

r−rþ
r−r−

and κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2=M2

p
. This trans-

formation removes the leading-order oscillatory behavior
of the homogeneous solutions, thereby improving the speed
of our numerical solver. Therefore, the module first gen-
erates initial data for Ψ�

jmkn and ∂rΨ�
jmkn at the boundary

points r�init and then numerically integrate the transformed
Teukolsky equation (C1) given in Appendix C.
Hyperboloidal solutions are stored at user-specified radial
points, which are then transformed back to the radial
Teukolsky solutions.
We use a combination of methods to generate the initial

data. The first method we refer to as the series algorithm.
For the series algorithm, we first recast the Teukolsky
equation into the form of the confluent Heun equation (D1).
We then use the Frobenius method to expand the confluent
Heun solution associated with Ψ−

jmkn around the regular
singular point at r ¼ rþ [see (D5)], and we perform an
asymptotic expansion about r ¼ ∞ for the confluent Heun
solution associated with Ψþ

jmkn [see (D10)]. The trans-
formation between the confluent Heun and radial
Teukolsky solutions, along with the series expansions
about the singular points are provided in Appendix D.
The advantage of transforming to (D1) is that the coef-
ficients of the confluent Heun expansions satisfy simple
three-term recurrence relations, making it straightforward
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to compute the expansions to very high order. In some
cases, however, the series algorithm will suffer catastrophic
cancellation when evaluatingΨ−

jmkn away from the horizon,
while the asymptotic series may not decay rapidly enough
to sufficiently approximate Ψþ

jmkn at finite radii.
Therefore, we also make use of a second method, which

we refer to as the MST algorithm. For the MST algorithm,
we generate initial solutions using the semi-analytic func-
tion expansions proposed by Mano-Suzuki-Takasugi
(MST) [59,60] and expanded upon by Fujita and
Tagoshi [67]. In this MST method, one expresses the
homogeneous Teukolsky solutions as series of hypergeo-
metric functions. For these series to converge one must first
solve for the eigenvalue ν—known as the renormalized
angular momentum—which then determines the coeffi-
cients of these series. Typically one solves for ν using
approximate low-frequency expansions [67], root-finding
methods [68], or monodromy techniques [69,70]. The MST
series solutions, along with these methods for computing ν,
are well-behaved for lower frequencies, but for large values
of j and ωmkn the MST method often suffers from
catastrophic cancellations.
Our old MMA code circumvented this issue by using

arbitrary numerical precision, but with CPP we are
restricted to the regions of parameter space that do not
experience this large precision loss. We implement the
MST expansions in CPP using the same methods as MMA,
which are described in Sec. III B of [34] and Sec. V. 3.2 in
[71]. However, to the best of our knowledge, there is no
open-source C++ library that computes hypergeometric
functions in the complex domain without using arbitrary
precision. Therefore, we designed our own special func-
tions library to implement the MST expansions in C++ and
we keep track of any precision lost during the MST
calculation to estimate potential errors in our MST sol-
utions due to catastrophic cancellation.
As a result, given the mode numbers j and m, frequency

ωmkn, spheroidal eigenvalue λjmkn, and an array of
N radial sample points ri where i ¼ 0; 1;…; N and
r0 < r1 < � � � < rN , we construct the homogeneous
Teukolsky solutions as follows:
(1) First we define the initial radial points r−init ¼

rþ þ 0.01M and rþinit ¼ 50M. If r−init > r0,
then r−init ¼ 0.9ðr0 − rþÞ, and if rþinit < rN , then
rþinit ¼ rN þ 20M.

(2) Next we construct the initial data for Ψ�
jmkn and

∂rΨ�
jmkn at the boundaries r�init. First we try to

calculate the initial data using the series algorithm.
If the series algorithm does not meet the conver-
gence criteria described in Appendix D when evalu-
ated at r�init and ωmknr�init ≤ 0.01, then we solve for
the initial values using the MST method. If the
estimated fractional error of an MST solution is

> 10−13 or ωmknr�init > 0.01, then we move our
initial radial point closer to the boundary, and repeat
our initial value calculations, beginning with the
series algorithm. For the (þ) solutions we double the
outer radial points, rþinit → 2rþinit, and for the (−)
solutions we half the distance to the horizon,
ðr−init − rþÞ → ðr−init − rþÞ=2. We iterate this process
until our initial value solutions converge.

(3) After we determine the initial values of Ψ�
jmkn and

∂rΨ�
jmkn, we solve (C1) using an explicit embedded

Runge-Kutta Prince-Dormand (8,9) method and an
adaptive stepper from the GSL ODE library. We
store solutions at the radial points r ¼ ri, and the
stored values of Ψ�

jmkn and ∂rΨ�
jmkn are finally

transformed back to the Teukolsky solutions R�
jmkn

and ∂rR�
jmkn by inverting (B17) and its derivative.

6. Source integration module

Given discrete samplings of Sjmkn and R�
jmkn, along with

the output from the geodesic module, we calculate the
normalization constants Ĉ�

jmkn using spectral source inte-
gration methods. The details of this procedure are discussed
in [33,34].
At large frequencies, these integrals become highly

oscillatory and experience large numerical cancellations.
This is not an issue when constructing the field outside the
source region, where our mode-sum over the homogeneous
solutions converges rapidly, and, therefore, we do not need
to evaluate these highly oscillatory integrals. However,
when extended into the source region, the homogeneous
solutions are less efficient at capturing the behavior of the
perturbing field, as noted by van de Meent and Shah [61].
In practice, this means that the further we extend our
homogeneous solutions, the more extended homogeneous
modes we need to include in our mode-sum to accurately
calculate the self-force. Therefore, for particularly eccentric
orbits of e ≃ 0.4, higher-frequency modes can make a
dominant contribution to our self-force calculation, and
these modes will also have large numerical errors due to the
catastrophic cancellations encountered when computing
Ĉ�
jmkn. If the maximum value encountered in our spectral

integral is more than 14 orders of magnitude greater than
the computed value of Ĉ�

jmkn, then we consider all precision

to be lost in our calculation and set Ĉ�
jmkn ¼ 0. This is one

of the dominant sources of numerical error in our self-force
calculations.

7. Secular evolution module

Given a background geodesic and a force fgenα acting on a
scalar charge following that geodesic, the secular evolution
module computes the resulting average rate of change of
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the scalar charge’s orbital energy, angular momentum, and
Carter constant due to fgenα . We denote the secular averages
as h _Eigen, h _Lzigen, and h _Qigen. They are found by replacing
μaμ with μaμgen ¼ ðgμν þ uμuνÞfgenν in (85)–(87). This
module works for any arbitrary force, provided that the
input data for fgenα are structured like the output data from
the SSF module and fgenα is real.
We compute h _Eigen, h _Lzigen, and h _Qigen using the

following numerical procedures:
(1) We start with two inputs: (1) worldline data from the

geodesic module and (2) force data fgenα;jrjθ
that is

sampled on an N × N grid in qr and qθ. With this
data we construct the integrands ÎgenE , ÎgenLz

, and ÎgenQ

using (86)–(87) but replacing aμ with aμgen.
(2) Next we evaluate (85) using spectral integration

methods [33]. Because the resonant averages depend
on qθ0, rather than returning a single number, our
spectral integrator returns a set of coefficients
fF̃ J

0 ; F̃
J
1 ;…; F̃ J

Ngen−1g. These coefficients are re-

lated to the averages via the discrete Fourier series

h _J igen ≈ q2

μ
Re

�
F̃ J

0 þ
XNgen−1

k¼1

F̃ J
k e

−ikqθ0

�
; ðB18Þ

where Re½X� is the real part of X and again we use J
to represent E, Lz, or Q. Details of the integration
can be found in Appendix E.

(3) To test the accuracy of (B18), we down-sample the
force data fgenα;jrjθ

to a N=2 × N=2 grid and repeat our
calculations. We then estimate the error in our
Fourier coefficients by taking the fractional differ-
ence between our original Fourier coefficients F̃ k

J ,
and those produced by down-sampling the in-
put data.

(4) We then output the coefficients F̃E
k , F̃

Lz
k , and F̃Q

k
and their estimated errors for 0 ≤ k ≤ Ngen − 1.
From this output, we can evaluate h _Eigen, h _Lzigen,
and h _Qigen for any initial phase qθ0 using (B18).

8. Regularization module

The first part of the regularization module computes the
SSF regularization parameters Aα, Bα, and Dð2Þ

α [see (63)]:
(1) Given data from the geodesic module and a sample

number NSSF, we evaluate Aα, Bα, and Dð2Þ
α on an

NSSF × NSSF grid spanned by qr and qθ. This results
in the discretely sampled parameters Aα;jrjθ , Bα;jrjθ ,

and Dð2Þ
α;jrjθ

. This sampling is analogous to the

construction of F̂ret;lm
α�;jrjθ

in (B3).
While we can regularize the SSF (or some quantity that
depends on the SSF) with only these three parameters, the
resulting mode-sum over l [see (62)] will only decay like
l−4. Consequently, truncating the sum at some lmax gives us

a truncation error that scales like l−3max. If we use values of
lmax ∼Oð20Þ, the standard mode-sum regularization will
only produce regular SSF data that is known to about two
digits of precision. However, we can reduce the error in our
regularized data by fitting for the higher-order regulariza-
tion parameters.
Therefore the second part of our regularization module

fits for the regular component HR of a formally divergent
self-force quantity H using the known higher-order struc-
ture of the singular component HS given in (63). We
perform this fit by modifying the procedure proposed by
van de Meent and Shah [61]. First we decompose H into a
series of spherical harmonic l-modes, Hl, from which we
define the finite, but unregularized quantity,

Hlcut ¼
Xlcut
l¼0

Hl ¼
Xlcut
l¼0

ðHR;l þHS;lÞ ðB19Þ

¼ HR
lcut

þHS
lcut
; ðB20Þ

where H ¼ Hlcut as lcut → ∞, while HR
lcut

and HS
lcut

refer to
the regular and singular pieces of Hlcut , respectively.
We then assume, based on the singular expansion in (63),

that HS
lcut

takes the form

HS
lcut

¼ 1

2
HAðlcut þ 1Þ2 þHBðlcut þ 1Þ

þ
Xlcut
l¼0

X∞
n¼1

Yn
k¼1

HDð2nÞ
α

ð2lþ 2kþ 1Þð2l − 2kþ 1Þ ; ðB21Þ

where HA, HB, and HDð2nÞ are the l-independent regulari-
zation parameters for the divergent quantity H.
Furthermore, we approximate that HR

lcut
≈HR for a suffi-

ciently large choice of lcut, since the regular multipole
contributions HR;l should decay exponentially with l. This
gives us the approximate model

Hlcut ≈HR þ 1

2
HAðlcut þ 1Þ2 þHBðlcut þ 1Þ

þ
Xlcut
l¼0

Xncut
n¼1

Yn
k¼1

HDð2nÞ
α

ð2lþ 2kþ 1Þð2l − 2kþ 1Þ : ðB22Þ

Using known values of Hlcut , we fit for the set of unknown
parameters fHR; HA;HB;…; HDð2ncutÞg, where we truncate
this set of free parameters at ncut. From our fits we estimate
HR. If any of the regularization parameters are known, then
we modify our model by moving the known parameters to
the left-hand side of (B22) and fitting for the remaining
unknowns.
Therefore, we estimate HR using the following fitting

procedure:
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(1) Given Hl in the range 0 ≤ l ≤ lmax and some set of
known regularization parameters fHA;HB;…;
HDð2n0Þg, we construct Hlcut for 12 ≤ lcut ≤ lmax.

(2) Next we define the tuning parameters lcut;min and
lcut;max, which select the values of Hlcut that are used
in our fit. As noted in [61], if we choose a value of
lcut that is too low, then the approximation in (B22)
becomes less accurate and will not produce a good
estimate of HR. On the other hand, if we choose a
value of lcut that is too high, then we may include
l-modes that are dominated by numerical error, and
this error will bias our fits. Because we do not know
a priori which values of lcut are too low or too high,
we allow the tuning parameters to vary in the ranges
12 ≤ lcut;min < lmax and lcut;min < lcut;max ≤ lmax.

(3) Given values for lcut;min, lcut;max, and ncut, we
perform a least squares fit of (B22) using the set
of known values fHlcut;min

; Hlcut;minþ1;…; Hlcut;max
g and

the set of known parameters fHA;HB;…; HDð2n0Þg.
This gives us a set of fit values for
fHR; HDð2n0þ2Þ;…; HDð2ncutÞg. We refer to this set

of fits as h̃1 ¼ fh̃R1 ; h̃Dð2n0þ2Þ
1 ;…; h̃Dð2ncutÞ

1 g.
(4) We repeat step 3 for all acceptable values of lcut;min,

lcut;max, and ncut;max (i.e., we require the number of
known parameters to be greater than the number of
free parameters), giving us a several different h̃1 sets.
Note that we restrict ncut to the range 3 ≤ ncut ≤ 6.

(5) We then repeat steps 3–4, but this time we leave the
highest-order known parameter HDð2n0Þ as an un-
known variable. This gives us fits for the set
fHR; HDð2n0Þ;…; HDð2ncutÞg, which we denote

as h̃2 ¼ fh̃R2 ; h̃Dð2n0Þ
2 ;…; h̃Dð2ncutÞ

2 g.
(6) Next, we take the ten sets of h̃1 that best fit the data

Hlcut and the ten sets of h̃2 that best minimize

jh̃Dð2n0Þ
2 −HDð2n0Þj. Combining these twenty sets,

we construct a set of twenty fits for HR (i.e., ten
values of h̃R1 and ten of h̃R2 ).

(7) Finally we produce two estimates for the uncertainty
in our fitted value of HR. First we estimate its
uncertainty σR by taking the median absolute
deviation of the combined set of h̃R1 and h̃R2 values.
Second, we estimate its uncertainty to be the
standard deviation of this same set. If the standard
deviation is greater than the median absolute
deviation, then we take this to be the final uncer-
tainty in HR, and the value of HR is given by the
mean of our combined set of h̃R1 and h̃R2 values. If the
median absolute deviation is greater than the stan-
dard deviation, then we take this to be the final
uncertainty in HR, and the value of HR is given by
the median of our combined set.

The above fitting procedure gives a simple estimate forHR,
but neglects how errors in the input dataHl may impact the

fitting procedure. A more sophisticated algorithm could
incorporate these errors, but we leave that for future work.
We find that our method gives consistent estimates even
when varying lmax or the number of known regularization
parameters. Therefore, the robustness of the current algo-
rithm is sufficient for this work.

APPENDIX C: HYPERBOLOIDAL
TRANSFORMATIONS OF THE RADIAL

TEUKOLSKY EQUATION

As mentioned in Appendix B 3, we make use of the
hyperboloidal transformation (B17) to put the radial
Teukolsky equation into a form that is more amenable
for numerical integration. The transformed homogeneous
equations then take the forms

�
d2

dr2
−G�

mknðrÞ
d
dr

−U�
jmknðrÞ

�
Ψ�

jmknðrÞ ¼ 0; ðC1Þ

where the potentials are given by

G�
mknðrÞ ¼

2½a2 þ rM − irðma� ðr2 þ a2ÞωmknÞ�
rΔ

;

U�
jmknðrÞ ¼

2iaðm� aωmknÞ
rΔ

þ λjmknr2 þ 2Mrþ 2a2

r2Δ

þ 2maωmknðr2 þ a2Þð1� 1Þ
Δ2

: ðC2Þ

APPENDIX D: CONFLUENT HEUN EQUATION
AND EXPANSIONS ABOUT ITS

SINGULAR POINTS

The confluent Heun equation takes the general form

d2w
dz2

þ
�
γCH
z

þ δCH
z − 1

þ εCH

�
dw
dz

þ αCHz − qCH
zðz − 1Þ w ¼ 0;

ðD1Þ

where αCH, γCH, δCH, εCH, and qCH are free parameters. It
has regular singularities at z ¼ 0 and z ¼ 1, and an
irregular singularity of Poincaré rank 1 at z ¼ ∞. This
matches the singular structure of the radial Teukolsky
equation (43). Therefore, we can reexpress (43) in terms
of (D1) via the following transformations,

ϵCHκðz − 1Þ ¼ ωðr − rþÞ; ðD2Þ

RðzÞ ¼ zaCHðz − 1ÞbCHe�iϵCHκzwðzÞ; ðD3Þ

where ϵCH ¼ 2Mω, κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
, χ ¼ a=M, aCH ¼ �iϵ−

and bCH ¼ �iϵ−, ϵ� ¼ ðϵCH � τCHÞ=2, and τCH ¼
ðϵCH −mχÞ=κ. Note that we have dropped the mode
subscripts, i.e., Rjmkn → R and ωmkn → ω, to simplify
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notation. The Teukolsky variables are then related to the
confluent Heun parameters via

γCH¼1þ2aCH;

δCH¼1þ2bCH;

εCH¼�2iϵCHκ;

αCH¼�2iϵCHκð1∓ iϵCHþaCHþbCHÞ;

qCH¼ λ−
1

2
ðϵ2CH−τ2CHÞþϵCHmχ−ϵ2CHð1−κÞ

−bCH−aCH−2aCHbCH� iϵCHκð1þ2aCHÞ; ðD4Þ

where λ is the spheroidal eigenvalue. For simplicity we take
bCH ¼ iϵ− and aCH ¼ −iϵ− from here on.
After recasting the Teukolsky equation in this confluent

Heun form, we use the Frobenius method to generate series
expansions of the confluent Heun solutions about z ¼ 1,
which corresponds to the regular singular point r ¼ rþ of
the Teukolsky equation. We then connect the confluent
Heun expansion to R−, giving

R−ðrÞ ¼ f−ðrÞ
X∞
j¼0

a−2;j

�
r − rþ
2Mκ

�
j
; ðD5Þ

where

f−ðrÞ ¼ B̃trans

�
r − r−
2Mκ

�
−iϵ−ðr − rþÞ−iϵþe−iωðr−rþÞ; ðD6Þ

and the series coefficients satisfy a three-term recurrence
relation,

A−
2;na

−
2;n−1 þ B−

2;na
−
2;n þ C−

2;na
−
2;nþ1 ¼ 0; ðD7Þ

with

A−
2;n ¼ αCH þ εCHðnþ λ2 − 1Þ;

B−
2;n ¼ n2 þ nðγCH þ δCH − εCH þ 2λ2 − 1Þ

þ λ2ðγCH þ δCH − ϵCH þ λ2 − 1Þ − qCH;

C−
2;n ¼ −ðnþ 1þ λ2Þðnþ γCH þ λ2Þ; ðD8Þ

and the monodromy eigenvalue λ2 ¼ 1 − γCH. Series coef-
ficients are generated recursively using the initial condi-
tions a−2;−1 ¼ 0 and a−2;0 ¼ 1. In this work we take the
amplitude in (D6) to be

B̃trans ¼ 2−iϵþκiϵ−eiϵþ ; ðD9Þ

so that (D5) matches the normalization of R−ðrÞ in our
MST series calculations.
Similarly, we generate asymptotic expansions of the

confluent Heun solutions about z ¼ ∞. Connecting these
series expansions to Rþ, we find that

RþðrÞ ∼ fþðrÞ
X∞
j¼0

aþ1;j

�
r − r−
2Mκ

�
−j
; ðD10Þ

where the prefactor is given by

fþðrÞ ¼ C̃trans

�
r − rþ
r − r−

�
iϵþðr − r−Þ−ð1−iϵCHÞeiωr; ðD11Þ

and the series coefficients satisfy the three-term recurrence
relation,

Aþ
1;na

þ
1;n−1 þ Bþ

1;na
þ
1;n þ Cþ

1;na
þ
1;nþ1 ¼ 0; ðD12Þ

where

Aþ
1;n ¼ −ðαCH þ εCHðn − 1ÞÞðαCH þ εCHðn − γCHÞÞ;

Bþ
1;n ¼ α2CH þ αCHεCHðð1 − βCH þ 2nÞ þ εCHÞ

þ ε2CHðnð1 − βCH þ εCH þ nÞ − qCHÞ;
Cþ
1;n ¼ −ðnþ 1Þε3CH; ðD13Þ

with aþ1;0 ¼ 1, aþ1;−1 ¼ 0, and βCH ¼ γCH þ δCH. In this
work we take the amplitude in (D11) to be

C̃trans ¼ 2iϵCH ; ðD14Þ

so that (D10) matches the normalization of RþðrÞ in our
MST series calculations.
We can connect (D5) and (D10) to the hyperboloidal

functionsΨ� and their derivatives via (B17), allowing us to
generate initial values for our numerical solvers. (D5)
converges for ðr − rþÞ=ð2MκÞ < 1, and therefore is suit-
able for generating initial values for the radial Teukolsky
solutions at the initial radial point r−init ≤ rþ þ 0.01M,
provided κ > 0.005 or χ2 < 0.999975. This condition is
met in this work. However, because the coefficients are
complex and can alternate sign, it is possible for (D5) to
experience catastrophic cancellation before converging to
some required precision goal. Therefore, when computing
initial data with this expansion, we track any potential
precision loss. If more than 4 digits of precision are lost
before the series converges to a precision <10−13, then we
consider the Frobenius expansion method to have failed.
On the other hand, (D10) does not formally converge,

just as we expect for an asymptotic series, with the
coefficients growing like aþ1;n ∼ naþ1;n−1=εCH as n → ∞.
However, for small values of ð2MκÞ=ðr − r−Þ the series
will initially decay. Therefore, when we truncate the sum at
some finite value of j, (D10) provides a sufficiently
accurate approximation of Rþ. We evaluate (D10) at rþinit ≥
50M and perform the sum until the last two terms meet the
convergence criteria,
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����
�Xj

k¼0

aþ1;k
aþ1;j

�
rþinit − r−
2Mκ

�−kþj
�����

−1

< ϵDBL: ðD15Þ

If this convergence criteria is not met before the series
begins to diverge, then we consider the asymptotic series
method to have failed.

APPENDIX E: SPECTRAL INTEGRATION OF
THE SECULAR AVERAGES

Consider some real-valued function J that depends on
the worldline of the scalar charge as it follows a resonant
geodesic. Then its evolution in Mino time λ can be
parametrized in terms of the angle variables qr ¼ ϒrλ
and qθ ¼ ϒθλ, e.g., J ðqr; qθÞ. Now we average J over one
resonant Mino period Λ via the integral,

hJ i ¼ 1

Λ

Z
Λ

0

J ðqr ¼ ϒrλ; qθ ¼ ϒθλþ qθ0Þdλ; ðE1Þ

where qθ0 sets the initial phase of the charge’s resonant
motion at λ ¼ 0.
To numerically evaluate (E1), first we take the two-

dimensional discrete Fourier transform (DFT) of J ,

f̃Jkn ¼
1

N2

XN−1

a¼0

XN−1

b¼0

J
�
2πb
N

;
2πa
N

�
e2πið

akþbn
N Þ; ðE2Þ

and then we approximate the integrand as a truncated
Fourier series

F½J � ¼ f̃J00 þ 2Re
XN=2

k¼1

XN=2

n¼1

f̃Jkne
−iðkqθþnqrÞ

þ 2Re
XN=2

k¼1

XN=2

n¼1

f̃Jk;N−ne
−iðkqθ−nqrÞ

þ 2Re
XN=2

k¼1

f̃Jk0e
−ikqθ þ 2Re

XN=2

n¼1

f̃J0ne
−inqr ; ðE3Þ

where Re½f� refers to the real part of f. In (E3) we have
taken advantage of the fact that, because J is real,

f̃Jkn ¼ f̃J−k;−n. For sufficiently large values of N, the series
representation F ½J � faithfully approximates J to machine
precision [33], i.e., ����1 − F½J �

J

����≲ ϵDBL: ðE4Þ

In general, we do not know the minimum value of N that
meets this criteria before we construct F½J �.
Finally, we evaluate (E1) by replacing J with

F½J �. Only the zero-frequency modes will contribute to
the integral. Because qr ¼ ϒr=βr ¼ ϒθ=βθ ¼ ϒ (see

Sec. II A), the integral reduces to a sum over the ðk; nÞ-
modes that satisfy βθk − βrn ¼ 0 with k > 0 and n > 0.
This gives a Fourier series representation of hJ i,

hJ i ≈ F̃ J
0 þ 2Re

XN0

k¼1

F̃ J
k e

−ikqθ0 ; ðE5Þ

where F̃ J
0 ¼ f̃J00,

F̃ J
k ¼ 1

ϒt
f̃Jk;N−βθk=βr ; N0 ¼ floor

�
βrN
2βθ

�
; ðE6Þ

and floor½X� refers to the largest integer that is less
than X.

APPENDIX F: FOURIER REPRESENTATION OF
RADIATIVE AVERAGES

Because the radiative averages h _J iH=∞
rad in (107) will

vary with respect to qθ0, we can express each average as a
Fourier series,

h _J iH=∞
rad ¼ F̃ J ;H=∞

0 þ 2Re
X∞
b¼1

F̃ J ;H=∞
b e−ibqθ0 ; ðF1Þ

where we have taken advantage of the fact that F̃ J ;H=∞
b ¼

F̃ J ;H=∞
−b since h _J iH=∞

rad is real-valued. The advantage of this
Fourier representation is that the sum in (F1) is rapidly
convergent. Thus, in a numerical calculation we can
truncate the series after summing over just the first few
terms. This means we only need to calculate the first few
coefficients (e.g., b ≲ 8) in order to accurately approximate
h _J iH=∞

rad for any value of qθ0. As an example, we outline an
efficient method for calculating F̃ J ;∞

b using the fiducial
normalization coefficients Ĉþ

jmkn, though these methods

generalize to F̃ J ;H
b as well.

Using (50) and (107), the coefficients take the form

F̃ J ;∞
b ¼ 1

4π

X
jmN

X
ðk;nÞN

X
ðk0;n0ÞN

AJ
mknωmk0n0

× Ĉþ
jmknĈ

þ
jmk0n0

Z
2π

0

dqθ0
2π

eiðbþk−k0Þqθ0 ; ðF2Þ

¼ 1

4π

X∞
j¼0

X∞
k¼−∞

F̃ J ;∞
b;jk ; ðF3Þ

F̃ J ;∞
b;jk ¼

Xj

m¼−j

X∞
N¼−∞

AJ
mkðN−βθkÞ=βrωmN

× Ĉþ
jmkðN−βθkÞ=βr Ĉ

þ
jmðbþkÞðN−βθb−βθkÞ=βr ; ðF4Þ
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where ωmN ¼ mΩϕ þ NΩ. First we find that when b ¼ 0
our expressions reduce to our nonresonant mode-sum
expressions for our averaged quantities,

F̃ J ;∞
0 ¼ 1

4π

X
jmkN

AJ
mkðN−βθkÞ=βrωmN jĈþ

jmkðN−k̃Þ=βr j
2;

¼ 1

4π

X
jmkn

AJ
mknωmknjĈþ

jmknj2; ðF5Þ

just as we expect.
While we can calculate F̃∞

J ;b directly from (F2), in
practice we use the symmetries of the amplitudes to
simplify this expression and only sum over positive
frequency modes ωmN > 0. Separating the ωmN > 0 and

ωmN < 0 terms in (F3), we find that F̃ J ;∞
b;jk ¼ F̃ J ;∞

−b;j−k.

Combining this with F̃ J ;H=∞
b ¼ F̃ J ;H=∞

−b tells us that the

Fourier coefficients must be purely real. Taking advantage
of these properties, we can arrange our sums so that we
only need to consider m and N values such that ωmN > 0,

F̃ J ;∞
b ¼ 1

4π

X
jk

X
ωmN>0

ωmNB
J
mkbN

× Ĉþ
jmkðN−βθkÞ=βr Ĉ

þ
jmðbþkÞðN−βθb−βθkÞ=βr ;

BJ
mkbN ¼ AJ

mkðN−βθkÞ=βr þAJ
mðkþbÞðN−βθb−βθkÞ=βr : ðF6Þ

Furthermore, because the mode amplitudes Ĉ�
jmkn vanish if

jþmþ k ¼ odd, F̃ J ;∞
b ¼ 0 if b ¼ odd. So we only need

to calculate F̃ J ;∞
2b0 for b0 > 0. This is consistent with what

we see in full numerical calculations of h _J iH=∞
rad .
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