




ABSTRACT
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Cell migration is a key component in development and pathology. Inhibi-

tion of STAT activity by APT and cross-repression of APT and SLBO determines

whether a border cell in the Drosophila oocyte becomes motile or remains station-

ary. Through mathematical modeling and analysis, we examine how the interaction

of STAT, APT, and SLBO creates bistability in the JAK/STAT signaling pathway.

In this paper, we update and analyze the mechanistic Ge and Stonko model to best

represent the processes of the JAK/STAT pathway. We utilize parameter, bifur-

cation, and phase plane analysis, and make reductions to the system to produce

a minimal quantitative model. We achieve this by combining two subsystems of

differential equations. The subsystem with dynamic APT and SLBO has the nec-

essary elements for bistability. The subsystem with dynamic STAT monomer and



activated STAT dimers incorporates how APT inhibits STAT. We found these two

subsystems capture well the interaction of STAT, APT and SLBO in a four-variable

model.
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1

Introduction

1.1 JAK/STAT Pathway

The process of cellular migration plays a critical role in both normal and

pathological development. A better understanding of the processes cells undergo

as they transition from a stationary state to a migratory state is thus of broad

interest. To study cell migration, some scientists turn to an experimental model

system. In Drosophila melanogaster, a set of cells called border cells develop during

oogenesis and later become migratory, traveling through the egg chamber to the

oocyte. Experimentalists have refined how this process occurs and what causes

some border cells to become motile while others remain stationary, including the

primary biochemical and molecular pathways. We are interested in advancing a

mathematical model of these pathways, which could have implications on acquisition

of cell motility in animals in general.

The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT)

signaling pathway has been shown by previous studies to be crucial in the motility

of border cells [14]. Anterior polar cells in the Drosophila egg chamber (see Figure

1.1) secrete the cytokine Unpaired (UPD), which acts as the ligand for the trans-

membrane Domeless receptor in neighboring follicle cells. The binding of Unpaired

to Domeless activates JAK, leading to the phosphorylation of the the activated
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JAK/receptor complex. The activated JAK-receptor complex then recruits and

phosphorylates STAT. The phosphorylated STAT dimerizes, moves to the nucleus,

and acts as a transcription factor for specific target genes. The individual bor-

der cells are signaled by UPD which forms a gradient across the adjacent border

cells. The cells receiving sufficiently high levels of UPD, not necessarily just those

in closer proximity to the polar cells depending on the extracellular geometry [8],

turn on a higher level of STAT activity. This in turn promotes their transformation

into mobile border cells.

We focus on the proteins of two genes targeted by STAT: Apontic (APT) and

Slow Border Cells (SLBO). APT protein is a transcription factor that represses the

function of JAK/STAT and SLBO, and thus inhibits migration [12]. Earlier studies

show that APT acts as a feedback inhibitor on the JAK/STAT pathway, and that

this process is mediated by APT’s activation of a microRNA that reduce STAT

protein through various processes [16]. APT also activates expression of Socs36E,

which blocks STAT signalling via a degradation pathway [9]. SLBO promotes migra-

tory behavior and an insufficient amount of SLBO prevents motility [10]. APT and

SLBO also exhibit cross-repressional behavior [12]. APT directly represses SLBO

transcription while SLBO only decreases the level of expression of APT protein. The

dominating protein in a given cell determines the cell fate: stationary or motile.
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Figure 1.1: Egg development and the migration of border cells. (A) A cartoon
of the development of a Drosophila egg chamber and the movement of the border
cells between the nurse cells (nc). (B) The signaling molecule Unpaired is secreted
from the polar cells and (C) induces a gradient of STAT activity across the anterior
epithelium. Often the follicle cells very close to the polar cells assume the identity
of border cells, (D) become motile, and (E) migrate towards the oocyte. (F) is a
Fluorescent Protein-STAT reporter [1] staining of a wild type egg chamber, which
demonstrates that STAT transcriptional activity is highest in the migrating border
cell cluster (arrow). Adapted from [2].

1.2 Ge and Stonko Model

We base our model on the mechanistic model built by Ge and Stonko (2012).

Focusing on the cross-repression system of APT and SLBO, they built a mathemati-

cal model using elementary interactions to identify which components of the system

are sufficient for bistability. A rapid transition into motility is observed. We inter-

pret this as a bistable switch. Depending on the strength of the Unpaired signal and
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thus the level of STAT activity, each border cell can become motile (SLBO domi-

nated) or remain stationary (APT dominated). Cells with an intermediate level of

STAT may fall above or below the threshold of STAT necessary for mobility.

Ge and Stonko focused on the cross-repression system of APT and SLBO

(shown in Figure 1.2) and created a system with sufficient elements, specifically

cooperativity in SLBO repressing APT mRNA, to cause bistability.

Figure 1.2: Cross-repression system of APT and SLBO. STAT activates apt and slbo
transcription leading to the production of apt and slbo mRNA and translation into
APT and SLBO proteins. SLBO represses apt translation while APT suppresses
slbo transcription and function.
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The level of STAT is treated as a parameter. The variables are listed in Table

1.1.

Variable Description

A Amount of APT protein

B Amount of SLBO protein

mα Amount of APT mRNA

mβ Amount of SLBO mRNA

α Proportion of inactive apt genes

β Proportion of inactive slbo genes

βR Proportion of repressed slbo genes

Table 1.1: Seven-variable model variables

We first consider the seven equations down stream of STAT activation. The

original parameter values in this model were assigned to obtain the bistability ex-

pected from the data and qualitative nature of the model.

The seven variable model is

dA

dt
= kAmα − δAA (1.1)

dB

dt
= kBmβ − δBB (1.2)

dmα

dt
= kmα(1 − α) − δmαmα +mo

α − δBαB
2mα (1.3)

dmβ

dt
= kmβ(1 − β − βR) − δmβmβ +mo

β − δAβAmβ (1.4)

dα

dt
= −kfαS∗

2α + kbα(1 − α) (1.5)

dβ

dt
= −kfβS∗

2β + kbβ(1 − β − βR) (1.6)

dβR

dt
= kfβRAβ − kbβRβ

R (1.7)
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In this thesis we will analyze and adapt the Ge and Stonko model so that it

quantifies the processes of the JAK/STAT pathway. We establish parameters and

test bifurcation results, make reductions to the model, identify manifolds, reintro-

duce STAT dynamics, and test experimental results. We apply this model in the

interesting case of controlling microRNA degradation of STAT via APT and show

that delays in STAT activation, even to the point of activation failure within a bio-

physical time span, are possible due to the proximity of the critical UPD level to a

limit point bifurcation.
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2

Parameter and Bifurcation Analysis

2.1 Establishing Parameters

In order to establish a more biophysically realistic model for this study, we re-

searched existing literature to find data to establish parameter values. For some pa-

rameters we were able to find data specific to the JAK/STAT pathway or Drosophila.

For other parameters related pathways were used to obtain data relevant to this

model.

We were able to identify published values for general translation and tran-

scription rates and applied the established rates to the lengths of APT and SLBO

genes and proteins [5, 7]. Protein and mRNA degradation rates have a wide range

of average values so APT and SLBO are assumed to conform to this range [3, 6].

The binding and dissociation rates of STAT have been identified in general but not

specifically to apt and slbo genes [4, 11, 15].

The details of kinetics of mRNA degradation due to microRNA (miRNA) have

not been studied in detail and as such the corresponding parameters are difficult to

assign. Ge and Stonko addressed this by condensing the various processes by which

miRNA can affect mRNA into one degradation rate. We identified a parameter

value for this combined effect through information from the model established in

Yoon et al. (2011) and the fact that the model is fairly insensitive to this parameter.
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The rate that SLBO transitions in and out of its repressed state was also hard to

identify due to lack of data, so we utilized the rate given in Ge and Stonko which was

adapted from Harris et al. (2011). Lastly, for the rates of STAT independent mRNA

production we again used the original parameter values from Starz-Gaiano (2009).

For slbo, this rate is most likely negligible. However, apt can be activated by means

other than STAT. The protein Eyes Absent (EYA) can also activate transcription

of apt [2].

Throughout the research on parameter values, the goal was to develop a range

of realistic parameters to test. There are two reasons why a range of values is

desirable. First, from the biological point of view, many biological processes do

not occur at consistent rate. Additionally, heterogeneity will likely lead to some

parameter variety. A range of average values is thus both more appropriate and

more consistent with experimental data. Second, some degree of uncertainty in the

parameters creates the opportunity for further mathematical analysis. We were able

to test the robustness of the dynamics over the ranges of parameters to see if the

model behavior matches experimentally observed outcomes.

We created subsets of parameters to test them. Parameters were grouped by

the equation in which they appeared, then a bifurcation diagram was created in

XPP/AUT to see if bistability was maintained from the original parameter set. The

bifurcation parameter, as in the original study, was the level of activated STAT. As

most parameters have a range of feasible values, some adjustment was necessary to

preserve the system’s bistability. After each group of parameters was set to create

bistability, two-parameter bifurcations were performed for all parameters against
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STAT level. This identified the range of values for each parameter that upheld

bistability. The range of researched values identifies a robust region of bistability.

This adds validity to the decision to use some parameter values that were established

from a range of possible values.

Once each group of parameter values was confirmed to sustain bistability, the

next set of parameters was tested. For example, the parameters in the protein

equations were tested first and then the parameters in the mRNA equations were

added. This sometimes necessitated changing previously set parameters, but for the

most part earlier values could remain unchanged. The two-parameter bifurcations

were repeated so as to refine the bistable ranges each time a new parameter value

was established. Most of the time these ranges only slightly changed with each new

parameter.
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The parameter values established through research and testing for bistability

are shown in Table 2.1.

Parameter Symbol Value Units Citation

Rate of APT translation kA 0.298 min−1 [5, 7]

Rate of transcription of apt kmα 0.54 nM*min−1 [5, 7]

Rate of STAT independent production of apt mRNA mo
α 0.52 nM*min−1 [13]

Rate of degradation of APT δA 0.04 min−1 [3, 6]

Rate of degradation of apt mRNA δmα 0.086 min−1 [3, 6]

Degradation rate of apt mRNA due to miRNA δAβ 0.1 nM−1*min−1 [16]

Binding rate of STAT to apt kfα 100 min−1 [4, 11, 15]

Dissociation rate of STAT to apt kbα 0.66 nM*min−1 [4, 11, 15]

Rate of SLBO translation kB 0.312 min−1 [5, 7]

Rate of transcription of slbo kmβ 0.538 nM*min−1 [5, 7]

Rate of STAT independent production of slbo mRNA mo
β 0.03 nM*min−1 [13]

Rate of degradation of SLBO δB 0.04 min−1 [3, 6]

Rate of degradation of slbo mRNA δmβ 0.086 min−1 [3, 6]

Degradation rate of slbo mRNA due to miRNA δBα 0.5 nM−2*min−1 [16]

Binding rate of STAT to slbo kfβ 100 min−1 [4, 11, 15]

Dissociation rate of STAT to slbo kbβ 0.66 nM*min−1 [4, 11, 15]

Rate slbo transitions into repressed state kfβR 100 min−1 [6]

Rate slbo transitions out of repressed state kbβR 0.522 nM*min−1 [6]

Table 2.1: Ge and Stonko seven-variable system parameter values.
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The bistable range of each parameter is reported in Table 2.2.

Parameter Bistable Start Bistable End

kA 0.04 0.615

kmα 0 1.67

mo
α 0 1.65

δA 0.019 0.334

δmα 0.024 24.5

δAβ 0.4 0.98

kfα 0 1098

kbα 0 998

kB 0.144 1.56

kmβ 0.232 985

mo
β 0 0.243

δB 0.0011 0.08

δmβ 0 2.77

δBα 0.031 30.19

kfβ 4.7 1094

kbβ 0 14.02

kfβR 0 1003

kbβR 0 959

Table 2.2: Bistable Range of each parameter. Any value in this range will maintain
bistability in the model with other parameters held at their baseline values from
Table 2.1.
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2.2 Bifurcation Analysis

A bifurcation diagram of APT against activated STAT (S∗
2) revealed a non-

trivial state when S∗
2 = 0 with a high level of APT, as seen in Figure 2.1. This

can be interpreted as the system being predisposed to the stationary cell fate until

STAT is high enough.

Figure 2.1: Bifurcation in seven-variable system of APT against STAT (S∗
2). Red

indicates a stable steady state, black indicates an unstable steady state. Limit point
bifurcations create ‘knees’ where the model jumps from one steady state to the other.
At S∗

2 = 0 APT dominates.
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3

Reduced Models

3.1 Four-Variable Model

In the process of researching biophysically realistic parameters we discovered

that the binding rate of STAT to target genes appears to be several orders of mag-

nitude faster than any other process in the system [4, 11]. For example, kfα, kfβ , and

kfβR are at least three orders of magnitude faster than the other kinetics. Addition-

ally, α, β, and βR reach equilibrium significantly faster than the other variables.

We used time-scale analysis to reduce the system. We made a quasi-steady state

approximation for α, β, and βR and set those derivatives equal to zero. This allowed

us to solve equations (1.5). (1.6), and (1.7) for α∗ = 1 − α and β∗ = 1 − β − βR in

terms of APT protein and STAT dimer:

α∗ =

S∗
2

Kα
S∗
2

Kα
+ 1

(3.1)

β =
1

S∗
2

Kβ
+ 1 + A

K
βR

(3.2)

βR =
kfβR

kbβR
Aβ =

A
K
βR

S∗
2

Kβ
+ 1 + A

K
βR

(3.3)

β∗ = 1 − β − βR =

S∗
2

Kβ
S∗
2

Kβ
+ 1 + A

K
βR

(3.4)
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with Kα =
kbα
kfα
, Kβ =

kbβ

kfβ
, KβR =

kbβR

kfβR

This creates a reduced system of four equations:

dA

dt
= kAmα − δAA (3.5)

dB

dt
= kBmβ − δBB (3.6)

dmα

dt
= kmα(α∗) − δmαmα +mo

α − δBαB
2mα (3.7)

dmβ

dt
= kmβ(β∗) − δmβmβ +mo

β − δAβAmβ (3.8)

In order to compare the seven- and four-variable systems ((1.1)-(1.7) vs (3.5)-

(3.8)) two cases were considered. First, the case where all gene binding and disso-

ciation rates are several orders of magnitude faster than the other kinetics. In this

case the seven- and four-variable systems exhibit similar dynamics, reaching nearly

identical equilibria, as seen in Figures 3.1 and 3.2.

Figure 3.1: Time courses in seven-variable system with S∗
2 = 1 and kbα = kbβ = kbβR =

100.
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Figure 3.2: Time courses in four-variable system with S∗
2 = 1 and kbα = kbβ = kbβR =

100.

The other case assumes that only the forward genetic binding rates are sig-

nificantly faster than the other kinetics. Here, for certain values of STAT, the two

systems arrive at different steady states as shown in Figures 3.3 and 3.4.

Figure 3.3: Time courses in seven-variable system with S∗
2 = 1 and parameters from

Table 2.1.
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Figure 3.4: Time courses in four-variable system with S∗
2 = 1 and parameters from

Table 2.1.

Figures 3.3 and 3.4 use the baseline parameters from Table 2.1. For these

parameters the manifold separating the basins of attraction of APT and SLBO

changes in the reduction from the seven-variable model to the four-variable model.

3.2 Two-Variable Models

In order to better identify the manifold between the steady states, we at-

tempted to reduce the four-variable system further to a system of two variables.

Our parameter values indicate that the mRNA processes occur at least twice as fast

as the protein processes. This makes a quasi-steady state approximation for mα

and mβ more plausible. For comparison, we also tested the results of a quasi-steady

state approximation for A and B.
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The dynamic protein model is

mα =
kmα(α∗) +mo

α

δmα + δBαB2
(3.9)

mβ =
kmβ(β∗) +mo

β

δmβ + δAβA
(3.10)

dA

dt
= kA

kmα(α∗) +mo
α

δmα + δBαB2
− δAA (3.11)

dB

dt
= kB

kmβ(β∗) +mo
β

δmβ + δAβA
− δBB (3.12)

The dynamic mRNA model is

A =
kαmα

δA
(3.13)

B =
kβmβ

δB
(3.14)

dmα

dt
= kmα(α∗) − δmαmα +mo

α − δBα

(
kβmβ

δB

)2

mα (3.15)

dmβ

dt
= kmβ(β∗) − δmβmβ +mo

β − δAβ
kαmα

δA
mβ (3.16)

Both two-variable systems reach almost exactly the same equilibria and have

identical bifurcation diagrams as the seven- and four-variable systems (as seen in

Figure 2.1). However, the early behavior of the dynamic mRNA model is signifi-

cantly different from that of the four-variable model. In the seven- and four-variable

systems when a trajectory is close to a manifold there is a delay before it converges

to equilibrium. By shifting the level of STAT to find trajectories close to the new

manifolds, the time courses in the dynamic protein model show the delay seen in the

17



time courses of the four-variable system. Since the delay shown in Figure 3.6 can

be obtained at S∗
2 = 1.895, the exact delay seen in Figure 3.5 can also be obtained

in the interval [1,1.895]. The delay seen in Figure 3.7 can not be attained in the

dynamic mRNA model just by changing the value of STAT as shown in Figure 3.8.

0
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90
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0 200 400 600 800 1000

Time (min)

Figure 3.5: Time course of APT in four-variable system with S∗
2 = 1, showing a

delay.
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Figure 3.6: Time courses of APT in dynamic protein model. A shift to S∗
2 = 1.895

creates a delay.
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Figure 3.7: Time course of mα in four-variable system with S∗
2 = 1, showing a delay.
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Figure 3.8: Time courses of mα in dynamic mRNA model. No delay is created by
shifting S∗

2 .
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3.3 Manifolds Separating APT and SLBO Basins of Attraction

While testing the four-variable model we discovered that for all initial con-

ditions at 0, the same level of STAT converged to different steady states in the

seven-variable model than in the four-variable model. This led us to investigate the

manifold that separates the steady states in both systems. For a level of STAT in

the bistable region, cells can either become motile or remain stationary depending

on the initial conditions of the system. An example of this is given in Figure 3.9:

Figure 3.9: Bifurcation diagram of seven-variable system for APT against STAT
(S∗

2), from Figure 2.1. The vertical line indicates S∗
2=20. At this level of STAT,

either steady state can be reached depending on the initial conditions of the system.

We visually identified the manifolds by labeling initial conditions according

to which steady state they converge. This allows us to see the basins of attraction

for each steady state. These two stable steady states, one where SLBO dominates

and the cell becomes motile and one where APT dominates and the cell remains

stationary, are listed in Table 3.1 with values for each variable.

20



Variable Steady State 1 (SS1):
SLBO (Red)

Steady State 2 (SS2):
APT (Blue)

Units

A 0.0062 91.062 nM

B 50.46 0.029 nM

mα 0.000083 12.223 nM

mβ 6.469 0.0038 nM

α 0.00655 0.00655 Proportion of inactive genes

β 0.00651 0.0000568 Proportion of inactive genes

βR 0.0077 0.991 Proportion of repressed genes

Table 3.1: Stable steady state values with S∗
2 = 1 in the seven-variable model,

(1.1)-(1.7).

In higher dimensional systems, identifying manifolds becomes difficult so we

focus on two dimensional projections of the system. Trajectories plotted with the

3D bifurcation of APT and SLBO against STAT in the seven-variable system give

us an idea of the manifold between the steady states (Figure 3.10).

Figure 3.10: 3D bifurcation of APT and SLBO against STAT. Trajectory approach-
ing SS1 has S∗

2 = 0.8 and trajectory approaching has S∗
2 = 47 with initial conditions

A=80 and B=40.
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We identified the projections of manifolds between the two stable equilibria

in the mα vs α and mβ vs β planes. We compared the seven- and four-variable

systems for these planes with all other initial conditions fixed at 0. Figures 3.11

through 3.15 have S∗
2 = 1, one of the values in a small range observed to converge

to different steady states. Blue dots indicate the APT basin of attraction and red

dots indicate the SLBO basin of attraction. The boundary between the basins of

attraction approximates the manifold. Figures 3.11 and 3.12 show the mα vs α

plane and Figures 3.13 and 3.14 show the mβ vs β plane.

Figure 3.11: mα vs α in the seven-variable system showing manifold.
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Figure 3.12: mα vs α in the four-variable system showing no manifold.

Figure 3.13: mβ vs β in the seven-variable system with initial condition of mα = 1
showing manifold.
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Figure 3.14: mβ vs β in the four-variable system with initial condition of mα = 1
showing manifold.

In the mα vs α plane, the change to the four-variable system makes SS1 impos-

sible to reach by only changing the initial conditions on mα and α, as seen in Figures

3.11 and 3.12. Without the boundary between SS1 and SS2, seen in Figure 3.11

but not 3.12, we cannot find initial conditions that lead to SS1 in the four-variable

model. In the mβ vs β plane the change to the four-variable system increases the

initial amount of mβ needed for the system to converge to SS1, as shown in Fig-

ures 3.13 and 3.14. However, the overall form of the manifold in either plane does

not change from the seven- to the four-variable system, which is notably gene state

independent.
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We then examined the effects of different initial conditions on the seven-

variable system. To do this we examined the projected manifolds in the mβ vs mα

plane and identified the manifolds by plotting the boundaries between the basins of

attraction in Figure 3.15.

Figure 3.15: Projected manifolds in the mβ vs mα plane in the seven-variable system
with Case 1: all initial conditions at 0, Case 2: initial conditions A = B = 0 and
α, β, βR at quasi-steady state values, Case 3: initial conditions A = B = βR = 0
and α = β = 1.

The difference between all three cases is negligible. Whether apt and slbo genes

start as fully inactive or fully active has little effect on the steady state reached from

various mβ and mα initial conditions. Similarly, Case 2 shows that when α, β, and

βR start at quasi-steady state values there is little to no change. Overall, the initial

conditions of α, β, and βR have much less influence on the outcome of the system

than the initial conditions of A, B, mα, or mβ do. This also indicates that α, β,

and βR quickly reach equilibria, reinforcing our decision to make the reduction to a

four-variable system.

25



Next, we tested to see what change in STAT could make the manifolds of the

reduced systems match those of the seven-variable system. For the four-variable

system, increasing STAT recovered almost the exact same manifold as in the seven-

variable system as seen in Figure 3.16.

Figure 3.16: Projected manifolds in the mβ vs mα plane with all initial conditions
at 0 in the four-variable system with S∗

2 = 1.3 and the seven-variable system with
S∗
2 = 1.

In the two-variable systems, changing STAT alone can not recover the exact

manifold in the seven-variable system. The dynamic protein model compared to the

seven-variable model (see Figure 3.17) is a better fit than the dynamic mRNA model

(see Figure 3.18) as expected from the parameter values. kmα = 0.54 > 0.298 =

kA and δmα = 0.086 > 0.04 = δA, and similarly for SLBO. Thus, a quasi-steady

state approximation for mα and mβ is more credible. The manifolds and effects

of changing STAT in the two-variable systems indicate that the dynamic protein

model is the better approximation.
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Figure 3.17: B vs A in the dynamic protein and seven-variable system with all initial
conditions at 0. The dynamic protein model almost matches the seven-variable
model.

Figure 3.18: mβ vs mα in the dynamic mRNA and seven-variable system with all
initial conditions at 0. The dynamic mRNA model can not match the seven-variable
model even with a shift in S∗

2 . The boundary between steady states in the seven-
variable model for S∗

2 = 0.35 does not exist for these initial conditions.
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4

Dynamic STAT Model

4.1 Developing the Reduced Model

After establishing the cross-repressional system of APT and SLBO we reintro-

duced STAT dynamics to the model. In order to do this, we reduced the 15-variable

system (described in Appendix A.1) to a four-variable system in A, B, S, and S∗
2 .

We already reduced the seven-variable APT and SLBO system to a two-variable sys-

tem. Now we reduce the eight-variable STAT activation system through a number

of assumptions.

First, we ignored the theoretical APT-STAT complex (c2) as its effects of APT

sequestering STAT are not essential to bifurcation. Then we used the Michaelis-

Menten approximation for the activated JAK (J∗) conversion of two STAT molecules

to an activated STAT dimer (S∗
2). This eliminates the JAK-STAT complex (c1) and

condenses the conversion. We assumed conservation of JAK to eliminate unactivated

JAK (J) by letting JT = J +J∗. We also assumed that UPD (U) activation of JAK

is fast relative to STAT activation so activated JAK can be solved for by a quasi-

steady state approximation. Lastly, similar to the reduction in the previous chapter,

inactive STAT gene (σ) and STAT mRNA (mσ) were also solved for by quasi-

steady state approximations. These assumptions gave us the following additional

approximations:
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σ =
1

S∗
2

Kσ
+ 1

with Kσ =
kbσ
kfσ

(4.1)

vmax = kc1J
∗ (4.2)

km =

√√√√kbc1 + kc1

kfc1
(4.3)

J∗ =
kfUJUJT

kbUJ + kfUJU
(4.4)

Thus producing a model in A, B, S, and S∗
2 :

dA

dt
= kA

kmα(α∗) +mo
α

δmα + δBαB2
− δAA (4.5)

dB

dt
= kB

kmβ(β∗) +mo
β

δmβ + δAβA
− δBB (4.6)

dS

dt
= −2

vmaxS
2

S2 + k2m
+ 2kS∗

2
S∗
2 + kS

kmσ(1 − σ) +mo
σ

δmσ + δAσA
− δSS (4.7)

dS∗
2

dt
= −kS∗

2
S∗
2 +

vmaxS
2

S2 + k2m
(4.8)

4.2 Analysis of Dynamic STAT Model

The seven-, four- and two-variable models with STAT as a parameter have

identical bifurcation diagrams, shown in Figure 2.1. The four-variable dynamic

STAT model, equations (4.5)-(4.8), has UPD as the bifurcation parameter, but

matches the qualitative characteristics of the bifurcations against STAT. The STAT

values of the limit points in the dynamic STAT model (0.03618 and 52.84) are very

close to the STAT values of the limit points in the other bifurcations (0.0306 and

47.05). Additionally, the S∗
2 bifurcation shows that if UPD begins at a high level in
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a cell, the cell will remain in the motile state even as UPD decreases to a very low

level. Verifying this result experimentally would be a valuable test of the model.

Bifurcations of APT and S∗
2 against UPD are seen in Figures 4.1 and 4.2.
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Figure 4.1: Bifurcation of APT against UPD in the dynamic STAT model. Quali-
tatively similar to APT bifurcation against S∗

2 .
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Figure 4.2: Bifurcation of S∗
2 against UPD in the dynamic STAT model. S∗

2 values
at limit points are close to values in APT bifurcation against S∗

2 .
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We then tested this model to identify what effect a slow increase of STAT

has on the cross-repression system of APT and SLBO. We also examined the de-

coupled AB and SS∗
2 subsystems to understand the full system. To decouple the

SS∗
2 subsystem, we set the level of APT as a parameter that varied from 0 to 100,

based on the values APT reaches in the full model. APT as a parameter represents

the initial amount of APT present in a cell. We also made UPD dynamic, setting

dU
dt

= 0.0001varU . This allows UPD to increase slowly and then be fixed at a value

(by setting varU = 0). This lets us examine the behavior of STAT as UPD increases.

The decoupled AB subsystem is the dynamic protein model ((3.11)-(3.12)).

The equilibria of the dynamic protein model (A=0.0061, B=51.0178) and (A=91.0617,

B=0.0294) are close to those in the seven-variable model (see Table 3.1). The null-

clines, stable manifold, and some trajectories of the dynamic protein model are

plotted in Figure 4.3.

Figure 4.3: AB phase plane, stable manifold, and trajectories in fixed STAT system
with S∗

2 = 1.
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The SS∗
2 phase plane has just one steady state. This is proven by solving

for the S and S∗
2 steady states and finding that the discriminant of S is negative

for the parameters used (see Appendix A.2 for details). When APT is treated as

a parameter, S∗
2 loses bistability against UPD as seen in Figure 4.4. Instead, the

initial level of APT determines the cell fate.

Figure 4.4: Bifurcation of S∗
2 against UPD for various levels of APT. There is no

longer bistability in S∗
2 . As APT increases the S∗

2 level decreases.

Figures 4.5 and 4.6 show that when UPD is made dynamic, trajectories in the

SS∗
2 plane track to the steady state indicated by the intersection of the nullclines.

For a given level of UPD, as the value of APT decreases the steady state values of

S and S∗
2 increase. This moves the system from the stationary (APT dominating)

to the motile (SLBO dominating) state. As UPD decreases, S∗
2 decreases as well.
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Figure 4.5: Trajectories and nullclines in SS∗
2 phase plane with UPD=0.1. Green

curve is the S∗
2 nullcline, red curves are the S nullclines for APT values corresponding

with the intersecting trajectory. Trajectories track to increasing steady states as
APT decreases.
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Figure 4.6: Trajectories and nullclines in SS∗
2 phase plane with UPD=0.005. Curves

as in Figure 4.5. As UPD decreases, S∗
2 steady state values decrease while S steady

state values remain the same.

Looking at trajectories when UPD is dynamic allows us to better understand

the bifurcation diagrams of A and S∗
2 against UPD. When UPD is low, the steady

state of S∗
2 is low and APT dominates. As UPD increases, the steady state of S∗

2

passes the threshold needed for SLBO to dominate. Together the AB and SS∗
2

subsystems fully explain the bistability in the JAK/STAT pathway.

4.3 Delay from miRNA

APT induced miRNA degradation of STAT is controlled in the model by the

parameter δAσ. Figure 4.7 shows time courses of S∗
2 for different values of δAσ. In

establishing the model we set δAσ = 0.05, which allows S∗
2 to equilibrate around
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136. This level is well above the threshold needed for the cell to become motile.

An increase to δAσ = 0.078 delays STAT activation by a significant amount of time,

about 800 min. If we increase δAσ to just 0.08, S∗
2 only reaches a level of around

43 within 1000 minutes. This is below the threshold and thus the cell is stationary.

Figure 4.7 shows these three time courses. Each represents a different outcome

of the JAK/STAT pathway: GO, where SLBO dominates (δAσ = 0.05); STOP,

where APT dominates (δAσ = 0.08); and SLOW, where the transition to motility

is delayed (δAσ = 0.078). Since the mechanisms of how APT-activated miRNAs

affect STAT are still being analyzed [16] this range in the rate of degradation would

be interesting to test experimentally. Delays in STAT activation and failure of

activation are possible within a realistic time frame.

Figure 4.7: Time courses of S∗
2 for three levels of miRNA control by δAσ: GO

δAσ = 0.05, STOP δAσ = 0.08, SLOW δAσ = 0.078. An increase in δAσ dramatically
delays the level of S∗

2 or even stops the transition to motility.
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In Figures 4.8-4.10 we get a better picture of the model’s behavior for each of

the three cell fates. Figure 4.8 shows a 3D plot of S∗
2 , APT, and SLBO. Here we

can see that in the SLOW cell fate APT increases significantly before dropping off.

This is further explored in Figures 4.9 and 4.10. In the SLOW cell fate the level of

APT in the cell rises to a fairly high level for a significantly long amount of time. It

is only after the level of APT decreases that the level of SLBO begins to converge

to its steady state value.

Figure 4.8: 3D plot of S∗
2 , APT, and SLBO for the three cell fates described in

Figure 4.7. In the SLOW cell fate APT increases significantly before dropping off.
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Figure 4.9: Time courses of APT for the three cell fates described in Figure 4.7.

Figure 4.10: Time courses of SLBO for the three cell fates described in Figure 4.7.
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5

Experimental Tests

Lastly, we tested our models to see if they reproduced certain behaviors iden-

tified in various experiments. It has been shown that if STAT is blocked by stage

9 of cell migration, the level of APT protein drops by about half [12]. It is also

known that the activation of STAT by JAK occurs much faster than the action of

STAT on APT or SLBO [13]. Additionally, increasing the initial condition of APT

should decrease the level of STAT [12]. These behaviors should be achievable by

our models.

Both the dynamic protein model and the four-variable dynamic STAT model

reproduce the experimental behavior of APT when S∗
2 = 0, as shown in Figures 5.1

and 5.2. In the dynamic protein model, setting S∗
2 = 0 causes APT to converge to

an equilibrium roughly half that of the stationary steady state. In the four-variable

dynamic STAT model, setting U = 0 causes STAT to be constantly zero. This again

causes APT to converge to an equilibrium roughly half that of the stationary steady

state.
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Figure 5.1: Time courses of APT in dynamic protein model. When S∗
2=0 APT

decreases by half.
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Figure 5.2: Time courses of APT in four-variable dynamic STAT system. When
S∗
2=0 APT decreases by half.

As stated previously, the dynamics of STAT production are known to occur

much faster than the dynamics of STAT activating APT and SLBO. This supports

the cross-repressional models’ treatment of STAT as a parameter. This behavior is
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seen as well in the dynamic STAT model in Figures 5.3 and 5.4. APT and SLBO

begin to converge faster after STAT reaches equilibrium. This is more apparent for

SLBO which is consistent with the fact that APT can also be activated by EYA.

Figure 5.3: Time courses of S∗
2 and APT. APT converges faster after S∗

2 reaches
equilibrium.

Figure 5.4: Time courses of S∗
2 and SLBO. SLBO begins to converge after S∗

2 reaches
equilibrium.
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APT acts as an inhibitor to STAT activity, so for higher APT initial conditions

we should see lower levels of STAT. This occurs in the 15-variable model (Figure

5.5) but not in the reduced dynamic STAT model (Figure 5.6). If we lower the

value of UPD in the dynamic STAT model, we do see a decrease in the level of

S∗
2 (Figure 5.7). However, this decrease is only observed for certain values of UPD

and does not fully match the behavior of the 15-variable model. This indicates

that the feedback inhibition of STAT by APT is not being fully represented in the

four-variable dynamic STAT model.
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Figure 5.5: Time courses of S∗
2 with UPD=0.1 for initial conditions of APT in

15-variable system with all other initial conditions at 0. As APT increases STAT
decreases, as seen in experiments.
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Figure 5.6: Time courses of S∗
2 with UPD=0.1 for initial conditions of APT in

dynamic STAT system. As APT increases, STAT remains the same.
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Figure 5.7: Time courses of S∗
2 with UPD=0.01 for initial conditions of APT in

dynamic STAT system. As APT increases, STAT decreases but does not completely
match the behavior of the 15-variable system.

By returning to the 15-variable model and testing each of the reductions made

to develop the four-variable dynamic STAT model, we identified the quasi-steady

state assumption made for the variables β and βR as creating this discrepancy
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between the 15- and four-variable dynamic STAT models. It is interesting to note

that the discrepancy comes from a reduction in the SLBO dynamics and not a

reduction in the STAT dynamics.
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6

Discussion

From the mechanistic Ge and Stonko model, we first reduced the cross-repression

system of APT and SLBO to a two-variable model with only APT and SLBO as

dynamic. We then reduced the system of STAT activation to a two-variable model

with only STAT and activated STAT as dynamic. We combined the two models

into a four-variable model. This allowed us to fully understand bistability in the

JAK/STAT pathway. Critically, both the models with dynamic and fixed STAT

display the bistability of the stationary and motile cell states expected from exper-

imental data for medium saturation of STAT.

We established parameters that proved bistability was obtainable under real-

istic conditions. Every parameter in the seven-variable model was found to have a

wide range of values that guaranteed bistability. The robustness of the parameters

also suggests the biophysical utility of the model. Cell migration is an essential

biological process, and as such is likely to be robust as indicated by the model. It

makes sense that the JAK/STAT pathway would be able to operate successfully

under a range of parameter values.

Ge and Stonko concluded that the key aspect necessary for bistability in APT

and SLBO is cooperativity in SLBO repressing APT mRNA. In our dynamic STAT

model, we found that the feedback inhibition of APT on STAT is necessary for
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bistability in STAT coming from the bistability between APT and SLBO. We also

found that the initial amount of APT present in a cell is a major factor in whether

or not the cell will become motile through affecting the level of STAT activity. Both

the fixed and dynamic STAT models also reproduce behavior seen in experiments.

However, it seems as thought the quasi-steady state reduction in the variables β and

βR causes a discrepancy in the behavior of the 15- and four-variable dynamic STAT

models. We would like to further explore why this reduction affects the dynamics

of STAT when the initial conditions of APT are increased.

We also showed that delays in STAT activation and failure of activation are

possible within a realistic time frame. By controlling the degree of feedback inhi-

bition of APT on STAT we can induce a delay in the transition to cell motility or

cause the cell to remain stationary. This result is due to the proximity of the critical

UPD level to a limit point bifurcation.

The limitations of this model are mainly due to the assumptions made in

the development. The dynamic protein model was reduced from the seven-variable

model under certain time scale assumptions, some of which have more data sup-

porting them than others. The STAT dynamics were also reduced under a number

of assumptions. One assumption was the decision to ignore the c2 equation, which

allows APT to act as a buffer on STAT. Since the action of APT on STAT is known

to function by preventing activation through miRNAs [16] as well as limiting protein

production [12], this assumption might oversimplify the larger system.
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As manifolds in higher dimensions are difficult to find algebraically, we chose to

visually identify two-dimensional projections of the full manifolds. In the dynamic

STAT model, it would be useful in future work to reduce the system to two or three

variables so the manifold could be found. One possible way of achieving this would

be to assume conservation of STAT so that ST = S+2S∗
2 . We would then be able to

solve algebraically for the manifold between the stationary and motile steady states

and better understand how aspects of the system affect the manifold.

Future work should use experimental data to test the assumptions and con-

clusions made for this model. Further study into the various methods by which

APT inhibits STAT would enable us to improve how the model captures this in-

teraction. We would also like to expand on how APT and SLBO interact through

miRNAs. Both of these interactions directly affect bistability in the model, so should

be explored further. Experiments with controlling the level of UPD secreted could

identify how quickly the signal enters border cells and the exact levels of UPD which

correspond with the activated STAT threshold to induce motility. It would also be

valuable to know the level of APT present in border cells through activation by

EYA.

The JAK/STAT signalling pathway is known to be well conserved. Specifically,

it seems to be comparable in Drosophila and in humans. Thus as the model we have

developed helps to explain cell motility in Drosophila, it should also add to our

understanding of the process in humans.
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A.1 15 Variable Model

Ge and Stonko created a 15 variable model to capture the mechanisms of

the JAK/STAT signalling pathway. The variables not present in the seven-variable

model are defined in Table 1.

Variable Description

J∗ Activated JAK

J JAK

S STAT monomer

c1 J∗ and S complex

c2 S∗
2 and A complex

S∗
2 Activated STAT dimer

mσ STAT mRNA

σ STAT DNA

Table 1: 15-variable system variables

The system of differential equations:

dJ∗

dt
= kfUJUJ − kbUJJ

∗ − kfc1J
∗S + kbc1c1 + kc1c1 (1)

dJ

dt
= −kfUJUJ + kbUJJ

∗ (2)

dS

dt
= −2kfc1J

∗S + 2kbc1c1 + 2kS∗
2
s∗2 + ksmσ − δSS (3)

dc1
dt

= kfc1J
∗S2 − kbc1c1 − kc1c1 (4)

dc2
dt

= kfS∗
2A
S∗
2A− kbS∗

2A
c2 (5)

dS∗
2

dt
= kc1c1 − kS∗

2
S∗
2 − kfS∗

2A
S∗
2A+ kbS∗

2A
c2 (6)

dA

dt
= kAmα − δAA− kfS∗

2A
S∗
2A+ kbS∗

2A
c2 (7)
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dB

dt
= kBmβ − δBB (8)

dmα

dt
= kmα(1 − α) − δmαmα +mo

α − δBαB
2mα (9)

dmβ

dt
= kmβ(1 − β − βR) − δmβmβ +mo

β − δAβAmβ (10)

dmσ

dt
= kmσ(1 − σ) − δmσmσ +mo

σ − δAσAmσ (11)

dα

dt
= −kfαS∗

2α + kbα(1 − α) (12)

dβ

dt
= −kfβS∗

2β + kbβ(1 − β − βR) (13)

dβR

dt
= kfβRAβ − kbβRβ

R (14)

dσ

dt
= −kfσS∗

2σ + kbσ(1 − σ) (15)

(16)

The parameters values used in the dynamic STAT system are listed in Table

2.
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Parameter Value Units

kfUJ 10 min−1

kbUJ 0.1 nM*min−1

kfc1 1 min−1

kbc1 0.1 nM*min−1

kc1 100 nM*min−1

kS∗
2

0.1 nM−1*min−1

kS 3 min−1

δS 0.1 min−1

kmσ 1 min−1

δmσ 0.2 min−1

mo
σ 0.5 nM*min−1

δAσ 0.05 nM−1*min−1

kfσ 1 min−1

kbσ 2 nM*min−1

JT 0.15 nM

Table 2: Dynamic STAT system parameters

A.2 Finding the discriminant of S

The four variable dynamic STAT model:

dA

dt
= kA

kmα(1 − α) +mo
α

δmα + δBαB2
− δAA (17)

dB

dt
= kB

kmα(β∗) +mo
β

δmβ + δAβA
− δBB (18)

dS

dt
= −2

vmaxS
2

S2 + k2m
+ 2kS∗

2
S∗
2 + kS

mo
σ + kmσ(1 − σ)

δmσ + δAσA
− δSS (19)

dS∗
2

dt
=

vmaxS
2

S2 + k2m
− kS∗

2
S∗
2 (20)
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We isolate the SS∗
2 system and set it to steady state. For equation (20) we get

S∗
2 =

vmax
kS∗

2

S2

S2 + k2m
.

This leaves us with

0 = kS
mo
σ + kmσ(1 − σ)

δmσ + δAσA
− δSS (21)

after plugging the expression for S∗
2 into (19).

We use the expression for σ in terms of S∗
2 to get the active stat gene level

(1 − σ) =
S∗
2

S∗
2 + kσ

=

vmax
kS∗

2

S2

S2+k2m

vmax
kS∗

2

S2

S2+k2m
+ kσ

= ρ
S2

S2 + κ

where ρ = r
r+1

and κ = k2m
r+1

with r = vmax
kσkS∗

2

.

Plugging this into 21 we get

0 = mo
σ + kmσρ

S2

S2 + κ
− δS

f
S (22)

where f = kS
δmσ+δAσA

. Simplifying yields

aS3 + bS2 + cS + d = 0 (23)

where a = − δS
f
, b = mo

σ + kmσρ, c = − δS
f
κ, and d = mo

σκ.

Now the discriminant, ∆ = b2c2 − 4ac3 − 4b3d− 27a2d2 + 18abcd, tells us the

number of real steady states (3 if ∆ > 0, 1 if ∆ < 0).

∆ = 20mo
σkmσρ

(
κ
δS
f

)2

+

(
kmσρκ

δS
f

)2

(24)

−4

[
mo
σ
4κ+3mo

σ
3kmσρκ+2

(
mo
σκ
δS
f

)2

+3κ

(
mo
σkmσρ

)2

+mo
σκ

(
kmσρ

)3

+κ2
(
δS
f

)4]
(25)

Since the parameters are all positive, the discriminant is always negative.
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