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Automating Cloud Services Lifecycle through 
Semantic technologies 

Karuna P Joshi, Yelena Yesha, and Tim Finin  

Abstract— Managing virtualized services efficiently over the cloud is an open challenge.  Traditional models of software 

development are not appropriate for the cloud computing domain, where software (and other) services are acquired on demand. 

In this paper, we describe a new integrated methodology for the lifecycle of IT services delivered on the cloud, and demonstrate 

how it can be used to represent and reason about services and service requirements and so automate service acquisition and 

consumption from the cloud.  We have divided the IT service lifecycle into five phases of requirements, discovery, negotiation, 

composition, and consumption. We detail each phase and describe the ontologies that we have developed to represent the 

concepts and relationships for each phase.  To show how this lifecycle can automate the usage of cloud services, we describe a 

cloud storage prototype that we have developed. This methodology complements previous work on ontologies for service 

descriptions in that it is focused on supporting negotiation for the particulars of a service and going beyond simple 

matchmaking.  

Index Terms—Intelligent Web Services and Semantic Web, Lifecycle, Ontology design, Web-based services  

——————————      —————————— 

1 INTRODUCTION

EGARDING Information Technology (IT) as a service 
delivered to the end user is a paradigm shift that is 
fast changing the way businesses looks at the role of 

IT within the organization. The outsourcing model is be-
ing replaced by a new delivery model where businesses 
purchase IT components like software, hardware or net-
work bandwidth as services from providers, who can be 
based anywhere in the world. The service is acquired on 
an as needed basis and can be termed as service on de-
mand.  Typically the service is hosted on a Cloud or a 
computing grid and is delivered to the organization via 
the Internet or mobile devices.  

In such scenarios, multiple providers often collabo-
rate to create a single service for an organization. In some 
cases businesses utilize multiple service providers to mit-
igate risks that may be associated with a single provider. 
In other cases, a business may use a single provider who 
in turn utilizes the services of other providers. In either 
case, the delivery of IT service is moving away from a 
single provider mode, and is increasingly based on the 
composition of multiple other services and assets (techno-
logical, human, or process) that may be supplied by one 
or more service providers distributed across the network 
– in the cloud.  Moreover, a single service component 
could be a part of many composite services as needed. 
The service, in effect, is virtualized on the cloud [38]. It is 
becoming the preferred method to deliver services rang-
ing from helpdesk and back-office functions to Infrastruc-
ture as a Service (IaaS). The virtualized model of service 

delivery also extends to IT Enabled Services (ITeS), which 
typically include a large human element. 

One consequence of this development is that the con-
sumers now have more choices of service providers that 
they can select from. However, at present most of the ser-
vices are delivered as web services providing a singular 
functionality. Often, the onus is on the consumer to pro-
cure these web services individually and then integrate 
them per the requirements. There has been some work in 
creating brokers that would perform this functionality. 
However, such brokers work only on a fixed, linear de-
scription of service functionality which often fails to cap-
ture the complete requirements of the service needed, and 
the flexibility a consumer might have.  In order to be able 
to take advantage of virtualized service models, it is im-
perative for the consumer to be able to identify all the 
constraints or assertions of a service that need to be met 
along with its functional requirements.   
In our discussions with large organizations interested in 
acquiring cloud services, especially from public cloud 
providers, we have observed that a key barrier prevent-
ing organizations from successfully managing virtualized 
services on the cloud is the lack of an integrated method-
ology for service creation and deployment that would 
provide a holistic view of the service lifecycle on a cloud. 
In this paper we present a methodology to address the 
lifecycle issue for virtualized services delivered from the 
cloud. We use semantically rich descriptions of the re-
quirements, constraints, and capabilities that are needed 
by each phase of the lifecycle. This methodology is com-
plementary to previous work on ontologies, like OWL-S, 
for service descriptions in that it is focused on automating 
processes needed to procure services on the cloud. We 
concentrate on enabling multiple iterations of service ne-
gotiation with constraints being relaxed iteratively till a 
service match is obtained. In section 3, we present the 

xxxx-xxxx/0x/$xx.00 © 200x IEEE 

———————————————— 

 Karuna P Joshi, Yelena Yesha and Tim Finin are with the Computer Sci-
ence and Electrical Engineering department, University of Maryland, Bal-
timore County, Baltimore, MD 21250. E-mail: {kjoshi1, yeyesha, finin}@ 
umbc.edu . 

 

Manuscript received (insert date of submission if desired). Please note that all 
acknowledgments should be placed at the end of the paper, before the bibliography. 

R 

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle 
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.



2 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID 

 

high level ontologies that we have created for the various 
phases in this paper, and show where existing ontologies 
can be leveraged. These can be reasoned over to automate 
the phases guided by high level policy constraints pro-
vided by consumers, service customers, or service pro-
viders. The proposed methodology will enable practition-
ers to plan, create and deploy virtualized services success-
fully.   

The key reason to have a semantically rich approach 
to describe cloud attributes and Service Level Agreements 
(SLA) is to permit distributed clients and cloud service 
providers to “automate” the process of acquisition and 
consumption of services. Without a semantic approach 
that will permit the providers and consumers to under-
stand each other, which is the present state of the practice, 
the acquisition process is done manually, and the con-
sumption/monitoring process also requires significant 
manual input. For instance, National Institute of Stand-
ards and Technology (NIST) has identified ambiguity in 
cloud SLAs currently offered by cloud providers as one of 
the factors that prevent broad cloud adoption by large 
organizations, especially federal agencies [46]. It is very 
difficult to compare SLAs offered by two cloud providers 
to determine who is offering the better deal. Also, existing 
cloud SLAs (for instance SLA provided by Amazon at 
http://aws.amazon.com/ec2-sla/) are provided as a text 
document making it open to interpretation and very diffi-
cult to monitor SLA performance and adherence by the 
cloud provider. Additionally, survey of industry sources 
also indicates overall dis-satisfaction among cloud users 
of existing cloud SLA.  

We have developed and implemented a cloud storage 
service prototype to demonstrate and evaluate our meth-
odology. The prototype allows cloud consumers to dis-
cover and acquire disk storage on the cloud by specifying 
the service attributes, security policies and compliance 
policies via a simple user interface. We used W3C stand-
ard Semantic Web technologies, such as Web Ontology 
Language (OWL) [18], Resource Description Framework 
(RDF) [15], and SPARQL [24], to develop our prototype 
system since they enable us to build the vocabulary (or 
ontology) of our service lifecycle using standardized lan-
guages that support our design requirements, which in-
clude interoperability, sound semantics, Web integration, 
and the availability of tools and system components. 

Our most fundamental requirement is for a represen-
tation that supports interoperability at both the syntactic 
and semantic levels.  The OWL [18] language has a well-
defined semantics that is grounded in first order logic and 
model theory.  This allows programs to draw inferences 
from OWL expressions with the assurance that the subse-
quent interpretation is sound.  An important advantage 
for OWL over many other knowledge-based systems lan-
guages is that there are well defined subsets that guaran-
tee sound and complete reasoning with various levels of 
complexity (e.g., N2ExpTime for OWL 2 DL). Moreover, 
there are also profiles that are tuned to work well with 
popular implementation technologies, e.g., OWL QL for 
databases and OWL RL for rule-based systems. 

A second design requirement is for a language that is 

designed to integrate well with the Web, which has be-
come the dominant technology for today's distributed 
information systems.  OWL is built on basic Web stand-
ards and protocols and is evolving to remain compatible 
with them.  It is possible to embed RDF and OWL 
knowledge in HTML pages and several search engines 
(including Google) will find and process some embedded 
RDF.  RDF is also compatible with Microdata, a Web Hy-
pertext Application Technology Working Group HTML 
specification that is used to nest semantic statements 
within existing content on web pages. Microdata has been 
adopted by Schema.org, collaboration by Google, Mi-
crosoft, and Yahoo!, and has been used to define a num-
ber of basic ontologies that are being supported by search 
engines. 

Finally, there are a wide variety of both commercial 
and open sourced tools that support Semantic Web lan-
guages and systems including knowledge base editors, 
reasoners, triple stores, SPARQL query engines (includ-
ing some that support federated queries), ontology map-
ping, etc.  Several database vendors, including Oracle and 
IBM, have sophisticated support for representing RDF 
and OWL, including reasoning. 

2 RELATED WORK 

Since cloud computing is a nascent field, there is lack of 
standardization and a need has been felt to clearly define 
its key elements. NIST has recently released a special pub-
lication 800-145 [19] defining cloud computing as a model 
for enabling ubiquitous, convenient, on-demand network 
access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released 
with minimal management effort or service provider in-
teraction. One of the key characteristics identified by 
NIST is that a cloud service should have the capability of 
on-demand self-service whereby a consumer can unilat-
erally provision computing capabilities, such as server 
time and network storage, as needed automatically with-
out requiring human interaction with each service pro-
vider. Currently it is very difficult for organizations to 
specify their data, security, privacy and compliance poli-
cies while automatically provisioning cloud services. We 
have addressed this in our proposed framework de-
scribed in the next section.  

In addition to the standard definition of Cloud Com-
puting, NIST has also released the Cloud Computing Ref-
erence Architecture [20] document that describes a refer-
ence architecture for cloud computing and also the key 
roles and responsibilities of stakeholders. The authors of 
this paper were part of the NIST cloud computing refer-
ence architecture and taxonomy working group that par-
ticipated in developing the standard. We have referenced 
the NIST cloud computing standards to develop our on-
tology that is described in the next section. 

Current research on cloud or web services so far has 
been limited to exploring a single aspect of the lifecycle 
like service discovery, service composition or service 
quality. There is no integrated methodology for the entire 
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service lifecycle covering service planning, development 
and deployment in the Cloud. In addition, most of the 
work is limited to the software component of the service 
and does not cover the service processes or human agents 
which are a critical component of IT Services. 

Papazoglou and Heuvel [22] have proposed a meth-
odology for developing and deploying web services using 
service oriented architectures. Their approach, however, 
is limited to the creation and deployment of web services 
and does not account for virtualized environment where 
services are composed on demand. Providers may need 
to combine their services with other resources or provid-
ers’ services to meet consumer needs. Other methodolo-
gies, like that proposed by Bianchini et al. [3], do not pro-
vide this flexibility and are limited to cases where a single 
service provider provides one service. Zeng et al. [33] 
address the quality based selection of composite services 
via a global planning approach but do not cover the hu-
man factors in quality metrics used for selecting the com-
ponents. Maximilien and Singh [17] propose an ontology 
to capture quality of a web service so that quality attrib-
utes can be used while selecting a service. While their 
ontology can serve as a key building block in our system, 
it is limited by the fact that it considers single web ser-
vices, rather than service compositions.  

Black et al. [4] have proposed an integrated model for 
IT service management. Their model is limited to manag-
ing the service from the service provider’s perspective. 
Paurobally et al. [23] have described a framework for ne-
gotiation of web services using the iterated Contract Net 
Protocol (CNP) [29]. However their implementation is 
limited to pre-existing web services and doesn’t extend to 
virtualized services that are composed on demand. Our 
negotiation protocol detailed in next section accounts for 
the fact that the service will be composed only after the 
contract/SLA listing the constraints is finalized. GoodRe-
lations [6] is an ontology developed for E-commerce to 
describe products. While this ontology is useful for de-
scribing service components that already exist on the 
cloud, it is difficult to describe composite virtualized ser-
vices being provided by multiple vendors using this on-
tology. K. Ren et al. [34] have proposed a technique for 
more efficient composition of semantic services. 

Research on Grid computing has also examined is-
sues on on-demand provisioning and service discov-
ery/composition [39][40][41][42][43][44]. This research 
has primarily concentrated on addressing issues from 
cloud provider’s perspective. Given the origins of Grid 
computing in the scientific computing domain, this makes 
perfect sense. However, many issues related to policies of 
the consumer and the service acquisition processes are 
ignored. We approach the issue instead of looking at it 
from a holistic viewpoint of both the consumer as well as 
the provider. The authors have also not accounted for 
virtualized services that will be created by combining pre-
existing components. 

The Information Technology Infrastructure Library 
(ITIL) is a set of concepts and policies for managing IT 
infrastructure, development and operations that has wide 
acceptance in the industry. The latest version of ITIL lists 

policies for managing IT services [31] that cover aspects of 
service strategy, service design, service transition, service 
operation and continual service improvement. However, 
it is limited to interpreting “IT services” as products and 
applications that are offered by in-house IT department or 
IT consulting companies to an organization. This frame-
work in its present form does not extend to the service 
cloud or a virtualized environment that consists of one or 
more composite services generated on demand.  

2.1 Semantic Web 

As we explained in the introduction, we have used 
Semantic Web technologies to develop the services lifecy-
cle and prototype development. Semantic Web enables 
data to be annotated with machine understandable meta-
data, allowing the automation of their retrieval and their 
usage in correct contexts. Semantic Web technologies in-
clude languages such as RDF [15] and OWL [18] for defin-
ing ontologies and describing meta-data using these on-
tologies as well as tools for reasoning over these descrip-
tions. OWL is based on Description Logic (DL) [1] with a 
representation in RDF.  OWL Semantic Web knowledge 
can also be encoded in rule format using several ap-
proaches, including N3-logic rules [2], SWRL rules [7] 
and RIF, the new W3C standard for Rule Inter-change 
Formalism. These technologies can be used to provide 
common semantics of Service information and policies 
enabling all agents who understand basic Semantic Web 
technologies to communicate and use each other’s data 
and Services effectively. 

Several OWL ontologies have been developed to de-
scribe Services, including Ontology Web Language for 
Services (OWL-S) [16] and Semantic Annotations for 
WSDL and XML Schema (SAWSDL) [14]. OWL-S allows 
Service providers or brokers to define their Services based 
on agreed upon ontologies that describe the functions 
they provide. We have integrated the OWL-S ontology 
into our ontology and it is described in section 3.4 below. 
SAWSDL defines mechanisms using which semantic an-
notations can be added to WSDL components.  Sheth et. 
al [27] describe the METEOR-S project that resulted in the 
submission of WSDLS specification which was used as 
the input for SAWSDL.  

SPARQL Protocol and RDF Query Language 
(SPARQL) is the query language for RDF that has been 
standardized by W3C [24]. SPARQL can be used to ex-
press queries across diverse data sources, whether the 
data is stored natively as RDF or viewed as RDF via mid-
dleware. The results of SPARQL queries can be results 
sets or RDF graphs. A SPARQL endpoint is a conformant 
SPARQL protocol service as defined in the SPARQL Pro-
tocol for RDF (SPROT) specification [30]. It enables users 
to query a knowledge base via the SPARQL language. 
Results are typically returned in one or more machine-
processable formats. Therefore, a SPARQL endpoint is 
mostly conceived as a machine-friendly interface towards 
a knowledge base. Service Descriptions [32] specify the 
capabilities of a SPARQL endpoint. They provide a de-
clarative description of the data available from an end-
point, the definition of limitations on access patterns and 
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statistical information about the available data that is 
used for query optimization. 

3 PROPOSED SERVICE LIFECYCLE ONTOLOGY  

Traditional models of software development, like the 
waterfall method or the spiral method [5], consists of 
phases like planning, analysis, design, testing and ac-
ceptance.  These methodologies are found to be very time 
consuming and require extensive human labor, both from 
the software application consumer as well as the provid-
er. Cloud computing environment promises agility, elas-
ticity and quick turnaround time for provisioning re-
sources and services. Virtualized services that provide 
‘on-demand’ service on the cloud are mainly built by 
combining pre-existing components that are developed 
by same or multiple providers. In this scenario, following 
traditional software lifecycle methodologies will signifi-
cantly slow the service delivery time thereby rending the 
service provider uncompetitive in the cloud market. 
Hence we believe a radically different methodology is 
needed for cloud based services. 

To develop this ontology, we had detailed discussions 
with various large organizations who are interested in 
acquiring cloud based services. Among our chief collabo-
rators were NIST, our university’s division of IT, and a 
large international financial organization with global 
presence. Additionally, one of the authors of this paper 
has had extensive experience in managing large IT ser-

vices and we were able to draw on that experience while 
developing this framework. While developing the ontolo-
gy we referred to NIST’s cloud computing reference ar-
chitecture [20] to identify the key stakeholders in the 
lifecycle. 

We divide the virtualized service lifecycle on a cloud 
into five phases. In sequential order of execution they are 
requirements, discovery, negotiation, composition, and 
consumption. Our focus for this framework is the lifecy-
cle for virtualized cloud services – where the services are 
composed by combining pre-existing components. Hence 
this lifecycle does not include any requirements analysis 
or design phases. We assume that services, that are de-
signed using a variety of existing approaches, will be de-
scribed using our ontology – something that can be done 
post facto - and will be discoverable using standard (web) 
service type mechanisms (e.g. UDDI, SLP …). We also 
permit these services to be arbitrarily composed to create 
new services. We argue that this hews closely to the cloud 
model – a provider has a set of available services which 
can be made available as is, or in combination with other 
services. We do not claim that cloud providers only offer 
pre-existing component based services; however a survey 
of current cloud based offerings has shown us that major-
ity of the cloud services consist of pre-existing compo-
nents with minimal configuration capability and so we 
gather this is what the consumers are currently interested 
in from cloud providers.   

Figure 1: The IT service lifecycle on a cloud comprises of five phases: requirements, discovery, negotiation, composition 
and consumption 
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Our ontology does not describe the service, but de-
fines the data and processes needed to automate the ac-
quisition and consumption of cloud services. The pro-
cesses of acquiring such services are largely independent 
of the type of cloud service (IaaS, SaaS, PaaS), cloud de-
ployment (private, public, hybrid) or service domain 
(computing services, healthcare, financial services etc.). 
Our framework assumes that users will be defining the 
ontologies for functional and technical specifications for 
the service which will obviously vary for different do-
mains. There is a significant body of work (e.g. SAWSDL, 
WSDL-S, WSMO …) that provides ontologies to describe 
specific services in terms of their functional and technical 
specifications. Our framework makes it possible to inte-
grate these functional and technical specifications with 
other enterprise specific policies defined using the ontol-
ogies we provide (like privacy, security, compliance, hu-
man agent policies) in the requirements phase. And so 
only the functional description of the requirements phase 
ontology will have to be defined for each service.  Our 
prototype described in next section is an example, where, 
for completeness, we have also described the service itself 
to show how our overall framework would work.  

We have described the five phases in detail along 
with the associated metrics in [10]. Figure 1 is a pictorial 
representation detailing the processes and data flow of 
the five phases. In the following sections we present the 
pictorial representations of high-level ontologies that we 
have created for each phase. We have developed the on-
tology for the entire lifecycle in OWL 2 DL profile and it 
can be accessed at [11]. 

3.1 Service Requirements Phase  

In the service requirements phase the consumer de-
tails the technical and functional specifications that a ser-
vice needs to fulfill. While defining the service require-
ments, the consumer also specifies non-functional attrib-
utes like characteristics of the human agent providing the 
service, constraints and preferences on data quality and 
required security policies for the service. Service compli-
ance details like certifications needed, standards to be 
adhered to etc. are also identified. The technical specifica-
tions lay down the hardware, software, application 
standards and language support policies to which a ser-
vice should adhere.  Once the consumers have identified 
and classified their service needs, they issue a Request for 
Service (RFS). This RFS can be generated in a machine 
readable format using Semantic Web technologies and we 
have illustrated this in the next section.  

Majority of the users will not have static requirements 
and might not be able to initially articulate all their needs. 
Also, the requirements will continue to evolve as users 
acquire more and more cloud services. Hence our frame-
work captures a ‘snapshot’ of the user requirements via 
the RFS and imitates the service discovery process to ac-
quire services that match that snapshot. If the user is not 
satisfied with the services discovered, they can change 
their requirements (say, by increasing the cost constraint) 
and/or policies and re-start the discovery phase with a 
new RFS. We also assume that the user requirements will 
change once the user begins consuming the services and 
so we show a link between the consumption and re-
quirements phase (see figure 1) to indicate system  trig-
gers  that could start a new cycle of service acquisition 

Figure 2: Ontology of service requirements phase contains the RFS class that includes Specification class 
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with a different requirements snapshot (new RFS).  
Some of the policies and constraints that may be in-

cluded in RFS are listed below. Additional poli-
cies/constraints that may be domain specific can be speci-
fied as needed. 
1. Functional specifications list  

a. Service tasks to be provided  
b. Budgetary/Cost policies and constraints 
c. Service Domain  

2. Technical specifications  
a. Service’s Software applications  
b. Software compatibility constraints 
c. Hardware Policy – e.g. Mobile device, PC, 

Server, Multicore etc. 
d. Operating System Policy – e.g. single OS 

support, multiple OS support 
e. Language Support Policy 
f. Cloud Deployment – Private, Public, Hybrid, 

Community 
g. Cloud Service Layer – IaaS, PaaS, SaaS  

3. Human Agent policy  
a. Agent experience in years 
b. Agent skill level 
c. Agent’s location constraints 
d. Nationality/Work permit constraints  

4. Security Policy 
a. Roles and Permissions  
b. Cloud/Service Provider Location constraints 
c. Data Encryption , Deletion constraints 
d. Virtualization - Virtual Machine separation  
e. Multi-tenancy policies 

5. Data Quality Policy 
a. Low quality data may be acceptable to con-

sumer if it provides cost saving 
6. Service Compliance Policy  

a. Standards adhered  
b. Certifications needed 
c. Government regulations adhered. 

While we have developed ontologies for generic pro-
cesses, domain specific technical specifications will re-
quire their own ontologies. For example, for the compu-
ting service, the ontology will define the semantics of 
each computing term like processor speed, processor 
memory, number of cores, etc. Cloud vendors may bun-
dle their service offerings in any combination and give it 
brand names like ‘compute unit’ ; however the technical 
specifications will specify each attribute desired and so 
will make it possible to query across disparate services 
offering similar service with different attributes bundled 
together. Many such ontologies exist and can be used, for 
example DReggie [45]. This is part of the W3C standard-
ized semantic web approach.   

Figure 2 illustrates the high level ontology for this 
phase. The two main classes are the Specification class 
and the “Request For Service” class. The Specification 
class consists of six main classes that define the functional 
specifications, technical specifications, Human agent 
specifications, security policies, service compliance poli-
cies and data quality policies. The functional specifica-
tions include the tasks to be automated by the service, the 
cloud service layer and the service domain. The three 
cloud service layers that have been identified by NIST 
[19] are Infrastructure as a Service (IaaS), Platform as a 
Service (PaaS) and Software as a Service (SaaS). The func-
tional specifications also include the budgetary policies 
and cost (the price that the consumer is ready to pay for 
the service) constraints associated with the service. The 
technical specifications contain information about the 
Hardware, Operating System and other compatible ser-
vices/applications that the desired service should con-

Figure 3: Ontology for service discovery phase uses the RFS class to search for providers and generate a Provider list 
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form to. Human Agent specifications also list the tech-
nical and domain expertise that the service providing 
agent should have. The security constraints specified in 
the RFS include policies regarding service role/ permis-
sion levels, data security policies and cloud loca-
tion/ownership policies.  

Part of our ongoing work is to use existing ontologies 
that have been developed for classes like standard hard-
ware, operating systems and computer applications. Se-
mantic Web policy language, like AIR [13], can be used to 
describe service specifications and constraints in ma-
chine-processable format. 

Most large organizations already have clearly defined 
policies for acquiring services. In addition, the policies 
that have to be specified in the RFS already exist as insti-
tutional or enterprise policies. These enterprise policies 
are centrally managed by the organization’s head and 
may be electronically maintained across various organiza-
tional functions like Legal, Human Resources, Procure-
ment, IT and Telecommunications, Facilities and Security. 
It will be a one-time effort for the organization to consoli-
date these policies into a single machine readable format 
to create organization’s service policy document or sys-
tem. The service policy document can then be invoked 
each time a new RFS has to be issued thereby automating 
the RFS process. This will significantly reduce the amount 
of time needed for the Service Requirements phase and 
also significantly reduce if not completely eliminate poli-
cy oversight while acquiring a service.  

3.2 Service Discovery Phase  

In the Service Discovery phase, providers are discovered 
by comparing the specifications listed in the RFS with 
service descriptions. The discovery is constrained by 
functional and technical attributes defined, and also by 
the budgetary, security, compliance, data quality and 
agent policies of the consumer. An organization can re-
lease the RFS to a limited pre-approved set of providers. 
Alternatively, it can search for all possible vendors on the 
Internet. While searching the provider, service search en-
gines or cloud brokers can be employed. A ‘Cloud Broker’ 
role has been identified in the NIST reference architecture 
[20] which we use in our ontology. This cloud broker runs 
a query against the services registered with a central reg-
istry or governing body and matches the service layer, 
domain, data type, compliance needs, functional and 
technical specifications and returns the result with the 
service providers matching the maximum number of re-
quirements listed at the top. Sbodio et al. [26] and Paliwal 
et al. [35] have presented semantic approaches for service 
discovery which can be incorporated in our methodology.  

One critical part of this phase is service certification, 
in which the consumers will contact a central registry, like 
UDDI [25], to get references for providers that they nar-
row down to. The NIST reference architecture [20] has 
identified a Cloud Auditor role that will be primarily re-
sponsible for Security Audit, Performance Audit and Pri-
vacy Impact Audit of the cloud. We use this role in our 
ontology to be the ‘provider certifying agent’ that will be 
referenced in the Service Discovery Phase. 

Figure 3 illustrates the high level ontology for the 
service discovery phase, which uses the RFS class from 
the requirements phase to search for service providers 
and generate a list of providers with which to begin nego-
tiations. The Cloud Auditor validates the provider’s cre-
dentials and issues a service certification if the credentials 
are fine. The cloud consumer’s policies will determine if 
the cloud provider certification is essential or it can be 
skipped. Large organizations with stricter security poli-
cies can mandate that a provider is added to the provid-
er’s list only after the certification is received. 

If the cloud consumers find the exact service within 
their budgets, they can begin consuming the service im-
mediately upon payment. However, often the consumers 
will get a list of providers who will need to compose a 
service to meet the consumer’s specifications. The cloud 
consumer will have to begin negotiation with the service 
providers which is the next phase of the lifecycle. Each 
search result will return the primary provider who will be 
negotiating with the consumer. 

3.3 Service Negotiation phase 

The service negotiation phase covers the discussion and 
agreement that the service provider and consumer have 
regarding the service delivered and its acceptance criteria. 
In our discussion with our collaborators we found that 
the negotiation of SLA for the cloud services procured is 
the most time consuming portion of the cloud service 
procurement process. Automation of this process using 
SPARQL queries is itself a performance improvement 
over the existing human-based negotiation. The service to 
be delivered is determined by the specifications laid 
down in the RFS. Service acceptance is usually guided by 

Figure 4: Service negotiation sequence diagram 
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the Service Level Agreements (SLA) [28] that the service 
provider and consumer agree upon. SLAs define the ser-
vice data, delivery mode, agent details, quality metrics 
and cost of the service. While negotiating the service lev-
els with potential service providers, consumers can ex-
plicitly specify service quality constraints (data quality, 
cost, security, response time, etc.) that they require. 

 At times, the service provider will need to combine a 
set of services or compose a service from various compo-
nents delivered by distinct service providers in order to 
meet the consumer’s requirements. The negotiation phase 
also includes the discussions that the main service pro-
vider has with the other component providers. When the 
services are provided by multiple providers (composite 
service), the primary provider interfacing with the con-
sumer is responsible for composition of the service. The 
primary provider will also have to negotiate the Quality 
of Service (QoS) with the secondary service providers to 
ensure that SLA metrics are met. The negotiation steps 
are listed below and shown in the negotiation sequence 
diagram in Figure 4.  
 
Steps for Service Negotiation on the Cloud  
1. The consumer sends a RFS to the provider specifying 
the functional and non-functional requirements. 
2.  The provider responds to the RFS in one of three ways 

a) Informs the consumer that it cannot provide the ser-

vice, terminating negotiation. 
b) Indicates that a service matching all the require-

ments exists and sends the quote with SLAs.  
c) Indicates that there is a partial match of require-

ments and sends the quote with SLA file listing matching 
constraints. 
3. The consumer receives and considers the quote 
4. The consumer responds to the quote in one of three 
ways 

a) If the quote is a partial match, the consumer relaxes 
the service constraints and/or functionality and resends 
the RFS to the provider. The provider repeats the actions 
in step 2. 

b) If the response is a full match and the consumer is 
satisfied with the offer then negotiation is regarded com-
plete.  The consumer signs this offer and returns it as an 
SLA. 

c) The consumer can decline the service, terminating 
the negotiation. 
5. The provider responds to the RFS in one of two ways 

a) The provider can no longer provide the service, and 
rejects the agreement, terminating negotiation. 

b) The provider agrees with the constraints, and the 
same RDF file consisting of the SLA now exists with both 
parties. 

 

Figure 5: Ontology for service negotiation uses the RFS class for the contract negotiation and creation of SLA and QoS 
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We have constructed a high level ontology for this 
phase and it is illustrated in Figure 5. This phase uses the 
RFS class from the requirements phase and the provider’s 
list class from the discovery phase to negotiate the con-
tracts between consumer and primary provider and be-
tween the various component providers themselves. The 
key deliverable of this phase is the service contract be-
tween the service consumer and service provider. The 
SLA is a key part of this service contract and will be used 
in the subsequent phases to compose and monitor the 
service. Another deliverable of this phase are the service 
sub contracts between the service provider and compo-
nent (or dependent services) providers. The QoS are the 
essential part of the service sub-contracts and are used in 
the consumption phase to monitor service performance. 

3.4 Service Composition phase 

In this phase one or more components provided by one 
or more providers are combined and delivered as a single 
service to the service consumer. Service orchestration de-
termines the sequence of the service components. 

Figure 6 illustrates the high level ontology for this 
phase. The main class of this phase is the Service class 
that combines the various components into a single ser-
vice. We include the OWL-S Composite Process class on-
tology. The Service class takes inputs from the Specifica-
tion, Service Contracts and Service Level Agreement clas-
ses defined in the earlier phases to determine the orches-
tration of the various components.  

3.5 Service Consumption/Monitoring phase 

The service is delivered to the consumer based on the 
delivery mode (synchronous/asynchronous, real-time, 
batch mode etc.) agreed upon in the negotiation phase. 

After the service is delivered to the consumer, payment is 
made for the same based on the pricing model agreed to 
in the SLA. The consumer then begins consuming the 
service. In a cloud environment, the service usually re-
sides on remote machines managed by the service pro-
viders. Hence the onus for administrating, managing and 
monitoring the service lies with the provider. In this 
phase, consumer will require tools that enable service 
quality monitoring and service termination if needed. 
This will involve alerts to humans or automatic termina-
tion based on policies defined using the quality related 
ontologies. The Service Monitor measures the service 
quality and compares it with the quality levels defined in 
the SLA. This phase spans both the consumer and cloud 
areas as performance monitoring is a joint responsibility. 
If the consumer is not satisfied with the service quality, 
s/he should have the option to terminate the service and 
stop service payment.   

Figure 7 illustrates the ontology for this phase. The 
composite service is composed of human agents provid-
ing the service, the service software and dependent ser-
vice components. All the three elements, agents, software 
and dependent services, must be monitored to manage 
the overall service quality. The providers have to track 
the service performance, reliability, assurance and presen-
tation as it will influence customer’s satisfaction rating 
(CSATs). Since the dependent services/components will 
be at the backend and will not interface directly with the 
consumers, the service provider only needs to monitor 
their performance. We have proposed a framework to 
manage quality based on fuzzy-logic for such composed 
services delivered on the cloud in [12]. 

Figure 6: Ontology for composition phase builds on the OWL-S composite process class 
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 4 CLOUD STORAGE SERVICE PROTOTYPE  

In this section we describe the prototype that we have 
constructed as a proof of concept for our proposed lifecy-
cle and ontology. This prototype is based on the actual 
use-case 3.9 [36] identified by NIST’s cloud computing 
initiative.  It demonstrates the capability that cloud users 
will have in the future to automatically acquire IT ser-
vices from the cloud. There are many cloud providers, 
like Amazon or Dropbox, that provide cloud storage ser-
vices. However, to show end-end operation of our system 
(from policy specification to service acquisition), we de-
veloped the prototype on an open source cloud platform 
(Eucalyptus). This let us demonstrate, for example, that 
the cloud provider could satisfy the user request for Vir-
tual Machine (VM) separation, which was a key require-
ment for NIST. Our framework is fully capable of describ-
ing such constraints, which we demonstrated by using 
real constraints that represent federal agency require-
ments that we obtained from NIST. However, there is no 
way for us to invoke such mechanisms on closed clouds 
such as Amazon or Dropbox. As such, the demonstration 
prototype is built on an open source platform.   

4.1 Service Description 

For the prototype we consider a simple Storage service, as 
a representative scenario for Infrastructure as a Service 
(IaaS), whereby users can store their files/data on the 
cloud. It consists of a web interface that enables cloud 
users to easily define the service policies and constraints 

by choosing predefined values from dropdown fields. 
The tool then discovers the services that will match the 
specified policies. A Cloud-provider end server process 
interprets the policies specified by the user(s) and estab-
lishes SLAs by the process of negotiation. 
We have incorporated actual enterprise policies related to 
data storage and security that are practiced by large or-
ganizations. We have used the policies defined in the use 
case 3.9 [36] identified by the NIST cloud computing initi-
ative. While requesting the storage service, users will 
specify the following service attributes depending on 
their storage needs.  

1. Storage size needed (in GB/TB units) 
2. Service Cost (The price consumers are willing to 

pay for the service) 
3. Data Preservation/Backup requirements (Hot 

backup-Yes/No; daily/weekly) 
4. Service availability (e.g. 99%, 99.9% etc.) 
5. Data Location (restricted to a geo-location or can 

be anywhere in the world) 
6. Data deletion policy (data deleted or merely 

made inaccessible, secure wipe or not) 
7. Data Encryption policy (data stored encrypted or 

not; encryption algorithm used, key strength) 
8. Compliance policy - compliance or noncompli-

ance for a Trusted Internet Connection (TIC) 
specification, CC Evaluation Assurance Level 
(EAL) levels 

9. User authentication mechanism (FIPS 140-2 sup-
ported?) 

Figure 7: Ontology for consumption phase contains classes to monitor the quality of software, human and dependent 
components of the composite process. 
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10. Virtual Machine (VM) separation (supported or 
not) 

11. Size, speed and number of cores for an instance 
specification,  

12. SOAP or REST interface for a storage specifica-
tion.  

 
In addition to the NIST policies, we have also referred to 
service procurement policies of a large international fi-
nancial organization. The main goal of this organization’s 
service procurement policy is to acquire the “best value” 
service that will have an optimal combination of technical 
factors (like quality, functionality, service, innovation, 
environmental sustainability) and financial factors (like 
purchase price, total cost of ownership etc.) that meet the 
organization’s needs. To acquire the “best value” service 
in a transparent fashion, the organization’s policies man-
date that any purchases above US$25,000 have to be done 
via a competitive procurement process that considers 
multiple competing proposals from qualified suppliers, 
and makes an award decision based on the merits of each 
proposal, relative to some predetermined criteria for best 
value. Exceptions are made if the service product is sold 
by only one vendor (sole-sourced) thereby rending the 
competitive bid a moot point. To continue receiving ‘best 
value’ service, the service contract by policy is limited to 
three years and then competitively re-bid at the end of the 
third year. Every service provider is expected to sign a 
Service Level Agreement (SLA) as part of the service con-
tract. The essential elements of the SLA include the avail-

ability timeframe of service, contingency plans, 
timeframes for notification and recovery following an 
unplanned service disruption or a security incident, prob-
lem resolution and escalation procedures, and scheduled 
maintenance times. We have used these elements when 
developing the SLAs during the negotiation phase. 

4.2 Prototype Platform 

We used Semantic Web technologies to build the front 
end of our prototype as they are platform independent 
and inter-operable. We used SPARQL, Jena Semantic Web 
framework [8] and the Joseki software [9], which is a 
HTTP engine that supports the SPARQL Protocol and the 
SPARQL RDF Query language, to develop the prototype. 
After defining our service, we created a SPARQL end-
point using Joseki to simulate a service provider provid-
ing the service. Since the Joseki server allows multiple 
service definitions, we used it to simulate both multiple 
services provided by the provider as well as multiple in-
stances of a same service.  The Joseki service database 
contained the service description along with the provider 
policies endpoint. For the cloud-end processes, we used 
the Eucalyptus Cloud [21] which is an open source cloud 
platform that we have installed in our research lab. We 
are using our service lifecycle ontology that we described 
in the previous section and the OWL-S ontology to devel-
op the tool. In addition to these two ontologies, we also 
created another OWL ontology to describe the technical 
and security policies for our prototype. 

Figure 8: User Interface for discovering Cloud storage service by specifying constraints 
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4.3 Service Requirements 

In the requirements phase, we identify the service layer 
which is IaaS for our prototype, the service domain - in 
this instance storage service – and the functional and 
technical specifications. Functional specification describe 
in detail what functions/tasks should the service help 
automate. These are mandatory attributes that the service 
provider must provide. For our prototype, the service 
attributes are the storage size, backup rules, service avail-
ability and service costs. Specifications also list acceptable 
security levels, data quality and performance levels of the 
service software. Service compliance details like required 
certifications, standards to be adhered to etc. are also 
identified.  

Our prototype has a web-based user interface, illus-
trated in figure 8, which allows consumers to generate 
their RFS by using drop down lists. The interface logically 
separates the various components of the RFS into four 
sections – the mandatory service attributes include con-
straints that have to be met; the data and security policies, 
compliance policies and cloud instance.  Each field has an 
associate ‘Help’ description to help users determine 
which option to select.  
After selecting the values of their service attributes, secu-

rity policies and compliance policies, the consumers can 
press the ‘Request for Service’ button to generate a RDF 
document that contains the RFS. Figure 9 illustrates the 
RDF/XML document generated for the attributes selected 
in figure 8. 

4.4 Service Discovery 

The users can press the ‘Discover Services’ button to 
search for services that match the RFS issued. The tool 
generates federated SPARQL queries, like the one illus-
trated in Figure 10, based on the selections on the screen. 
This query runs across multiple SPARQL endpoints to 
retrieve a list of matching services residing on that end-
point. Researchers like Sbodio et. al [26] have also pro-
posed algorithms for service discovery using SPARQL 
language.  

PREFIX stg:     http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl 

PREFIX owls:   <http://www.ai.sri.com/daml/services/owl-s/1.2/Profile.owl> 

PREFIX sv:     <http://www.cs.umbc.edu/~kjoshi1/IT_Service_Ontology.owl> 

SELECT ?serviceName ?textDescription ?Cost ?creator ?Backup ?Availability 

?Storage_size ?datadeletion ?Encryption ?authentication ?VMseparation ?stor-

age_interface ?TIC_connection ?CC_EAL ?cloud_instance_size 

?cloud_instance_speed ?cloud_instance_cores   

 { SERVICE <http://eb4.cs.umbc.edu:2020/Storage> 

     { SELECT  ?serviceName ?textDescription ?creator ?Cost ?Location ?Backup 

?Availability ?Storage_size ?datadeletion ?Encryption ?authentication ?VMsepa-

ration ?storage_interface ?TIC_connection ?CC_EAL ?cloud_instance_size 

?cloud_instance_speed ?cloud_instance_cores 

      WHERE 

      {?serviceName owls:textDescription ?textDescription . 

       ?serviceName sv:creator ?creator . ?serviceName stg:Storage_size ?Stor-

age_size FILTER regex(?Storage_size, "2GB" ,"i"). 

?serviceName stg:Cost ?Cost FILTER regex(?Cost, "0" ,"i"). 

?serviceName stg:Availability ?Availability FILTER regex(?Availability, "95" 

,"i"). 

?serviceName stg:Backup ?Backup FILTER regex(?Backup, "Weekly","i"). 

?serviceName stg:authentication ?authentication FILTER regex(?authentication, 

"FIPS 140 2 supported" ,"i"). 

?serviceName stg:Encryption ?Encryption FILTER regex(?Encryption, "No 

Encryption" ,"i"). 

?serviceName stg:Location ?Location FILTER regex(?Location, "global" ,"i"). 

?serviceName stg:datadeletion ?datadeletion FILTER regex(?datadeletion, "data 

archived" ,"i"). 

?serviceName stg:VMseparation ?VMseparation FILTER regex(?VMseparation, 

"Not needed" ,"i"). 

?serviceName stg:storage_interface ?storage_interface FILTER regex (?stor-

age_interface, "SOAP WSDL" ,"i"). 

?serviceName stg:TIC_connection ?TIC_connection FILTER regex 

(?TIC_connection, "TIC Compliant" ,"i"). 

?serviceName stg:CC_EAL ?CC_EAL FILTER regex(?CC_EAL, "3" ,"i"). 

?serviceName stg:cloud_instance_size ?cloud_instance_size FILTER re-

gex(?cloud_instance_size, "1GB" ,"i"). 

?serviceName stg:cloud_instance_speed ?cloud_instance_speed FILTER re-

gex(?cloud_instance_speed, "1GHz" ,"i"). 

?serviceName stg:cloud_instance_cores ?cloud_instance_cores FILTER re-

gex(?cloud_instance_cores, "10" ,"i"). 

 } } } 

Figure 10: Service Discovery by using SPARQL query to 
get service description 

Figure 9: RFS generated as a RDF/XML file 

<?xml version="1.0"?> 

<rdf:RDF  

xmlns="http://www.w3.org/2002/07/owl#"  

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"  

xmlns:dc="http://purl.org/dc/elements/1.1/"  

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"  

xmlns:itso="http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl"  

xmlns:stg="http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl" 

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">  

<rdf:Description rdf:about="http://localhost/RFS"> 

<itso:RFS_Respond_By_Date> Sun Dec 25 14:48:27 2011 

</itso:RFS_Respond_By_Date> 

<itso:Expected_Begin_Date_of_Service> 1-1-2012 

</itso:Expected_Begin_Date_of_Service> 

<itso:Service_Cost_Constraint> 0 </itso:Service_Cost_Constraint> 

<itso:Service_Location_constraint> global 

</itso:Service_Location_constraint> 

<stg:storage> 2GB </stg:storage> 

<stg:backup> Weekly </stg:backup> 

<stg:availability> 95 </stg:availability> 

<stg:datadeletion> data archived </stg:datadeletion> 

<stg:Encryption> No Encryption </stg:Encryption> 

<stg:authentication> FIPS 140 2 supported </stg:authentication> 

<stg:VMseparation> Not needed </stg:VMseparation> 

<stg:storage_interface> SOAP WSDL </stg:storage_interface> 

<stg:TIC_connection> TIC Compliant </stg:TIC_connection> 

<stg:CC_EAL> 3 </stg:CC_EAL> 

<stg:cloud_instance_size> 1GB </stg:cloud_instance_size> 

<stg:cloud_instance_speed> 1GHz </stg:cloud_instance_speed> 

<stg:cloud_instance_cores> 6 </stg:cloud_instance_cores> 

</rdf:Description> 

</rdf:RDF> 
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If a query matching all the constraints is found, it is 
displayed on the screen. Else the user is advised to begin 
service negotiation by selecting the Negotiation button. 

4.5   Service Negotiation 

The users can press the ‘Negotiate and Finalize SLA’ but-
ton to begin the service negotiation. The tool automatical-
ly begins relaxing RFS constraints one by one by remov-
ing the constraints from the SPARQL query and generat-
ing a new SPARQL query to search the endpoints. The 
order of constraints relaxation for this prototype was de-
termined by the NIST team that was collaborating with us 
who specified the priority of each constraint in the RFS. 
After each constraint relaxation, the tool executes a new 
SPARQL query to discover services that match the new 
constraint set. When a service match is found, the tool 
returns the service details of that service along with a list 
of constraints not met. The consumer can finalize the SLA 
by accepting the service that best matched the constraints. 
The final SLA is saved as a RDF file and is in machine 
readable format.  

4.6   Service Composition and Consumption 

The user tool is interfaced to the Eucalyptus [21] Cloud 
which is an Infrastructure as a Service (IaaS) cloud solu-
tion. The tool and the Eucalyptus cloud were installed on 
separate machines. Due to security reasons, the Eucalyp-
tus installation had no direct internet access and no direct 
access to the tool. The two systems communicated 
through an intermediate node called Bluegrit which is a 
116 core PowerPC cluster managed at UMBC 

When the user clicks the Compose button, a Virtual 
Machine is created on the Eucalyptus cloud environment. 
The finalized SLA is referred to by an automated routine 
when launching the virtual machine. The URI of the ser-
vice is then returned to the end user to begin consuming 
the service. By clicking on the Launch Service button, the 
consumer is directed to the service URI on Eucalyptus 
cloud environment.  

5 CONCLUSION AND ONGOING WORK  

In this paper we have defined an integrated ontology for 
processes needed to automate IT services lifecycle on the 
cloud. To the best of our knowledge, this is the first such 
effort, and it is critical as it provides a holistic view of 
steps involved in deploying IT services. Our approach 
complements previous work on ontologies for service 
descriptions in that it is focused on automating the pro-
cesses needed to procure services on the cloud. The 
methodology can be referenced by organizations to de-
termine what key deliverables they can expect at any 
stage of the process. We also hope that it will enable the 
academia and the industry to be on the “same page” 
when they speak about IT services on the cloud.   

The tool that we built successfully demonstrated how 
our methodology can be used to significantly automate 
the acquisition and consumption of cloud based services 
thereby reducing the large time required by companies to 
discover and procure cloud based services. We are in the 
process of releasing this tool to multiple users to analyze 

how this scales up. 
As part of our ongoing work, we are working on au-

tomating complex service negotiation process where the 
negotiation is on a range of values for a constraint. We are 
also updating and refining the ontology to capture these 
complex negotiation protocols that we are designing. We 
are working on integrating this tool with other cloud 
computing platforms available in the industry today. One 
of the first platforms that we are working on is the Virtual 
Computing Lab (VCL) [37] platform provided by IBM. 
We also plan on using Enterprise policies from various 
organizations to demonstrate the validity of this frame-
work.  
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