
IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID 1

Automating Cloud Services Lifecycle through
Semantic technologies

Karuna P Joshi, Yelena Yesha, and Tim Finin

Abstract— Managing virtualized services efficiently over the cloud is an open challenge. Traditional models of software

development are not appropriate for the cloud computing domain, where software (and other) services are acquired on demand.

In this paper, we describe a new integrated methodology for the lifecycle of IT services delivered on the cloud, and demonstrate

how it can be used to represent and reason about services and service requirements and so automate service acquisition and

consumption from the cloud. We have divided the IT service lifecycle into five phases of requirements, discovery, negotiation,

composition, and consumption. We detail each phase and describe the ontologies that we have developed to represent the

concepts and relationships for each phase. To show how this lifecycle can automate the usage of cloud services, we describe a

cloud storage prototype that we have developed. This methodology complements previous work on ontologies for service

descriptions in that it is focused on supporting negotiation for the particulars of a service and going beyond simple

matchmaking.

Index Terms—Intelligent Web Services and Semantic Web, Lifecycle, Ontology design, Web-based services

——————————  ——————————

1 INTRODUCTION

EGARDING Information Technology (IT) as a service
delivered to the end user is a paradigm shift that is
fast changing the way businesses looks at the role of

IT within the organization. The outsourcing model is be-
ing replaced by a new delivery model where businesses
purchase IT components like software, hardware or net-
work bandwidth as services from providers, who can be
based anywhere in the world. The service is acquired on
an as needed basis and can be termed as service on de-
mand. Typically the service is hosted on a Cloud or a
computing grid and is delivered to the organization via
the Internet or mobile devices.

In such scenarios, multiple providers often collabo-
rate to create a single service for an organization. In some
cases businesses utilize multiple service providers to mit-
igate risks that may be associated with a single provider.
In other cases, a business may use a single provider who
in turn utilizes the services of other providers. In either
case, the delivery of IT service is moving away from a
single provider mode, and is increasingly based on the
composition of multiple other services and assets (techno-
logical, human, or process) that may be supplied by one
or more service providers distributed across the network
– in the cloud. Moreover, a single service component
could be a part of many composite services as needed.
The service, in effect, is virtualized on the cloud [38]. It is
becoming the preferred method to deliver services rang-
ing from helpdesk and back-office functions to Infrastruc-
ture as a Service (IaaS). The virtualized model of service

delivery also extends to IT Enabled Services (ITeS), which
typically include a large human element.

One consequence of this development is that the con-
sumers now have more choices of service providers that
they can select from. However, at present most of the ser-
vices are delivered as web services providing a singular
functionality. Often, the onus is on the consumer to pro-
cure these web services individually and then integrate
them per the requirements. There has been some work in
creating brokers that would perform this functionality.
However, such brokers work only on a fixed, linear de-
scription of service functionality which often fails to cap-
ture the complete requirements of the service needed, and
the flexibility a consumer might have. In order to be able
to take advantage of virtualized service models, it is im-
perative for the consumer to be able to identify all the
constraints or assertions of a service that need to be met
along with its functional requirements.
In our discussions with large organizations interested in
acquiring cloud services, especially from public cloud
providers, we have observed that a key barrier prevent-
ing organizations from successfully managing virtualized
services on the cloud is the lack of an integrated method-
ology for service creation and deployment that would
provide a holistic view of the service lifecycle on a cloud.
In this paper we present a methodology to address the
lifecycle issue for virtualized services delivered from the
cloud. We use semantically rich descriptions of the re-
quirements, constraints, and capabilities that are needed
by each phase of the lifecycle. This methodology is com-
plementary to previous work on ontologies, like OWL-S,
for service descriptions in that it is focused on automating
processes needed to procure services on the cloud. We
concentrate on enabling multiple iterations of service ne-
gotiation with constraints being relaxed iteratively till a
service match is obtained. In section 3, we present the

xxxx-xxxx/0x/$xx.00 © 200x IEEE

————————————————

 Karuna P Joshi, Yelena Yesha and Tim Finin are with the Computer Sci-
ence and Electrical Engineering department, University of Maryland, Bal-
timore County, Baltimore, MD 21250. E-mail: {kjoshi1, yeyesha, finin}@
umbc.edu .

Manuscript received (insert date of submission if desired). Please note that all
acknowledgments should be placed at the end of the paper, before the bibliography.

R

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

2 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

high level ontologies that we have created for the various
phases in this paper, and show where existing ontologies
can be leveraged. These can be reasoned over to automate
the phases guided by high level policy constraints pro-
vided by consumers, service customers, or service pro-
viders. The proposed methodology will enable practition-
ers to plan, create and deploy virtualized services success-
fully.

The key reason to have a semantically rich approach
to describe cloud attributes and Service Level Agreements
(SLA) is to permit distributed clients and cloud service
providers to “automate” the process of acquisition and
consumption of services. Without a semantic approach
that will permit the providers and consumers to under-
stand each other, which is the present state of the practice,
the acquisition process is done manually, and the con-
sumption/monitoring process also requires significant
manual input. For instance, National Institute of Stand-
ards and Technology (NIST) has identified ambiguity in
cloud SLAs currently offered by cloud providers as one of
the factors that prevent broad cloud adoption by large
organizations, especially federal agencies [46]. It is very
difficult to compare SLAs offered by two cloud providers
to determine who is offering the better deal. Also, existing
cloud SLAs (for instance SLA provided by Amazon at
http://aws.amazon.com/ec2-sla/) are provided as a text
document making it open to interpretation and very diffi-
cult to monitor SLA performance and adherence by the
cloud provider. Additionally, survey of industry sources
also indicates overall dis-satisfaction among cloud users
of existing cloud SLA.

We have developed and implemented a cloud storage
service prototype to demonstrate and evaluate our meth-
odology. The prototype allows cloud consumers to dis-
cover and acquire disk storage on the cloud by specifying
the service attributes, security policies and compliance
policies via a simple user interface. We used W3C stand-
ard Semantic Web technologies, such as Web Ontology
Language (OWL) [18], Resource Description Framework
(RDF) [15], and SPARQL [24], to develop our prototype
system since they enable us to build the vocabulary (or
ontology) of our service lifecycle using standardized lan-
guages that support our design requirements, which in-
clude interoperability, sound semantics, Web integration,
and the availability of tools and system components.

Our most fundamental requirement is for a represen-
tation that supports interoperability at both the syntactic
and semantic levels. The OWL [18] language has a well-
defined semantics that is grounded in first order logic and
model theory. This allows programs to draw inferences
from OWL expressions with the assurance that the subse-
quent interpretation is sound. An important advantage
for OWL over many other knowledge-based systems lan-
guages is that there are well defined subsets that guaran-
tee sound and complete reasoning with various levels of
complexity (e.g., N2ExpTime for OWL 2 DL). Moreover,
there are also profiles that are tuned to work well with
popular implementation technologies, e.g., OWL QL for
databases and OWL RL for rule-based systems.

A second design requirement is for a language that is

designed to integrate well with the Web, which has be-
come the dominant technology for today's distributed
information systems. OWL is built on basic Web stand-
ards and protocols and is evolving to remain compatible
with them. It is possible to embed RDF and OWL
knowledge in HTML pages and several search engines
(including Google) will find and process some embedded
RDF. RDF is also compatible with Microdata, a Web Hy-
pertext Application Technology Working Group HTML
specification that is used to nest semantic statements
within existing content on web pages. Microdata has been
adopted by Schema.org, collaboration by Google, Mi-
crosoft, and Yahoo!, and has been used to define a num-
ber of basic ontologies that are being supported by search
engines.

Finally, there are a wide variety of both commercial
and open sourced tools that support Semantic Web lan-
guages and systems including knowledge base editors,
reasoners, triple stores, SPARQL query engines (includ-
ing some that support federated queries), ontology map-
ping, etc. Several database vendors, including Oracle and
IBM, have sophisticated support for representing RDF
and OWL, including reasoning.

2 RELATED WORK

Since cloud computing is a nascent field, there is lack of
standardization and a need has been felt to clearly define
its key elements. NIST has recently released a special pub-
lication 800-145 [19] defining cloud computing as a model
for enabling ubiquitous, convenient, on-demand network
access to a shared pool of configurable computing re-
sources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released
with minimal management effort or service provider in-
teraction. One of the key characteristics identified by
NIST is that a cloud service should have the capability of
on-demand self-service whereby a consumer can unilat-
erally provision computing capabilities, such as server
time and network storage, as needed automatically with-
out requiring human interaction with each service pro-
vider. Currently it is very difficult for organizations to
specify their data, security, privacy and compliance poli-
cies while automatically provisioning cloud services. We
have addressed this in our proposed framework de-
scribed in the next section.

In addition to the standard definition of Cloud Com-
puting, NIST has also released the Cloud Computing Ref-
erence Architecture [20] document that describes a refer-
ence architecture for cloud computing and also the key
roles and responsibilities of stakeholders. The authors of
this paper were part of the NIST cloud computing refer-
ence architecture and taxonomy working group that par-
ticipated in developing the standard. We have referenced
the NIST cloud computing standards to develop our on-
tology that is described in the next section.

Current research on cloud or web services so far has
been limited to exploring a single aspect of the lifecycle
like service discovery, service composition or service
quality. There is no integrated methodology for the entire

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFECYCLE THROUGH SEMANTIC TECHNOLOGIES 3

service lifecycle covering service planning, development
and deployment in the Cloud. In addition, most of the
work is limited to the software component of the service
and does not cover the service processes or human agents
which are a critical component of IT Services.

Papazoglou and Heuvel [22] have proposed a meth-
odology for developing and deploying web services using
service oriented architectures. Their approach, however,
is limited to the creation and deployment of web services
and does not account for virtualized environment where
services are composed on demand. Providers may need
to combine their services with other resources or provid-
ers’ services to meet consumer needs. Other methodolo-
gies, like that proposed by Bianchini et al. [3], do not pro-
vide this flexibility and are limited to cases where a single
service provider provides one service. Zeng et al. [33]
address the quality based selection of composite services
via a global planning approach but do not cover the hu-
man factors in quality metrics used for selecting the com-
ponents. Maximilien and Singh [17] propose an ontology
to capture quality of a web service so that quality attrib-
utes can be used while selecting a service. While their
ontology can serve as a key building block in our system,
it is limited by the fact that it considers single web ser-
vices, rather than service compositions.

Black et al. [4] have proposed an integrated model for
IT service management. Their model is limited to manag-
ing the service from the service provider’s perspective.
Paurobally et al. [23] have described a framework for ne-
gotiation of web services using the iterated Contract Net
Protocol (CNP) [29]. However their implementation is
limited to pre-existing web services and doesn’t extend to
virtualized services that are composed on demand. Our
negotiation protocol detailed in next section accounts for
the fact that the service will be composed only after the
contract/SLA listing the constraints is finalized. GoodRe-
lations [6] is an ontology developed for E-commerce to
describe products. While this ontology is useful for de-
scribing service components that already exist on the
cloud, it is difficult to describe composite virtualized ser-
vices being provided by multiple vendors using this on-
tology. K. Ren et al. [34] have proposed a technique for
more efficient composition of semantic services.

Research on Grid computing has also examined is-
sues on on-demand provisioning and service discov-
ery/composition [39][40][41][42][43][44]. This research
has primarily concentrated on addressing issues from
cloud provider’s perspective. Given the origins of Grid
computing in the scientific computing domain, this makes
perfect sense. However, many issues related to policies of
the consumer and the service acquisition processes are
ignored. We approach the issue instead of looking at it
from a holistic viewpoint of both the consumer as well as
the provider. The authors have also not accounted for
virtualized services that will be created by combining pre-
existing components.

The Information Technology Infrastructure Library
(ITIL) is a set of concepts and policies for managing IT
infrastructure, development and operations that has wide
acceptance in the industry. The latest version of ITIL lists

policies for managing IT services [31] that cover aspects of
service strategy, service design, service transition, service
operation and continual service improvement. However,
it is limited to interpreting “IT services” as products and
applications that are offered by in-house IT department or
IT consulting companies to an organization. This frame-
work in its present form does not extend to the service
cloud or a virtualized environment that consists of one or
more composite services generated on demand.

2.1 Semantic Web

As we explained in the introduction, we have used
Semantic Web technologies to develop the services lifecy-
cle and prototype development. Semantic Web enables
data to be annotated with machine understandable meta-
data, allowing the automation of their retrieval and their
usage in correct contexts. Semantic Web technologies in-
clude languages such as RDF [15] and OWL [18] for defin-
ing ontologies and describing meta-data using these on-
tologies as well as tools for reasoning over these descrip-
tions. OWL is based on Description Logic (DL) [1] with a
representation in RDF. OWL Semantic Web knowledge
can also be encoded in rule format using several ap-
proaches, including N3-logic rules [2], SWRL rules [7]
and RIF, the new W3C standard for Rule Inter-change
Formalism. These technologies can be used to provide
common semantics of Service information and policies
enabling all agents who understand basic Semantic Web
technologies to communicate and use each other’s data
and Services effectively.

Several OWL ontologies have been developed to de-
scribe Services, including Ontology Web Language for
Services (OWL-S) [16] and Semantic Annotations for
WSDL and XML Schema (SAWSDL) [14]. OWL-S allows
Service providers or brokers to define their Services based
on agreed upon ontologies that describe the functions
they provide. We have integrated the OWL-S ontology
into our ontology and it is described in section 3.4 below.
SAWSDL defines mechanisms using which semantic an-
notations can be added to WSDL components. Sheth et.
al [27] describe the METEOR-S project that resulted in the
submission of WSDLS specification which was used as
the input for SAWSDL.

SPARQL Protocol and RDF Query Language
(SPARQL) is the query language for RDF that has been
standardized by W3C [24]. SPARQL can be used to ex-
press queries across diverse data sources, whether the
data is stored natively as RDF or viewed as RDF via mid-
dleware. The results of SPARQL queries can be results
sets or RDF graphs. A SPARQL endpoint is a conformant
SPARQL protocol service as defined in the SPARQL Pro-
tocol for RDF (SPROT) specification [30]. It enables users
to query a knowledge base via the SPARQL language.
Results are typically returned in one or more machine-
processable formats. Therefore, a SPARQL endpoint is
mostly conceived as a machine-friendly interface towards
a knowledge base. Service Descriptions [32] specify the
capabilities of a SPARQL endpoint. They provide a de-
clarative description of the data available from an end-
point, the definition of limitations on access patterns and

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

4 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

statistical information about the available data that is
used for query optimization.

3 PROPOSED SERVICE LIFECYCLE ONTOLOGY

Traditional models of software development, like the
waterfall method or the spiral method [5], consists of
phases like planning, analysis, design, testing and ac-
ceptance. These methodologies are found to be very time
consuming and require extensive human labor, both from
the software application consumer as well as the provid-
er. Cloud computing environment promises agility, elas-
ticity and quick turnaround time for provisioning re-
sources and services. Virtualized services that provide
‘on-demand’ service on the cloud are mainly built by
combining pre-existing components that are developed
by same or multiple providers. In this scenario, following
traditional software lifecycle methodologies will signifi-
cantly slow the service delivery time thereby rending the
service provider uncompetitive in the cloud market.
Hence we believe a radically different methodology is
needed for cloud based services.

To develop this ontology, we had detailed discussions
with various large organizations who are interested in
acquiring cloud based services. Among our chief collabo-
rators were NIST, our university’s division of IT, and a
large international financial organization with global
presence. Additionally, one of the authors of this paper
has had extensive experience in managing large IT ser-

vices and we were able to draw on that experience while
developing this framework. While developing the ontolo-
gy we referred to NIST’s cloud computing reference ar-
chitecture [20] to identify the key stakeholders in the
lifecycle.

We divide the virtualized service lifecycle on a cloud
into five phases. In sequential order of execution they are
requirements, discovery, negotiation, composition, and
consumption. Our focus for this framework is the lifecy-
cle for virtualized cloud services – where the services are
composed by combining pre-existing components. Hence
this lifecycle does not include any requirements analysis
or design phases. We assume that services, that are de-
signed using a variety of existing approaches, will be de-
scribed using our ontology – something that can be done
post facto - and will be discoverable using standard (web)
service type mechanisms (e.g. UDDI, SLP …). We also
permit these services to be arbitrarily composed to create
new services. We argue that this hews closely to the cloud
model – a provider has a set of available services which
can be made available as is, or in combination with other
services. We do not claim that cloud providers only offer
pre-existing component based services; however a survey
of current cloud based offerings has shown us that major-
ity of the cloud services consist of pre-existing compo-
nents with minimal configuration capability and so we
gather this is what the consumers are currently interested
in from cloud providers.

Figure 1: The IT service lifecycle on a cloud comprises of five phases: requirements, discovery, negotiation, composition
and consumption

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFECYCLE THROUGH SEMANTIC TECHNOLOGIES 5

Our ontology does not describe the service, but de-
fines the data and processes needed to automate the ac-
quisition and consumption of cloud services. The pro-
cesses of acquiring such services are largely independent
of the type of cloud service (IaaS, SaaS, PaaS), cloud de-
ployment (private, public, hybrid) or service domain
(computing services, healthcare, financial services etc.).
Our framework assumes that users will be defining the
ontologies for functional and technical specifications for
the service which will obviously vary for different do-
mains. There is a significant body of work (e.g. SAWSDL,
WSDL-S, WSMO …) that provides ontologies to describe
specific services in terms of their functional and technical
specifications. Our framework makes it possible to inte-
grate these functional and technical specifications with
other enterprise specific policies defined using the ontol-
ogies we provide (like privacy, security, compliance, hu-
man agent policies) in the requirements phase. And so
only the functional description of the requirements phase
ontology will have to be defined for each service. Our
prototype described in next section is an example, where,
for completeness, we have also described the service itself
to show how our overall framework would work.

We have described the five phases in detail along
with the associated metrics in [10]. Figure 1 is a pictorial
representation detailing the processes and data flow of
the five phases. In the following sections we present the
pictorial representations of high-level ontologies that we
have created for each phase. We have developed the on-
tology for the entire lifecycle in OWL 2 DL profile and it
can be accessed at [11].

3.1 Service Requirements Phase

In the service requirements phase the consumer de-
tails the technical and functional specifications that a ser-
vice needs to fulfill. While defining the service require-
ments, the consumer also specifies non-functional attrib-
utes like characteristics of the human agent providing the
service, constraints and preferences on data quality and
required security policies for the service. Service compli-
ance details like certifications needed, standards to be
adhered to etc. are also identified. The technical specifica-
tions lay down the hardware, software, application
standards and language support policies to which a ser-
vice should adhere. Once the consumers have identified
and classified their service needs, they issue a Request for
Service (RFS). This RFS can be generated in a machine
readable format using Semantic Web technologies and we
have illustrated this in the next section.

Majority of the users will not have static requirements
and might not be able to initially articulate all their needs.
Also, the requirements will continue to evolve as users
acquire more and more cloud services. Hence our frame-
work captures a ‘snapshot’ of the user requirements via
the RFS and imitates the service discovery process to ac-
quire services that match that snapshot. If the user is not
satisfied with the services discovered, they can change
their requirements (say, by increasing the cost constraint)
and/or policies and re-start the discovery phase with a
new RFS. We also assume that the user requirements will
change once the user begins consuming the services and
so we show a link between the consumption and re-
quirements phase (see figure 1) to indicate system trig-
gers that could start a new cycle of service acquisition

Figure 2: Ontology of service requirements phase contains the RFS class that includes Specification class

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

6 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

with a different requirements snapshot (new RFS).
Some of the policies and constraints that may be in-

cluded in RFS are listed below. Additional poli-
cies/constraints that may be domain specific can be speci-
fied as needed.
1. Functional specifications list

a. Service tasks to be provided
b. Budgetary/Cost policies and constraints
c. Service Domain

2. Technical specifications
a. Service’s Software applications
b. Software compatibility constraints
c. Hardware Policy – e.g. Mobile device, PC,

Server, Multicore etc.
d. Operating System Policy – e.g. single OS

support, multiple OS support
e. Language Support Policy
f. Cloud Deployment – Private, Public, Hybrid,

Community
g. Cloud Service Layer – IaaS, PaaS, SaaS

3. Human Agent policy
a. Agent experience in years
b. Agent skill level
c. Agent’s location constraints
d. Nationality/Work permit constraints

4. Security Policy
a. Roles and Permissions
b. Cloud/Service Provider Location constraints
c. Data Encryption , Deletion constraints
d. Virtualization - Virtual Machine separation
e. Multi-tenancy policies

5. Data Quality Policy
a. Low quality data may be acceptable to con-

sumer if it provides cost saving
6. Service Compliance Policy

a. Standards adhered
b. Certifications needed
c. Government regulations adhered.

While we have developed ontologies for generic pro-
cesses, domain specific technical specifications will re-
quire their own ontologies. For example, for the compu-
ting service, the ontology will define the semantics of
each computing term like processor speed, processor
memory, number of cores, etc. Cloud vendors may bun-
dle their service offerings in any combination and give it
brand names like ‘compute unit’ ; however the technical
specifications will specify each attribute desired and so
will make it possible to query across disparate services
offering similar service with different attributes bundled
together. Many such ontologies exist and can be used, for
example DReggie [45]. This is part of the W3C standard-
ized semantic web approach.

Figure 2 illustrates the high level ontology for this
phase. The two main classes are the Specification class
and the “Request For Service” class. The Specification
class consists of six main classes that define the functional
specifications, technical specifications, Human agent
specifications, security policies, service compliance poli-
cies and data quality policies. The functional specifica-
tions include the tasks to be automated by the service, the
cloud service layer and the service domain. The three
cloud service layers that have been identified by NIST
[19] are Infrastructure as a Service (IaaS), Platform as a
Service (PaaS) and Software as a Service (SaaS). The func-
tional specifications also include the budgetary policies
and cost (the price that the consumer is ready to pay for
the service) constraints associated with the service. The
technical specifications contain information about the
Hardware, Operating System and other compatible ser-
vices/applications that the desired service should con-

Figure 3: Ontology for service discovery phase uses the RFS class to search for providers and generate a Provider list

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFECYCLE THROUGH SEMANTIC TECHNOLOGIES 7

form to. Human Agent specifications also list the tech-
nical and domain expertise that the service providing
agent should have. The security constraints specified in
the RFS include policies regarding service role/ permis-
sion levels, data security policies and cloud loca-
tion/ownership policies.

Part of our ongoing work is to use existing ontologies
that have been developed for classes like standard hard-
ware, operating systems and computer applications. Se-
mantic Web policy language, like AIR [13], can be used to
describe service specifications and constraints in ma-
chine-processable format.

Most large organizations already have clearly defined
policies for acquiring services. In addition, the policies
that have to be specified in the RFS already exist as insti-
tutional or enterprise policies. These enterprise policies
are centrally managed by the organization’s head and
may be electronically maintained across various organiza-
tional functions like Legal, Human Resources, Procure-
ment, IT and Telecommunications, Facilities and Security.
It will be a one-time effort for the organization to consoli-
date these policies into a single machine readable format
to create organization’s service policy document or sys-
tem. The service policy document can then be invoked
each time a new RFS has to be issued thereby automating
the RFS process. This will significantly reduce the amount
of time needed for the Service Requirements phase and
also significantly reduce if not completely eliminate poli-
cy oversight while acquiring a service.

3.2 Service Discovery Phase

In the Service Discovery phase, providers are discovered
by comparing the specifications listed in the RFS with
service descriptions. The discovery is constrained by
functional and technical attributes defined, and also by
the budgetary, security, compliance, data quality and
agent policies of the consumer. An organization can re-
lease the RFS to a limited pre-approved set of providers.
Alternatively, it can search for all possible vendors on the
Internet. While searching the provider, service search en-
gines or cloud brokers can be employed. A ‘Cloud Broker’
role has been identified in the NIST reference architecture
[20] which we use in our ontology. This cloud broker runs
a query against the services registered with a central reg-
istry or governing body and matches the service layer,
domain, data type, compliance needs, functional and
technical specifications and returns the result with the
service providers matching the maximum number of re-
quirements listed at the top. Sbodio et al. [26] and Paliwal
et al. [35] have presented semantic approaches for service
discovery which can be incorporated in our methodology.

One critical part of this phase is service certification,
in which the consumers will contact a central registry, like
UDDI [25], to get references for providers that they nar-
row down to. The NIST reference architecture [20] has
identified a Cloud Auditor role that will be primarily re-
sponsible for Security Audit, Performance Audit and Pri-
vacy Impact Audit of the cloud. We use this role in our
ontology to be the ‘provider certifying agent’ that will be
referenced in the Service Discovery Phase.

Figure 3 illustrates the high level ontology for the
service discovery phase, which uses the RFS class from
the requirements phase to search for service providers
and generate a list of providers with which to begin nego-
tiations. The Cloud Auditor validates the provider’s cre-
dentials and issues a service certification if the credentials
are fine. The cloud consumer’s policies will determine if
the cloud provider certification is essential or it can be
skipped. Large organizations with stricter security poli-
cies can mandate that a provider is added to the provid-
er’s list only after the certification is received.

If the cloud consumers find the exact service within
their budgets, they can begin consuming the service im-
mediately upon payment. However, often the consumers
will get a list of providers who will need to compose a
service to meet the consumer’s specifications. The cloud
consumer will have to begin negotiation with the service
providers which is the next phase of the lifecycle. Each
search result will return the primary provider who will be
negotiating with the consumer.

3.3 Service Negotiation phase

The service negotiation phase covers the discussion and
agreement that the service provider and consumer have
regarding the service delivered and its acceptance criteria.
In our discussion with our collaborators we found that
the negotiation of SLA for the cloud services procured is
the most time consuming portion of the cloud service
procurement process. Automation of this process using
SPARQL queries is itself a performance improvement
over the existing human-based negotiation. The service to
be delivered is determined by the specifications laid
down in the RFS. Service acceptance is usually guided by

Figure 4: Service negotiation sequence diagram

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

8 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

the Service Level Agreements (SLA) [28] that the service
provider and consumer agree upon. SLAs define the ser-
vice data, delivery mode, agent details, quality metrics
and cost of the service. While negotiating the service lev-
els with potential service providers, consumers can ex-
plicitly specify service quality constraints (data quality,
cost, security, response time, etc.) that they require.

 At times, the service provider will need to combine a
set of services or compose a service from various compo-
nents delivered by distinct service providers in order to
meet the consumer’s requirements. The negotiation phase
also includes the discussions that the main service pro-
vider has with the other component providers. When the
services are provided by multiple providers (composite
service), the primary provider interfacing with the con-
sumer is responsible for composition of the service. The
primary provider will also have to negotiate the Quality
of Service (QoS) with the secondary service providers to
ensure that SLA metrics are met. The negotiation steps
are listed below and shown in the negotiation sequence
diagram in Figure 4.

Steps for Service Negotiation on the Cloud
1. The consumer sends a RFS to the provider specifying
the functional and non-functional requirements.
2. The provider responds to the RFS in one of three ways

a) Informs the consumer that it cannot provide the ser-

vice, terminating negotiation.
b) Indicates that a service matching all the require-

ments exists and sends the quote with SLAs.
c) Indicates that there is a partial match of require-

ments and sends the quote with SLA file listing matching
constraints.
3. The consumer receives and considers the quote
4. The consumer responds to the quote in one of three
ways

a) If the quote is a partial match, the consumer relaxes
the service constraints and/or functionality and resends
the RFS to the provider. The provider repeats the actions
in step 2.

b) If the response is a full match and the consumer is
satisfied with the offer then negotiation is regarded com-
plete. The consumer signs this offer and returns it as an
SLA.

c) The consumer can decline the service, terminating
the negotiation.
5. The provider responds to the RFS in one of two ways

a) The provider can no longer provide the service, and
rejects the agreement, terminating negotiation.

b) The provider agrees with the constraints, and the
same RDF file consisting of the SLA now exists with both
parties.

Figure 5: Ontology for service negotiation uses the RFS class for the contract negotiation and creation of SLA and QoS

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFECYCLE THROUGH SEMANTIC TECHNOLOGIES 9

We have constructed a high level ontology for this
phase and it is illustrated in Figure 5. This phase uses the
RFS class from the requirements phase and the provider’s
list class from the discovery phase to negotiate the con-
tracts between consumer and primary provider and be-
tween the various component providers themselves. The
key deliverable of this phase is the service contract be-
tween the service consumer and service provider. The
SLA is a key part of this service contract and will be used
in the subsequent phases to compose and monitor the
service. Another deliverable of this phase are the service
sub contracts between the service provider and compo-
nent (or dependent services) providers. The QoS are the
essential part of the service sub-contracts and are used in
the consumption phase to monitor service performance.

3.4 Service Composition phase

In this phase one or more components provided by one
or more providers are combined and delivered as a single
service to the service consumer. Service orchestration de-
termines the sequence of the service components.

Figure 6 illustrates the high level ontology for this
phase. The main class of this phase is the Service class
that combines the various components into a single ser-
vice. We include the OWL-S Composite Process class on-
tology. The Service class takes inputs from the Specifica-
tion, Service Contracts and Service Level Agreement clas-
ses defined in the earlier phases to determine the orches-
tration of the various components.

3.5 Service Consumption/Monitoring phase

The service is delivered to the consumer based on the
delivery mode (synchronous/asynchronous, real-time,
batch mode etc.) agreed upon in the negotiation phase.

After the service is delivered to the consumer, payment is
made for the same based on the pricing model agreed to
in the SLA. The consumer then begins consuming the
service. In a cloud environment, the service usually re-
sides on remote machines managed by the service pro-
viders. Hence the onus for administrating, managing and
monitoring the service lies with the provider. In this
phase, consumer will require tools that enable service
quality monitoring and service termination if needed.
This will involve alerts to humans or automatic termina-
tion based on policies defined using the quality related
ontologies. The Service Monitor measures the service
quality and compares it with the quality levels defined in
the SLA. This phase spans both the consumer and cloud
areas as performance monitoring is a joint responsibility.
If the consumer is not satisfied with the service quality,
s/he should have the option to terminate the service and
stop service payment.

Figure 7 illustrates the ontology for this phase. The
composite service is composed of human agents provid-
ing the service, the service software and dependent ser-
vice components. All the three elements, agents, software
and dependent services, must be monitored to manage
the overall service quality. The providers have to track
the service performance, reliability, assurance and presen-
tation as it will influence customer’s satisfaction rating
(CSATs). Since the dependent services/components will
be at the backend and will not interface directly with the
consumers, the service provider only needs to monitor
their performance. We have proposed a framework to
manage quality based on fuzzy-logic for such composed
services delivered on the cloud in [12].

Figure 6: Ontology for composition phase builds on the OWL-S composite process class

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

10 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

 4 CLOUD STORAGE SERVICE PROTOTYPE

In this section we describe the prototype that we have
constructed as a proof of concept for our proposed lifecy-
cle and ontology. This prototype is based on the actual
use-case 3.9 [36] identified by NIST’s cloud computing
initiative. It demonstrates the capability that cloud users
will have in the future to automatically acquire IT ser-
vices from the cloud. There are many cloud providers,
like Amazon or Dropbox, that provide cloud storage ser-
vices. However, to show end-end operation of our system
(from policy specification to service acquisition), we de-
veloped the prototype on an open source cloud platform
(Eucalyptus). This let us demonstrate, for example, that
the cloud provider could satisfy the user request for Vir-
tual Machine (VM) separation, which was a key require-
ment for NIST. Our framework is fully capable of describ-
ing such constraints, which we demonstrated by using
real constraints that represent federal agency require-
ments that we obtained from NIST. However, there is no
way for us to invoke such mechanisms on closed clouds
such as Amazon or Dropbox. As such, the demonstration
prototype is built on an open source platform.

4.1 Service Description

For the prototype we consider a simple Storage service, as
a representative scenario for Infrastructure as a Service
(IaaS), whereby users can store their files/data on the
cloud. It consists of a web interface that enables cloud
users to easily define the service policies and constraints

by choosing predefined values from dropdown fields.
The tool then discovers the services that will match the
specified policies. A Cloud-provider end server process
interprets the policies specified by the user(s) and estab-
lishes SLAs by the process of negotiation.
We have incorporated actual enterprise policies related to
data storage and security that are practiced by large or-
ganizations. We have used the policies defined in the use
case 3.9 [36] identified by the NIST cloud computing initi-
ative. While requesting the storage service, users will
specify the following service attributes depending on
their storage needs.

1. Storage size needed (in GB/TB units)
2. Service Cost (The price consumers are willing to

pay for the service)
3. Data Preservation/Backup requirements (Hot

backup-Yes/No; daily/weekly)
4. Service availability (e.g. 99%, 99.9% etc.)
5. Data Location (restricted to a geo-location or can

be anywhere in the world)
6. Data deletion policy (data deleted or merely

made inaccessible, secure wipe or not)
7. Data Encryption policy (data stored encrypted or

not; encryption algorithm used, key strength)
8. Compliance policy - compliance or noncompli-

ance for a Trusted Internet Connection (TIC)
specification, CC Evaluation Assurance Level
(EAL) levels

9. User authentication mechanism (FIPS 140-2 sup-
ported?)

Figure 7: Ontology for consumption phase contains classes to monitor the quality of software, human and dependent
components of the composite process.

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFECYCLE THROUGH SEMANTIC TECHNOLOGIES 11

10. Virtual Machine (VM) separation (supported or
not)

11. Size, speed and number of cores for an instance
specification,

12. SOAP or REST interface for a storage specifica-
tion.

In addition to the NIST policies, we have also referred to
service procurement policies of a large international fi-
nancial organization. The main goal of this organization’s
service procurement policy is to acquire the “best value”
service that will have an optimal combination of technical
factors (like quality, functionality, service, innovation,
environmental sustainability) and financial factors (like
purchase price, total cost of ownership etc.) that meet the
organization’s needs. To acquire the “best value” service
in a transparent fashion, the organization’s policies man-
date that any purchases above US$25,000 have to be done
via a competitive procurement process that considers
multiple competing proposals from qualified suppliers,
and makes an award decision based on the merits of each
proposal, relative to some predetermined criteria for best
value. Exceptions are made if the service product is sold
by only one vendor (sole-sourced) thereby rending the
competitive bid a moot point. To continue receiving ‘best
value’ service, the service contract by policy is limited to
three years and then competitively re-bid at the end of the
third year. Every service provider is expected to sign a
Service Level Agreement (SLA) as part of the service con-
tract. The essential elements of the SLA include the avail-

ability timeframe of service, contingency plans,
timeframes for notification and recovery following an
unplanned service disruption or a security incident, prob-
lem resolution and escalation procedures, and scheduled
maintenance times. We have used these elements when
developing the SLAs during the negotiation phase.

4.2 Prototype Platform

We used Semantic Web technologies to build the front
end of our prototype as they are platform independent
and inter-operable. We used SPARQL, Jena Semantic Web
framework [8] and the Joseki software [9], which is a
HTTP engine that supports the SPARQL Protocol and the
SPARQL RDF Query language, to develop the prototype.
After defining our service, we created a SPARQL end-
point using Joseki to simulate a service provider provid-
ing the service. Since the Joseki server allows multiple
service definitions, we used it to simulate both multiple
services provided by the provider as well as multiple in-
stances of a same service. The Joseki service database
contained the service description along with the provider
policies endpoint. For the cloud-end processes, we used
the Eucalyptus Cloud [21] which is an open source cloud
platform that we have installed in our research lab. We
are using our service lifecycle ontology that we described
in the previous section and the OWL-S ontology to devel-
op the tool. In addition to these two ontologies, we also
created another OWL ontology to describe the technical
and security policies for our prototype.

Figure 8: User Interface for discovering Cloud storage service by specifying constraints

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

12 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

4.3 Service Requirements

In the requirements phase, we identify the service layer
which is IaaS for our prototype, the service domain - in
this instance storage service – and the functional and
technical specifications. Functional specification describe
in detail what functions/tasks should the service help
automate. These are mandatory attributes that the service
provider must provide. For our prototype, the service
attributes are the storage size, backup rules, service avail-
ability and service costs. Specifications also list acceptable
security levels, data quality and performance levels of the
service software. Service compliance details like required
certifications, standards to be adhered to etc. are also
identified.

Our prototype has a web-based user interface, illus-
trated in figure 8, which allows consumers to generate
their RFS by using drop down lists. The interface logically
separates the various components of the RFS into four
sections – the mandatory service attributes include con-
straints that have to be met; the data and security policies,
compliance policies and cloud instance. Each field has an
associate ‘Help’ description to help users determine
which option to select.
After selecting the values of their service attributes, secu-

rity policies and compliance policies, the consumers can
press the ‘Request for Service’ button to generate a RDF
document that contains the RFS. Figure 9 illustrates the
RDF/XML document generated for the attributes selected
in figure 8.

4.4 Service Discovery

The users can press the ‘Discover Services’ button to
search for services that match the RFS issued. The tool
generates federated SPARQL queries, like the one illus-
trated in Figure 10, based on the selections on the screen.
This query runs across multiple SPARQL endpoints to
retrieve a list of matching services residing on that end-
point. Researchers like Sbodio et. al [26] have also pro-
posed algorithms for service discovery using SPARQL
language.

PREFIX stg: http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl

PREFIX owls: <http://www.ai.sri.com/daml/services/owl-s/1.2/Profile.owl>

PREFIX sv: <http://www.cs.umbc.edu/~kjoshi1/IT_Service_Ontology.owl>

SELECT ?serviceName ?textDescription ?Cost ?creator ?Backup ?Availability

?Storage_size ?datadeletion ?Encryption ?authentication ?VMseparation ?stor-

age_interface ?TIC_connection ?CC_EAL ?cloud_instance_size

?cloud_instance_speed ?cloud_instance_cores

 { SERVICE <http://eb4.cs.umbc.edu:2020/Storage>

 { SELECT ?serviceName ?textDescription ?creator ?Cost ?Location ?Backup

?Availability ?Storage_size ?datadeletion ?Encryption ?authentication ?VMsepa-

ration ?storage_interface ?TIC_connection ?CC_EAL ?cloud_instance_size

?cloud_instance_speed ?cloud_instance_cores

 WHERE

 {?serviceName owls:textDescription ?textDescription .

 ?serviceName sv:creator ?creator . ?serviceName stg:Storage_size ?Stor-

age_size FILTER regex(?Storage_size, "2GB" ,"i").

?serviceName stg:Cost ?Cost FILTER regex(?Cost, "0" ,"i").

?serviceName stg:Availability ?Availability FILTER regex(?Availability, "95"

,"i").

?serviceName stg:Backup ?Backup FILTER regex(?Backup, "Weekly","i").

?serviceName stg:authentication ?authentication FILTER regex(?authentication,

"FIPS 140 2 supported" ,"i").

?serviceName stg:Encryption ?Encryption FILTER regex(?Encryption, "No

Encryption" ,"i").

?serviceName stg:Location ?Location FILTER regex(?Location, "global" ,"i").

?serviceName stg:datadeletion ?datadeletion FILTER regex(?datadeletion, "data

archived" ,"i").

?serviceName stg:VMseparation ?VMseparation FILTER regex(?VMseparation,

"Not needed" ,"i").

?serviceName stg:storage_interface ?storage_interface FILTER regex (?stor-

age_interface, "SOAP WSDL" ,"i").

?serviceName stg:TIC_connection ?TIC_connection FILTER regex

(?TIC_connection, "TIC Compliant" ,"i").

?serviceName stg:CC_EAL ?CC_EAL FILTER regex(?CC_EAL, "3" ,"i").

?serviceName stg:cloud_instance_size ?cloud_instance_size FILTER re-

gex(?cloud_instance_size, "1GB" ,"i").

?serviceName stg:cloud_instance_speed ?cloud_instance_speed FILTER re-

gex(?cloud_instance_speed, "1GHz" ,"i").

?serviceName stg:cloud_instance_cores ?cloud_instance_cores FILTER re-

gex(?cloud_instance_cores, "10" ,"i").

 } } }

Figure 10: Service Discovery by using SPARQL query to
get service description

Figure 9: RFS generated as a RDF/XML file

<?xml version="1.0"?>

<rdf:RDF

xmlns="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:itso="http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl"

xmlns:stg="http://www.cs.umbc.edu/~kjoshi1/storage_ontology.owl"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Description rdf:about="http://localhost/RFS">

<itso:RFS_Respond_By_Date> Sun Dec 25 14:48:27 2011

</itso:RFS_Respond_By_Date>

<itso:Expected_Begin_Date_of_Service> 1-1-2012

</itso:Expected_Begin_Date_of_Service>

<itso:Service_Cost_Constraint> 0 </itso:Service_Cost_Constraint>

<itso:Service_Location_constraint> global

</itso:Service_Location_constraint>

<stg:storage> 2GB </stg:storage>

<stg:backup> Weekly </stg:backup>

<stg:availability> 95 </stg:availability>

<stg:datadeletion> data archived </stg:datadeletion>

<stg:Encryption> No Encryption </stg:Encryption>

<stg:authentication> FIPS 140 2 supported </stg:authentication>

<stg:VMseparation> Not needed </stg:VMseparation>

<stg:storage_interface> SOAP WSDL </stg:storage_interface>

<stg:TIC_connection> TIC Compliant </stg:TIC_connection>

<stg:CC_EAL> 3 </stg:CC_EAL>

<stg:cloud_instance_size> 1GB </stg:cloud_instance_size>

<stg:cloud_instance_speed> 1GHz </stg:cloud_instance_speed>

<stg:cloud_instance_cores> 6 </stg:cloud_instance_cores>

</rdf:Description>

</rdf:RDF>

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

JOSHI ET AL.: AUTOMATING CLOUD SERVICES LIFECYCLE THROUGH SEMANTIC TECHNOLOGIES 13

If a query matching all the constraints is found, it is
displayed on the screen. Else the user is advised to begin
service negotiation by selecting the Negotiation button.

4.5 Service Negotiation

The users can press the ‘Negotiate and Finalize SLA’ but-
ton to begin the service negotiation. The tool automatical-
ly begins relaxing RFS constraints one by one by remov-
ing the constraints from the SPARQL query and generat-
ing a new SPARQL query to search the endpoints. The
order of constraints relaxation for this prototype was de-
termined by the NIST team that was collaborating with us
who specified the priority of each constraint in the RFS.
After each constraint relaxation, the tool executes a new
SPARQL query to discover services that match the new
constraint set. When a service match is found, the tool
returns the service details of that service along with a list
of constraints not met. The consumer can finalize the SLA
by accepting the service that best matched the constraints.
The final SLA is saved as a RDF file and is in machine
readable format.

4.6 Service Composition and Consumption

The user tool is interfaced to the Eucalyptus [21] Cloud
which is an Infrastructure as a Service (IaaS) cloud solu-
tion. The tool and the Eucalyptus cloud were installed on
separate machines. Due to security reasons, the Eucalyp-
tus installation had no direct internet access and no direct
access to the tool. The two systems communicated
through an intermediate node called Bluegrit which is a
116 core PowerPC cluster managed at UMBC

When the user clicks the Compose button, a Virtual
Machine is created on the Eucalyptus cloud environment.
The finalized SLA is referred to by an automated routine
when launching the virtual machine. The URI of the ser-
vice is then returned to the end user to begin consuming
the service. By clicking on the Launch Service button, the
consumer is directed to the service URI on Eucalyptus
cloud environment.

5 CONCLUSION AND ONGOING WORK

In this paper we have defined an integrated ontology for
processes needed to automate IT services lifecycle on the
cloud. To the best of our knowledge, this is the first such
effort, and it is critical as it provides a holistic view of
steps involved in deploying IT services. Our approach
complements previous work on ontologies for service
descriptions in that it is focused on automating the pro-
cesses needed to procure services on the cloud. The
methodology can be referenced by organizations to de-
termine what key deliverables they can expect at any
stage of the process. We also hope that it will enable the
academia and the industry to be on the “same page”
when they speak about IT services on the cloud.

The tool that we built successfully demonstrated how
our methodology can be used to significantly automate
the acquisition and consumption of cloud based services
thereby reducing the large time required by companies to
discover and procure cloud based services. We are in the
process of releasing this tool to multiple users to analyze

how this scales up.
As part of our ongoing work, we are working on au-

tomating complex service negotiation process where the
negotiation is on a range of values for a constraint. We are
also updating and refining the ontology to capture these
complex negotiation protocols that we are designing. We
are working on integrating this tool with other cloud
computing platforms available in the industry today. One
of the first platforms that we are working on is the Virtual
Computing Lab (VCL) [37] platform provided by IBM.
We also plan on using Enterprise policies from various
organizations to demonstrate the validity of this frame-
work.

ACKNOWLEDGMENT

The authors wish to thank Ms. Dawn Leaf, Program Di-
rector of the Cloud Computing Initiative at NIST, for her
support for this work.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, P. Patel-Schneider and D.

Nardi, The description logic handbook: theory, implementation, and

applications, Cambridge University Press, 2003

[2] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf and J. Hendler,

N3Logic: A logical framework for the World Wide Web, Theory and

Practice of Logic Programming, v8n3, Cambridge Univ Press, 2008.

[3] D. Bianchini, V. De Antonellis, B. Pernici, P. Plebani, Ontology-based

methodology for e-service discovery, International Journal of Infor-

mation Systems, The Semantic Web and Web Services, Volume 31, Is-

sues 4-5, June-July 2006, pp 361-380

[4] J. Black et al, An integration model for organizing IT service Manage-

ment, IBM Systems Journal, VOL 46, NO 3, 2007

[5] B. Boehm. 1986. A spiral model of software development and en-

hancement. SIGSOFT Software Eng. Notes 11, 4 (August 1986), 14-24.

[6] M. Hepp , GoodRelations: An Ontology for Describing Products and

Services Offers on the Web, Proceedings of the 16th International Con-

ference on Knowledge Engineering and Knowledge Management

(EKAW2008), Italy, 2008, Springer LNCS, Vol 5268, pp. 332-347.

[7] I. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and M.

Dean, SWRL: A semantic web rule language combining OWL and

RuleML, W3C Member Submission, WWW Consortium, 2004.

[8] Jena – A Semantic Web Framework for Java,

http://incubator.apache.org/jena/, retrieved on March 13, 2012.

[9] Joseki - A SPARQL Server for Jena, http://www.joseki.org/, retrieved

on March 13, 2012.

[10] K. Joshi , T. Finin , Y. Yesha, Integrated Lifecycle of IT Services in a

Cloud Environment, in Proceedings of The Third International Confer-

ence on the Virtual Computing Initiative (ICVCI 2009), October 2009

[11] K. Joshi, OWL Ontology for Lifecycle of IT Services on the Cloud, 2010,

http://ebiquity.umbc.edu/ontologies/itso/1.0/itso.owl

[12] K. Joshi, A. Joshi and Y. Yesha , Managing the Quality of Virtualized

Services, in proceedings of the SRII Global conference, March 2011.

[13] L. Kagal, C. Hanson, and D. Weitzner, Using dependency tracking to

provide explanations for policy management, IEEE International

Workshop on Policies for Distributed Systems and Networks, 2008.

[14] J. Kopecky, T. Vitvar, C. Bournez and J. Farrell, SAWSDL: Semantic

annotations for WSDL and XML schema, IEEE Internet Computing,

v11n6, pp. 60-67, 2007.

[15] O. Lassila, R. Swick and others, Resource Description Framework

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

14 IEEE TRANSACTIONS ON SERVICE COMPUTING, MANUSCRIPT ID

(RDF) Model and Syntax Specification, WWW Consortium, 1999.

[16] D. Martin, et al., Bringing semantics to web services: The OWL-S ap-

proach, Lecture Notes in Computer Science, volume 3387, pp. 26-42,

2005, Springer.

[17] E. M. Maximilien, M. Singh, A Framework and Ontology for Dynamic

Web Services Se-lection, IEEE Internet Computing, vol. 8, no. 5, pp. 84-

93, Sep./Oct. 2004

[18] D. McGuinness, F. Van Harmelen, et al., OWL web ontology language

overview, W3C recommendation, World Wide Web Consortium, 2004.

[19] NIST Special Publication 800-145, “The NIST Definition of Cloud Com-

puting”, Sep 2011.

[20] NIST Special Publication 500-292, “NIST Cloud Computing Reference

Architecture”, Nov 2011.

[21] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L.

Youseff, D. Zagorodnov , “The eucalyptus open-source cloud-

computing system”, 9th IEEE/ACM International Symposium on

Cluster Computing and the Grid, pp 124-131, 2009

[22] M. Papazoglou and W. Van Den Heuvel, Service-oriented design and

development methodology, International Journal of Web Engineering

and Technology, Volume 2, Number 4, 2006, pp. 412 – 442

[23] S. Paurobally, V. Tamma and M. Wooldrdige, A Framework for Web

Service Negotiation, ACM Transactions on Autonomous and Adaptive

Systems,Vol. 2, No. 4, Article 14, November 2007.

[24] E. Prud'hommeaux and A. Seaborne, SPARQL Query Language for

RDF, , W3C recommendation Jan 2008, http://www.w3.org/TR/rdf-

sparql-query/, retrieved on Sep 4, 2012

[25] S Ran, A model for web services discovery with QoS, ACM SIGecom

Exchanges, Vol 4, Issue 1, 2003, pp 1-10, 2003

[26] M. L. Sbodio, D. Martin, and C. Moulin, “Discovering Semantic Web

services using SPARQL and intelligent agents.” Journal of Web Semant.

8, 4 (November 2010), 310-328.

[27] A. Sheth,, K. Gomadam, A. Ranabahu, Semantics enhanced Services:

METEOR-S, SAWSDL and SA-REST, IEEE Data Eng. Bull., 31(3), 8–12

[28] ‘Whats in a Service Level Agreement?’, SLA@SOI, http://sla-at-

soi.eu/?p=356, retrieved on March, 13 2012.

[29] R. Smith, The Contract Net Protocol: High-Level Communication and

Control in a Distributed Problem Solver, IEEE Transactions on comput-

ers, Volume C-29, Issue 12, 1980, pp 1104-1113.

[30] SPARQL Endpoint, http://semanticweb.org/wiki/

SPARQL_endpoint, retrieved on March 13, 2012.

[31] J Van Bon et. al., Foundations of IT service management based on ITIL

V3 , Van Haten Publishing, 2008

[32] G. Williams, SPARQL Service Description, http://www.w3.org/

TR/2009/WD-sparql11-service-description-20091022/.

[33] L Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, Q. Sheng, Quality

driven web services composition, Proceedings of the 12th international

conference on World Wide Web, 2003, pp 411 - 421 .

[34] K. Ren, N. Xiao, J. Chen, "Building Quick Service Query List

Using WordNet and Multiple Heterogeneous Ontologies to-

ward More Realistic Service Composition," IEEE Transactions

on Services Computing, vol. 4, no. 3, pp. 216-229, 2011.

[35] Paliwal, A.; Shafiq, B.; Vaidya, J.; Xiong, H.; Adam, N.; , "Se-

mantics Based Automated Service Discovery," Services Compu-

ting, IEEE Transactions on , vol.PP, no.99, pp.1, 0.

[36] NIST Cloud Computing Use Case 3.9: Query Cloud-Provider

Capabilities and Capacities, http://www.nist.gov/itl/cloud/

3_9.cfm, retrieved on February 25, 2012

[37] IBM VCL : A Cloud Computing Solution in Universities,

http://www.ibm.com/developerworks/webservices/library/

ws-vcl/, retrieved on February 25, 2012

[38] M Xu, Z Hu, W Long, W Liu, Service virtualization: Infrastruc-

ture and applications - The Grid: Blueprint for a New Compu-

ting Infrastructure, I. Foster, C. Kesselman, Morgan Kaufman,

2004

[39] D. De Roure et. al., The Semantic Grid: Past, Present, and Fu-

ture, Proceedings of the IEEE, vol. 93, No. 3, March 2005

[40] T D¨ornemann, E Juhnke, B Freisleben, On-Demand Resource

Provisioning for BPEL Workflows Using Amazon’s Elastic

Compute Cloud, proc. of CCGrid, 2009.

[41] C. Crawford, G. Bate, L. Cherbakov, K. Holley, C. Tsocanos,

Toward an on demand service-oriented architecture, IBM Sys-

tems Journal, Vol 44, Issue 1, pp 81-107, 2005

[42] Quan Z. Sheng, et al, , Configurable Composition and Adaptive

Provisioning of Web Services, IEEE Transactions on Services

Computing, Vol. 2, No. 1, Jan-Mar 2009

[43] Mike Boniface, et al., Dynamic Service Provisioning Using

GRIA SLAs Service-Oriented Computing - ICSOC 2007

[44] Ana Juan Ferrer, et al, OPTIMIS: A holistic approach to cloud

service provisioning, FGCS, 2011.

[45] D. Chakraborty, F. Perich, S. Avancha and A. Joshi, “DReggie:

Semantic Service Discovery for M-Commerce Applications”,

Workshop on Reliable and Secure Applications in Mobile Envi-

ronment, Symposiom on Reliable Distributed Systems, 2001

[46] NIST Special Publication 500-293, US Government Cloud Com-

putingTechnology Roadmap Volume I Release 1.0 (Draft) High-

Priority Requirements to Further USG Agency CloudCompu-

ting Adoption, Nov 2011

Karuna P Joshi is a PhD Candidate in Computer Science at the
University of Maryland, Baltimore County (UMBC). Her research
interests include Cloud Computing Services, Databases, Web Tech-
nologies and Data mining. She has been awarded the prestigious
IBM Ph.D. Fellowship. She completed her MS in Computer Science
from UMBC and her Bachelors in Computer Engineering from Uni-
versity of Mumbai. She has over 15 years of industrial experience
primarily as an IT Project Manager. She worked at the International
Monetary Fund for over nine years. Her managerial experience in-
cludes Portfolio/ Program/Project Management across various do-
mains.

Yelena Yesha is a Professor of Computer Science and Electrical
Engineering at UMBC. She received the B.Sc. degree in Computer
Science from York University, Toronto, Canada, and the M.Sc. and
Ph.D. degrees in Computer and Information Science from The Ohio
State University. She is also the Associate Director for the Multicore
Computational Center. In addition, Dr. Yesha served as the Director
of the Center of Excellence in Space Data and Information Sciences
at NASA. Her research interests are in the areas of distributed data-
bases, distributed systems, digital libraries, electronic commerce,
and trusted information systems. She coauthored 14 books and
authored over 180 refereed articles in these areas.

Tim Finin (http://bit.ly/finin) is a Professor of Computer Science and
Electrical Engineering at UMBC. He has over 30 years of experi-
ence in applications of Artificial Intelligence to problems in infor-
mation systems and language understanding. His current research
is focused on the Semantic Web, mobile computing, analyzing and
extracting information from text and online social media, and on
enhancing security and privacy in information systems. He holds
degrees from MIT and the University of Illinois and has also held
positions at Unisys, the University of Pennsylvania, and the MIT AI
Laboratory.

Preprint of final accepted version: Karuna P Joshi, Yelena Yesha, and Tim Finin, Automating Cloud Services Lifecycle
through Semantic Technologies, IEEE Transactions on Services Computing, IEEE Computer Society, to appear, 2013.

