SUPPORTING INFORMATION

An MCM modeling study of nitryl chloride (ClNO₂) impacts on oxidation, ozone production and nitrogen oxide partitioning in polluted continental outflow

Theran P. Riedel^{1,2}, Glenn M. Wolfe^{3,4}, Kenten T. Danas², Jessica B. Gilman^{5,6}, William C. Kuster^{5,6}, Daniel M. Bon^{5,6}, Alexander Vlasenko⁷, Shao-Meng Li⁷, Eric J. Williams^{5,6}, Brian M. Lerner^{5,6}, Patrick R. Veres^{5,6}, James M. Roberts⁵, John S. Holloway⁵, Barry Lefer⁹, Steven S. Brown⁵, Joel A. Thornton²

- (1) Department of Chemistry, University of Washington, Seattle, Washington, USA
- (2) Department of Atmospheric Sciences, University of Washington, Seattle, Washington, USA

(3) Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, Maryland, USA

(4) Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

(5) NOAA Earth System Research Laboratory, Boulder, Colorado, USA

(6) Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA

(7) Air Quality Research Division, Science and Technology Branch, Environment Canada, Canada

(8) Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado, USA

(9) Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas, USA

Supplemental	Figures	and	Tables
--------------	---------	-----	--------

Pasadena (GC-MS)	R/V Atlantis (GC-FID)	R/V Atlantis (PTR-ToF-MS)	median (pptv)	1σ
methanol	methanol		1220	180
ethanol			1540	200
isopropanol			320	50
ethanal	ethanal		370	150
methacrolein			10	10
propanal			90	20
butanal			20	4
ethane			3120	440
propane		propane	1940	330
i-butane		i-butane	510	70
n-butane		n-butane	1200	190
i-pentane			780	100
n-pentane		n-petane	350	40
hexane			250	30
nonane			40	2
decane			36	2
undecane			34	4
ethene		ethene	900	100
propene		propene	250	60
cis-2-butene			10	2
1-butene		1-butene	25	5
2-methylpropene			80	20
1,3-butadiene			44	17
trans-2-butene			33	7
ethyne		ethyne	320	40
propylbenzene			15	1
isopropylbenzene			5	1
benzaldehyde			40	8
benzene	benzene	benzene	65	5
ethylbenzene			25	2
o-methylethylbenzene			4	1
1,3,5-trimethylbenzene			10	3
phenylethene			14	2
1,2,4-trimethylbenzene			25	5
o-xylene			30	3
toluene	toluene	toluene	140	13
1,2,3-trimethylbenzene			8	2
methylvinylketone			16	25
acetone	acetone		740	260
methylethylketone			53	27
alphapinene			13	8
betapinene			8	4
limonene			9	7
isoprene			30	180

Table S-1. VOC measured during CalNex 2010 at the Pasadena, CA, ground site and aboard the R/V *Atlantis* and used as model constraints. Medians and standard deviations for the diurnal values used in the model are also given.

 $N2O5 \rightarrow CLNO2 + HNO3$

 $\begin{array}{l} \text{CLNO2} + \text{hv} \rightarrow \text{CL} + \text{NO2} \\ \text{CL} + \text{CH3OH} \rightarrow \text{HCHO} + \text{HO2} + \text{HCL} \\ \text{CL} + \text{C2H5OH} \rightarrow \text{CH3CHO} + \text{HO2} + \text{HCL} \\ \text{CL} + \text{C2H5OH} \rightarrow \text{HOCH2CH2O2} + \text{HCL} \\ \text{CL} + \text{IPROPOL} \rightarrow \text{CH3COCH3} + \text{HO2} + \text{HCL} \\ \text{CL} + \text{IPROPOL} \rightarrow \text{IPROPOLO2} + \text{HCL} \\ \text{CL} + \text{C2H4} \rightarrow \text{CH2CLCH2O2} \\ \text{CL} + \text{C3H6} \rightarrow \text{CH2CLCHOOCH3} \\ \text{CH2CLCHOOCH3} + \text{NO} \rightarrow \text{CH2CLCOCH3} \end{array}$

 $CL + C3H6 \rightarrow CH3CHCLCH2OO$ CH3CHCLCH2OO + NO \rightarrow CHOCHCLCH3

 $CHOCHCLCH3 + NO3 \rightarrow C2H5CLCO3$

 $CHOCHCLCH3 + OH \rightarrow C2H5CLCO3$

 $C2H5CLCO3 + HO2 \rightarrow CH3CHCLO2$

 $\text{C2H5CLCO3} + \text{HO2} \rightarrow \text{CH3CHCLCO3H}$

 $\rm CH3CHCLCO3H+OH \rightarrow C2H5CLCO3$

CH3CHCLCO3H + hv \rightarrow CH3CHCLO2 + OH C2H5CLCO3 + HO2 \rightarrow CH3CHCLCOOH + O3

 $\label{eq:CH3CHCLCOOH} \begin{array}{c} \text{CH3CHCLCOOH} + \text{OH} \rightarrow \text{CH3CHCLO2} \\ \text{C2H5CLCO3} + \text{NO} \rightarrow \text{CH3CHCLO2} + \text{NO2} \end{array}$

 $\text{C2H5CLCO3} + \text{NO2} \rightarrow \text{2CLPPN}$

2CLPPN + OH \rightarrow CLETAL + CO + NO2 2CLPPN \rightarrow C2H5CLO3 + NO2

C2H5CLCO3 + NO3 → CH3CHCLO2

 $\text{C2H5CLCO3} \rightarrow \text{CH3CHCLO2}$

 $\text{C2H5CLCO3} \rightarrow \text{CH3CHCLCOOH}$

 $\label{eq:CHOCHCLCH3} \rightarrow \mbox{CH3CHCLO2} + \mbox{HO2} + \mbox{CO} \\ \mbox{CL} + \mbox{C3H6} \rightarrow \mbox{CH2C2H3O2} + \mbox{HCL} \\ \mbox{CH2C2H3O2} + \mbox{NO} \rightarrow \mbox{ACR} \\ \end{tabular}$

 $\begin{array}{l} \text{CL} + \text{HCHO} \rightarrow \text{HO2} \\ \text{CL} + \text{CH3CHO} \rightarrow \text{CH3CO3} \\ \text{CL} + \text{C2H5CHO} \rightarrow \text{C2H5CO3} \\ \text{CL} + \text{CH3COCH3} \rightarrow \text{CH3COCH2O2} \\ \text{CL} + \text{BENZENE} \rightarrow \text{products} \\ \text{CL} + \text{STYRENE} \rightarrow \text{products} \\ \text{CL} + \text{OXYL} \rightarrow \text{products} \\ \text{CL} + \text{TOLUENE} \rightarrow \text{products} \\ \text{OH} + \text{HCL} \rightarrow \text{CL} \end{array}$

 $\gamma \omega S_A / 4$ $\phi \gamma \omega S_A / 4$ (for ClNO₂ formation) $(2-\phi)\gamma\omega S_{A}/4$ (for HNO₃ formation) **j**cino2 1.4e-10*exp(-280/T) 0.92*6.0e-11*exp(155/T) 0.08*6.0e-11*exp(155/T) 7.4e-11 1.3e-11 1.1e-10 0.4*2.7e-10 2.9e-12*exp(350/T) (k from MCM for NC3H7O2+NO) 0.5*2.7e-10 2.9e-12*exp(350/T) (k from MCM for NC3H7O2+NO) 3.24e-12*exp(-1860/T) (k from MCM for propanal+NO3) 4.9e-12*exp(405/T) (k from MCM for propanal+OH) KAPHO2*0.44 (k from MCM for C2H5CO3+HO2) KAPHO2*0.41 (k from MCM for C2H5CO3+HO2) 4.42e-12 (k from MCM for PERPROACID+OH) j-value for PERPROACID from MCM KAPHO2*0.15 (k from MCM for C2H5CO3+HO2) 1.2e-12 (k from MCM for PROPACID+OH) 6.7e-12*exp(340/T) (k from MCM for C2H5CO3+NO) KFPAN (k from MCM for C2H5CO3+NO2) 1.27e-12 (k from MCM for PPN+OH) 1.7e-3*exp(-11280/T) (k from MCM for PPN decomposition) KRO2NO3*1.74 (k from MCM for C2H5CO3+NO3) 1.00e-11*0.7 (k from MCM for C2H5CO3 $+RO2\rightarrow C2H5O2)$ 1.00e-11*0.3 (k from MCM for C2H5CO3 $+RO2 \rightarrow PROPACID)$ j-value for propanal+hv from MCM 0.1*2.7e-10 %at 298K KRO2NO (k from MCM for ISOPDO2+NO) 8.1e-11*exp(-34/T) 8e-11 1.3e-10 1.5e-11*exp(-590/T) 1.5e-15 (Shi and Bernhard, 1997) 3.6e-10 (Shi and Bernhard, 1997) 1.5e-10 (Shi and Bernhard, 1997) 5.9e-11 (Shi and Bernhard, 1997) 2.6e-12*exp(-350/T)

$CL + 03 \rightarrow CLO$ $CLO + NO \rightarrow CL + NO2$ $CLO + HO2 \rightarrow HOCL$ $CLO + NO2 \rightarrow CLONO2$ $CLONO2 + hv \rightarrow CL + NO3$ $CLONO2 + hv \rightarrow CLO + NO2$ $HOCL + hv \rightarrow CL + OH$ $CLONO2 = CL2 + HDO2$	2.8e-11*exp(-250/T) 6.2e-12*exp(295/T) 2.2e-12*exp(340/T) 2.3399e-12 jcioNo2 + hv \rightarrow Cl + No3 jcioNo2 + hv \rightarrow Cl + No2 jHoCl + hv \rightarrow Cl + OH trop S / 4
$CLONO2 \rightarrow CL2 + HNO3$	$\gamma \omega S_A / 4$
HOCL $\rightarrow CL2$	$\gamma \omega S_A / 4$
$CL2 + hv \rightarrow 2CL$	$j_{Cl2 + hv \rightarrow 2Cl}$
$C5H8 + CL \rightarrow products$	4.27e-10

*The MCM designated name is provided for reactants and products (i.e. $NO_2 = NO2$, isopropanol = IPROPOL, etc.). Newly added species are assigned names similar to the MCM naming convention (i.e. $CINO_2 = CLNO2$).

**When available, the temperature dependent rate constants are provided. Otherwise rate constants are for 298K.

 γ = uptake coefficient for the given reactant with aerosol surface area; ϕ = product yield; ω = mean molecular speed of the given

reactant (m/s); S_A = aerosol surface area concentration (m²/m³)

References:

Shi, J., and Bernhard, M. J.: Kinetic studies of Cl-atom reactions with selected aromatic compounds using the photochemical reactor-FTIR spectroscopy technique, International Journal of Chemical Kinetics, 29, 349-358, doi: 10.1002/(SICI)1097-4601(1997)29:5<349::AID-KIN5>3.0.CO;2-U, 1997.

Table S-2. Additional non-MCM reactions and associated rate constants used by the model.

Figure S-1. Hydrochloric acid (HCl) diurnal profile used in the model.

Figure S-2. Methanol oxidation mechanism by atomic chlorine added to the model reactions.

Figure S-3. Ethanol oxidation mechanism by atomic chlorine added to the model reactions.

Figure S-4. Isopropanol oxidation mechanism by atomic chlorine added to the model reactions.

Figure S-5. Ethene oxidation mechanism by atomic chlorine added to the model reactions.

Figure S-6. Propene oxidation mechanism by atomic chlorine added to the model reactions.

Figure S-7. Photolysis frequency comparison between j_{CINO2} as measured aboard the R/V *Atlantis* and modeled clear sky $j_{NO2}/30$ which used in the model as a proxy for j_{CINO2} .

Figure S-8. Effects of $ClNO_2$ on the molecular chlorine (Cl_2) levels during a model run.

Figure S-9. Model concentrations of species relevent to chlorine atom production for the without- $CINO_2$ (top panel) and with- $CINO_2$ (bottom panel) model cases.

Figure S-10. Model NO, NO₂ and HO₂ mixing ratios for the with-ClNO₂ model case.

Figure S-11. Predicted Cl-atom reactivity over the course of a model day.

Figure S-12. Predicted O₃ mixing ratios for the with- and without-ClNO₂ model cases.