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The integration of kinetic effects in fluid models is important for global simulations of the Earth’s

magnetosphere. In particular, it has been shown that ion kinetics play a crucial role in the dynamics

of large reconnecting systems, and that higher-order fluid moment models can account for some of

these effects. Here, we use a ten-moment model for electrons and ions, which includes the off diag-

onal elements of the pressure tensor that are important for magnetic reconnection. Kinetic effects

are recovered by using a nonlocal heat flux closure, which approximates linear Landau damping in

the fluid framework. The closure is tested using the island coalescence problem, which is sensitive

to ion dynamics. We demonstrate that the nonlocal closure is able to self-consistently reproduce

the structure of the ion diffusion region, pressure tensor, and ion velocity without the need for fine-

tuning of relaxation coefficients present in earlier models. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4993195]

Magnetic reconnection is a change in topology of the

magnetic field lines in a plasma,1 often followed by the con-

version of stored magnetic energy to the kinetic energy of

accelerated particles. It is believed to play an important role in

many laboratory and astrophysical plasma processes, including

sawtooth crashes in tokamaks, solar flares, magnetic substorms

in the Earth’s magnetosphere, and coronal mass ejections.2–6

For reconnection to take place, the motion of the plasma

must decouple from the magnetic field lines. In collisionless

environments such as the magnetosphere, this takes place in

the electron diffusion region, and due to the kinetic scales

involved, it cannot be described purely by resistive magneto-

hydrodynamic (MHD) models such as the Sweet–Parker

model.7,8 For large scale global numerical studies of the

magnetosphere, which are crucial for accurate space weather

prediction, the use of fluid models is common due to the

computational cost involved in simulating the large domains

involved. Thus, the development of extended fluid models

incorporating collisionless effects is desirable for capturing

the physics of reconnection in large systems.

The major issue with fluid models is the closure of the

hierarchy of fluid equations obtained by taking moments of the

kinetic equation. While increasing the number of moments

allows more information about the distribution function to be

captured,9 a choice must be made as to when to close the equa-

tions and how to treat the highest moment. Most closures of the

moment equations involve an expansion in small Knudsen

number in the collisional regime, and attempts have been made

to use these models to simulate magnetic reconnection.10–13

However, in the collisionless case, kinetic effects such

as phase mixing are present and cannot be captured by these

fluid closures.14,15 Instead, approximations can be made by

introducing collisionless damping coefficients by expressing

the highest moments in terms of lower moments. Unlike the

collisional case, the closure coefficients can be complex and

are nonlocal in space.14,15 While these models have been

used extensively in studies of fusion plasmas,16,17 they have

not been applied to studies of magnetic reconnection.

In this paper we describe the self-consistent implementa-

tion of a fluid closure using the ten-moment equation system

without any adjustable parameters. We evolve the full pressure

tensor for both electrons and ions, which is necessary to balance

the reconnection electric field in collisionless reconnection18,19

and close for the heat flux using a three-dimensional extension

of the Hammett–Perkins closure.14 We perform simulations of

the island coalescence problem, in which the existing Hall

MHD fluid model does not reproduce the kinetic result due to

the absence of important ion physics.20,21 We demonstrate here

with the collisionless fluid model that the wider ion diffusion

region can be reproduced without the fine tuning of a free

parameter as was previously required.21 While the strong

system-size scaling of the reconnection rate in kinetic and

hybrid (kinetic ion, fluid electron) simulations is not completely

reproduced for larger scales, the new closure successfully cap-

tures the ion-scale structures such as agyrotropy which are not

accounted for consistently by earlier fluid models.

The ten-moment equations are derived by taking

moments of the kinetic equation

@n

@t
þ @

@xj
nujð Þ ¼ 0;

m
@

@t
nuið Þ þ

@Pij

@xj
¼ nq Ej þ �ijkujBkð Þ;

@Pij

@t
þ @Qijk

@xk
¼ nqu½iEj� þ

q

m
�½iklPkj�Bl;

(1)

where Pij and Qijk are the second and third moments of the

distribution function

Pij � m

ð
vivjfd

3v;

Qijk � m

ð
vivjvkfd3v;

(2)
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and the square brackets denote a sum over permutations of

the indices (e.g., u½iEj� ¼ uiEj þ ujEi). The third moment ten-

sor Qijk can be written in terms of the heat flux tensor

qijk � m
Ð
ðvi � uiÞðvj � ujÞðvk � ukÞfd3v

Qijk ¼ qijk þ u½iPjk� � 2mnuiujuk: (3)

Earlier multi-fluid models of reconnection involving a

pressure tensor have employed a relaxation to local isotropy

in the form @iqijk ¼ nvtjk0jðTij � T0dijÞ. Here, vt ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2T=m

p
is the thermal velocity of the associated species and k0 is a

free parameter which effectively allows deviations from isot-

ropy at length scales less than 1=jk0j.10,11,13,21 It has been

shown that simulation results are sensitive to the choice of k0

for each species13,21 and such free parameters are present in

earlier efforts as well.10,11,13

In order to close the equations in the collisionless limit,

we use a three-dimensional extension of the Hammett–

Perkins closure, which can be expressed as follows for both

electrons and ions14

qijkðxÞ ¼ nðxÞq̂ijkðxÞ; (4)

where q̂ijk in Fourier space is ~qijk and is calculated as

~qijk ¼ �i
vt

jkj vk½i ~Tjk�: (5)

Here, ~Tjk is the Fourier transform of the deviation of the local

temperature tensor from the mean. The 1=jkj scaling makes

this a non-local closure when expressed in real space15,16 and

provides a 1 to 3 pole Pad�e approximation of various compo-

nents of the dielectric tensor. The coefficient v ¼
ffiffiffiffiffiffiffiffiffiffi
4=9p

p
is the

best fit value for the diagonal qiii component and reduces to the

closure in Refs. 14 and 15 in the 1-D limit. This is an unmagne-

tised closure (especially relevant to ions in this geometry in

which there is no guide field) which approximates linear phase

mixing, allowing the wavenumber-dependent damping of

spurious short-wavelength oscillations which are present in

higher moment fluid models,15,22 and to our knowledge, is the

first of its kind in closure studies of magnetic reconnection.

The moment equations coupled to Maxwell’s equations

are implemented in the finite-volume version of the Gkeyll

code, which uses a high-resolution wave propagation method

for the hyperbolic part of the equations and a point implicit

method for the source terms.23,24 The closure is evaluated

using an interface to the parallel FFTW library.25

We first illustrate the effects of the closure in Fig. 1(a),

which shows the evolution of the electric field amplitude for

a Langmuir wave with kkde¼ 0.35 in a 1-D two-fluid simula-

tion, where kde is the electron Debye length. In the simula-

tion, the measured frequency and damping rate, in terms of

the electron plasma frequency xpe, are x¼ 1.16xpe and

c¼ 0.044xpe, respectively, compared to the exact solution

from the linear Vlasov dispersion relation x¼ 1.22xpe,

c¼ 0.034xpe. Here we note that the measured values are

consistent with those calculated using the Pad�e approximant

of the plasma dispersion function, and improved agreement

with the Vlasov solution requires evolving higher fluid

moments.14–16 In contrast, the simulation without any

explicit dissipation is qualitatively different and shows no

damping as expected.

For magnetic reconnection, while the Harris sheet geom-

etry is a standard test problem,26 and has been successfully

simulated using this closure (not shown), we focus on the

island coalescence geometry in this paper as it has been

found to be sensitive to ion rather than electron dynam-

ics,20,21 for which this closure would be a better approxima-

tion. This is a Fadeev equilibrium with initial conditions27

Ay ¼ �kB0ln coshðz=kÞ þ � cos ðx=kÞ½ �;
n ¼ n0ð1� �2Þ= coshðz=kÞ þ � cos ðx=kÞ½ �2 þ nb:

(6)

Here B0 is the x-component of the magnetic field upstream of

the layer, � controls the island size, and k is the half width of

FIG. 1. (a) Damping of electrostatic

fluctuations in 1-D ten-moment simu-

lations. (b) Reconnection rates in

kinetic, ten-moment, and Hall MHD

simulations. (c) Scaling of maximum

reconnection rate with system size. (d)

Scaling of average reconnection rate

over 1.5tA with system size.
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the current sheet. We use the same physical parameters as

described in previous studies,20,21,28 with �¼ 0.4, which corre-

sponds to an island half-width of approximately 1.2k, and

background density nb¼ 0.2n0. The system size is Lx�Lz

¼ 4pk� 2pk, with periodic boundary conditions in the x direc-

tion. Conducting walls for fields and reflecting walls for par-

ticles are used in the z direction. We use mass ratio mi/me

¼ 25, electron thermal speed vt,e/c¼ 0.35, and Ti ¼ Te¼ T, and

the value of T is set by the upstream equilibrium condition

b¼ 1. The ratio of electron plasma frequency to gyrofrequency

is xpe/Xce¼ 2. A 10% initial perturbation in the magnetic field

is applied to initiate merging. The kinetic (particle-in-cell)

results in this paper are described in Ref. 20 and additional

simulations for the k/di¼ 5, 10 cases were performed using the

particle-in-cell code PSC (particle simulation code), which is

described in Ref. 29.

In MHD, multi-fluid and kinetic models, the initial

phase in which the islands approach each other is driven by

the ideal MHD coalescence instability,30 and differences

between the models only appear after the central current

sheet begins to form.20,21 This can be seen in Fig. 1(b),

which shows the normalised reconnection rate for simula-

tions using the new closure and earlier kinetic, ten-moment,

and Hall MHD simulations.20,21 Here the reconnection rate

ER ¼ ð1=B0V0AÞ@w=@t is found in the same manner as in

Refs. 20, 21, and 28, where B0 and V0A are calculated using

the maximum magnetic field between the centres of the two

islands at t¼ 0. The flux within an island w is defined as the

difference between Ay at the X- and O-points.

Because reconnection in this system is bursty, it is use-

ful to consider the average as well as maximum reconnection

rates.20,21,28 In Figs. 1(c) and 1(d), the scaling of the maxi-

mum and average (over 1.5 global Alfv�en times) reconnec-

tion rates with the system size is shown. With the nonlocal

closure, there is a stronger negative scaling of the average

reconnection rate / ðk=diÞ�0:45
for system sizes up to k/di

¼ 25 compared to ðk=diÞ�0:2
for both Hall MHD and ten

moment simulations with a local closure. However, this is

still weaker than the results of Ref. 20 where the rate scales

like / ðk=diÞ�0:8
and ðk=diÞ�0:65

for kinetic and hybrid mod-

els, respectively. The discrepancies for the ten moment

systems are partially explained by the enhancement of

the reconnection rate due to the formation of secondary

islands in smaller systems (k/di¼ 15 for the nonlocal closure,

k/di¼ 25 for the local closure). In the presence of multiple

secondary islands, the location of the major X-point is deter-

mined by the maximum Ay along the line x¼ 0. The flux is

measured between this point and the O-point at the centre of

either of the initial islands.

Figure 2 shows a comparison between the kinetic, ten-

moment, and Hall MHD simulations with k¼ 5di at t¼ tA,

which is close to the time of maximum reconnection rate.

Due to the coalescence geometry [Eq. (6)], the inflow is in

the x (horizontal) direction while the outflow is in the z (ver-

tical) direction, which is opposite to the usual Harris sheet.

As can be seen in the bottom panel, the width of the current

sheet in the ten-moment simulation is comparable to that in

the kinetic simulation (1.20di vs 1.15di), and is much larger

than the highly peaked Hall MHD current sheet (0.18di). The

peak current density is still higher than in the kinetic simula-

tion due to the electron dynamics in the ten-moment model,

which causes a more intense electron layer due to the iso-

tropisation of the pressure tensor. Here the electron closure

captures the off-diagonal terms of the pressure tensor which

balance the reconnection electric field in the electron diffu-

sion region self-consistently, but produces weaker electron

pressure anisotropy than models which focus on particle

trapping effects;31–33 this does not affect the results of this

paper as the reconnection rates are sensitive to the ion

dynamics for this geometry.20,21

The structure of the ion diffusion region is shown in

Fig. 3, which contains the decomposition of the ion momen-

tum equation on a cut along z¼ 0 at t¼ tA. In Ref. 20 it was

shown that the influence of the ion kinetic physics extends to

a broader 2–3 di ion diffusion region, where the divergence

of the pressure tensor balances the non-ideal electric field.

This result is in contrast to the Hall MHD result, where the

ion inertia balances the reconnection electric field below di

scales.20

While both local and nonlocal ten-moment models could

capture the wider ion diffusion region, it was found that

FIG. 2. Current densities in kinetic, ten-moment, and Hall MHD simulations

with k ¼ 5di. The colour scaling of the Hall MHD current is reduced by a

factor of two so that the strongly peaked current sheet can be seen.

FIG. 3. Comparison of the decomposition of the ion momentum equation

near the x-point between the nonlocal ten-moment model and a kinetic

simulation.
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keeping the relaxation parameter ki¼ 1/de, which was used

in the Harris sheet study,13 caused larger Hall MHD-like

reconnection rates to be observed and a narrower ion diffu-

sion region to form. Only by adjusting ki in the ion closure to

1/(3di), allowing the pressure tensor to deviate from isotropy

at larger scales, could the kinetic reconnection rates be repro-

duced for small systems.21

In contrast, with the nonlocal closure, the wider ion dif-

fusion region develops self-consistently without the need to

fine tune the relaxation. While the reconnection rate does not

match the kinetic result exactly, the larger region in which

the divergence of the ion pressure tensor balances the non-

ideal electric field is reproduced, with the associated reduc-

tion of the reconnection rate as compared to that of Hall

MHD or the local ten-moment model with larger ki.
21

Additionally, due to the wavenumber-dependent damp-

ing, the model using the nonlocal closure shows good agree-

ment in the ion velocity with the kinetic results, apart from

the absence of particle-in-cell noise. This is because the new

closure does not exhibit some of the spurious structures

which have been observed when using the local closure.

These are most evident along the line x¼ 0, where the ion

velocity is reduced, and just upstream of the reconnection

region in Fig. 4. The structures are present with the local clo-

sure due to the lower ki used to obtain the wider diffusion

region, which does not account for the faster damping at

shorter wavelengths, unlike the nonlocal closure, which

approximates this effect.

Further improvements when using the nonlocal closure

are illustrated by considering a common metric used in

reconnection, the agyrotropy AØ, which measures the depar-

ture of the distribution function from the cylindrical symme-

try.34 Figure 5 shows the ion agyrotropy AØi observed close

to the central current sheet at t¼ tA. In the kinetic simulation,

there is strong agyrotropy in both a 2–3di thick region

upstream of the current sheet and the exhaust region and it

FIG. 4. Out-of-plane ion velocity in

kinetic, nonlocal fluid, and local fluid

models. The local model uses ki¼ 1/

(3di) which was chosen to match

reconnection rates with the kinetic

solution in Ref. 20.

FIG. 5. Comparison of ion agyrotropy

between kinetic, nonlocal fluid, and

local fluid models. The local model

uses ki¼ 1/(3di) which was chosen to

match reconnection rates with the

kinetic solution in Ref. 20.
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was shown in Ref. 20 that this corresponds to the region

where ion motion is characterised by meandering orbits and

ion pressure tensor effects contribute to momentum balance.

With the new nonlocal closure shown in the second

panel of Fig. 5, the structure of the agyrotropy both up- and

downstream of the x-point is reproduced. This is a qualita-

tive improvement on the local model, which shows two dis-

tinct upstream regions and small agyrotropy in the exhaust

region. The improvement is due to the nonlocal heat flux,

which reduces the discrepancies in the diagonal components

of the ion pressure tensor observed when only using the local

model.12 However, the values of the agyrotropy using the

nonlocal closure are still lower than the kinetic results, as the

fluid model cannot capture all the details of the non-

gyrotropic distribution function caused by the meandering

motion.

To summarise, we have implemented a nonlocal ion clo-

sure for the two-fluid, ten-moment equations that captures lin-

ear phase mixing in a fluid treatment. This provides heat flux

at the x-point which is necessary for reconnection to take

place in the collisionless ten moment model.12 We demon-

strate that using the new nonlocal closure gives improved

agreement with kinetic results compared to previously imple-

mented systems for moment closures and Hall MHD,13,21 by

allowing the ion pressure tensor to deviate from isotropy with-

out introducing a free relaxation parameter. This sets the

structure of the ion diffusion region self-consistently, and

results in much improved agreement highlighted by the ion

velocity profile and agyrotropy. However, the strong system-

size dependence of the average reconnection rate observed in

kinetic and hybrid simulations is not completely reproduced.20

The scaling is due in part to the formation of secondary

islands in the larger fluid systems, and also indicates that

while the ion diffusion region physics is reproduced, there is

still additional ion kinetic physics, such as the ion meandering

motion and its effects on the distribution function,20 that con-

tributes to setting the reconnection rate in this system. While

this system is less sensitive to the electron dynamics,20,21 the

nonlocal closure is also able to capture the off diagonal terms

of the electron pressure tensor in the electron diffusion region.

Future work could explore the extension to the strongly mag-

netised regime in a similar manner,15,35 which could allow the

treatment of guide-field reconnection and application to large

systems, in which the development of strong electron pressure

anisotropy is also an important process.32,33
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