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ABSTRACT 

 

 

 

 

Title of Document: COGNITIVE  INTELLIGENCE  IN  

RELATIONAL  DATABASES. 
  

 Sushant Athley, M.S. Computer Science, 2017. 

  
Directed By: Professor Tim Oates, Computer Science and 

Electrical Engineering 

 

 

We evaluate the applicability of distributed language embedding techniques from the 

domain of natural language processing to relational data. Relational data is typically 

stored in SQL databases. We apply modern distributed representations of words 

(Tomas Mikolov 2013c) and paragraph (Quoc V. Le 2014) techniques to this 

structured data and attempt to unlock the potential of enhanced cognitive querying. 

The research intention is to be able to perform queries which are non-trivial to 

perform using the SQL dialect alone. 

We tokenize the IMDB 5000 movie dataset to generate embeddings using word2vec 

and a modified version of doc2vec that we term as row2vec. We discuss the effects of 

various hyperparameter choices and tokenization techniques. We visualize these 

embedding using PCA and present the results for certain queries. 

 

Keywords: Word embedding, databases, word2vec, cognitive querying. 
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Chapter 1: Introduction 
 

Research Problem 

 

In recent years, researchers have shown a tremendous amount of interest in language 

embedding and distributed representations of words. The origins can be traced back 

to (Tomas Mikolov K. C., 2013) with the skip-gram model for word embedding. 

These algorithms did not involve dense matrix multiplications and were thus very 

efficient. One could train 100 billion words in a day on a single optimized machine. 

Since then, these models have been applied to a variety of settings such as language 

translation (Jansen, 2017), sentiment analysis (Liu, 2017) (Yushi Yao, 2017), DNA 

sequencing (Ng, 2017) and product recommendations (Christophe Van Gysel, 2016) 

(Oren Barkan, 2016) (Ozsoy, 2016).  

 This thesis aims to evaluate the applicability of word embedding to the 

domain of relational data. Most data online are stored in traditional relational 

databases. This can be credited to their robust ACID compliance, ease of set based 

querying, industry grade uptime and security, and widespread availability of experts. 

SQL tables are employed to persist all kinds of data, from numerical sales figures to 

textual product reviews. Whereas distributed representations of words models have 

been known to perform well on large textual corpora such as news articles and 

Wikipedia entries, we try to understand the feasibility of word representations on 

SQL tables and the potential of unlocking enhanced querying capabilities. We 

consider various techniques of transforming SQL tables into a suitable input format 

for word embedding models (tokenizing) and shed light on the hyperparameter 

settings that should allow us to yield better models for our intended tasks. 
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Organization 

 

This document is organized into 5 sections. The next section will discuss the 

background and state-of-the-art in word embedding. We will talk about the popular 

word2vec model and the newer doc2vec model as our choices for training on SQL 

tables. We develop our hypothesis and scope of our research. In section 3, we go 

deeper into analyzing the different choices for tokenization and hyperparameter 

options and their subsequent effects. In section 4, we present our findings using 

visualizations and sample query results. We end in section 5 by discussing our results 

and proposing some future research directions. 
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Chapter 2: Theory 
 

 

Relational model 

 

The relational database is based on the relational model. This relational model was 

first proposed by E.F. Codd in 1970 (Codd, 1970). The premise is very simple. Data 

for each business entity and measurement is organized into a collection of tables. 

Each table has horizontal rows (tuples) and vertical columns (attributes). A row and 

column intersect at a cell. A row represents one instance of a business entity or 

measurement. For example, in a table that stores employee information, you would 

have rows for Bob and Susie. The column stores a subset of the information for all 

the rows. All the cells for a column conform to a single data type (string, number, 

date etc.). One column (or a combination of columns) is typically designated as the 

primary key for the table. This primary key uniquely identifies each row in the table.  

A software implementation of such a design is called a Relational Database 

Management System (RDBMS). Structured Query Language (SQL) has been the gold 

standard for interacting with these systems for many years.  

 

Distributed Language Embeddings 

 

The term “distributed language embedding” was originally coined by (Bengio, 

2003). Language embedding is the approach of representing each token in a language 

vocabulary 𝒱 as a vector in a low-dimension vector space ℝ#, where n is the 

dimensionality of the resultant vectors. A token can be a single word like ‘eat’ or 

‘Paris’. It can be a phrase like ‘machine learning’ or ‘Baltimore Ravens’. It can also 

be sentences, paragraphs or entire documents. For now, we decouple the grain from 
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the model and call these individual meaningful entities as tokens. Language 

embedding assigns a fixed-dimension numerical vector to each token, such that these 

vectors capture certain intrinsic properties of the tokens that they represent. 

The framework design, algorithm and hyperparameters that are used to 

generate these token vectors are influenced by the qualities that are desired in the 

embeddings and by their transfer applications (Omer Levy Y. G., 2015). Also, the 

dimensionality of these output vectors is often dictated by the corpus size. Typically, 

we see that researchers strive to capture the semantic and syntactic relationships 

between word tokens. By this we mean that similar token vectors should be located 

closer to each other in a vector space than dissimilar tokens. For example, the vector 

for ‘chair’ should be closer to the vectors for ‘table’ and ‘furniture’, than it is to the 

vector of ‘kangaroo’. Cosine-distance is popularly used as a measure of the distance 

between two vectors. These vectors also conform to linear transformations for 

capturing semantic relationships. They should be well formed to perform analogy 

queries such as: if ‘King’ is to ‘man’, then ‘Queen’ is to what? (answer: ‘woman’) See 

Figure 1. More recently, researchers have proposed that embeddings should better 

align with their transfer applications by maximizing the amount of easily accessible 

and useful information (Stanisław Jastrzebski, 2017). 

  

 
Figure 1: Gender relation captured by vector offsets. 
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Word2Vec 

 

Skip Gram with Negative Sampling (SGNS), more commonly known as Word2vec 

(Tomas Mikolov I. S., 2013c), is one of the most popular and widely adopted 

distributed language embedding models. The origins of word2vec can be traced to the 

introduction of the skip-gram model (Tomas Mikolov K. C., 2013). It involves using 

a probabilistic feed-forward neural network (Y. Bengio, 2003) with stochastic 

gradient descent (SGD) and backpropagation (D. E. Rumelhart, 1986). The basic 

premise behind word2vec (Tomas Mikolov I. S., 2013c) and its various incarnations 

(Quoc V. Le, 2014) is that “a word is characterized by the company it keeps”, as 

popularized by Firth. What this means is that words in similar contexts have similar 

meanings, which is the foundation of the distributional hypothesis. The model picks a 

target word in a sentence, and then looks at its nearby context words. It then picks 

one of these nearby context words at random and predicts the probability of every 

word in our vocabulary of being this nearby context word. See Figure 2. The model 

learns the co-occurrence statistics from the number of times each target-context pair 

shows up. The vector space word representations are implicitly learned by the input 

layer weights as part of the prediction task. This model is efficient because it does not 

involve dense matrix multiplications. This context-based prediction model far 

outperforms previous count-based models (Marco Baroni, 2014). The authors of 

word2vec proposed two models, namely the continuous bag-of-words model and the 

skip-gram model. See Figure 3.  
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Figure 2: Forming target-context pairs from a sentence with a window size of 2 

 

 

 

 
 

Figure 3: Model log-linear architectures for continuous bag-of-words and skip-gram 
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(Omer Levy Y. G., 2014) describes word2vec as implicitly factorizing a word-context 

matrix whose cells are the pointwise mutual information (PMI) of the respective word 

and context pairs, shifted by a global context. (Rong, 2016) and (Yoav Goldberg, 

2014) have done a remarkable job at explaining some of the more nuanced and 

complex rationales and techniques behind the model. Therefore, we will limit 

ourselves to a short summary here.  

 

Paragraph Vectors (PV) 

 

Generating paragraph vectors (Quoc V. Le, 2014) uses an unsupervised algorithm 

that learns fixed-length feature representations for variable-length pieces of texts. 

These texts can be sentences, paragraphs, or entire documents. These models are an 

extension of the models for learning word vectors and have achieved state-of-the art 

performance results on sentiment-analysis and text-classification tasks.  

 A context is defined as a fixed length sliding window over a sentence. This 

model learns a unique vector representation for every unique word, as well as every 

paragraph in the corpus. The prediction task involves averaging or concatenating the 

word vectors and the paragraph vector to predict the next word in the context. See 

Figure 4.   

 

 
Figure 4: Distributed Memory Model of Paragraph Vectors (PV-DM) 
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The paragraph vector is common to all contexts generated from the same paragraph. 

The word vectors are shared across all paragraphs in the corpus. The paragraph vector 

appears in every context and its corresponding prediction tasks, and thus, it learns 

information about the paragraph, and becomes a general-purpose identifier vector for 

the paragraph. Paragraph vectors share their advantages with word vectors such as 

being able to work on unlabeled data. They too learn semantic meanings of words and 

capture relationships in a multidimensional vector space. They both scale gracefully 

on large corpora.   

 Paragraph vectors come in a second simpler flavor called the Distributed Bag 

of Words version of Paragraph Vectors (PG-DBOW) See Figure 5. 

 

 

 
Figure 5: Distributed Bag of Words version of Paragraph Vector (PV-DBOW) 

 

This variation forces the model to predict randomly sampled words from the 

paragraph. This model generates only paragraph vectors and no word vectors. The 

prediction task involves predicting words randomly sampled from the paragraph in 

the output. This makes the model conceptually simpler and reduces the storage 

overhead. PV-DM has shown to outperform PV-DBOW on many different tasks. But 
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the combination of PV-DM and PV-DBOW work consistently better and is therefore 

recommended. 

 

Others 

 

GloVe 

 

GloVe, (Manning, 2014) short for Global Vectors, is modeled around exploiting the 

global word occurrence statistics in the corpus to learn representations of words. The 

intuition behind GloVe is that there is semantic meaning captured in the ratio of 

word-word co-occurrence probabilities. As an example, ‘steam’ frequently co-occurs 

with ‘gas’, while not so much with ‘solid’. In the same way, ‘ice’ frequently co-

occurs with ‘solid’ a lot more than it does with ‘gas’. Both ‘steam’ and ‘ice’ co-occur 

equally with related terms like ‘water’ and unrelated terms like ‘fashion’. While 

word2vec implicitly learns word representations in its hidden embedding layer as a 

by-product of a prediction task, GloVe does so explicitly. The training objective of 

GloVe is to learn word representations in a way such that the dot-product of two word 

vectors is equal to the log of the probability of the words’ co-occurrence. A thorough 

comparison between GloVe and word2vec is difficult because of the range of possible 

hyperparameter choices such as vector length, sliding window size, training 

iterations/epochs and corpus size (Omer Levy Y. G., 2015). 
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Figure 6: Vector relations as captured by GloVe (a) man - woman (b) company - ceo (c) city - 

zip-code (d) comparative – superlative (GloVe: Global Vectors for Word Representation) 

 

 

Hypothesis 

 

Language Embedding and relational data 

 

As we’ve seen until now, word embedding models have received a lot of attention 

from researchers from a vast landscape of applicable areas. This thesis aims to 

evaluate the applicability of this newfound spirit to unlock the potential of enhanced 

cognitive querying on data stored in traditional relational databases.  
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Figure 7: Employee table from the Northwind database 

 

 For explaining this proposition, let us run with an example of the typical 

Employee database in Figure 7. This table (or view) represents the details of all the 

employees at an organization. Most data warehouses would deem this is a dimension 

table1 and as such it would be wide and descriptive. Commonly found attributes 

would be id, name, age, title, region, evaluation, salary, etc. These attributes 

collectively describe the employee in the system. The values for these fields are 

expressed in dates, numbers and words (or combinations of words) borrowed from 

the English language. But because of the structured nature of the table, a row of 

tabular data does not read like any other grammatically correct (or consistent) 

sentence found in an English text. A row in the table to describe an employee called 

Bob, would look something like Figure 8. 

 

 

Figure 8: An example employee SQL database table 

 

                                                
1 https://en.wikipedia.org/wiki/Dimension_(data_warehouse)#Dimension_table 
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On the other hand, a text corpus, like the employee directory magazine, one that more 

closely resembles the ideal input dataset to a word embedding model, would have one 

or more sentences like this to describe Bob, 

 

“… . Bob Thorton is an enthusiastic and hardworking employee. He holds the title 

of Area Sales Manager for the district of Baltimore County. He lives at 1101, Elm 

Ridge Avenue. …”. 

 

Now when this sentence, as part of a very large textual corpus, is fed into a language 

embedding model, the corresponding output word vectors for ‘Bob’, ‘Manager’, 

‘works’, etc. will capture their natural language semantics and relationships. We will 

start to see parts of speech such as the nouns, adjectives and verbs cluster together in 

the restricted vector space. This is because of their positions in sentences relative to 

other types of words, as dictated by the principles and structure of the English 

grammatical system. They will repeatedly appear in context windows with certain 

other words that will afford the model to generalize on the meaning of these words.  

Now if we feed the rows of data from the employee table into this model, the 

model can again capture meaning and relationships for the cell values based on the 

colocation of tokens in a row and the probability of their presence in any given row. 

We begin by tokenizing the table into a list of sentences. There are many ways of 

doing this that involve many tradeoffs which we will discuss later. A simple example 

of tokenizing the Bob tuple from the table into a textual sentence would be,  

 

“EmployeeID 512 FirstName Bob LastName Thorton Title Area Sales 

Manager Region Baltimore County Evaluation High…”.   

 

Next, we generate our input textual corpus by placing such sentences for all 

the rows in the table one after the other and feed this into a language embedding 

framework. The same language embedding model that could learn vector 

representations for words and paragraphs by leveraging the consistencies in the 
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English grammatical system, can now be used to learn meaningful information about 

tuple values which are expressed in the structure and system of the relational 

language. We can learn vectors for tuple values ‘Bob’, ‘Manager’ etc. and capture 

relationships between tokens in a row and across tuples. We can also learn vectors for 

entire rows, tables or databases, using only the raw row data stored in the database. 

This provides us with a vector space model of the relational data. This thesis is 

inspired by, and extends the work done in “Enabling Cognitive Intelligence Queries 

in Relational Databases using low-dimensional word embeddings” (Rajesh 

Bordawekar, 2016). They implemented a prototype system on Apache Spark2 to 

demonstrate the power of Cognitive Intelligence (CI) queries. The authors of the 

paper describe enhanced querying capability by having each database text entity 

associated with a low dimensional vector that captures its semantic and syntactic 

qualities. The paper outlines a tokenization process and feeds the textified input into 

word2vec. This made possible a new orthogonal view over the database in a vector 

space as compared to the traditional SQL mechanisms. The authors then defined SQL 

user defined functions (UDFs) that can leverage these vectors along with the SQL 

API when querying. We extend the premise in this thesis in a few different directions, 

  

1. We delve deeper into the choices and their effects of different tokenization 

approaches and hyperparameter choices. 

2. We propose the superiority of paragraph vectors (PV) over vanilla word2vec 

to capture row and token representations simultaneously. 

3. We describe how word embedding models, which are run on structured 

relational data, capture meaning and relationships of tokens differently than 

running the same models on text corpora.  

 

                                                
2 http://spark.apache.org 
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Scope 

 

This thesis aims at describing the potential of enhanced querying on relational 

databases using distributed word embedding models from the domain of natural 

language processing. We apply these techniques to data stored in structured relational 

tables. The type of data undertaken by this process is typically dimensional data with 

low to moderate numerical measurement values. A primarily factual table3 that is 

largely used to store continuous numerical values will lead the model to overfit 

aggressively. Although the intention is to slightly overfit the model as there are few to 

none outside participants involved in the execution of the query, we still want to 

generate models that can generalize well and work in tandem with external inputs and 

information in the future. We also omit BLOB data types in tables as this will be part 

of another research direction of vectorizing textual tokens and binary data in a 

common vector space.  

 

 

                                                
3 https://en.wikipedia.org/wiki/Fact_table 
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Chapter 3: Methods 
 

 

Introduction 

 

In this section, we describe our process pipeline and discuss the decisions taken 

regarding the choices in models and hyperparameter. We begin with our input 

relational structure (Figure 9). This can be a standalone table in a relational database, 

like the Employee table discussed earlier. This can also be a subset, superset or 

computed view of a single table. We pick a view of the database that captures a 

domain of interest that we wish to explore and query. For example, we could use a 

joined view (via foreign keys) of all the tables related to the HR department of an 

organization (superset). We could also use a smaller portion of a single larger table by 

limiting the number of rows and/or columns based on some heuristic (subset).  

Once we have our input table view, the next step is to tokenize and textify the 

relational data. Technically, a token is simply a discernible unique combination of 

characters strung together without any spaces between them. A sentence is an ordered 

collection of such tokens that is complete and adheres to the structure and rules of 

some overarching system. A text corpus is a set comprised of many such sentences. 

Tokenization is the process of extracting word-like constructs from the table. We 

discuss different tokenization approaches and their tradeoffs in the following few 

sections.  
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Figure 9: Pipeline to generate token vectors for a table 

 

Upon tokenization, we arrange these tokens into sentences and documents. We feed 

the resulting dataset as an input to word4 and document5 embedding frameworks. 

With word2vec, we learn word vector representations for every unique token in the 

table. For doc2vec, we present each tokenized row of the table as a separate document 

to the model. This way we can generate word vectors for individual tokens as well as 

row vectors for each individual row in the table. We evaluate the effect of certain 

hyperparameters on the quality of these vectors. We reduce the dimensionality of the 

resultant vector representations to plot these token and row vectors in a 2D vector 

space. This allows us to visually explore the captured semantic qualities by the 

model. These vectors, along with the SQL API, provide a larger combined query 

surface over the dataset. We perform novel similarity and analogy queries over this 

dual view and present the results. 

  

Dataset 

 

For the experiments, the dataset chosen is the IMDB 5000 movie dataset from Kaggle 

(IMDB 5000 Movie Dataset, n.d.). This dataset captures 27 variables for 5043 movies 

and 4906 posters spanning across 100 years in 66 countries. The 27 attributes 

captured are, 
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S. Number Column Name Data Type 

1 movie_title STRING 

2 color STRING 

3 num_critic_for_reviews NUMERIC 

4 movie_facebook_likes NUMERIC 

5 duration NUMERIC 

6 director_name STRING 

7 director_facebook_likes NUMERIC 

8 actor_3_name STRING 

9 actor_3_facebook_likes NUMERIC 

10 actor_2_name STRING 

11 actor_2_facebook_likes NUMERIC 

12 actor_1_name STRING 

13 actor_1_facebook_likes NUMERIC 

14 gross NUMERIC 

15 genres STRING 

16 num_voted_users NUMERIC 

17 cast_total_facebook_likes NUMERIC 

18 facenumber_in_poster NUMERIC 

19 plot_keywords STRING 

20 num_user_for_reviews NUMERIC 

21 language STRING 

22 country STRING 

23 content_rating NUMERIC 

24 budget NUMERIC 

25 title_year DATE 

26 imdb_score NUMERIC 

27 aspect_ratio NUMERIC 
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There are 2399 unique director names and thousands of actor/actress names in the 

dataset. This dataset is a combination of dimensional and factual data. It has a healthy 

proportion of textual data (such as plot_keywords, genres, movie_title, actor_1_name) 

and numerical values, which are both categorical (title_year, aspect_ratio) and 

continuous (gross, director_facebook_likes).  

 

Tokenization 

 

Tokenization is the overall process of transforming our relational dataset into a large 

textual corpus. This corpus does not have to be grammatically well formed sentences. 

There are several considerations when effectively tokenizing a table. We will discuss 

them here. 

 

Dealing with textual fields 

 

Textual fields such as ‘movie_title’, ‘plot_keywords’, ‘genre’ can be tokenized in 

several different ways.  The value in a table cell can be appended to the column name 

for the cell to form a single token. This will assist us in recognizing the affiliation of 

the value to the column. We can use spaces between different columns to identify 

token boundaries. For example, we may tokenize a row from our movie metadata 

database as, 

 

“... movie_name_Guardians_of_the_galaxy  actor_1_name_Bradley_Cooper  

actor_2_name_Vin_Diesel …” 

 

It makes sense to combine phrases such as “Guardians of the galaxy” and “Bradley 

Cooper” into “Guardians_of_the_galaxy” and “Bradley_Cooper”. This is because 
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we are not interested in the individual token vectors for each of these words 

independently. Researchers have extended models to achieve phrase-level 

representations (Jeff Mitchell, 2010), but because we are guaranteed that each value 

stored in a cell is atomic and therefore indivisible (1NF), we can confidently convert 

such phrases into a single token.  

 Other approaches to tokenize the table involve completely ignoring the 

column names altogether. This would yield a textified row as, 

 

“... Guardians_of_the_galaxy  Bradley_Cooper  Vin_Diesel …” 

 

 or separating the column name and value by a space delimiter and treating them as 

separate tokens.  

 

“... movie_name  Guardians_of_the_galaxy  actor_1_name  Bradley_Cooper  

actor_2_name  Vin_Diesel …” 

 

All these approaches have an impact on the co-occurrence dynamics of the tokens 

that we are interested in. We can adjust the context window size to some extent and 

accommodate these approaches. The decision to include/exclude column names from 

the tokenization process is influenced by the queries that we intend to perform on the 

resultant vectors. We will discuss this further in the section on Hyperparameter 

considerations. 

 

Dealing with numerical fields 

 

Continuous numerical values are inherently a bad fit for language embedding and 

various other machine learning tasks. Numeric column values for ‘gross’, ‘budget’ 

and ‘director_facebook_likes’ will cause the model to generalize poorly as these 

machine learning models do not handle continuous values well and focus on nominal 
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feature spaces (Dougherty, 1995). The simplest solution is to discretize the values 

into k bins of equal interval widths. Here k can be a user specified parameter or 

computed using some heuristic based on the distribution of the values. This technique 

is not ideal because outliers will drastically skew the range (Catlett J. , 1991). 

Another approach is to discretize the continuous variables into k equal frequency bins 

where each bin contains an equal number of values. This way we end up with 

discretized column value tokens like ‘budget_high’, ‘gross_low’ and 

‘director_facebook_likes_medium’. It is likely that we lose out on information by 

transforming a continuous value with higher precision into a lower cardinality 

nominal value. More advanced discretization strategies have been studied which 

involve decision trees (Holte, 1993) and minimal entropy heuristics (Catlett J. , 1991) 

(U M Fayyad, 1993) to preserve as much of this information as possible, and allow 

machine learning algorithms to generalize better. We will leave these more advanced 

techniques and their effects out of the scope of this thesis. 

  

Other data types 

 

Other attributes such as Booleans and NULLs can also be accommodated using the 

same techniques as String values. Dates can either be treated as nominal or 

continuous depending on the domain of the values.  

 

Models 

 

Word2Vec 
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We start our experimentation by feeding our tokenized table corpus into word2vec 

from the genism software toolkit4. We consider each tokenized row as a separate 

sentence and pass a collection of all such sentences to the model. As a result, we learn 

vector representations for the entire vocabulary of tokens in the table in a vector 

space. 

 

Row2Vec 

 

We use a modified version of PV5 from the genism software toolkit as something we 

would like to term as row2vec from here on. Just as in word2vec, we treat each 

tokenized table row as a sentence. But we also treat each such sentence as a 

paragraph. Row2Vec generates vectors for each unique token in the table and each 

sentence (row) as an implicit by-product of its explicit prediction task. We consider 

these sentence vectors to be row vectors. These row vectors capture certain intrinsic 

qualities of the entire row and help us in querying the table. We will discuss the 

hyperparameter choices for these models in the next section.  

 

Hyperparameter considerations 

 

Much work has been done recently in coming up with robust recommendation lists of 

hyperparameter choices for word embedding models such as word2vec and PV 

(Omer Levy Y. G., 2015) (Jey Han Lau1, 2016). We further investigate these choices 

in the backdrop of applying these models to relational data. This discussion aims to 

shed some light on the effect of certain hyperparameter choices.  

 

                                                
4 https://radimrehurek.com/gensim/models/word2vec.html 
5 https://radimrehurek.com/gensim/models/doc2vec.html 
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Column order and Context Windows 

The column order for tokenization coupled with the size of the sliding context 

window for the model can have a significant impact on the output vector 

representations for the table tokens. The documentation4 defines the context window 

parameter as the “maximum distance between the current and predicted word within a 

sentence”. Note here that a context window does not overlap across sentences. Also, 

the context window extends on both sides of the target word. Therefore, the effective 

window size is twice this context window parameter value. Let us run with an 

example tokenized row from our dataset, 

 
 “… director_name George_Lucas num_critic_for_reviews_high 
duration_high director_facebook_likes_low actor_2_name 
Peter_Cushing actor_1_facebook_likes_high gross_high genres 
Action Adventure Fantasy Sci-Fi actor_1_name Harrison_Ford 
movie_title Star_Wars:_Episode_IV_-_A_New_Hope   plot_keywords 
death star empire galactic war princess rebellion language 
English country USA content_rating PG budget_medium 
actor_2_facebook_likes_high imdb_score_high aspect_ratio_medium  
…” 
 

In the case of word2vec and row2vec (PV), we treat each tokenized row as a 

sentence. Additionally, for row2vec we consider each paragraph to be comprised of a 

single sentence. This way the learned paragraph vectors represent the entire row in 

the vector space. The recommended context size for these models on English texts is 

5-10. But in our case, we have some additional pieces of information. All our 

sentences will roughly have the same number of words as each row has a fixed 

number of columns. Also, they will all have a similar structure. For example, the 

second word in every sentence will be the name of the director, which will always be 

preceded by the keyword ‘director_name’, which is the name of the column. We have 

a few different options here. We could set the context window to be much smaller (1 

or 2) than the average length of our tokenized row sentences (Figure 10). This way 

any target word like ‘Harrison_Ford’ will only have a few nearby context words 

from the entire row. This is generally recommended to yield more topical vectors. 

This would lead us to suspect that the order of the columns in the tokenization 
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process might play a more significant role in the final output representations of the 

tokens. On the other hand, if we set the context window size to be larger than the 

largest row sentence that we have, we will have all the tokens from the row appear in 

the context of every word considered as a target word (Figure 11). This approach is 

recommended for more generalized representations. With this approach, the column 

order has little to no impact on the final word representations.  

 
“… director_name George_Lucas num_critic_for_reviews_high 
duration_high director_facebook_likes_low actor_2_name 
Peter_Cushing actor_1_facebook_likes_high gross_high genres Action 
Adventure Fantasy Sci-Fi actor_1_name Harrison_Ford movie_title 
Star_Wars:_Episode_IV_-_A_New_Hope   plot_keywords death star 
empire galactic war princess rebellion language English country USA 
content_rating PG budget_medium actor_2_facebook_likes_high 
imdb_score_high aspect_ratio_medium  …” 
 

Figure 10: Context window for 'Harrison Ford' with context size = 1 

 

 

“… director_name Joss_Whedon num_critic_for_reviews_high duration_
high director_facebook_likes_low actor_3_facebook_likes_high actor
_2_name Robert_Downey_Jr. actor_1_facebook_likes_high gross_high g
enres Action Adventure Sci-Fi actor_1_name Chris_Hemsworth movie_t
itle Avengers:_Age_of_Ultron num_voted_users_high cast_total_faceb
ook_likes_high actor_3_name Scarlett_Johansson facenumber_in_poste
r_high plot_keywords artificial intelligence based on comic book c
aptain america marvel cinematic universe superhero num_user_for_re
views_high language English country USA content_rating PG-13 budge
t_high title_year_high actor_2_facebook_likes_high imdb_score_high 
aspect_ratio_medium … 
 
 
… director_name George_Lucas num_critic_for_reviews_high 
duration_high director_facebook_likes_low actor_2_name 
Peter_Cushing actor_1_facebook_likes_high gross_high genres Action 
Adventure Fantasy Sci-Fi actor_1_name Harrison_Ford movie_title 
Star_Wars:_Episode_IV_-_A_New_Hope   plot_keywords death star 
empire galactic war princess rebellion language English country USA 
content_rating PG budget_medium actor_2_facebook_likes_high 
imdb_score_high aspect_ratio_medium  … 
 

… director_name Mel_Gibson num_critic_for_reviews_medium duration_
high director_facebook_likes_low actor_3_facebook_likes_medium act
or_2_name Patrick_McGoohan actor_1_facebook_likes_medium gross_hig
h genres Biography Drama History War actor_1_name Mhairi_Calvey mo
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vie_title Braveheart num_voted_users_high cast_total_facebook_like
s_medium actor_3_name James_Robinson facenumber_in_poster_low plot
_keywords 14th century legend revolt scotland tyranny num_user_for
_reviews_high language English country USA content_rating R budget
_high title_year_low actor_2_facebook_likes_medium imdb_score_high 
aspect_ratio_medium …” 
 
Figure 11: Context window for 'Harrison Ford' with context window size > tokenized row length 

 

 

We should be wary of the fact that some implementations of the algorithm 

consider a dynamic context window. Under this scheme, more weight is assigned to 

closer words, as closer words are considered to have more importance to the meaning 

of the word. Another thing to keep in mind is that the size of the window is 

sometimes not fixed either. The actual window size is dynamic, i.e. it is sampled 

uniformly between 1 and a maximum window size parameter during the training 

phase. Both these schemes affect our hypothesis and care must be taken to understand 

the consequences of these hyperparameters on the quality of the output vectors.  

 

Min-count 

The model ignores all words whose frequency is lower than this min-count 

hyperparameter. This hyperparameter is tuned based on the input dataset’s vocabulary 

statistics. In our case, we will set it to 1. This is because we want our model to 

generate vectors even for the words that occur only once in the entire table. We 

cannot afford to not have a vector for any table token, as we will not be able to 

include that term in our querying. This is a particularly important requirement for us 

because, as we know, every row has at least one unique primary key.  

 

Hierarchical Softmax 

Given a sequence of words 𝑤%,𝑤', 𝑤(, … ,𝑤*, the objective of the word2vec model is 

to maximize the average log probability that is, 
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Here c is our context under consideration. As we can see the size of W can be very 

large for textual corpora. To circumvent this inefficiency, hierarchical softmax 

(Frederic Morin, 2005) posits that we can obtain a probability distribution by simply 

using log' 𝑊 nodes. During our experimentation, we noticed that we achieved our 

best results by employing hierarchical softmax. 

 

Negative Sampling 

This hyperparameter can be used in lieu of hierarchical softmax. This integer 

hyperparameter specifies how many noise-words should be drawn in the prediction 

task. In a typical neural network, all weights are tweaked with each pass over the 

training sample. As we are generally working with large text corpora and 

vocabularies, our neural network models can have millions or billions of weights. 

Negative sampling exists to reduce this computational burden. Negative sampling is a 

simplified form of Noise Contrastive Estimation (NCE). NCE posits that a good 

model should be able to differentiate between data and noise words using logistic 

regression. In any given prediction task, we select a small sample of negative noise 

words which are outside of the given context window, and use them for prediction, 

along with the positive words from the context. It is for the reader to decide whether 

this will lead to better representations for token and/or row vectors. In our 

experiments, we found a low value for this hyperparameter to better help generalize 

the model and higher values to better cluster the column values. 

 

Sample 

This is the threshold for configuring which higher-frequency words are randomly 

down sampled. Basically, the model ignores some instances of the words it sees often. 

These words that occur very frequently generally carry less meaning. This is an 
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essential parameter that resists the more popular words from overpowering the model. 

Recommended values for this hyperparameter are between 0.001 and 0.00001, with 

the default being 0.001. 

 

Iterations/Epochs 

This is the number of times the sliding window goes over the text corpus. The 

recommended value for this hyperparameter in research papers is between 10 and 20. 

We feel this is a good starting point for our experiments as this will allow the model 

to capture the semantics of our row token vectors optimally. We can go higher than 

this recommended number, but we must be careful that running the models with 

higher iteration counts takes the model a long time to run.  

 

All the other hyperparameters to the model offer little help to our end goal of 

efficiently and effectively representing vector representations for the table 

vocabulary. Some of these hyperparameters are the number of worker threads, and 

whether to use hierarchical softmax as a more efficient softmax and the learning rate. 

The final output dimension size of the vector representations is a special case. The 

recommended value for this hyperparameter is between 200 to 300, but we have seen 

certain researchers going as high as 800. Because our dataset under consideration is 

relatively small, we choose to hover around the 100-300 mark. 

 

Measurement 

 

Once we have learned vector representations for our token vocabulary using 

word2vec and row vectors using Row2Vec, we reduce the dimensionality of the 

vectors by using Principal Component Analysis (PCA) and plot them in a 2D space as 

a scatter plot. This gives us a visual glimpse of the quality of the semantic 

relationships captured by our models. 
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One of the foundational strengths of relational databases is to be able to 

identify a row uniquely by its primary key. With our word2vec experiments, there are 

two possible ways to identify a row uniquely in the vector space. The first one is to 

average the token vectors for all the tokens in the row and treat this average as the 

unique row representation. The second way is to consider the vector for the unique 

primary key as the row vector (in our case the movie title). Again, column order and 

context window size play a non-trivial role when choosing any one of these 

approaches. In the case of row2vec, we already have a vector representation for every 

row as a by-product of the prediction task.  

We execute certain novel similarity queries on our dataset using the learned 

vector representations. We build a simple recommendation engine, which can 

recommend movies to users based on their likes and dislikes. 
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Chapter 4: Findings 
 

 

Overview 

 

We successfully ran our Word2Vec and Row2Vec models on our tokenized IMDB 

dataset. Our goal was to optimize the model on three types of tasks. These tasks are 

similarity (what tokens are near ‘Leonardo Di Caprio’?), analogy (if ‘Inception’ is to 

‘Leonardo Di Caprio’, then what is to ‘Tom Cruise’?) and additive composability 

(what is ‘Leonardo Di Caprio’ + ‘Kate Winslet’?). To get a better idea of the effects 

of the hyperparameters on the model, we tested different hyperparameter 

combinations. Keeping all other things constant, we individually introduced variation 

in context size, negative sampling, output dimensionality and the number of training 

iterations. We reduced the dimensionality of the resultant token vectors for each of 

these experiments using Principal Component Analysis (PCA) and color coded the 

various column values to better illustrate clustering patterns. In the next two sections, 

we present these visualizations and sample outputs. 

 

Word2vec Visualizations 
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Figure 12: Context size = 1 vs Context size = 30 (300-dimension skip-gram with hierarchical 

softmax) 

 

 

 

  
Figure 13: Negative sampling = 0 vs Negative sampling = 25 (300-dimension skip-gram with 

context size = 30) 
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Figure 14: 100-Dimension vs 300-Dimension (skip-gram with context window = 30 and with 

hierarchical softmax) 

 

 

 

 
Figure 15: 10 iterations vs 20 iterations (300-dimensional skip-gram with context window = 30 

and hierarchical softmax) 

 

 

Our first observation is that context size plays a vital role in the model’s ability to 

capture vector semantics. A smaller context size yields more clustered column values, 
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whereas a larger context size generalizes over the dataset better. Secondly, negative 

sampling and hierarchical softmax are also non-trivial for the model to capture 

relationships well. Recall that negative sampling is a simpler form of Noise 

Contrastive Estimation that makes learning parameters more efficient. It draws 

negative samples in the prediction task and optimizes the model to predict correct and 

noise words for a given target word. With hierarchical softmax (or high negative 

sampling), the PCA plots show the vectors as a giant mess centered around the origin. 

It is not yet established why we see such patterns. As we shall demonstrate later, 

using hierarchical softmax or high negative sampling rates yielded better results for 

our intended tasks. Lower values of negative sampling resulted in absolutely garbage 

results. 

 

Row2vec Visualizations 

 

 

 
Figure 16: Context size = 1 vs Context size = 30 (300-dimension PV-DM with hierarchical 

softmax) 
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Figure 17: Negative sampling = 0 vs Negative sampling = 25 (100-dimension PV-DM with context 

size = 30) 

 

 

 
Figure 18: 100-Dimension vs 300-Dimension (PV-DM with context size = 30 and hierarchical 

softmax) 
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Figure 19: 10 iterations vs 20 iterations (100-dimensional PV-DM with context window = 30 and 

hierarchical softmax) 

 

Here we see negative sampling and hierarchical softmax both make the model tend to 

cluster column values to some extent. The situation is exacerbated when we use a 

small context window as smaller context windows tend to yield more topical vectors 

(Figure 16). On the other hand, when we switch off both negative sampling and 

hierarchical softmax (Figure 17), we see no kind of obvious relationship semantics 

being captured by the model. 

 

Sample Cognitive query results 

 

Word2Vec 

 

The sample query responses shown here are on a word2vec model run with 

hierarchical softmax. We have taken a context size of 30 and generated output vectors 

of size 300. We downsampled the popular words with a threshold of 0.001 and ran 

the model for 10 iterations. We observed similar results when instead of hierarchical 

sampling, we used a high value for negative sampling. 
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Similarity 

 

Top 20 vectors closest to ‘Leonardo_DiCaprio’ 

 
 ('Leonardo_DiCaprio', 0.9999998807907104), 
 ('The_Departed’, 0.662142276763916), 
 ('Titanic’, 0.6590770483016968), 
 ('Gangs_of_New_York’, 0.6585075855255127), 
 ('Body_of_Lies, 0.6564064621925354), 
 ('Elizabeth_Debicki', 0.6560742855072021), 
 ('Revolutionary_Road’, 0.654662549495697), 
 ('Django_Unchained’, 0.6534621715545654), 
 ('Joe_Komara', 0.6504959464073181), 
 ('Gloria_Stuart', 0.6503431797027588), 
 ('jordan', 0.6393324136734009), 
 ('Catch_Me_If_You_Can’, 0.6392801403999329), 
 ('Peter_Youngblood_Hills', 0.6386548280715942), 
 ('The_Beach', 0.633617639541626), 
 ('The_Revenant’, 0.6317786574363708), 
 ('Blood_Diamond', 0.6263160705566406), 
 ('The_Great_Gatsby', 0.6188250780105591), 
 ('The_Wolf_of_Wall_Street', 0.6161619424819946), 
 ('hungary', 0.6137104034423828), 
 ('paradise', 0.6085795164108276) 
 
 

As we can see here, the model did quite well in capturing words that are relevant to 

our target word ‘Leonardo_DiCaprio’. We can see some of his movies (The 

Departed, Titanic and Gangs of New York), co-stars (Elizabeth Debicki, Joe Komara) 

and some of the plot tokens from his movies (Jordan, paradise). 
 

Analogy 

 

Top 10 results for ‘Inception’ + ‘Tom_Cruise’ – ‘Leonardo_DiCaprio’ 

 
 ('War_of_the_Worlds’, 0.6809234023094177), 
 ('Mission:_Impossible_II', 0.680419385433197), 
 ('Mission:_Impossible_-_Rogue_Nation', 0.6794121861457825), 
 ('subconscious', 0.6704068779945374), 
 ('Knight_and_Day', 0.6620358824729919), 
 ('Mission:_Impossible', 0.6609631776809692), 
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 ('tripod', 0.6468757390975952), 
 ('Minority_Report', 0.6445044279098511), 
 ('Independence_Day', 0.6434791684150696), 
 ('Jack_Reacher', 0.6304120421409607) 
 
 
In this query, we want to find out analogies of the kind “If Inception is to Leonardo 

DiCaprio, then what is to Tom Cruise?”. We see many of Tom Cruise’s movies come 

up in the top 10 such vectors. 

 

Additive Composability 

 

Top 10 results for ‘Leonardo_DiCaprio’ + ‘Kate_Winslet’ 

 
 ('Titanic', 0.7365461587905884), 
 ('Gloria_Stuart', 0.7282267808914185), 
 ('Revolutionary_Road', 0.708398163318634), 
 ('Joe_Komara', 0.6952486634254456), 
 ('Romeo_+_Juliet', 0.6811110973358154), 
 ('The_Beach', 0.671924352645874), 
 ('Blood_Diamond', 0.6625310778617859), 
 ('Peter_Youngblood_Hills', 0.6582512855529785), 
 ('Tomas_Alfredson', 0.6535829901695251), 
 ('hungary', 0.6524652242660522) 
 

Here again we can see that our number 1 and 3 results were movies in which 

Leonardo DiCaprio and Kate Winslet acted together. Number 2 and 4 are co-stars 

from movies in which Leo and Kate appeared together.   

 

Row2Vec 

 

For our Row2vec experiments, we used the same hyperparameter settings as our 

word2vec model. Recall that row2vec learns an additional vector for every movie, 

and thus we have 2 sets of vectors; one for all the tokens in our table and one for all 

the movies.  
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Similarity 

 

Top 10 vectors closest to ‘Leonardo_DiCaprio’ 

 
 ('Leonardo_DiCaprio', 0.9999999403953552), 
 ('Brad_Pitt', 0.6535583734512329), 
 ('Tom_Hanks', 0.6237167119979858), 
 ('Benedict_Cumberbatch', 0.6078296899795532), 
 ('Kevin_Spacey', 0.598504364490509), 
 ('Christian_Bale', 0.5830089449882507), 
 ('Christoph_Waltz', 0.5748230814933777), 
 ('Hugh_Jackman', 0.5710854530334473), 
 ('1970s', 0.5472841262817383), 
 ('Denzel_Washington', 0.5426238775253296) 
 
 
Here we can see that row2vec did a lot more clustering of the column values. We can 

see similar actors to ‘Leonardo_DiCaprio’. These actors don’t have a lot of movies in 

common with Leo, but they are all mostly famous actors.  
 
 
Top 10 movie vectors closest to ‘Leonardo_DiCaprio’ 

 
 ('The_Monuments_Men', 0.5280457735061646), 
 ('Philadelphia', 0.47902488708496094), 
 ('The_Wolf_of_Wall_Street', 0.4776039719581604), 
 ('Catch_Me_If_You_Can', 0.4774860739707947), 
 ('War_Horse', 0.4763687252998352), 
 ('Mission:_Impossible_III', 0.4706520736217499), 
 ('Flags_of_Our_Fathers', 0.46463078260421753), 
 ('Unforgiven', 0.4625704288482666), 
 ('Carnage', 0.4617079794406891), 
 ('The_Book_of_Eli', 0.45993518829345703) 
 
 
Here, we see how row2vec performed poorly in contrast to our word2vec model. We 

get some Leonardo DiCaprio movies (The Wolf of Wall Street, Catch Me If You 

Can), but the others are not. Also, the association is a lot weaker than what we saw in 

word2vec. 
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Analogy 

 

Top 10 movie results for ‘Inception’ + ‘Tom_Cruise’ – ‘Leonardo_DiCaprio’ 

 
 ('The_Firm', 0.5307195782661438), 
 ('MacGruber', 0.5178793668746948), 
 ('Man_of_the_House', 0.5129494667053223), 
 ('The_Tailor_of_Panama', 0.44215500354766846), 
 ('Texas_Rangers', 0.4251130223274231), 
 ('White_Chicks', 0.42136460542678833), 
 ('Pale_Rider', 0.4106457531452179), 
 ('Machete', 0.4106242060661316), 
 ('The_Majestic', 0.4104437232017517), 
 ('Runner_Runner', 0.3990623354911804) 
 

Additive Composability 

 

Top 10 results for ‘Leonardo_DiCaprio’ + ‘Kate_Winslet’ 

 
 ('Leonardo_DiCaprio', 0.8796911239624023), 
 ('Kate_Winslet', 0.8526569604873657), 
 ('Benedict_Cumberbatch', 0.7082951068878174), 
 ('Meryl_Streep', 0.640968918800354), 
 ('Christian_Bale', 0.6378368735313416), 
 ('Kevin_Spacey', 0.6290881037712097), 
 ('Tom_Hanks', 0.6269365549087524), 
 ('Jennifer_Lawrence', 0.6222625970840454), 
 ('Brad_Pitt', 0.6136409044265747), 
 ('Scarlett_Johansson', 0.6120947599411011) 
 

In both these query results we can see that row2vec did not perform at par with 

word2vec. In the case of analogy query, Tom Cruise starred in only one of the 

movies. With the additive composability query, we see a clustering effect around 

column values.  
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Chapter 5:  Discussion, Conclusion and 
Future Work 
 

 

In this thesis, we studied two distributed word embedding algorithms (word2vec and 

doc2vec), along with their bells and whistles and reasoned on their applicability to 

relational databases. Our primary goal was to introduce to the reader, an enhanced 

protocol for cognitively querying structured data. This pattern of querying is non-

trivial to do with the SQL dialect alone. To achieve this, we had to better understand 

the effects of the hyperparameter choices and tokenization dynamics. 

 We began our discussion by outlining the models. We presented our 

hypothesis and proposed extensions to the models (that were originally designed to 

work on large textual corpora) and how they could be molded for our use case. We 

discussed tokenization techniques and hyperparameter considerations and presented 

their effects using visual plots. We also presented the results of sample queries 

executed on both types of models. 

We designed row2vec as a special case of doc2vec that we believed would 

perform well on our tabular data. We had studied word2vec carefully and had tried to 

reduce some of its shortcomings that we believed would disallow it from generalizing 

well on SQL tables. Row2vec performed poorly across the board on our chosen tasks 

of similarity, analogy and additive composability. It might be possible to squeeze out 

better results on these same tasks by finding a more appropriate combination of 

hyperparameters. It is also possible that this same model might perform well on some 

other task that was concerned with queries involving higher orders of abstractions. 

More work needs to be done in better understanding the effects of certain 

hyperparameters on our tasks.  

We were surprised to see that vanilla word2vec gave us the best results on our 

tasks. Negative sampling and hierarchical softmax, which are discussed in the 
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literature as merely optimization techniques, proved to play vital roles in the overall 

capturing of relationships between our token vectors. On the other hand, 

hyperparameters like vector size, iterations, and model type (skip-gram vs CBOW) 

played smaller roles.  

Considering the results presented above, it is evident that we need more 

information about the effects of hyperparameters on the quality of model output. A 

better benchmark for assessing the performance of cognitive querying would go a 

long way in that directions. Such a benchmark will allow researchers to evaluate 

extensions to the model is a more streamlined fashion. 
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