

APPROVAL SHEET

Title of Thesis: Cognitive Intelligence in Relational Databases

Name of Candidate: Sushant Athley

 Master of Science, 2017

Thesis and Abstract Approved: ______________________________

 Dr. Tim Oates

 Professor

 Computer Science and Electrical Engineering

Date Approved: ______________________________

ABSTRACT

Title of Document: COGNITIVE INTELLIGENCE IN

RELATIONAL DATABASES.

 Sushant Athley, M.S. Computer Science, 2017.

Directed By: Professor Tim Oates, Computer Science and

Electrical Engineering

We evaluate the applicability of distributed language embedding techniques from the

domain of natural language processing to relational data. Relational data is typically

stored in SQL databases. We apply modern distributed representations of words

(Tomas Mikolov 2013c) and paragraph (Quoc V. Le 2014) techniques to this

structured data and attempt to unlock the potential of enhanced cognitive querying.

The research intention is to be able to perform queries which are non-trivial to

perform using the SQL dialect alone.

We tokenize the IMDB 5000 movie dataset to generate embeddings using word2vec

and a modified version of doc2vec that we term as row2vec. We discuss the effects of

various hyperparameter choices and tokenization techniques. We visualize these

embedding using PCA and present the results for certain queries.

Keywords: Word embedding, databases, word2vec, cognitive querying.

COGNITIVE INTELLIGENCE IN RELATIONAL DATABASES.

By

Sushant Athley.

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, Baltimore County, in partial fulfillment

of the requirements for the degree of

Master of Science, Computer Science

2017

© Copyright by

Sushant Athley

2017

 ii

Dedicated	to	my	loving	parents	Lt.	Col.	Ganesh	and	Sunila	Athley.

 iii

Acknowledgements

I would like to thank my advisor and mentor Dr. Tim Oates for guiding me

throughout this thesis. His smart mind and wisdom were very crucial to the

completion of this thesis. I would also like to thank Dr. Konstantinos Kalpakis and

Dr. Charles Nicholas for agreeing to be part of my thesis defense committee. A

special thank you to Ashwinkumar Ganesan for all his help.

 iv

Table of Contents

Acknowledgements .. iii	

Table of Contents ... iv	

List of Figures .. vi	

Chapter 1: Introduction ... 1	

Research Problem ... 1	

Organization .. 2	

Chapter 2: Theory ... 3	

Relational model ... 3	

Distributed Language Embeddings ... 3	

Word2Vec ... 5	

Paragraph Vectors (PV) .. 7	

Others .. 9	

GloVe .. 9	

Hypothesis... 10	

Language Embedding and relational data ... 10	

Scope ... 14	

Chapter 3: Methods ... 15	

Introduction ... 15	

Dataset ... 16	

Tokenization ... 18	

Dealing with textual fields .. 18	

Dealing with numerical fields ... 19	

Other data types .. 20	

Models... 20	

Word2Vec ... 20	

Row2Vec ... 21	

Hyperparameter considerations .. 21	

Measurement ... 26	

 v

Chapter 4: Findings ... 28	

Overview ... 28	

Word2vec Visualizations .. 28	

Row2vec Visualizations .. 31	

Sample Cognitive query results .. 33	

Word2Vec ... 33	

Similarity... 34	

Analogy ... 34	

Additive Composability .. 35	

Row2Vec ... 35	

Similarity... 36	

Analogy ... 37	

Additive Composability .. 37	

Chapter 5: Discussion, Conclusion and Future Work .. 38	

Bibliography ... 40	

 vi

List of Figures

Figure 1: Gender relation captured by vector offsets. ... 4	

Figure 2: Forming target-context pairs from a sentence with a window size of 2 6	

Figure 3: Model log-linear architectures for continuous bag-of-words and skip-gram 6	

Figure 4: Distributed Memory Model of Paragraph Vectors (PV-DM) 7	

Figure 5: Distributed Bag of Words version of Paragraph Vector (PV-DBOW) 8	

Figure 6: Vector relations as captured by GloVe (a) man - woman (b) company - ceo

(c) city - zip-code (d) comparative – superlative (GloVe: Global Vectors for

Word Representation) ... 10	

Figure 7: Employee table from the Northwind database .. 11	

Figure 8: An example employee SQL database table ... 11	

Figure 9: Pipeline to generate token vectors for a table .. 16	

Figure 10: Context window for 'Harrison Ford' with context size = 1 23	

Figure 11: Context window for 'Harrison Ford' with context window size > tokenized

row length ... 24	

Figure 12: Context size = 1 vs Context size = 20 (100-dimension skip-gram without

negative sampling) .. 29	

Figure 13: Context size = 1 vs Context size = 20 (100-dimension skip-gram with

negative sampling) .. 29	

Figure 14: 100-Dimension vs 300-Dimension (skip-gram with context window = 1

and with negative sampling) ... 30	

Figure 15: 5 iterations vs 20 iterations (100-dimensional skip-gram with context

window = 1 and with negative sampling) ... 30	

Figure 16: Context size = 1 vs Context size = 20 (100-dimension PV-DM without

negative sampling) .. 31	

Figure 17: Context size = 1 vs Context size = 20 (100-dimension PV-DM with

negative sampling) .. 32	

Figure 18: 100-Dimension vs 300-Dimension (PV-DM with context window = 1 and

with negative sampling) .. 32	

 vii

Figure 19: 5 iterations vs 20 iterations (100-dimensional PV-DM with context

window = 1 and with negative sampling) ... 33

1

Chapter 1: Introduction

Research Problem

In recent years, researchers have shown a tremendous amount of interest in language

embedding and distributed representations of words. The origins can be traced back

to (Tomas Mikolov K. C., 2013) with the skip-gram model for word embedding.

These algorithms did not involve dense matrix multiplications and were thus very

efficient. One could train 100 billion words in a day on a single optimized machine.

Since then, these models have been applied to a variety of settings such as language

translation (Jansen, 2017), sentiment analysis (Liu, 2017) (Yushi Yao, 2017), DNA

sequencing (Ng, 2017) and product recommendations (Christophe Van Gysel, 2016)

(Oren Barkan, 2016) (Ozsoy, 2016).

 This thesis aims to evaluate the applicability of word embedding to the

domain of relational data. Most data online are stored in traditional relational

databases. This can be credited to their robust ACID compliance, ease of set based

querying, industry grade uptime and security, and widespread availability of experts.

SQL tables are employed to persist all kinds of data, from numerical sales figures to

textual product reviews. Whereas distributed representations of words models have

been known to perform well on large textual corpora such as news articles and

Wikipedia entries, we try to understand the feasibility of word representations on

SQL tables and the potential of unlocking enhanced querying capabilities. We

consider various techniques of transforming SQL tables into a suitable input format

for word embedding models (tokenizing) and shed light on the hyperparameter

settings that should allow us to yield better models for our intended tasks.

2

Organization

This document is organized into 5 sections. The next section will discuss the

background and state-of-the-art in word embedding. We will talk about the popular

word2vec model and the newer doc2vec model as our choices for training on SQL

tables. We develop our hypothesis and scope of our research. In section 3, we go

deeper into analyzing the different choices for tokenization and hyperparameter

options and their subsequent effects. In section 4, we present our findings using

visualizations and sample query results. We end in section 5 by discussing our results

and proposing some future research directions.

3

Chapter 2: Theory

Relational model

The relational database is based on the relational model. This relational model was

first proposed by E.F. Codd in 1970 (Codd, 1970). The premise is very simple. Data

for each business entity and measurement is organized into a collection of tables.

Each table has horizontal rows (tuples) and vertical columns (attributes). A row and

column intersect at a cell. A row represents one instance of a business entity or

measurement. For example, in a table that stores employee information, you would

have rows for Bob and Susie. The column stores a subset of the information for all

the rows. All the cells for a column conform to a single data type (string, number,

date etc.). One column (or a combination of columns) is typically designated as the

primary key for the table. This primary key uniquely identifies each row in the table.

A software implementation of such a design is called a Relational Database

Management System (RDBMS). Structured Query Language (SQL) has been the gold

standard for interacting with these systems for many years.

Distributed Language Embeddings

The term “distributed language embedding” was originally coined by (Bengio,

2003). Language embedding is the approach of representing each token in a language

vocabulary 𝒱 as a vector in a low-dimension vector space ℝ#, where n is the

dimensionality of the resultant vectors. A token can be a single word like ‘eat’ or

‘Paris’. It can be a phrase like ‘machine learning’ or ‘Baltimore Ravens’. It can also

be sentences, paragraphs or entire documents. For now, we decouple the grain from

4

the model and call these individual meaningful entities as tokens. Language

embedding assigns a fixed-dimension numerical vector to each token, such that these

vectors capture certain intrinsic properties of the tokens that they represent.

The framework design, algorithm and hyperparameters that are used to

generate these token vectors are influenced by the qualities that are desired in the

embeddings and by their transfer applications (Omer Levy Y. G., 2015). Also, the

dimensionality of these output vectors is often dictated by the corpus size. Typically,

we see that researchers strive to capture the semantic and syntactic relationships

between word tokens. By this we mean that similar token vectors should be located

closer to each other in a vector space than dissimilar tokens. For example, the vector

for ‘chair’ should be closer to the vectors for ‘table’ and ‘furniture’, than it is to the

vector of ‘kangaroo’. Cosine-distance is popularly used as a measure of the distance

between two vectors. These vectors also conform to linear transformations for

capturing semantic relationships. They should be well formed to perform analogy

queries such as: if ‘King’ is to ‘man’, then ‘Queen’ is to what? (answer: ‘woman’) See

Figure 1. More recently, researchers have proposed that embeddings should better

align with their transfer applications by maximizing the amount of easily accessible

and useful information (Stanisław Jastrzebski, 2017).

Figure 1: Gender relation captured by vector offsets.

5

Word2Vec

Skip Gram with Negative Sampling (SGNS), more commonly known as Word2vec

(Tomas Mikolov I. S., 2013c), is one of the most popular and widely adopted

distributed language embedding models. The origins of word2vec can be traced to the

introduction of the skip-gram model (Tomas Mikolov K. C., 2013). It involves using

a probabilistic feed-forward neural network (Y. Bengio, 2003) with stochastic

gradient descent (SGD) and backpropagation (D. E. Rumelhart, 1986). The basic

premise behind word2vec (Tomas Mikolov I. S., 2013c) and its various incarnations

(Quoc V. Le, 2014) is that “a word is characterized by the company it keeps”, as

popularized by Firth. What this means is that words in similar contexts have similar

meanings, which is the foundation of the distributional hypothesis. The model picks a

target word in a sentence, and then looks at its nearby context words. It then picks

one of these nearby context words at random and predicts the probability of every

word in our vocabulary of being this nearby context word. See Figure 2. The model

learns the co-occurrence statistics from the number of times each target-context pair

shows up. The vector space word representations are implicitly learned by the input

layer weights as part of the prediction task. This model is efficient because it does not

involve dense matrix multiplications. This context-based prediction model far

outperforms previous count-based models (Marco Baroni, 2014). The authors of

word2vec proposed two models, namely the continuous bag-of-words model and the

skip-gram model. See Figure 3.

6

Figure 2: Forming target-context pairs from a sentence with a window size of 2

Figure 3: Model log-linear architectures for continuous bag-of-words and skip-gram

7

(Omer Levy Y. G., 2014) describes word2vec as implicitly factorizing a word-context

matrix whose cells are the pointwise mutual information (PMI) of the respective word

and context pairs, shifted by a global context. (Rong, 2016) and (Yoav Goldberg,

2014) have done a remarkable job at explaining some of the more nuanced and

complex rationales and techniques behind the model. Therefore, we will limit

ourselves to a short summary here.

Paragraph Vectors (PV)

Generating paragraph vectors (Quoc V. Le, 2014) uses an unsupervised algorithm

that learns fixed-length feature representations for variable-length pieces of texts.

These texts can be sentences, paragraphs, or entire documents. These models are an

extension of the models for learning word vectors and have achieved state-of-the art

performance results on sentiment-analysis and text-classification tasks.

 A context is defined as a fixed length sliding window over a sentence. This

model learns a unique vector representation for every unique word, as well as every

paragraph in the corpus. The prediction task involves averaging or concatenating the

word vectors and the paragraph vector to predict the next word in the context. See

Figure 4.

Figure 4: Distributed Memory Model of Paragraph Vectors (PV-DM)

8

The paragraph vector is common to all contexts generated from the same paragraph.

The word vectors are shared across all paragraphs in the corpus. The paragraph vector

appears in every context and its corresponding prediction tasks, and thus, it learns

information about the paragraph, and becomes a general-purpose identifier vector for

the paragraph. Paragraph vectors share their advantages with word vectors such as

being able to work on unlabeled data. They too learn semantic meanings of words and

capture relationships in a multidimensional vector space. They both scale gracefully

on large corpora.

 Paragraph vectors come in a second simpler flavor called the Distributed Bag

of Words version of Paragraph Vectors (PG-DBOW) See Figure 5.

Figure 5: Distributed Bag of Words version of Paragraph Vector (PV-DBOW)

This variation forces the model to predict randomly sampled words from the

paragraph. This model generates only paragraph vectors and no word vectors. The

prediction task involves predicting words randomly sampled from the paragraph in

the output. This makes the model conceptually simpler and reduces the storage

overhead. PV-DM has shown to outperform PV-DBOW on many different tasks. But

9

the combination of PV-DM and PV-DBOW work consistently better and is therefore

recommended.

Others

GloVe

GloVe, (Manning, 2014) short for Global Vectors, is modeled around exploiting the

global word occurrence statistics in the corpus to learn representations of words. The

intuition behind GloVe is that there is semantic meaning captured in the ratio of

word-word co-occurrence probabilities. As an example, ‘steam’ frequently co-occurs

with ‘gas’, while not so much with ‘solid’. In the same way, ‘ice’ frequently co-

occurs with ‘solid’ a lot more than it does with ‘gas’. Both ‘steam’ and ‘ice’ co-occur

equally with related terms like ‘water’ and unrelated terms like ‘fashion’. While

word2vec implicitly learns word representations in its hidden embedding layer as a

by-product of a prediction task, GloVe does so explicitly. The training objective of

GloVe is to learn word representations in a way such that the dot-product of two word

vectors is equal to the log of the probability of the words’ co-occurrence. A thorough

comparison between GloVe and word2vec is difficult because of the range of possible

hyperparameter choices such as vector length, sliding window size, training

iterations/epochs and corpus size (Omer Levy Y. G., 2015).

10

Figure 6: Vector relations as captured by GloVe (a) man - woman (b) company - ceo (c) city -

zip-code (d) comparative – superlative (GloVe: Global Vectors for Word Representation)

Hypothesis

Language Embedding and relational data

As we’ve seen until now, word embedding models have received a lot of attention

from researchers from a vast landscape of applicable areas. This thesis aims to

evaluate the applicability of this newfound spirit to unlock the potential of enhanced

cognitive querying on data stored in traditional relational databases.

11

Figure 7: Employee table from the Northwind database

 For explaining this proposition, let us run with an example of the typical

Employee database in Figure 7. This table (or view) represents the details of all the

employees at an organization. Most data warehouses would deem this is a dimension

table1 and as such it would be wide and descriptive. Commonly found attributes

would be id, name, age, title, region, evaluation, salary, etc. These attributes

collectively describe the employee in the system. The values for these fields are

expressed in dates, numbers and words (or combinations of words) borrowed from

the English language. But because of the structured nature of the table, a row of

tabular data does not read like any other grammatically correct (or consistent)

sentence found in an English text. A row in the table to describe an employee called

Bob, would look something like Figure 8.

Figure 8: An example employee SQL database table

1 https://en.wikipedia.org/wiki/Dimension_(data_warehouse)#Dimension_table

12

On the other hand, a text corpus, like the employee directory magazine, one that more

closely resembles the ideal input dataset to a word embedding model, would have one

or more sentences like this to describe Bob,

“… . Bob Thorton is an enthusiastic and hardworking employee. He holds the title

of Area Sales Manager for the district of Baltimore County. He lives at 1101, Elm

Ridge Avenue. …”.

Now when this sentence, as part of a very large textual corpus, is fed into a language

embedding model, the corresponding output word vectors for ‘Bob’, ‘Manager’,

‘works’, etc. will capture their natural language semantics and relationships. We will

start to see parts of speech such as the nouns, adjectives and verbs cluster together in

the restricted vector space. This is because of their positions in sentences relative to

other types of words, as dictated by the principles and structure of the English

grammatical system. They will repeatedly appear in context windows with certain

other words that will afford the model to generalize on the meaning of these words.

Now if we feed the rows of data from the employee table into this model, the

model can again capture meaning and relationships for the cell values based on the

colocation of tokens in a row and the probability of their presence in any given row.

We begin by tokenizing the table into a list of sentences. There are many ways of

doing this that involve many tradeoffs which we will discuss later. A simple example

of tokenizing the Bob tuple from the table into a textual sentence would be,

“EmployeeID 512 FirstName Bob LastName Thorton Title Area Sales

Manager Region Baltimore County Evaluation High…”.

Next, we generate our input textual corpus by placing such sentences for all

the rows in the table one after the other and feed this into a language embedding

framework. The same language embedding model that could learn vector

representations for words and paragraphs by leveraging the consistencies in the

13

English grammatical system, can now be used to learn meaningful information about

tuple values which are expressed in the structure and system of the relational

language. We can learn vectors for tuple values ‘Bob’, ‘Manager’ etc. and capture

relationships between tokens in a row and across tuples. We can also learn vectors for

entire rows, tables or databases, using only the raw row data stored in the database.

This provides us with a vector space model of the relational data. This thesis is

inspired by, and extends the work done in “Enabling Cognitive Intelligence Queries

in Relational Databases using low-dimensional word embeddings” (Rajesh

Bordawekar, 2016). They implemented a prototype system on Apache Spark2 to

demonstrate the power of Cognitive Intelligence (CI) queries. The authors of the

paper describe enhanced querying capability by having each database text entity

associated with a low dimensional vector that captures its semantic and syntactic

qualities. The paper outlines a tokenization process and feeds the textified input into

word2vec. This made possible a new orthogonal view over the database in a vector

space as compared to the traditional SQL mechanisms. The authors then defined SQL

user defined functions (UDFs) that can leverage these vectors along with the SQL

API when querying. We extend the premise in this thesis in a few different directions,

1. We delve deeper into the choices and their effects of different tokenization

approaches and hyperparameter choices.

2. We propose the superiority of paragraph vectors (PV) over vanilla word2vec

to capture row and token representations simultaneously.

3. We describe how word embedding models, which are run on structured

relational data, capture meaning and relationships of tokens differently than

running the same models on text corpora.

2 http://spark.apache.org

14

Scope

This thesis aims at describing the potential of enhanced querying on relational

databases using distributed word embedding models from the domain of natural

language processing. We apply these techniques to data stored in structured relational

tables. The type of data undertaken by this process is typically dimensional data with

low to moderate numerical measurement values. A primarily factual table3 that is

largely used to store continuous numerical values will lead the model to overfit

aggressively. Although the intention is to slightly overfit the model as there are few to

none outside participants involved in the execution of the query, we still want to

generate models that can generalize well and work in tandem with external inputs and

information in the future. We also omit BLOB data types in tables as this will be part

of another research direction of vectorizing textual tokens and binary data in a

common vector space.

3 https://en.wikipedia.org/wiki/Fact_table

15

Chapter 3: Methods

Introduction

In this section, we describe our process pipeline and discuss the decisions taken

regarding the choices in models and hyperparameter. We begin with our input

relational structure (Figure 9). This can be a standalone table in a relational database,

like the Employee table discussed earlier. This can also be a subset, superset or

computed view of a single table. We pick a view of the database that captures a

domain of interest that we wish to explore and query. For example, we could use a

joined view (via foreign keys) of all the tables related to the HR department of an

organization (superset). We could also use a smaller portion of a single larger table by

limiting the number of rows and/or columns based on some heuristic (subset).

Once we have our input table view, the next step is to tokenize and textify the

relational data. Technically, a token is simply a discernible unique combination of

characters strung together without any spaces between them. A sentence is an ordered

collection of such tokens that is complete and adheres to the structure and rules of

some overarching system. A text corpus is a set comprised of many such sentences.

Tokenization is the process of extracting word-like constructs from the table. We

discuss different tokenization approaches and their tradeoffs in the following few

sections.

16

Figure 9: Pipeline to generate token vectors for a table

Upon tokenization, we arrange these tokens into sentences and documents. We feed

the resulting dataset as an input to word4 and document5 embedding frameworks.

With word2vec, we learn word vector representations for every unique token in the

table. For doc2vec, we present each tokenized row of the table as a separate document

to the model. This way we can generate word vectors for individual tokens as well as

row vectors for each individual row in the table. We evaluate the effect of certain

hyperparameters on the quality of these vectors. We reduce the dimensionality of the

resultant vector representations to plot these token and row vectors in a 2D vector

space. This allows us to visually explore the captured semantic qualities by the

model. These vectors, along with the SQL API, provide a larger combined query

surface over the dataset. We perform novel similarity and analogy queries over this

dual view and present the results.

Dataset

For the experiments, the dataset chosen is the IMDB 5000 movie dataset from Kaggle

(IMDB 5000 Movie Dataset, n.d.). This dataset captures 27 variables for 5043 movies

and 4906 posters spanning across 100 years in 66 countries. The 27 attributes

captured are,

17

S. Number Column Name Data Type

1 movie_title STRING

2 color STRING

3 num_critic_for_reviews NUMERIC

4 movie_facebook_likes NUMERIC

5 duration NUMERIC

6 director_name STRING

7 director_facebook_likes NUMERIC

8 actor_3_name STRING

9 actor_3_facebook_likes NUMERIC

10 actor_2_name STRING

11 actor_2_facebook_likes NUMERIC

12 actor_1_name STRING

13 actor_1_facebook_likes NUMERIC

14 gross NUMERIC

15 genres STRING

16 num_voted_users NUMERIC

17 cast_total_facebook_likes NUMERIC

18 facenumber_in_poster NUMERIC

19 plot_keywords STRING

20 num_user_for_reviews NUMERIC

21 language STRING

22 country STRING

23 content_rating NUMERIC

24 budget NUMERIC

25 title_year DATE

26 imdb_score NUMERIC

27 aspect_ratio NUMERIC

18

There are 2399 unique director names and thousands of actor/actress names in the

dataset. This dataset is a combination of dimensional and factual data. It has a healthy

proportion of textual data (such as plot_keywords, genres, movie_title, actor_1_name)

and numerical values, which are both categorical (title_year, aspect_ratio) and

continuous (gross, director_facebook_likes).

Tokenization

Tokenization is the overall process of transforming our relational dataset into a large

textual corpus. This corpus does not have to be grammatically well formed sentences.

There are several considerations when effectively tokenizing a table. We will discuss

them here.

Dealing with textual fields

Textual fields such as ‘movie_title’, ‘plot_keywords’, ‘genre’ can be tokenized in

several different ways. The value in a table cell can be appended to the column name

for the cell to form a single token. This will assist us in recognizing the affiliation of

the value to the column. We can use spaces between different columns to identify

token boundaries. For example, we may tokenize a row from our movie metadata

database as,

“... movie_name_Guardians_of_the_galaxy actor_1_name_Bradley_Cooper

actor_2_name_Vin_Diesel …”

It makes sense to combine phrases such as “Guardians of the galaxy” and “Bradley

Cooper” into “Guardians_of_the_galaxy” and “Bradley_Cooper”. This is because

19

we are not interested in the individual token vectors for each of these words

independently. Researchers have extended models to achieve phrase-level

representations (Jeff Mitchell, 2010), but because we are guaranteed that each value

stored in a cell is atomic and therefore indivisible (1NF), we can confidently convert

such phrases into a single token.

 Other approaches to tokenize the table involve completely ignoring the

column names altogether. This would yield a textified row as,

“... Guardians_of_the_galaxy Bradley_Cooper Vin_Diesel …”

 or separating the column name and value by a space delimiter and treating them as

separate tokens.

“... movie_name Guardians_of_the_galaxy actor_1_name Bradley_Cooper

actor_2_name Vin_Diesel …”

All these approaches have an impact on the co-occurrence dynamics of the tokens

that we are interested in. We can adjust the context window size to some extent and

accommodate these approaches. The decision to include/exclude column names from

the tokenization process is influenced by the queries that we intend to perform on the

resultant vectors. We will discuss this further in the section on Hyperparameter

considerations.

Dealing with numerical fields

Continuous numerical values are inherently a bad fit for language embedding and

various other machine learning tasks. Numeric column values for ‘gross’, ‘budget’

and ‘director_facebook_likes’ will cause the model to generalize poorly as these

machine learning models do not handle continuous values well and focus on nominal

20

feature spaces (Dougherty, 1995). The simplest solution is to discretize the values

into k bins of equal interval widths. Here k can be a user specified parameter or

computed using some heuristic based on the distribution of the values. This technique

is not ideal because outliers will drastically skew the range (Catlett J. , 1991).

Another approach is to discretize the continuous variables into k equal frequency bins

where each bin contains an equal number of values. This way we end up with

discretized column value tokens like ‘budget_high’, ‘gross_low’ and

‘director_facebook_likes_medium’. It is likely that we lose out on information by

transforming a continuous value with higher precision into a lower cardinality

nominal value. More advanced discretization strategies have been studied which

involve decision trees (Holte, 1993) and minimal entropy heuristics (Catlett J. , 1991)

(U M Fayyad, 1993) to preserve as much of this information as possible, and allow

machine learning algorithms to generalize better. We will leave these more advanced

techniques and their effects out of the scope of this thesis.

Other data types

Other attributes such as Booleans and NULLs can also be accommodated using the

same techniques as String values. Dates can either be treated as nominal or

continuous depending on the domain of the values.

Models

Word2Vec

21

We start our experimentation by feeding our tokenized table corpus into word2vec

from the genism software toolkit4. We consider each tokenized row as a separate

sentence and pass a collection of all such sentences to the model. As a result, we learn

vector representations for the entire vocabulary of tokens in the table in a vector

space.

Row2Vec

We use a modified version of PV5 from the genism software toolkit as something we

would like to term as row2vec from here on. Just as in word2vec, we treat each

tokenized table row as a sentence. But we also treat each such sentence as a

paragraph. Row2Vec generates vectors for each unique token in the table and each

sentence (row) as an implicit by-product of its explicit prediction task. We consider

these sentence vectors to be row vectors. These row vectors capture certain intrinsic

qualities of the entire row and help us in querying the table. We will discuss the

hyperparameter choices for these models in the next section.

Hyperparameter considerations

Much work has been done recently in coming up with robust recommendation lists of

hyperparameter choices for word embedding models such as word2vec and PV

(Omer Levy Y. G., 2015) (Jey Han Lau1, 2016). We further investigate these choices

in the backdrop of applying these models to relational data. This discussion aims to

shed some light on the effect of certain hyperparameter choices.

4 https://radimrehurek.com/gensim/models/word2vec.html
5 https://radimrehurek.com/gensim/models/doc2vec.html

22

Column order and Context Windows

The column order for tokenization coupled with the size of the sliding context

window for the model can have a significant impact on the output vector

representations for the table tokens. The documentation4 defines the context window

parameter as the “maximum distance between the current and predicted word within a

sentence”. Note here that a context window does not overlap across sentences. Also,

the context window extends on both sides of the target word. Therefore, the effective

window size is twice this context window parameter value. Let us run with an

example tokenized row from our dataset,

 “… director_name George_Lucas num_critic_for_reviews_high
duration_high director_facebook_likes_low actor_2_name
Peter_Cushing actor_1_facebook_likes_high gross_high genres
Action Adventure Fantasy Sci-Fi actor_1_name Harrison_Ford
movie_title Star_Wars:_Episode_IV_-_A_New_Hope plot_keywords
death star empire galactic war princess rebellion language
English country USA content_rating PG budget_medium
actor_2_facebook_likes_high imdb_score_high aspect_ratio_medium
…”

In the case of word2vec and row2vec (PV), we treat each tokenized row as a

sentence. Additionally, for row2vec we consider each paragraph to be comprised of a

single sentence. This way the learned paragraph vectors represent the entire row in

the vector space. The recommended context size for these models on English texts is

5-10. But in our case, we have some additional pieces of information. All our

sentences will roughly have the same number of words as each row has a fixed

number of columns. Also, they will all have a similar structure. For example, the

second word in every sentence will be the name of the director, which will always be

preceded by the keyword ‘director_name’, which is the name of the column. We have

a few different options here. We could set the context window to be much smaller (1

or 2) than the average length of our tokenized row sentences (Figure 10). This way

any target word like ‘Harrison_Ford’ will only have a few nearby context words

from the entire row. This is generally recommended to yield more topical vectors.

This would lead us to suspect that the order of the columns in the tokenization

23

process might play a more significant role in the final output representations of the

tokens. On the other hand, if we set the context window size to be larger than the

largest row sentence that we have, we will have all the tokens from the row appear in

the context of every word considered as a target word (Figure 11). This approach is

recommended for more generalized representations. With this approach, the column

order has little to no impact on the final word representations.

“… director_name George_Lucas num_critic_for_reviews_high
duration_high director_facebook_likes_low actor_2_name
Peter_Cushing actor_1_facebook_likes_high gross_high genres Action
Adventure Fantasy Sci-Fi actor_1_name Harrison_Ford movie_title
Star_Wars:_Episode_IV_-_A_New_Hope plot_keywords death star
empire galactic war princess rebellion language English country USA
content_rating PG budget_medium actor_2_facebook_likes_high
imdb_score_high aspect_ratio_medium …”

Figure 10: Context window for 'Harrison Ford' with context size = 1

“… director_name Joss_Whedon num_critic_for_reviews_high duration_
high director_facebook_likes_low actor_3_facebook_likes_high actor
_2_name Robert_Downey_Jr. actor_1_facebook_likes_high gross_high g
enres Action Adventure Sci-Fi actor_1_name Chris_Hemsworth movie_t
itle Avengers:_Age_of_Ultron num_voted_users_high cast_total_faceb
ook_likes_high actor_3_name Scarlett_Johansson facenumber_in_poste
r_high plot_keywords artificial intelligence based on comic book c
aptain america marvel cinematic universe superhero num_user_for_re
views_high language English country USA content_rating PG-13 budge
t_high title_year_high actor_2_facebook_likes_high imdb_score_high
aspect_ratio_medium …

… director_name George_Lucas num_critic_for_reviews_high
duration_high director_facebook_likes_low actor_2_name
Peter_Cushing actor_1_facebook_likes_high gross_high genres Action
Adventure Fantasy Sci-Fi actor_1_name Harrison_Ford movie_title
Star_Wars:_Episode_IV_-_A_New_Hope plot_keywords death star
empire galactic war princess rebellion language English country USA
content_rating PG budget_medium actor_2_facebook_likes_high
imdb_score_high aspect_ratio_medium …

… director_name Mel_Gibson num_critic_for_reviews_medium duration_
high director_facebook_likes_low actor_3_facebook_likes_medium act
or_2_name Patrick_McGoohan actor_1_facebook_likes_medium gross_hig
h genres Biography Drama History War actor_1_name Mhairi_Calvey mo

24

vie_title Braveheart num_voted_users_high cast_total_facebook_like
s_medium actor_3_name James_Robinson facenumber_in_poster_low plot
_keywords 14th century legend revolt scotland tyranny num_user_for
_reviews_high language English country USA content_rating R budget
_high title_year_low actor_2_facebook_likes_medium imdb_score_high
aspect_ratio_medium …”

Figure 11: Context window for 'Harrison Ford' with context window size > tokenized row length

We should be wary of the fact that some implementations of the algorithm

consider a dynamic context window. Under this scheme, more weight is assigned to

closer words, as closer words are considered to have more importance to the meaning

of the word. Another thing to keep in mind is that the size of the window is

sometimes not fixed either. The actual window size is dynamic, i.e. it is sampled

uniformly between 1 and a maximum window size parameter during the training

phase. Both these schemes affect our hypothesis and care must be taken to understand

the consequences of these hyperparameters on the quality of the output vectors.

Min-count

The model ignores all words whose frequency is lower than this min-count

hyperparameter. This hyperparameter is tuned based on the input dataset’s vocabulary

statistics. In our case, we will set it to 1. This is because we want our model to

generate vectors even for the words that occur only once in the entire table. We

cannot afford to not have a vector for any table token, as we will not be able to

include that term in our querying. This is a particularly important requirement for us

because, as we know, every row has at least one unique primary key.

Hierarchical Softmax

Given a sequence of words 𝑤%,𝑤', 𝑤(, … ,𝑤*, the objective of the word2vec model is

to maximize the average log probability that is,

25

1
𝑇	 	 log 𝑝(𝑤345|𝑤3)

89:5:9,5;<

*

3=%

Here c is our context under consideration. As we can see the size of W can be very

large for textual corpora. To circumvent this inefficiency, hierarchical softmax

(Frederic Morin, 2005) posits that we can obtain a probability distribution by simply

using log' 𝑊 nodes. During our experimentation, we noticed that we achieved our

best results by employing hierarchical softmax.

Negative Sampling

This hyperparameter can be used in lieu of hierarchical softmax. This integer

hyperparameter specifies how many noise-words should be drawn in the prediction

task. In a typical neural network, all weights are tweaked with each pass over the

training sample. As we are generally working with large text corpora and

vocabularies, our neural network models can have millions or billions of weights.

Negative sampling exists to reduce this computational burden. Negative sampling is a

simplified form of Noise Contrastive Estimation (NCE). NCE posits that a good

model should be able to differentiate between data and noise words using logistic

regression. In any given prediction task, we select a small sample of negative noise

words which are outside of the given context window, and use them for prediction,

along with the positive words from the context. It is for the reader to decide whether

this will lead to better representations for token and/or row vectors. In our

experiments, we found a low value for this hyperparameter to better help generalize

the model and higher values to better cluster the column values.

Sample

This is the threshold for configuring which higher-frequency words are randomly

down sampled. Basically, the model ignores some instances of the words it sees often.

These words that occur very frequently generally carry less meaning. This is an

26

essential parameter that resists the more popular words from overpowering the model.

Recommended values for this hyperparameter are between 0.001 and 0.00001, with

the default being 0.001.

Iterations/Epochs

This is the number of times the sliding window goes over the text corpus. The

recommended value for this hyperparameter in research papers is between 10 and 20.

We feel this is a good starting point for our experiments as this will allow the model

to capture the semantics of our row token vectors optimally. We can go higher than

this recommended number, but we must be careful that running the models with

higher iteration counts takes the model a long time to run.

All the other hyperparameters to the model offer little help to our end goal of

efficiently and effectively representing vector representations for the table

vocabulary. Some of these hyperparameters are the number of worker threads, and

whether to use hierarchical softmax as a more efficient softmax and the learning rate.

The final output dimension size of the vector representations is a special case. The

recommended value for this hyperparameter is between 200 to 300, but we have seen

certain researchers going as high as 800. Because our dataset under consideration is

relatively small, we choose to hover around the 100-300 mark.

Measurement

Once we have learned vector representations for our token vocabulary using

word2vec and row vectors using Row2Vec, we reduce the dimensionality of the

vectors by using Principal Component Analysis (PCA) and plot them in a 2D space as

a scatter plot. This gives us a visual glimpse of the quality of the semantic

relationships captured by our models.

27

One of the foundational strengths of relational databases is to be able to

identify a row uniquely by its primary key. With our word2vec experiments, there are

two possible ways to identify a row uniquely in the vector space. The first one is to

average the token vectors for all the tokens in the row and treat this average as the

unique row representation. The second way is to consider the vector for the unique

primary key as the row vector (in our case the movie title). Again, column order and

context window size play a non-trivial role when choosing any one of these

approaches. In the case of row2vec, we already have a vector representation for every

row as a by-product of the prediction task.

We execute certain novel similarity queries on our dataset using the learned

vector representations. We build a simple recommendation engine, which can

recommend movies to users based on their likes and dislikes.

28

Chapter 4: Findings

Overview

We successfully ran our Word2Vec and Row2Vec models on our tokenized IMDB

dataset. Our goal was to optimize the model on three types of tasks. These tasks are

similarity (what tokens are near ‘Leonardo Di Caprio’?), analogy (if ‘Inception’ is to

‘Leonardo Di Caprio’, then what is to ‘Tom Cruise’?) and additive composability

(what is ‘Leonardo Di Caprio’ + ‘Kate Winslet’?). To get a better idea of the effects

of the hyperparameters on the model, we tested different hyperparameter

combinations. Keeping all other things constant, we individually introduced variation

in context size, negative sampling, output dimensionality and the number of training

iterations. We reduced the dimensionality of the resultant token vectors for each of

these experiments using Principal Component Analysis (PCA) and color coded the

various column values to better illustrate clustering patterns. In the next two sections,

we present these visualizations and sample outputs.

Word2vec Visualizations

29

Figure 12: Context size = 1 vs Context size = 30 (300-dimension skip-gram with hierarchical

softmax)

Figure 13: Negative sampling = 0 vs Negative sampling = 25 (300-dimension skip-gram with

context size = 30)

30

Figure 14: 100-Dimension vs 300-Dimension (skip-gram with context window = 30 and with

hierarchical softmax)

Figure 15: 10 iterations vs 20 iterations (300-dimensional skip-gram with context window = 30

and hierarchical softmax)

Our first observation is that context size plays a vital role in the model’s ability to

capture vector semantics. A smaller context size yields more clustered column values,

31

whereas a larger context size generalizes over the dataset better. Secondly, negative

sampling and hierarchical softmax are also non-trivial for the model to capture

relationships well. Recall that negative sampling is a simpler form of Noise

Contrastive Estimation that makes learning parameters more efficient. It draws

negative samples in the prediction task and optimizes the model to predict correct and

noise words for a given target word. With hierarchical softmax (or high negative

sampling), the PCA plots show the vectors as a giant mess centered around the origin.

It is not yet established why we see such patterns. As we shall demonstrate later,

using hierarchical softmax or high negative sampling rates yielded better results for

our intended tasks. Lower values of negative sampling resulted in absolutely garbage

results.

Row2vec Visualizations

Figure 16: Context size = 1 vs Context size = 30 (300-dimension PV-DM with hierarchical

softmax)

32

Figure 17: Negative sampling = 0 vs Negative sampling = 25 (100-dimension PV-DM with context

size = 30)

Figure 18: 100-Dimension vs 300-Dimension (PV-DM with context size = 30 and hierarchical

softmax)

33

Figure 19: 10 iterations vs 20 iterations (100-dimensional PV-DM with context window = 30 and

hierarchical softmax)

Here we see negative sampling and hierarchical softmax both make the model tend to

cluster column values to some extent. The situation is exacerbated when we use a

small context window as smaller context windows tend to yield more topical vectors

(Figure 16). On the other hand, when we switch off both negative sampling and

hierarchical softmax (Figure 17), we see no kind of obvious relationship semantics

being captured by the model.

Sample Cognitive query results

Word2Vec

The sample query responses shown here are on a word2vec model run with

hierarchical softmax. We have taken a context size of 30 and generated output vectors

of size 300. We downsampled the popular words with a threshold of 0.001 and ran

the model for 10 iterations. We observed similar results when instead of hierarchical

sampling, we used a high value for negative sampling.

34

Similarity

Top 20 vectors closest to ‘Leonardo_DiCaprio’

 ('Leonardo_DiCaprio', 0.9999998807907104),
 ('The_Departed’, 0.662142276763916),
 ('Titanic’, 0.6590770483016968),
 ('Gangs_of_New_York’, 0.6585075855255127),
 ('Body_of_Lies, 0.6564064621925354),
 ('Elizabeth_Debicki', 0.6560742855072021),
 ('Revolutionary_Road’, 0.654662549495697),
 ('Django_Unchained’, 0.6534621715545654),
 ('Joe_Komara', 0.6504959464073181),
 ('Gloria_Stuart', 0.6503431797027588),
 ('jordan', 0.6393324136734009),
 ('Catch_Me_If_You_Can’, 0.6392801403999329),
 ('Peter_Youngblood_Hills', 0.6386548280715942),
 ('The_Beach', 0.633617639541626),
 ('The_Revenant’, 0.6317786574363708),
 ('Blood_Diamond', 0.6263160705566406),
 ('The_Great_Gatsby', 0.6188250780105591),
 ('The_Wolf_of_Wall_Street', 0.6161619424819946),
 ('hungary', 0.6137104034423828),
 ('paradise', 0.6085795164108276)

As we can see here, the model did quite well in capturing words that are relevant to

our target word ‘Leonardo_DiCaprio’. We can see some of his movies (The

Departed, Titanic and Gangs of New York), co-stars (Elizabeth Debicki, Joe Komara)

and some of the plot tokens from his movies (Jordan, paradise).

Analogy

Top 10 results for ‘Inception’ + ‘Tom_Cruise’ – ‘Leonardo_DiCaprio’

 ('War_of_the_Worlds’, 0.6809234023094177),
 ('Mission:_Impossible_II', 0.680419385433197),
 ('Mission:_Impossible_-_Rogue_Nation', 0.6794121861457825),
 ('subconscious', 0.6704068779945374),
 ('Knight_and_Day', 0.6620358824729919),
 ('Mission:_Impossible', 0.6609631776809692),

35

 ('tripod', 0.6468757390975952),
 ('Minority_Report', 0.6445044279098511),
 ('Independence_Day', 0.6434791684150696),
 ('Jack_Reacher', 0.6304120421409607)

In this query, we want to find out analogies of the kind “If Inception is to Leonardo

DiCaprio, then what is to Tom Cruise?”. We see many of Tom Cruise’s movies come

up in the top 10 such vectors.

Additive Composability

Top 10 results for ‘Leonardo_DiCaprio’ + ‘Kate_Winslet’

 ('Titanic', 0.7365461587905884),
 ('Gloria_Stuart', 0.7282267808914185),
 ('Revolutionary_Road', 0.708398163318634),
 ('Joe_Komara', 0.6952486634254456),
 ('Romeo_+_Juliet', 0.6811110973358154),
 ('The_Beach', 0.671924352645874),
 ('Blood_Diamond', 0.6625310778617859),
 ('Peter_Youngblood_Hills', 0.6582512855529785),
 ('Tomas_Alfredson', 0.6535829901695251),
 ('hungary', 0.6524652242660522)

Here again we can see that our number 1 and 3 results were movies in which

Leonardo DiCaprio and Kate Winslet acted together. Number 2 and 4 are co-stars

from movies in which Leo and Kate appeared together.

Row2Vec

For our Row2vec experiments, we used the same hyperparameter settings as our

word2vec model. Recall that row2vec learns an additional vector for every movie,

and thus we have 2 sets of vectors; one for all the tokens in our table and one for all

the movies.

36

Similarity

Top 10 vectors closest to ‘Leonardo_DiCaprio’

 ('Leonardo_DiCaprio', 0.9999999403953552),
 ('Brad_Pitt', 0.6535583734512329),
 ('Tom_Hanks', 0.6237167119979858),
 ('Benedict_Cumberbatch', 0.6078296899795532),
 ('Kevin_Spacey', 0.598504364490509),
 ('Christian_Bale', 0.5830089449882507),
 ('Christoph_Waltz', 0.5748230814933777),
 ('Hugh_Jackman', 0.5710854530334473),
 ('1970s', 0.5472841262817383),
 ('Denzel_Washington', 0.5426238775253296)

Here we can see that row2vec did a lot more clustering of the column values. We can

see similar actors to ‘Leonardo_DiCaprio’. These actors don’t have a lot of movies in

common with Leo, but they are all mostly famous actors.

Top 10 movie vectors closest to ‘Leonardo_DiCaprio’

 ('The_Monuments_Men', 0.5280457735061646),
 ('Philadelphia', 0.47902488708496094),
 ('The_Wolf_of_Wall_Street', 0.4776039719581604),
 ('Catch_Me_If_You_Can', 0.4774860739707947),
 ('War_Horse', 0.4763687252998352),
 ('Mission:_Impossible_III', 0.4706520736217499),
 ('Flags_of_Our_Fathers', 0.46463078260421753),
 ('Unforgiven', 0.4625704288482666),
 ('Carnage', 0.4617079794406891),
 ('The_Book_of_Eli', 0.45993518829345703)

Here, we see how row2vec performed poorly in contrast to our word2vec model. We

get some Leonardo DiCaprio movies (The Wolf of Wall Street, Catch Me If You

Can), but the others are not. Also, the association is a lot weaker than what we saw in

word2vec.

37

Analogy

Top 10 movie results for ‘Inception’ + ‘Tom_Cruise’ – ‘Leonardo_DiCaprio’

 ('The_Firm', 0.5307195782661438),
 ('MacGruber', 0.5178793668746948),
 ('Man_of_the_House', 0.5129494667053223),
 ('The_Tailor_of_Panama', 0.44215500354766846),
 ('Texas_Rangers', 0.4251130223274231),
 ('White_Chicks', 0.42136460542678833),
 ('Pale_Rider', 0.4106457531452179),
 ('Machete', 0.4106242060661316),
 ('The_Majestic', 0.4104437232017517),
 ('Runner_Runner', 0.3990623354911804)

Additive Composability

Top 10 results for ‘Leonardo_DiCaprio’ + ‘Kate_Winslet’

 ('Leonardo_DiCaprio', 0.8796911239624023),
 ('Kate_Winslet', 0.8526569604873657),
 ('Benedict_Cumberbatch', 0.7082951068878174),
 ('Meryl_Streep', 0.640968918800354),
 ('Christian_Bale', 0.6378368735313416),
 ('Kevin_Spacey', 0.6290881037712097),
 ('Tom_Hanks', 0.6269365549087524),
 ('Jennifer_Lawrence', 0.6222625970840454),
 ('Brad_Pitt', 0.6136409044265747),
 ('Scarlett_Johansson', 0.6120947599411011)

In both these query results we can see that row2vec did not perform at par with

word2vec. In the case of analogy query, Tom Cruise starred in only one of the

movies. With the additive composability query, we see a clustering effect around

column values.

38

Chapter 5: Discussion, Conclusion and
Future Work

In this thesis, we studied two distributed word embedding algorithms (word2vec and

doc2vec), along with their bells and whistles and reasoned on their applicability to

relational databases. Our primary goal was to introduce to the reader, an enhanced

protocol for cognitively querying structured data. This pattern of querying is non-

trivial to do with the SQL dialect alone. To achieve this, we had to better understand

the effects of the hyperparameter choices and tokenization dynamics.

 We began our discussion by outlining the models. We presented our

hypothesis and proposed extensions to the models (that were originally designed to

work on large textual corpora) and how they could be molded for our use case. We

discussed tokenization techniques and hyperparameter considerations and presented

their effects using visual plots. We also presented the results of sample queries

executed on both types of models.

We designed row2vec as a special case of doc2vec that we believed would

perform well on our tabular data. We had studied word2vec carefully and had tried to

reduce some of its shortcomings that we believed would disallow it from generalizing

well on SQL tables. Row2vec performed poorly across the board on our chosen tasks

of similarity, analogy and additive composability. It might be possible to squeeze out

better results on these same tasks by finding a more appropriate combination of

hyperparameters. It is also possible that this same model might perform well on some

other task that was concerned with queries involving higher orders of abstractions.

More work needs to be done in better understanding the effects of certain

hyperparameters on our tasks.

We were surprised to see that vanilla word2vec gave us the best results on our

tasks. Negative sampling and hierarchical softmax, which are discussed in the

39

literature as merely optimization techniques, proved to play vital roles in the overall

capturing of relationships between our token vectors. On the other hand,

hyperparameters like vector size, iterations, and model type (skip-gram vs CBOW)

played smaller roles.

Considering the results presented above, it is evident that we need more

information about the effects of hyperparameters on the quality of model output. A

better benchmark for assessing the performance of cognitive querying would go a

long way in that directions. Such a benchmark will allow researchers to evaluate

extensions to the model is a more streamlined fashion.

40

Bibliography

Bengio, Y. D. (2003). A Neural Probabilistic Language Model. The Journal of

Machine Learning Research, 3, 1137–1155.

Catlett, J. (1991). Megainduction: Machine Learning on Very Large Databases.

University of Sydney.

Catlett, J. (1991). On changing continuous attributes into ordered discrete attributes.

In Lecture Notes in Computer Science (Lecture Notes in Artificial

Intelligence) (Vol. 482).

Christophe Van Gysel, M. d. (2016). Learning Latent Vector Spaces for Product

Search. CIKM’16. Indianapolis, IN, USA.

Codd, E. F. (1970, June). A Relational Model of Data for Large Shared Data Banks.

Commun. ACM, 13(6).

D. E. Rumelhart, G. E. (1986). Learning internal representations by backpropagating

errors. Nature, 323:533.536.

Dougherty, J. R. (1995). Supervised and unsupervised discretization of continuous

features. Machine learning: proceedings of the twelfth international

conference, 12, pp. 194-202.

Frederic Morin, Y. B. (2005). Hierarchical probabilistic neural network language

model. Proceedings of the international workshop on artificial intelligence

and statistics, (pp. 246–252).

GloVe: Global Vectors for Word Representation. (n.d.). Retrieved from The Stanford

Natural Language Processing Group: https://nlp.stanford.edu/projects/glove/

Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most

Commonly Used Datasets. In Machine Learning 11 (pp. 63-91).

IMDB 5000 Movie Dataset. (n.d.). Retrieved from

https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset

Jansen, S. (2017). Word and Phrase Translation with word2vec.

41

Jeff Mitchell, M. L. (2010). Composition in Distributional Models of Semantics.

Cognitive Science, 34, 1388–1429.

Jey Han Lau1, T. B. (2016). An Empirical Evaluation of doc2vec with Practical

Insights into Document Embedding Generation. Proceedings of the 1st

Workshop on Representation Learning for NLP (pp. 78–86). Berlin:

Association for Computational Linguistics.

Laurens van der Maaten, G. H. (n.d.). Visualizing Data using t-SNE. Journal of

Machine Learning Research 9 (2008) 2579-2605.

Liu, H. (2017). Sentiment Analysis of Citations Using Word2vec.

Manning, J. P. (2014). GloVe: Global Vectors for Word Representation. Proceedings

of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP), (pp. 1532–1543).

Marco Baroni, G. D. (2014). Don’t count, predict! A systematic comparison of

context-counting vs. context-predicting semantic vectors. Proceedings of the

52nd Annual Meeting of the Association for Computational Linguistics, (pp.

238–247). Baltimore, Maryland, USA.

Ng, P. (2017). dna2vec: Consistent vector representations of variable-length k-mers.

Omer Levy, Y. G. (2014). Neural word embedding as implicit matrix factorization.

NIPS'14 Proceedings of the 27th International Conference on Neural

Information Processing Systems, (pp. 2177-2185). Montreal, Canada.

Omer Levy, Y. G. (2015, May). Improving Distributional Similarity with Lessons

Learned from Word Embeddings. Transactions of the Association for

Computational Linguistics, 211–225.

Oren Barkan, N. K. (2016). ITEM2VEC: NEURAL ITEM EMBEDDING FOR

COLLABORATIVE FILTERING.

Ozsoy, M. G. (2016). From Word Embeddings to Item Recommendation.

Quoc V. Le, T. M. (2014). Distributed Representations of Sentences and Documents.

International Conference on Machine Learning.

42

Rajesh Bordawekar, O. S. (2016). Enabling Cognitive Intelligence Queries in

Relational Databases using Low-dimensional Word Embeddings.

arXiv:1603.07185.

Rong, X. (2016). word2vec Parameter Learning Explained. arXiv:1411.2738v4.

Stanisław Jastrzebski, D. L. (2017). How to evaluate word embeddings? On

importance of data efficiency and simple supervised tasks. arXiv:1702.02170.

Tomas Mikolov, I. S. (2013c). Distributed Representations of Words and Phrases and

their Compositionality. Advances on Neural Information Processing Systems.

Tomas Mikolov, K. C. (2013). Efficient Estimation of Word Representations in

Vector Space. arXiv:1301.3781v3.

U M Fayyad, K. B. (1993). Multi-Interval discretization of continuous valued

attributes for classification learning. Proceedings of the 13th International

Joint Conference on Artificial Intelligence, (pp. 1022-1027).

Y. Bengio, R. D. (2003). A neural probabilistic language model. Journal of Ma- chine

Learning Research, 1137-1155.

Yoav Goldberg, O. L. (2014). word2vec Explained: Deriving Mikolov et al.’s

Negative-Sampling Word-Embedding Method. arXiv:1402.3722.

Yushi Yao, G. L. (2017). Context-aware Sentiment Word Identification:

sentiword2vec.

