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Abstract: Current methods for predicting stress distribution on a cell 

surface due to optical trapping forces are based on a traditional ray optics 

scheme for fixed geometries. Cells are typically modeled as solid spheres as 

this facilitates optical force calculation. Under such applied forces however, 

real and non-rigid cells can deform, so assumptions inherent in traditional 

ray optics methods begin to break down. In this work, we implement a 

dynamic ray tracing technique to calculate the stress distribution on a 

deformable cell induced by optical trapping. Here, cells are modeled as 

three-dimensional elastic capsules with a discretized surface with associated 

hydrodynamic forces calculated using the Immersed Boundary Method. We 

use this approach to simulate the transient deformation of spherical, 

ellipsoidal and biconcave capsules due to external optical forces induced by 

a single diode bar optical trap for a range of optical powers. 
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1. Introduction 

A change in cellular mechanical properties can be an indication of infection and other 

pathologies [1,2]; for example, red blood cells (RBC) infected by malaria parasites exhibit 

significantly different membrane elasticity compared to normal healthy cells. These parasites 

express proteins that stiffen the RBC membrane by interacting with both the plasma and the 

cytoskeleton. Suresh and associates [3] have recently shown a difference in the average elastic 

modulus of normal RBCs and those infected with malaria at different growth stages where, in 

some cases, the elastic modulus nearly doubled. Such findings suggest that measuring cellular 

mechanical properties may provide a direct route to either detecting disease at early stages or 

assessing disease progression at later phases. 

Several experimental techniques have been used to measure cellular viscoelastic properties 

including those relying on direct contact, such as micropipette aspiration [4] and atomic force 

microscopy [5]. Recently, non-contact methods have also been developed that probe cell 

mechanical properties using optical trapping [6] through either drag-based deformation [7] or 

with attached colloids [8]. In this approach, a laser is focused to a diffraction-limited spot with 

a high numerical-aperture objective, allowing micron-sized objects in solution to be trapped 

into the region of highest light intensity [9]. With multiple optical traps, biological cells 

cannot only be manipulated but also deformed, stretched, folded and even rotated. Bronkhorst 

et al. deformed RBCs into a parachute shape using three traps, two at the ends and one in the 

middle [6]. Henon et al. deformed RBCs using two silica beads that were adhered to opposite 
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sides of the cell surface [8], trapped in dual optical traps, and then pulled by two opposite but 

equal forces, thereby stretching the cell. This method directs the laser beam on the beads and 

away from the cell, reducing the risk of thermal damage; however, manipulating beads 

attached to a cell leads to stress concentration in the membrane that can lead to mechanical 

injury and/or the measurement of highly localized properties. Addressing these issues, Käs 

and associates have recently developed an optical stretcher in which they trap individual cells 

along the axis between two counter-propagating diverging beams thus elongating the cell 

[10,11]. The use of such opposing bead-free optical stretchers induces smoother and less 

localized stresses with no focusing required. More recently, Applegate et al. [12] implemented 

optical trapping methods using simplified schemes that take advantage of the nature of micro-

fluidic fluid dynamics and use diode laser bars to manipulate particles in micro-scale 

geometries. This approach employs a single linear optical trap instead of a spot and eliminates 

the need for expensive associated optics to stretch cells at high-throughput within microfluidic 

flows [13]. 

To experimentally quantify an individual cell’s elasticity one needs to predict the stress 

distribution on the cell surface due to the optical trap and measure the induced deformation. 

To calculate optical forces Ashkin [14] did the first numerical work and determined the total 

forces of a single-beam gradient laser on solid spheres in the ray-optics (RO) regime. 

Biological cells, however, are deformable and can change shape under the influence of 

external flows or applied forces. Because they are directly coupled, the local force distribution 

and total trapping force can change significantly with the deformation of the cell, and visa 

versa. To determine the initial stress distribution before cells begin to deform under the 

influence of induced optical forces Guck et al. used the RO method for a dual-beam fiber-

optic stretcher and used it to determine the stiffness of RBCs [10,15,16]. The effect of 

subsequent deformation on the stress distribution was neglected; however, assuming a rigid 

spherical cell morphology and disregarding deformation in the force calculation is non-

physical and may significantly affect cell elasticity predictions. 

In this manuscript, we present a numerical method, dynamic ray tracing (DRT) and 

calculate the cell stress distribution due to light–cell interactions for arbitrary cell shape and 

simulate the resulting cell deformation in optical traps and stretchers. We do this by 

combining two numerical methods. The first is a vector-based ray tracer that determines the 

stress distribution in optical traps on elastic capsules of arbitrary shape and the second 

employs a fluid-structure hydrodynamic solver to simulate cell deformation due to both 

external optical forces and cell-fluid interaction. The combined method is used to simulate 

dynamic cell stretching of different initial shapes, including spheres, oblate spheroids and bi-

concave discoids. 

2. Numerical method 

We implement an advanced RO technique that determines the variable stress distribution on 

cells in optical traps and uses this to calculate cell transient deformation. DRT takes into 

account the change in the cell shape due to cell deformability and cell-fluid interaction as 

opposed to the traditional ray optics method (TRO) that assumes fixed spherical geometries. 

Cell-fluid interaction is simulated using a hydrodynamic solver based on the immersed 

boundary method (IBM) which has been used extensively to simulate fluid-structure 

interaction in biological systems under external flows [17–19]. In this method the fluid 

governing equations are solved where the viscous stresses are determined and used to find the 

membrane deformation. Elastic forces are then determined due to the membrane deformability 

and converted to forces acting on the fluid. These forces are applied to the fluid as body 

forces. The details of the numerical implementation and validation of the IBM can be found 

elsewhere [18]. Here, we modify the approach to simulate cell deformation induced by 

external optical forces found using a ray-tracer that employs the governing physical model 

#128468 - $15.00 USD Received 17 May 2010; revised 24 Jun 2010; accepted 11 Jul 2010; published 23 Jul 2010
(C) 2010 OSA 2 August 2010 / Vol. 18,  No. 16 / OPTICS EXPRESS  16704



[10] on any discretized cell shape. In our modified IBM code, we incorporate these external 

optical forces by adding them to the elastic forces and applying them to the fluid. 

In the physical model we employ, the cell membrane is assumed to be an infinitesimally 

thin hyperelastic neo-Hookean material with negligible bending resistance. This model, 

characterized solely by the membrane stiffness Eh, has been commonly used for capsule 

deformation studies due to its simplicity [18,20,21]. Cells are assumed immersed in an 

incompressible Newtonian fluid with the same density ρ and viscosity µ as the cytoplasmic 

fluid but with a different index of refraction. Optical forces on individual elements of the 

membrane are combined with the membrane elastic forces due to cell deformation into the 

fluid and added to the source term in the Navier-Stokes equations. 

3. Traditional ray optics 

Lasers emit rays of light that propagate in straight lines in a medium of constant refractive 

index until they hit an interface of different index where they change path and speed by 

refraction and/or reflection. Such a change in light path requires a transfer of the momentum 

to the interface due to conservation. When the interface is an object, its surface absorbs this 

momentum and exerts a force proportional to the laser power by Newton's second law. To 

calculate the optical force distribution, a RO method has been frequently used [10,12,15] 

where the incoming light is decomposed into individual rays, each with specific intensity and 

direction, an approach valid when the object is much larger than the wavelength of the light 

[22]. For spherical objects the condition is given by 2πa/λ>>1 where a is the radius of the 

sphere and λ the laser wavelength. For cells of typical radius greater than 3 µm and laser 

wavelengths less than 1 µm this condition is satisfied [10]. Optical forces are calculated via 

 ,m
optical

n QP
F

c
=   (1) 

where nm is the index of refraction of the buffer medium, c the speed of light in vacuum, P the 

laser power, and Q is the trapping efficiency, a dimensionless factor representing the amount 

of momentum transferred. Q is independent of the power applied and depends only on object 

geometry and the reflectance of the medium. Calculation of Q to date has been for spherical 

rigid cells [14,23] and shapes [24,25]. In what follows we briefly explain the TRO method 

and extend this to our implementation of a dynamic ray tracer on cells of arbitrary 

morphology. 

The TRO method makes use of spherical cell symmetry to simplify the trapping efficiency 

calculation. Q is calculated across the front and back sphere surfaces separately as a function 

of refractive index and incident laser beam profile, an approach valid because refracted angles 

can be determined at both front and back interfaces from Snell’s law: 

 sin sin .
m p

n nα β=   (2) 

where α and β and are the incident and refracted ray angles (Fig. 1) and ,
m p

n n are the indices 

of refraction of the two media. Q at any point on the surface can then be expressed as a 

function of the reflectance R, the original incident angle α, and the refracted angle β. For 

simplicity Q is typically decomposed into two components (parallel to and perpendicular to 

the laser axis) as: 

 
( ) 1 ( )cos(2 ) (1 ( ))cos( )

( ) ( )sin(2 ) (1 ( )) sin( )

front

front

Q R n R

Q R n R

α α α α α β

α α α α α β⊥
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= − − −
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( ) (1 ( ))[ cos( ) ( )cos(3 ) (1 ( ))cos(2 2 )]
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back
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where n = 
p

n /
m

n . In this, the incident light source is considered as an infinite number of rays 

parallel to the vertical axis, an approximation that works well for large particles. Internal and 

external reflections within the cell are neglected as their effects rapidly diminish when the 

reflectance R<0.005 for all rays. The magnitude at any point is found via 

2 2( ) ( )  Q Q Q⊥= + � and the total trapping efficiency, and corresponding total force, found 

through surface integration. It is important to note that these equations for the trapping 

efficiency Q are valid only on spherical cells and thus, in using TRO, the corresponding 

optical forces are calculated once initially and kept constant throughout the simulations. 

 

Fig. 1. Angles at the front and back surface of a sphere used in TRO. The angles that incident 

and refracted rays at the back surface make with the laser axis are α - β and 2α - 2β 

respectively. 

4. Dynamic ray tracing 

In simulating the shape evolution of a deformable particle under optical forces, the membrane 

steady-state geometry is not known a priori. Thus, the traditional ray tracing approach is not 

suitable and another technique is required to calculate the optical forces on evolving complex 

geometries. We show here how DRT can be used to calculate the optical force distribution on 

the cell in both its initial stress-free geometry as well as the transient morphologies as the cell 

deforms in response to combined hydrodynamic and optical forces. In DRT a finite number of 

rays are issued from a light source with a given intensity and known direction and travel 

linearly from the source until they intersect with a surface (defined as an interface between 

two media with different refractive indices). To implement this, we divide the surface into 

triangular elements with the same surface elements used for both elastic and optical stress 

calculations. From Eqs. (3) and (4), Q can be determined from incident, refracted and 

reflected ray angles with the laser axis angle at any point of ray-surface intersection. Thus the 

elemental optical forces at the first refraction can be expressed as: 

 
cos( ) ( )cos( ) (1 ( )) cos( )

sin( ) ( ) sin( ) (1 ( )) sin( ),

Q i R r n R t

Q i R r n R t

α α

α α⊥

= − − −

= − − −

�

  (5) 

where i, r and t are the angles formed between the incident, reflected, and transmitted ray with 

the laser axis (Fig. 2). The angle between the incident ray and the surface normal α remains 
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the same in the calculation of reflectance R. Note here that at any surface Q is multiplied by a 

factor of 1-R to account for energy loss from previous refractions and thus the general form of 

Q from a medium x to another medium y can be written as: 

 

'

,

'

,

(1 ( ))[ cos( ) ( ) cos( ) (1 ( )) cos( )],

(1 ( ))[ sin( ) ( ) sin( ) (1 ( ))sin( )],

yx x

x y

m m m

yx x
x y

m m m

nn n
Q R i R r R t

n n n

nn n
Q R i R r R t

n n n

α α α

α α α⊥

= − − − −

= − − − −

�

  (6) 

where α’ is the incident angle of the ray in the previous refraction. This general form is useful 

in DRT where a ray is traced throughout complex shaped cells. 

Calculation of the stress distribution therefore requires knowledge of the position where an 

individual ray hits the surface and the direction of the incoming ray. The first step in 

implementing a dynamic ray tracer is a ray (semi-line)-triangle intersection algorithm, for 

which various algorithms techniques are available in the literature [26]. We employ a 

barycentric approach that determines the intersection of the ray with a plane containing the 

triangle and then checks whether the point of intersection is inside the triangle [27]. This 

approach is straightforward and easy to implement but can be computationally consuming; 

however, optimizing this algorithm does not require much modification [28]. 

A ray I is modeled as a vector with a given origin e and direction d, I = e +  sd where s is 

the distance along the ray measured from the origin in the positive direction (s > 0, semi-line). 

We assume rays are initially parallel to the laser axis, an assumption that works well for non- 

or weakly-diverging laser diodes (Fig. 2); however, any initial ray direction can be simulated 

by choosing appropriate ray parameters. We then discretize the surface of the cell into a finite 

number of non-overlapping 2D triangular elements. In this, each single ray emanating from 

the source intersects the object at a maximum of one triangle and may not intersect the surface 

at all. For a triangle with three vertices A, B and C (Fig. 2), each point on a triangle can be 

defined using its barycentric coordinates:   .P wA uB vC= + +  For P to be inside/on the 

triangle the sum of the barycentric coordinates must equal one; therefore, P can be represented 

as P = (1-u-v)A + uB + vC = A + u(B-A) + v(C-A) with 0, 0, 1u v u v> > + < . A given ray I 

then intersects the triangle at P when P = e + sd for a given s. Combining both conditions we 

have ( ) ( ).P e sd a u b a v c a= + = + − + −  For numerical implementation this equation is solved 

for s, u and v to find the intersection point and the distance of intersection [26]. 

Though a ray can hit a 3D shape at multiple locations, we are first interested in the initial 

contact, as this is the point at which the ray will change direction. To determine all points of 

intersection, the process is repeated for all triangles to determine a value of s for each element. 

Smaller values of s indicate closer objects to the light source; if two objects are both 

intersected, the one with the smaller value of s is recorded as the nearest point of intersection 

P. This procedure can be computationally expensive depending on the number of triangular 

elements and number of rays. Advanced techniques for saving computational time that avoid 

calculating ray-triangle intersections over elements in the shadow of elements on the “front-

side” of the surface are available in the literature [29]. 
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Fig. 2. Dynamic ray-tracing on a spherical cell exposed to a laser sheet from a 1x200 µm long 

diode bar. The surface of a cell is discretized using a triangular mesh. The inset shows the ray-

tracing of a single ray intersecting a triangle of nodes: A, B and C are coordinates of the 

triangle. P is the point of ray-triangle intersection. N is the surface normal, I the incident ray, T 

the refracted ray and R the reflected ray. α and β are the angles of incident and refracted rays 

with the surface normal; i, r, and t are the angles with the laser axis Z. 

Once the point of intersection between an incoming ray and a triangular element is known, 

one can determine the direction of the reflecting and refracting rays (Fig. 2). Using the normal 

at a triangle denoted by N, the incident angle can be calculated as cos )α = ⋅I N / ( I N . 

Using Snell’s law, Eq. (2), one can then calculate the refracted angle β and the direction 

vector of both reflected and refracted rays via: 

 

(2cos )

( cos cos )x x

y y

n n

n n

α

β α

= +

= + − +

R N

T I N

I

  (7) 

Here, rays change both direction and intensity and continue through the cell until they hit 

another surface. For refractive index differences typical of cells in water, only refracted rays 

are traced and reflected rays can be neglected because of their low intensity. A refracted ray is 

now considered a new ray with a new origin (the current point of intersection P) and new 

intensity. Therefore I = T and the previous procedure repeated to find a new contact location. 

A spherical cell typically has only two intersection locations, one at the front and one at the 

back surface; however, this approach works for any cell geometry where a ray might 

encounter multiple external or internal surfaces. For example, in a biconcave capsule, some 

rays encounter up to four hits at different surfaces. It is important to note that when a ray 

changes direction it is moving from one medium to another and therefore the indices of 

refraction are swapped after each hit as the direction of the force changes. 
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5. Dynamic ray tracer validation 

The DRT can be used to find both the initial stress distribution on the cell surface due to light 

as well as the transient stress distribution upon deforming. Here, we first calculate the initial 

stress distribution on spherical capsules to validate our method against the TRO method. 

5.1 Trapping efficiency calculation 

We first calculate the trapping efficiency Q on a sphere using the two methods. The trapping 

efficiency Q is independent of the light source and is only function of the cell shape and the 

index of refraction of the cell and the medium np = 1.37 and nm = 1.335 [15]. Here we use 

Eqs. (3) and (4) for the parallel rays case where Q can be found as a function of the polar 

angle on both the front and back surface as shown in Fig. 3. The 3D DRT is based on shape 

discretization and we employ a mesh of 20480 triangles. For comparison, we plot only the 

calculated Q at the first and second quadrant at a plane parallel to the laser axis passing 

through the center of the cell representing the front and back surfaces. In these calculations we 

see an average error of 1.43% across the surface while the maximum error calculated across 

this plane is 10% at the back surface at the peak value, attributed to the convergence of rays 

on the back surface. The error on the front surface is relatively small because the gradients in 

the incoming beam are small and each element is intersected by one ray. Transmitted rays 

however converge on the backside, causing multiple intersections on some elements and no 

intersections on other elements, increasing optical force gradients and leading to larger 

localized error. 

 

Fig. 3. Trapping efficiency Q on the front and back surface of a spherical cell from both the 

TRO and DRT. 

5.2 Net optical forces 

After determining the local Q distribution, one can now calculate induced optical forces by 

defining the cell size and light source. A spherical cell representing a swollen erythrocyte has 

a radius a of 3.3 µm. We simulate a linear diode bar light source that is 200 µm long and 1 µm 

wide [13] (Fig. 2). The laser wavelength is 833 nm leading to 2πa/λ≈25>>1, satisfying the RO 

condition. Using the TRO for a fixed power of 12 mW/µm, a net force of −7.77 pN on the 

front surface in the laser axis direction is applied, while 8.23 pN is applied on the back 

surface, leading to 0.46 pN of net optical force. The magnitude of the induced optical forces 

compares well with values seen in other work on swollen RBCs [10]. Using the DRT, −7.83 

pN is applied on the front surface and 8.50 pN force on the back surface with 0.67 pN of net 
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optical force, with a calculated error of only 0.75% on the front surface and 3.3% on the back 

surface. 

6. Transient cell deformation 

After determining the initial stress distribution, we employ the IBM to deform the cell where 

the surface optical forces are added as body forces to the surrounding fluid. We then allow the 

cell to deform until steady state, where the elastic and applied optical forces are equal. Steady-

state deformation can then be characterized using the Taylor deformation parameter 

 ,
L B

DF
L B

−
=

+
  (8) 

where L and B are the lengths of the major and minor axes of elongated cells in a specified 

plane. Here we define DF in the x-z plane as the rays are assumed coming parallel to the z 

axis and the perpendicular component of the optical forces is in the x direction. DF describes 

the geometrical deformation from perfect spheres (DF = 0) to highly elongated morphologies. 

Using a membrane stiffness of Eh = 0.1 dyn/cm, an unstressed cell is initially placed in a 

fluid of density ρ = 1 g/cm
3
 and dynamic viscosity µ  = 0.8 cP. The fluid domain is a cube with 

a side 8x the cell radius a with periodic boundary conditions. The grid used in the simulations 

has 64
3
 nodes with a uniform grid spacing h = a/8. The hydrodynamic intrinsic time scale for 

cell deformation is tc = µa/Eh [30] or tc ~10
−3

 s for our simulation parameters. With this, we 

use a time step of 10
−5

 s to ensure resolution and numerical stability. In Fig. 4 we show the 

force at both the front and back surface along with the total net force on the cell function of 

time. From this we see that both the front and back forces decrease as the cell deforms; 

however, the net force increases by 6%, using the 12 mW/µm laser power to a constant value 

when the cell reaches a steady-state shape. In Fig. 5 we show that the net translation force is 

in the z-direction, pushing the cell away from the light source and deforming the cell as 

expected for non-converging traps. We note that the initial forces at time t* = 0 are the forces 

that remain constant using TRO on a sphere. 

 

Fig. 4. Transient forces determined using DRT for a laser power of 12 mW/µm. Note, the 

initial forces at time t* = 0 are the forces that remain constant using TRO on a sphere. 
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Fig. 5. Side view of the deformed spherical cell when reaching a steady-state shape from a fully 

3D simulation colored by the dimensionless elastic energy, Eng/Eh (Media 1). The initial 

radius is 3.3 µm and the diode power is 42 mW/µm. The red square represents the diode bar 

(not drawn to scale) where the diode long axis is in and out of the figure. 

Using higher laser diode powers from 12 mW/µm to 72 mW/µm we simulate the 

deformation of the cell until it reaches a steady-state shape using TRO and DRT methods. 

Using TRO we calculate the optical forces initially at the surface of the spherical cell and 

keep these constant throughout the simulation, thus neglecting the effect of change in shape 

on the optical force calculation. While using DRT however, the forces are re-calculated every 

10 time steps as they vary with the change of the cell shape. We record the net optical force 

and the corresponding cell deformation when the cell reaches a steady-state shape and plot it 

for the two methods in Fig. 6. From this we see the non-linear behavior of the net force with 

laser power as Q changes with cell deformation. Here, calculated values of Fnet compared to 

those when neglecting shape change differ by 42% even though the corresponding DFxz 

changes only 3.65% at the higher laser power. Note that, at lower laser intensities, the two 

techniques converge as expected. 

 

Fig. 6. Fnet and steady-state deformation as laser power is increased from 12 mW/µm to 72 

mW/µm. 
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7. Non-Spherical Cell Shapes 

To test the approach on more complicated structures, we simulate stretching with different 

initial geometries and laser powers. The complex quiescent biconcave disk shape of normal 

RBCs prevents the use of TRO as the symmetry along the y-axis allows light rays to hit the 

RBC surface at four different positions before exiting as illustrated in Fig. 7. To describe the 

cross section of RBCs, Evans and Fung [31] developed: 

 2 1/2 2 4

0 1 2
0.5 [1 ( / ) ] [ ( / ) ( / ) ],y a z a C C z a C z a= − + +  (9)  

where C0 = 0.207161, C1 = 2.002558 and C2 = −1.122762, the radius a is 4 µm, and the 

surface area is 140 µm
2
. 

In many experimental studies, RBCs are osmotically swollen and assume a spherical 

shape. To demonstrate the flexibility of DRT, we model both unswollen (biconcave) and 

swollen (oblate spheroid) RBCs. For the swollen case, we assume an average radius of  

2.8 µm, corresponding to a perfect sphere of the same surface area and radius 3.3 µm, and 

average deformation parameter DFxz = 0.126 as seen in experimental work for swollen bovine 

RBCs [13]. These dimensions lead to a semi major to semi minor axes ratio of 1.28:1. 

 

Fig. 7. 2D slice of an RBC with the y-axis as the axis of symmetry. A ray can intersect up to 

four surfaces. 

Using DRT we find the transient stress distribution and simulate swollen and unswollen 

RBC deformation until steady state. DRT allows us to determine the exact stress distribution 

on the cell surface without approximation as previously studied [16]. Cells are considered 

initially static, then exposed to the laser diode bar source, and finally allowed to reach a 

steady-state shape where DFxz is recorded. Here, the optical forces applied by the diode laser 

bar are the only external forces on the cell and any flow is induced only by the cell 

deformability and its translation. Beginning initially with spherical cells for comparison and 

using a range of laser powers, 12 mW/µm to 72 mW/µm, we see the net optical force induced 

by a 12 mW/µm laser power is 0.57 pN with a final induced deformation of DFxz = 0.0158. 

Oblate spheroids on the other hand are subjected to more force at identical powers. For 

example a net force of 0.79 pN is calculated when using the same 12 mW/µm power with a 

net deformation of DFxz = 0.0177, higher than the spherical case (Fig. 8). 
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Fig. 8. Comparing deformation at steady state for different RBC shapes. 

In this, net deformation was calculated as the final minus the initial deformation (for 

spheres the initial DF was zero). For the normal RBC case, we observe that the net optical 

force is significantly higher for the same 12 mW/µm power with a 1.29 pN net optical force 

induced by rays intersecting the surface at four different positions with stretching forces on 

both the back and front surface. The net deformation however is smaller DFxz = 0.0062. 

Figures 9(a) and 9(b) (Media 2 and Media 3) shows the steady-state shape of swollen and 

unswollen RBCs. Table 1 summarizes the net optical forces on different geometries for the 

same power and corresponding net deformation. From these measurements it is clear that the 

shape of the cell strongly influences net cell stretching force and deformation. 
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Fig. 9. Side view of the deformed RBC when reaching a steady-state shape from a fully 3-D 

simulation colored by the dimensionless elastic energy, Eng, normalized by Eh on (a) oblate 

sphere of major to minor axis ratio 1.28:1 (Media 2) and (b) biconcave disc of radius 4 µm 

(Media 3). Diode power is 42 mW/µm. 

Table 1. Net optical forces on different RBC shapes of same surface area using 12 mW/ 

µm. 

RBC Shape Sphere Oblate spheroid Biconcave discoid 

Net optical force 0.57 pN 0.79 pN 1.29 pN 

Net deformation 0.0158 0.0177 0.0062 

8. Conclusions 

We present a dynamic ray tracing method for optical cell manipulation modeling. This 

method overcomes the limitations of traditional ray optics best suited for light interactions 

with rigid, spherical cells and allows determination of the transient stress distribution on 

deformable cells of arbitrary shape subject to cell-fluid interactions. Our simulations indicate 

that the applied optical forces change substantially with the deformation of the cell, 

significantly altering prediction of cell forces under conditions of high laser diode powers. We 

also simulate the deformation of different RBC shapes (spherical, oblate spheroids and bi-

concave discoids) to demonstrate the flexibility of the approach for modeling cells of greatly 

different structure and morphology. 
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