
HAL Id: hal-03636539
https://hal.inria.fr/hal-03636539

Submitted on 11 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The SemIoTic Ecosystem: A Semantic Bridge between
IoT Devices and Smart Spaces

Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, Nalini
Venkatasubramanian

To cite this version:
Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, Nalini Venkatasubramanian. The SemIoTic
Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces. ACM Transactions on Internet
Technology, In press, �10.1145/3527241�. �hal-03636539�

https://hal.inria.fr/hal-03636539
https://hal.archives-ouvertes.fr

1

The SemIoTic Ecosystem: A Semantic Bridge between IoT
Devices and Smart Spaces
ROBERTO YUS, University of Maryland, Baltimore County, USA
GEORGIOS BOULOUKAKIS, Télécom SudParis, Institut Polytechnique de Paris, France
SHARAD MEHROTRA and NALINI VENKATASUBRAMANIAN, University of California, Irvine,
USA

Smart space administration and application development is challenging in part due to the semantic gap
that exists between the high-level requirements of users and the low-level capabilities of IoT devices. The
stakeholders in a smart space are required to deal with communicating with specific IoT devices, capturing
data, processing it, and abstracting it out to generate useful inferences. Additionally, this makes reusability of
smart space applications difficult since they are developed for specific sensor deployments. In this paper, we
present a holistic approach to IoT smart spaces, the SemIoTic ecosystem, to facilitate application development,
space management, and service provision to its inhabitants. The ecosystem is based on a centralized repository,
where developers can advertise their space-agnostic applications; and a SemIoTic system deployed in each
smart space that interacts with those applications to provide them with the required information. SemIoTic
applications are developed using a metamodel that defines high-level concepts abstracted from the smart
space about the space itself and the people within it. Application requirements can be expressed then in terms
of user-friendly high-level concepts which are automatically translated by SemIoTic into sensor/actuator
commands adapted to the underlying device deployment in each space. We present a reference implementation
of the ecosystem that has been deployed at the University of California, Irvine and is abstracting data from
hundreds of sensors in the space and providing applications to campus members.

CCS Concepts: • Software and its engineering→ Interoperability; •Hardware→ Sensor applications
and deployments.

Additional Key Words and Phrases: Internet-of-Things, Semantic interoperability, Open APIs, Privacy

ACM Reference Format:
Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, and Nalini Venkatasubramanian. 2022. The SemIoTic
Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces. ACM Trans. Internet Technol. 1, 1,
Article 1 (January 2022), 33 pages. https://doi.org/10.1145/3527241

1 INTRODUCTION
The Internet of Things (IoT) aims to enable the interconnection and data exchange between
deployed IoT devices that are steadily growing to billions worldwide [23]. The potential benefits
of our spaces (e.g., homes, offices, cities, and communities at large) becoming smarter thanks to
such IoT devices range from efficiency to comfort including, among others: building security [4],
zero-waste sustainable buildings [10], continuous health and wellness monitoring [3], personalized
thermal comfort in buildings [43], and intelligent transport planning in cities [34]. However, this

Authors’ addresses: Roberto Yus, ryus@umbc.edu, University of Maryland, Baltimore County, USA; Georgios Bouloukakis,
georgios.bouloukakis@telecom-sudparis.eu, Télécom SudParis, Institut Polytechnique de Paris, France; Sharad Mehrotra,
sharad@ics.uci.edu; Nalini Venkatasubramanian, nalini@ics.uci.edu, University of California, Irvine, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2022 Copyright held by the owner/author(s).
1533-5399/2022/1-ART1
https://doi.org/10.1145/3527241

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://doi.org/10.1145/3527241
https://doi.org/10.1145/3527241

1:2 Roberto Yus, et al.

comes with potential security and privacy risks [5] as well as a variety of challenges [7] that make
achieving such benefits complicated.

Off-the-shelf IoT devices are becoming available in the consumer market (smart lights, smart TV’s,
thermostats, smart TVs, assistants, etc.) that can potentially be combined to achieve application
goals. However, very often, devices from a manufacturer implement proprietary interfaces and
protocols - leading to vendor lock-in and hindering seamless integration with devices from other
manufacturers. This limitation is due to different companies implementing different underlying
interaction protocols (from Application Protocol Interfaces –APIs–, socket communication, to
messaging protocols –MQTT, CoAP–), data formats (from completely unstructured strings to more
structured XML or JSON). This poses an interoperability challenge due to the heterogeneity of the
devices and lack of a single standard interaction protocol. It also pushes application developers to
encode communication with each specific device in their applications. As a consequence, reusability
of applications is in general not possible. For instance, applications developed for smart homes
and smart home devices cannot be used in smart office spaces with smart building devices, even if
the purpose of the application is the same – e.g., providing thermal comfort. This also presents
a challenge to administrators of smart spaces who need to find applications that are compatible
with the deployed IoT devices in their space. Issues of reusability and interoperability have been
explored in the past, for example regarding annotation of IoT devices [16, 20, 31] or dealing with
the heterogeneity of exchange protocol semantics [9, 24, 42]. Additionally, the design, development,
and adoption of standards helps on dealing with those issues.
An additional challenge in the IoT is that of the gap due to the low-level nature of device

interaction and raw data and the more high level information needs of users. In general, the raw
data captured by sensors requires further processing before it can provide users with relevant
insights. For instance, a video camera image, audio captured from amicrophone, or even connectivity
data captured by beacons are not as useful as identifying who was in the specific image, what
was the activity detected by the microphone, or how many people were in the area covered by
the beacon. This highlights the “semantic gap” existing between the world of devices and the
higher-level concepts that users are interested in. For example, users might want to know the
occupancy of a room regardless of whether this data was obtained after analyzing images, audio,
or connectivity data (or even the combination of the three). Several ontologies have been proposed
to model IoT devices (SSN/SOSA [15, 29], SAREF [18]), as well as specific sensors and systems in
buildings, including the Heating Ventilation Air Conditioning (HVAC) and lighting systems among
others (Haystack [2], Brick [6]).

Finally, the recent legislative support for user privacy (e.g., the European General Data Protection
Regulation –GDPR– or the California Consumer Privacy Act –CCPA–) hints towards the need
for more privacy-aware IoT smart spaces. As such, people have to understand what data is being
collected/inferred about them in a smart space and potentially express their preferences about
such capture of their data [38]. The semantic gap in smart spaces makes this task particularly
challenging. Similarly to the example above, users might want to prevent the space from locating
them regardless of which specific device is used for that purpose.
The challenges listed above affect all the stakeholders in a smart space: application developers,

space administrators, and inhabitants of the space. In today’s IoT, those stakeholders bear the onus
of bridging the semantic gap while addressing tradeoffs between computation/communication cost,
interaction with devices, and even concomitant privacy implications [44]. Even though different
approaches have been presented in the literature to deal with some of those issues independently,
there is still the open challenge of providing a holistic end-to-end vision of smart spaces from users
and applications to devices.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:3

In this paper, we extend the middleware solution presented in [48] from an IoT smart space
management tool to an ecosystem to facilitate the development, provisioning, and reusability of IoT
content across different smart spaces from diverse domains. SemIoTic facilitates the development
and provisioning of IoT smart space applications. The system deals with issues of interoperability
at the semantic-layer using an extensible and general metamodel, based on the popular SOSA/SSN
ontology [26]. This metamodel is used to define static and dynamic aspects of a smart space including
the domain (spatial aspects and users), in situ and mobile IoT devices (i.e., sensors and actuators),
and the dynamic data captured. SemIoTic provides programmatic support and algorithms to specify
and translate user-defined actions based on semantically meaningful concepts represented in the
metamodel to the specific services and the low-level sensor data required to make inferences. To
deal with issues to achieve interoperability at the data exchange layer, SemIoTic supports wrappers
for IoT devices which consist of a common interface to enable SemIoTic to communicate with
them and a device/manufacturer/model-specific code that encapsulates the low-level interaction.
Also, SemIoTic defines a specification methodology for virtual sensors which enable a semantic
interpretation of low-level sensor data and provide an application-oriented access to the smart
space with clear definitions of input and output datatypes. The main contributions of SemIoTic are:
• Metamodel based on the SOSA/SSN ontology to connect IoT devices to high-level more seman-
tically meaningful concepts in a smart space.

• Language to enable users to define their requirements for actions based on high-level concepts
defined in the metamodel.

• Ontology-driven mechanism to automatically translate user actions into the appropriate IoT
device actions.

• Approach to abstract low-level data exchange protocols employed by sensors.
The SemIoTic ecosystem is based on two main components: 1) A centralized repository of

applications developed in a space-agnostic way and 2) SemIoTic-enabled smart spaces that bridge
the gap between those applications and the underlying device infrastructure. We detail the different
components of the ecosystem and show the reference implementation developed (with respect to its
functionality and different technologies used for its development). The reference implementation
has been deployed at the University of California, Irvine campus where the system abstracts the
view of the underlying network of WiFi Access Points to offer occupancy-based applications.

The rest of the paper is organized as follows. We review the state of the art in terms of IoT
frameworks, semantic and device interoperability in IoT environments in Section 2. We describe
the ecosystem’s architecture and use cases based on different stakeholders in Section 3. We detail
the meta-ontology that guides the processing of the SemIoTic system in Section 4. We also provide
examples of the definition of domain models (e.g., the concepts related to a smart home and smart
building) based on the metamodel that can be reused in multiple SemIoTic-enabled spaces. We
explain the interfacing capabilities of SemIoTic in Section 5. We introduce a language to define
user requests for information, commands, and policies as well as RESTful and SPARQL endpoints
to access information within a smart space. We explain the translation process of user defined
high-level actions into IoT device actions in Section 6. We detail the execution of a device action
using sensor wrappers and virtual sensors in Section 7. We present experiments (Section 8) to
evaluate the benefits of the ecosystem from the perspective of the different stakeholders in a smart
space. Finally, Section 9 concludes the paper.

2 RELATEDWORK
We analyze the state of the art in IoT frameworks and semantic/device interoperability in the IoT.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:4 Roberto Yus, et al.

2.1 IoT Frameworks
Multiple IoT frameworks to facilitate management of devices and development of applications have
been presented by both industry (e.g., EvryThng, Node-Red, Google Cloud IoT) and academia [47].
For instance, the IDeA framework [17], based on the IoT-A reference model, provides an abstraction
of the IoT devices and a tool to define applications based on them. Similarly to our approach, they
envision different stakeholders defining different components needed to create IoT applications
(e.g., device and domain experts and IoT application developers). IoTLink [40] provides a visual
interface for developers to define applications in terms of connections between devices and soft-
ware components. It has a layered architecture to handle the communication with different IoT
technologies and to expose domain objects to developers. The framework at [27] also provides
a visual interface to prototype applications by defining connections between heterogeneous IoT
devices. It uses WebRTC data channels to enable communication between devices that support
that protocol and a proxy for those that do not support it. Such underlying communication details
are abstracted from the Omni [30] middleware so that applications can seamlessly connect to IoT
devices. Mortar [21] presents an approach to enable the development of analytics based on sensor
data captured in smart buildings. The focus is on enabling the development of sensor applications
in categories such as measurement and fault detection and diagnosis. In contrast to our approach,
applications need to encode the logic required to consume sensor data and produce the desired
inferences. LinkLab [22] is a scalable IoT testbed for heterogeneous devices that supports running
experiments and remote development via a web-based IDE. DDFlow [36] provides a macropro-
gramming abstraction and accompanying runtime that provides an efficient means to program
high-quality distributed applications and improve end-to-end latency. Applications are specified
through a declarative user interface (extension of the Node-RED IoT system) over a diverse and
dynamic IoT network. DynaSense [32] offers a unified approach to applications for accessing data
from various data sources, which can be sensors or compositions of other data sources. This is
implemented on Android as a middleware system between data sources and user applications.
SOUL [28] introduces an aggregate abstraction that enables sensors, actuators, and software services
to be accessed from mobile applications. This is realized by leveraging an edge-cloud infrastructure
to collect, process and disseminate data to mobile applications. Similar to our approach, DynaSense
and SOUL allow applications to use high level data without requiring modifications to their code.
The main difference between the above approaches and SemIoTic is that, in general, their

focus is on facilitating the understanding of what the underlying device infrastructure is and
easing the process to develop applications for it. While they simplify the development of smart
space applications by abstracting out communication details, the developer still bears the onus of
understanding what different IoT devices do. Also, since applications are still built based on specific
IoT devices, they would need to undergo code changes if the underlying device infrastructure
changes. In contrast, our approach aims at enabling the creation of applications based on high-level
smart space entities by completely abstracting out the existence of IoT devices for application
developers. For instance, a developer using our approach who requires occupancy data of a specific
smart space just requests and obtains such data without having to interact with specific IoT devices.

2.2 IoT Interoperability
Ontologies [25] provide a commonmodel for annotating content and thus help systems interoperate.
The main standard/well-known ontologies for IoT systems can be divided into two categories based
on their focus: general sensor modeling (SSN/SOSA [15, 29], SAREF [18]) and modeling of specific
sensors and systems in buildings, including Heating Ventilation Air Conditioning (HVAC) and
lighting systems among others (Haystack [2], Brick [6]). Our approach is based on a general

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:5

ontology that models the IoT smart space. Following the Semantic Web good practice of reusability,
this ontology is an extension to SSN/SOSA and SAREF models, which have become de facto
standard to deal with interoperability issues in IoT environments. The extension in our ontology is
designed to enable the translation between smart space semantic level data (about properties of
interest of different entities) and the smart space device level data (about sensors/actuators and
their observations/actuations). In particular, we extend the above models to represent: 1) Virtual
sensors, which generate semantic data of a specific type given as input data generated by sensors,
and 2) The connection of semantic data to properties of interest.

Several approaches enable protocol-to-protocol bridging, and hence device interoperability, such
as the QEST [14] broker for CoAP and REST protocols, HTTP-CoAP proxy [11], and Ponte for REST,
CoAP, and MQTT. These approaches require the implementation of one protocol to all existing ones.
This is highly inefficient due to the vast development of IoT protocols. To avoid such an issue, other
works propose the use of software abstractions or the Enterprise Service Bus (ESB) paradigm [12].
In [35], the authors introduce the Lightweight Internet of Things Service Bus (LISA) for tackling
IoT heterogeneity. LISA provides an API for resource-constrained devices that supports access,
discovery, registration, and authentication. Devices deployed based on different standards interact
via a common communication protocol. An ESB is also used in [13] as the core infrastructure
for an event-driven IoT service coordination platform. It enables interconnecting heterogeneous
components such as devices acting as event publishers and/or subscribers and users issuing HTTP
requests. The authors in [19] introduce a protocol translator that utilizes an intermediate format to
capture all protocol specific information. Translators can be placed in local clouds and be used in a
transparent and on-demand way. While the authors claim that many different protocols can be
mapped with their protocol translator, this work lacks sufficiently general abstractions for enabling
its wide application. XWARE [42] implements mediators to translate messages of IoT protocols
using an intermediate format. This is designed based on common interaction paradigms described
in [24] for SOA. Then, authors of [24] extended their work in [9] to deal with IoT heterogeneity
using software abstractions and code generation.
While the above approaches reduce the development effort considerably, they do not take into

account semantic layer incompatibilities that are a very common issues in the IoT. The main
contribution of our approach compared to the above works is to provide a holistic end-to-end
approach for providing inteoperability: at the application layer (by automatically translating high-
level user requirements into device actions), and at the device layer (by abstracting the interaction
with heterogeneous sensors regardless of their specific protocols/formats).

3 SEMIOTIC ECOSYSTEM
One of the main ideas behind SemIoTic is that of collaboration and reusability as a mechanism
to address heterogeneity issues and facilitate the management of smart spaces and the develop-
ment/provisioning of smart applications. Hence, we propose an ecosystem around a centralized
repository of resources for smart spaces and a distributed network of SemIoTic-enabled smart
spaces. This is similar to the current ecosystem of mobile applications where users select and install
apps on their smartphones/tablets from a centralized repository. The ecosystem is based on three
main components (see Fig. 1): a marketplace, SemIoTic-enabled smart spaces, and hub.
The marketplace (see Section 3.1) acts as a repository where people can download SemIoTic

as well as content for their smart spaces (e.g., applications and connectors to specific devices). It
also hosts a set of tools to facilitate the development of such content. A SemIoTic-enabled smart
space (see Section 3.2) is a smart space in which an instance of SemIoTic has been deployed and
content has been installed. It offers installed applications to users and management tools to the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:6 Roberto Yus, et al.

Fig. 1. The SemIoTic ecosystem and technologies used to develop its reference implementation.

smart space administrator. Finally, the hub (see Section 3.3) serves as a catalog of SemIoTic-enabled
smart spaces to enable users to discover SemIoTic installations around them.

We envision these three components residing on different servers. Each smart space hosts their
own SemIoTic instance that handles its specific IoT devices (this could be hosted on the premise or
the cloud). For example, a SemIoTic instance might be installed in a particular smart home or a
smart office building. Then, at least one marketplace hosts applications developed for SemIoTic
instances. However, in certain situations more than one marketplace might exist. For example, if
an organization wants to deploy SemIoTic instances in their buildings and wants to offer smart
applications that should only be accessible to their SemIoTic instances. Finally, the hub is a single
centralized entity that maintains unique identifiers for users across different SemIoTic instances
and information about existing SemIoTic instances.
The main stakeholders and their interactions with the SemIoTic ecosystem are as follows:
• Content developers, who develop domain models (i.e., extensions of the semic ontology to define

spaces such as homes, buildings, malls, etc.), device wrappers (i.e., connectors to specific devices),
virtual sensors (i.e., software to process raw data into semantically enriched information), and
applications for the SemIoTic ecosystem. They use the content development tools provided in
the marketplace for this task. Once the content is developed, they upload it to the marketplace.

• Administrators of a smart space, who download content from the marketplace for their SemIoTic-
enabled space and install it to configure the system (e.g., to define what types of sensors are
deployed, what information do they collect, etc.) and to offer applications to their inhabitants.
They manage the smart space through SemIoTic expressing their needs such as controlling
the temperature of a portion of the space depending on its occupancy, capturing information
related to the location of visitors in an office space, etc.

• Application users, who are the inhabitants of a smart space and obtain information/services
about it through the applications installed on the space. Additionally, as SemIoTic is built
following a privacy-by-design approach, users/inhabitants of the space are expected to express
privacy preferences/policies about which data can be captured about them. Following the
abstraction model of SemIoTic, such policies are also expressed using higher-level semantically
meaningful concepts which abstract the underlying device infrastructure.

These stakeholders are similar to those in the context of mobile apps. The main difference is that
in the mobile world, the administrator of a device (e.g., a smartphone/tablet) is also, in general, the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:7

user of the device. In our setting, even when this might happen in some situations (e.g., if SemIoTic
is installed in a smart home), this is not always the case (e.g., in most of the buildings there is a
figure of the building administrator who could be the administrator of the smart space). Another
difference is that the owner of the mobile device is also its user and privacy preferences on the
mobile device are only defined by them. In our context, there can be multiple users in a smart space
whose data might be collected to process actions posed by others. Hence, SemIoTic supports the
definition of privacy preferences with respect to the handling of their data when needed by others.

The reference implementation of the SemIoTic ecosystem leverages state-of-the-art technologies
to implement the different components (see Fig. 1 where each technology used is included). The
complete system and sample content (domain models, wrappers, virtual sensors, and applications)
developed are available at [1]. In the following, we describe each of the components in details.

3.1 SemIoTicMarketplace: Discovering Content
The marketplace serves as the repository from which smart space administrators can retrieve
content for their spaces. The marketplace is a web application (developed using the React1 JavaScript
framework for its frontend and the Django2 web framework along with MySQL for its backend)
that shows the content along with ratings, comments, screenshots, and other information to help
administrators to browse and select appropriate content. Fig. 2a shows a screenshot of the main page
of the marketplace with the most downloaded content by category. Fig. 2b shows the information
displayed about a specific content piece. We consider SemIoTic content to be the following:

Fig. 2. The SemIoTic Marketplace.

• Domain modelwhich is an OWL ontology that extends the SemIoTic meta-ontology (semic) and
defines different concepts related to a specific domain. A domain (e.g., smart home, office, mall,
airport, city, etc.) might include specifications about space-related concepts such as the types of
spaces within the domain (e.g., for a smart home the concepts of home, apartment, house, floor,
bedroom, living room, etc.) and interesting properties related to them (e.g., temperature of a
room, occupancy of a building, etc.), people-related concepts (e.g., types of people in a university
domain are professors, staff members, students, etc.) and their relevant properties (e.g., heart
rate and location of a person), and finally device-related concepts (e.g., typical sensors found in
a smart building such as HVAC, WiFi APs, thermostats, etc.).

• Sensor wrappers which are software components (encoded in any programming language of
choice) that encapsulate the code required to enable SemIoTic installed in a particular space to
interact with a specific devices (e.g., Amazon Alexa, Google Nest, etc.). Every wrapper offers
a set of APIs that SemIoTic can call to obtain information (in the case of sensors) or perform
actuations (in the case of actuators).

1https://reactjs.org
2https://www.djangoproject.com

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:8 Roberto Yus, et al.

• Virtual sensors which are software components, similar to sensors wrappers, that can process
data and output higher-level information (e.g., process images to infer the number of people in
a room). We refer to them as virtual sensors as, like physical sensors, they output observations.

• IoT Applications which offer functionalities related to the smart space to its inhabitants.
We envision developers to focus on specific content pieces (e.g., applications) instead of handling

the development of the complete flow (i.e., from software to manage devices to applications). This
way we compartmentalize the development task. For instance, the manufacturer of a specific sensor
can develop a wrapper to interact with it, an ontology engineer can develop domain models for
specific smart space types, and app developers can develop, or enhance their apps, to communicate
with the SemIoTic-enabled smart space. The latter can develop space-agnostic applications by
posing high-level information requests to each specific SemIoTic smart space and letting the system
process it taking into account the underlying device infrastructure available.

To facilitate the development of each content piece, the marketplace offers a development toolkit.
This contains the OWL file and specification of the semic meta-ontology that can be imported
in an ontology editing tool (e.g., Protégé3 [46]) to be extended to create specific domain models.
We detail the meta-ontology in Section 4. The toolkit also contains the complete specification of
the interfaces of SemIoTic (we detailed this in Section 5). Application developers can use such
specification to construct the calls to the underlying SemIoTic where the application is deployed to
retrieve information about the space. To create space-and-device-agnostic applications, the calls
are made using the SemIoTic language including high-level concepts. Finally, the toolkit contains
wrapper and virtual sensor templates which include code required to: 1) create and advertise
endpoints so that SemIoTic can communicate with them, and 2) encapsulate the communication
with popular IoT interaction protocols (e.g., MQTT, CoAP, web socket, etc.). Hence, the developer
of a wrapper/virtual sensor just have to download the template and fill in the code required to
perform their specific processing (as we will describe in Section 7).
To facilitate the installation of content on any SemIoTic-enabled space, we require it to be

uploaded using container technology. We use Docker4 to automatically build images by reading the
instructions from a Dockerfile. This contains all the commands that a content developer could
call on the command line to assemble an image. For example, if an application requires a backend
with a MySQL database and an HTTP Apache server, the specific commands to install and execute
those systems in the host SemIoTic instantiation will be specified in the Dockerfile.

From the point of view of smart space administrators, the marketplace enables them to download
SemIoTic along with the appropriate content. When choosing content, the marketplace indicates
dependencies among different pieces of content and automatically adds them to the order. For
instance, if an application has been build considering specific concepts of a smart home (e.g., the
concept of different rooms such as living room, bedroom, etc.) then the specific domain model
for the smart home that the application requires will be associated to it. Also, if the application
requires some high-level data such as occupancy of the rooms, it will be associated to virtual sensors
that can produce that information. Similarly, a wrapper to connect to a specific device (e.g., Nest
thermostat) will depend on the concepts associated with the device and the observations/actuations
it can produce (e.g., thermostat, temperature observation, control of temperature actuation, etc.)
and thus it will be associated to a specific domain model for those devices (e.g., the domain model
that defines smart home devices in this example). The administrator has to also be aware of the
devices deployed in their smart space in order to select the wrappers needed to connect with them.

3https://protege.stanford.edu
4https://www.docker.com

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:9

To facilitate the deployment of SemIoTic and the selected content in smart space, the marketplace
generates a specific container for that administrator that they can easily execute in the server they
selects to host their SemIoTic instance. This packaging is done based on Kubernetes5 (an open-
source system for automating deployment, scaling, and management of containerized applications,
wrappers, etc.). Each of the individual containers (e.g., SemIoTic runs in a container, each selected
application/wrapper/virtual sensor in a different container each) are specified in a YAML file that
Kubernetes running on the host server can interpret to orchestrate the installation of required
software, configuration, and execution automatically.

3.2 SemIoTic-Enabled Smart Space: Managing IoT Devices
Once SemIoTic is installed in a smart space, it becomes a SemIoTic-enabled smart space in the
ecosystem. A deployment of SemIoTic in a specific space handles its underlying IoT devices and
offers smart applications to its inhabitants. The deployment handles user-defined actions, posed by
applications, space administrators, and/or users, of three types: 1) Requests for dynamic or static
information about the space (e.g., to monitor the occupancy of a specific room every five minutes
for the next two hours). 2) Commands related to such entities (e.g., to switch on the AC if the
occupancy of the room is above its capacity). 3) Privacy preferences/policies regarding the handling
of information (e.g., to deny the capture of any information that can lead to the location of a person).
The architecture of a SemIoTic-enabled smart space is based on three main modules (see Fig. 3):

Fig. 3. High-level architecture of a SemIoTic-enabled smart space.

• Model Handling, which enables administrators to describe the smart space in terms of types of
spaces, users, and devices, as well as specific instances of those types.

• User Action Handling, which takes as input user actions, based on high-level concepts defined in
the model, and translates them into an appropriate and feasible plan of actions on the devices
deployed in the smart space. Since a smart space may include multiple IoT devices to execute an
action, this component generates possible execution plans by taking into account the description
of devices in the model and the ones that are currently deployed. Then, it leverages information
related to the devices (such as their cost and QoS) to select an optimal plan.

5https://kubernetes.io

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:10 Roberto Yus, et al.

• Device Action Handling, which accesses the devices assigned to execute the plan through
wrappers, that encapsulate the interaction, and/or virtual sensors, that process raw sensor data
to produce semantically meaningful information.
Additional components of SemIoTic are: 1) A set of APIs that enable applications pose their

actions (as explained before); and 2) A Graphical User Interface (GUI) to administer the space and
access its applications. The latter, to which we refer as the Portal to the SemIoTic-enabled space, is a
web application (developed using the React framework). It offers functionalities to enable the smart
space administrator instantiate the domain model(s) selected for the space (as shown in Fig. 4a). For
instance, the administrator can use the Portal to fill in information about the name of rooms in the
space, their type, and their static properties (e.g., their capacity, extent, etc.), the specific parameters
associated with devices deployed (such as their IPs, names, descriptions, location within the space,
etc.). Inhabitants of the space can use the Portal to register their own information (e.g., their offices,
profiles, sensors they own, etc.), define their privacy policies (e.g., do not share my location with
advertisement applications), and discover applications deployed in the space (see Fig. 4b).

Fig. 4. The SemIoTic Portal Web Interface.

3.3 SemIoTic Hub: Discovering Smart Spaces
The final component of the SemIoTic ecosystem is the Hub (see Fig. 5a). This web application’s pur-
pose is twofold by enabling users (application developers, space administrators, space inhabitants)
to: 1) Register into the ecosystem and obtain an identifier that works across SemIoTic deployments;
and 2) Discover SemIoTic deployments around them. For the former, the Hub implements an
authorization framework based on OAuth 2.06, the industry-standard protocol for authorization, to
manage both authorization of users and of applications (see Fig. 5b). The purpose is to establish
secure communications where applications deployed in a specific space performing a user action
on behalf of a specific user have to be authorized to do so. In addition, usage of global identifiers
for users make it possible for them to maintain the same profile across spaces.

The main purpose of the Hub is to serve as a platform for people to discover SemIoTic-enabled
smart spaces and access the ones they inhabit. When a space administrator configures SemIoTic
deployed in their space, they can define its visibility to be either public (which means that people
using the Hub can discover and join it) or private (which means that people can only access it
through an invitation). We expect deployments in public spaces such as a mall, an airport, a city,
a university campus to be defined as public and hence discoverable, while other spaces such as
homes or offices to be private. Once a user joins a specific deployment, either by discovering it
through the map interface in Fig. 5a in the case of public deployments or through an invitation,
this association is retained in the Hub to enable them to manage their presence in the different
deployments from a centralized point. As shown in Fig. 5c, a SemIoTic user using the Hub can view
6https://oauth.net/2

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://oauth.net/2

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:11

(a) Hub main page.

(b) Authentication.

(c) Smart space discovery.

Fig. 5. The SemIoTic Hub.

their top visited smart spaces – i.e., the ones they visits frequently such as their office, home, etc–
as well as all the smart spaces that they have been part of – i.e., smart spaces visited less frequently
such as a shopping mall, the city hall, etc. Accessing any of those SemIoTic-enabled smart spaces
from the catalog offered by the Hub redirects the user to that specific deployment’s Portal from
which the user can access the smart applications offered by the space.

4 SEMICMETA-ONTOLOGY
SemIoTic bases its processing on a meta-ontology (semic) that describes the main elements in any
smart space including entities (such as people and spaces), devices, observations and actuations.
semic is an extension on the SSN/SOSA ontology [26] to support the automatic translation of user
actions defined around higher level concepts into device actions at a lower level. In the following,
we introduce the main components of the semic ontology (see Fig. 6 which shows its main classes
and properties and their alignment to existing ontologies). Additionally, in Section 4.1 we show
how the semic ontology can be used to define a domain model (i.e., a smart campus) and a specific
instantiation for a smart space (i.e., one of the buildings in the campus).
Entities of an IoT Smart Space. semic supports the definition of the higher-level concepts of
the IoT space through the semic:Entity class (a subclass of the sosa:FeautureOfInterest) and its
specialization the semic:Person and semic:Space concepts, which are intrinsic to smart spaces. We
advocate the creation of subclasses of such concepts to represent different types of entities in a
smart space. Each of those entities can be related to properties of interest, semic:Properties, which
can be either semic:StaticProperty (whose value is a literal –e.g., string or integer – and does not
depend on any IoT device), semic:ObservableProperty (whose value can be captured by sensors),
or semic:ActuatableProperty (which can be actuated through an actuator). The main difference
between these properties and their corresponding SSN/SOSA counterparts is that instead of just as-
signing a specific device to each, we include an attribute (semic:observationType/semic:actionType)
to describe what is the expected value type of such property. For example, one could define the
property “TemperatureProperty” of a room and then describe that the expected observation type of
such property is “Temperature”. This will enable SemIoTic to automatically infer which sensors

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:12 Roberto Yus, et al.

Fig. 6. Overview of the semic meta-ontology to support the description of a smart space.

could capture that value (e.g., any thermometer inside of the room including those integrated
into smartphones that happen to be there). To support that functionality, semic includes a pre-
defined type of static property (semic:Extent) related to spaces which is used to describe their
geographic extent in an X-Y-Z coordinate system. semic:Extent is defined as a subclass of the
spatial object class from the GeoSPARQL ontology [8]. Hence, the associated geometry can be
defined using GeoSPARQL’s geometry class. SemIoTic uses GeoSPARQL built-in functions (e.g.,
funcs:sfIntersects, funcs:sfWithin) related to geometries to perform spatial reasoning (e.g., to
check whether the coverage of a sensor intersects with the extent of a space).
IoT Devices, Observations and Actuations. semic follows the SSN/SOSA definition of IoT de-
vices extended to introduce two subclasses of the sosa:Sensor concept which we use to represent
physical sensors, that sense the environment, and virtual sensors, that are software components
that use data from other sensors to generate their observations about higher-level phenomena.
Similarly, we specialize the concept of observation to further divide them into raw observations,
captured by physical sensors, and semantic observations, captured by virtual sensors. As before, we
expect the administrator to define appropriate subclasses of the sensor or actuator concept and
then associate instances to them. For instance, one could define the subclass of physical sensor
“Thermometer” which observes the subclass of raw observation “Temperature”. Similarly, one could
define the subclass of virtual sensor “Image to Occupancy counter” which observes the semantic
observation “Occupancy” after consuming “Image” observations.

We use the concept of observation, connected to sensors, along with the aforementioned concept
of observation property, connected to entities, to bridge the gap between high-level and low-level
concepts (done through the semic:obsType property that connects both concepts). Similarly, the
semic:actType property connects an actuatable property of an entity to the actuations performed
by actuators. This way, SemIoTic can infer that a thermometer observes temperature data which
is required by the temperature property of a room. To further enable SemIoTic to infer which
specific devices in a SemIoTic-enabled smart space can be used to obtain data, semic introduces
two concepts: coverage and location. These represent the coverage area of a device (e.g., the
view frustum of a camera) and its location in the smart space. Both concepts are subclasses of
geosparql:Geometry as in the case of the extent of space.

Finally, semic supports the definition of Quality-of-Service features for IoT devices. We integrated
semic with the QoS ontology presented in [37] to represent metrics related to devices (both physical
and virtual). QoS includes vocabulary to describe information such as the value, unit, and type of a
metric. Also, it contains classes for common QoS parameters such as performance, throughput,

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:13

cost, reliability, accessibility, accuracy, etc. The QoS parameters associated with a device will be
leveraged by SemIoTic when choosing a plan that satisfies the requirements of the user.

4.1 Defining Domain Models based on semic
The semic meta-ontology covers the basic concepts and properties relevant to any smart space. It is
designed to be extensible and enable others to define space-specific domain models on it. This task
includes two main steps: 1) Creation of domain models which extend semic to specify domains
such as an office building, a university campus, a smart home, a smart city; 2) Instantiation of the
selected domain model(s) for a specific SemIoTic-enabled smart space (e.g., by defining the specific
information of the buildings on the UCI campus and the sensors deployed on them).

The definition of a domain model is expected to be done by domain experts who would share such
extensions of semic in the marketplace. For instance, we loaded the semic OWL file on Protégé and
defined two domain models: a university campus and a smart home. As depicted in Fig. 7, the smart
campus has spaces such as meeting rooms, classrooms, etc. and user profiles such as professor and
student; whereas the smart home has spaces such as living room and kitchen and user profiles such
as household members and visitors. People and spaces are defined as subclasses of the semic:Entity
class which specializes the sosa:FeatureOfInterest class. Along with the definition of those entities,
we defined also common static and dynamic properties for spaces such as occupancy, temperature,
capacity, regulation of temperature and for people such as location and heart rate. Each property
is a subclass of the semic:Property class and is linked to the entity through the corresponding
ssn:hasproperty element. Also, for observable properties we defined the types of observation they
take as values (e.g., occupancy observations for the occupancy property).

Fig. 7. Snippets of two domain models based on semic.

We also defined types of physical IoT devices that are generally used in each domain. For instance,
we defined cameras and thermostats in the smart home and HVAC, Bluetooth beacons, and WiFi APs
in the smart campus. For each device, we defined the observation types it can capture (in the case
of sensors) or actuation it can perform (in the case of actuators). For instance, we defined that a
WiFi AP captures observations of the type Connectivity using the semic:captures property.
The instantation of a domain model is expected to be performed by the administrator of the

smart space where SemIoTic is deployed after installing the appropriate domain model. This is
done through the Portal frontend using a GUI interface that shows forms that the administrator
can fill in (as explained Fig. 4). For instance, Fig. 8 shows part of the instantiation of the University
Campus domain model to define a specific space in our campus. The figure shows the definition of
a room (Room111) along with its extent (which is defined as polygon based on the Well-known text
–WKT– standard in GeoSPARQL). Then, it shows the definition of a specific camera (CameraR111)
along with its coverage (again defined using WKT). Finally, it shows the definition of a specific
virtual sensor installed in that SemIoTic deployment which uses an ML algorithm to translate

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:14 Roberto Yus, et al.

images into occupancy. Note that the figure shows, as an example, the definition of one of the QoS
parameters associated with the virtual sensor. In this case, it shows the definition of the throughput
of the virtual sensor based on the QoS ontology.

Fig. 8. Snippet of the instantiation of a domain model for a specific smart building.

5 INTERACTINGWITH SEMIOTIC
We explain the SemIoTic Action Language (sal) used to express user actions and the different
mechanisms to express such actions. Also, we show an example application developed using sal.

5.1 Action Language
SemIoTic internally uses the SemIoTic Action Language (sal) that enables the specification of user
actions (denoted in the rest of the paper as𝑈𝐴) to express either a request for data (𝑈𝑅), a command
(𝑈𝐶), or a policy (𝑈𝑃). The general format of such actions includes the following definitions:
• Entities of interest, 𝐸 , which is a set of one or more entities 𝜀𝑖 ∈ 𝐸 such that each 𝜀𝑖 is either an
entity class (i.e., ⟨𝜀𝑖, rdfs:subClassOf, semic:Entity⟩) or an entity instance (i.e., ⟨𝜀𝑖, rdf:type,
semic:Entity⟩). For example, the action can be related to either a general concept such as “Public
spaces” or a specific instance such as “Room 111”.

• Properties of interest, 𝑃 , which is a set of properties 𝜌𝑖 ∈ 𝑃 for which values have to be obtained,
or actions have to be performed, or that has to be protected (i.e., ⟨𝜌𝑖, rdf:type, semic:Property⟩).
For example, “location”, “heart rate” in the case of a person, or “occupancy”, “capacity”, and
“control temperature” in the case of a room.

• Conditions, 𝐶 , which is an expression that has to be satisfied as a condition to perform the user
action. We assume that the condition expression contains a boolean expression including one
or more properties (e.g., “when I am in a private space”, “when the occupancy of the room is
greater than the capacity”).

• Parameters, 𝑃𝑅 , which is a set of parameters (involving both QoS and/or parameters related
to the observation/action to obtain/perform). For example, the definition of the measure unit
for the temperature values to obtain (e.g., Fahrenheit or Celsius). The definition on restrictions
on the QoS parameters the user/application is willing to tolerate when processing a user
request/command are based on the QoS module of semic. In particular, the SemIoTic instance
in a smart space checks all the QoS definitions in its instantiated ontology (e.g., the ones in the
example in Fig. 8) and offers those as options when creating a user request.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:15

User policies (based on the model in [39]) contain two additional elements: 1) Interaction to control,
𝑖𝑐 , which refers to the process (i.e., capture, retention/storage, usage/processing, and sharing) that
can/cannot be applied on the property of interest. 2) Preferred action, 𝑝𝑎, which is the action that
has to be applied to the previous interaction (i.e., accept or deny).
Hence, formally a 𝑈𝑅 or 𝑈𝐶 can be defined as the tuple ⟨𝐸, 𝑃, 𝐶 , 𝑃𝑅⟩ while a 𝑈𝑃 is the tuple

⟨𝐸, 𝑃, 𝐶, ic, pa⟩. Given this sal definition, we can express actions such as: “retrieve the current
location of John and Mary” (⟨John, Mary, LocationProp, ∅, ∅⟩), “retrieve the current occupancy of
room 111 in less than 3 seconds and without conflicting with any user policy” (⟨Room111, Occupancy,
∅, responseTime<3 and policyConflict=0⟩), “decrease the temperature of those rooms with oc-
cupancy above 50% of their capacity” (⟨Room, ControlTempProp, OccupancyProp>0.5xCapacityProp,
∅⟩), or “do not capture the location of Mary when she is in a private space” (⟨Mary, LocationProp,

LocationProp=PrivateSpace, capture, deny⟩).
sal supports also the definition of device actions which are used internally by SemIoTic as a

result of the translation of user actions. A device action 𝐷𝐴, which can be either a sensor request
𝑆𝑅 or an actuator command 𝐴𝐶 , is the tuple ⟨𝐷, 𝜀, 𝑎 , 𝑃𝑅⟩ where the different elements represent:
(1) Device, 𝐷 , to perform the action (this can be a class of devices or a specific instance). (2) Entity of
interest, 𝜀 , that the device should observe/actuate upon (this has to be an instance of an entity). This
parameter is optional and used if the device coverage involves more than one entity and the action
has to be performed in only one of them. (3) Type of observation/action, 𝑎 , to request/command the
device. (4) Parameters, 𝑃𝑅 , as in the 𝑈𝐴. For example, the following 𝑆𝑅 captures temperature data
from a thermometer in Celsius ⟨thermometer111, room111, TemperatureObs, unit=Celsius⟩.

5.2 SemIoTic API
SemIoTic provides application developers with a set of APIs. The APIs include, in addition to the one
that enables users to pose actions defined using sal, other useful interfaces to retrieve information
from the instantiated semic in the specific space where the application is being executed. The
APIs are defined using the REST architectural style and the parameters, as well as the results,
are expressed in JSON format. This way, applications can be developed using any client-based
Web (e.g., Javascript, HTML/CSS) or mobile technology (e.g., Android, iOS) that supports RESTful
invocations. Internally, we encode the APIs using the popular Grizzly framework7. We use the
open-source framework Swagger8 to help content developers design, build, and consume these
RESTful endpoints. Fig. 9a shows a snippet of the OpenAPI specification9 of the APIs10. For instance,
Fig. 9a shows the APIs an application developer can use to retrieve the types of entities defined in
a SemIoTic-enabled space. This is done through the RESTful API url:port/entity/type, where
the url:port part defines the specific SemIoTic-enabled space, and which returns all the types of
spaces and people (i.e., subclasses of the semic:Entity class) in JSON format.
Additionally, SemIoTic offers a SPARQL query endpoint implemented using Virtuoso11. The

SPARQL query language [41] is an RDF declarative query language (similar to SQL) on RDF triples.
We offer this additional endpoint for more advance application developers that want to perform
queries on the underlying domain model. For instance, Fig. 9b shows the SPARQL endpoint of
SemIoTic when running a SPARQL query to retrieve subclasses of semic:Space class along with
their properties and their type (on the top) and the results obtained (on the bottom).

7https://javaee.github.io/grizzly
8https://swagger.io
9https://swagger.io/specification/
10The complete specification is available at [1].
11https://virtuoso.openlinksw.com

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://javaee.github.io/grizzly
https://swagger.io
https://swagger.io/specification/
https://virtuoso.openlinksw.com

1:16 Roberto Yus, et al.

(a) (b)
Fig. 9. (a) Snippets of SemIoTic API specification and (b) SPARQL endpoint and results for a given query

5.3 Developing Applications Interfacing with SemIoTic
One of the main goals of SemIoTic is to facilitate the development of applications for smart spaces.
This is achieved by abstracting out the IoT device infrastructure (through the usage of the sal
language) to enable space-agnostic applications to be used in different smart spaces. Developers can
use any client-based Web or mobile technology to build applications and express their actions via
RESTful APIs or SPARQL queries. We developed several sample applications based on this model.
The main of those is an occupancy tool, developed using React, that showcases an exploratory
discovery of occupancy levels at any space. This application is currently in use in our main
deployment at UCI (Fig. 10 shows screenshots of the application running at UCI).

Fig. 10. Example SemIoTic IoT application developed using sal.

The application first retrieves the instances of spaces defined in the SemIoTic-enabled smart
space through the /space GET REST API. In our deployment at UCI, this returns each of the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:17

buildings on campus, their floors, and rooms. Then, following the geographical model in semic, it
renders those spaces on a map (see Fig. 10a). Along with that information, the application requests
SemIoTic for the occupancy levels of each of the buildings on campus and color codes it on the
map. In order to do this in a general way, the application obtains the hierarchy of spaces using
the /space/type GET REST endpoint. In this case, the first node is “Campus” class, followed by
a “Building” class underneath. If this was running, for instance, in a smart home, the first node
would be “Home” and it could be followed by “Room” and hence, the application would use “Room”
instead of “Building”. Then, it poses a sal request ⟨Building, OccupancyProp, ∅, ∅⟩ to retrieve the
occupancy of all buildings on campus. When a user clicks on one of the buildings, the application
repeats the same process for the spaces defined within (e.g., floors). This process is performed
recursively for each space. For instance, Fig. 10b shows the occupancy levels at the 2nd floor of
the Donald Bren Hall building at UCI. Note that in the figure the application is rendering the
spaces within the floor which are in this case rooms as well as the regions of coverage of WiFi APs
deployed there (which the application retrieves as simply “Regions”). Thus, the application renders
the occupancy values of rooms (gray as the information cannot be computed in that case) and of
the regions (colorful as this information can be estimated using a virtual sensor that leverages
connectivity events from WiFi APs [33]).

Hence, the highest complexity involved in the development of the application is the development
of the graphical user interface and navigational logic. Retrieving data (e.g., space hierarchy, space
instance, occupancy data) is simply done through a few lines of codes required to make an API
call. Additionally, the same application, without any code modification, can run in other SemIoTic-
enabled smart spaces with different domain models and different underlying sensor infrastructures
as we describe in Section 8.

6 TRANSLATING SAL ACTIONS
We explain how SemIoTic translates a sal user action defined at a higher level into the set of actions
required from the underlying IoT devices. Then, from the set of possible plans involving different de-
vices, SemIoTic chooses an optimal one and executes it (as it will be explained in Section 7). The gen-
eral translation process, illustrated using the BPMN inspired data structure in Fig. 11, involves four
steps. We will use the user command ⟨Room, ControlTempProp, OccupancyProp>0.5xCapacityProp,
∅⟩ in Fig. 12 as a running example to explain the translation process.

Fig. 11. Structures generated to handle a User Action: (a) Flattened tree for 𝑈𝐴 and (b) Execution plans
generated for a𝑈𝑅 .

6.1 Flattening
Complex user actions, 𝑈𝐴s (e.g., containing conditions), require the processing of other internal
actions to resolve them. For instance, in the command of our running example (see Fig. 12), we
need to execute requests to obtain the occupancy of specific rooms to determine whether the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:18 Roberto Yus, et al.

UC

UC2UC1 UC3

UR21 UR22

Condition
Checking

UC23

VSR3

AC1 DA4

UC= < Room, Decrease Temperature, Occupancy > 0.5*Capacity >

E = Room
P = decrease temperature
C = occupancy > 0.5 * capacity

Room24 Room111 Room164

Capacity,
Room111

Decrease Temperature,
Room111

Occupancy,
Room111

Loc to Occ

Img to Occ

WiFi AP

Camera

Thermostat Thermostat111

Beacon111

Camera1

PSR2 DA2

Beacon

AP111

Con to Loc

VSR2

PSR1 DA1

PSR3 DA3

VSR1

Fig. 12. Example of the translation of a user command.

temperature has to be decreased. We refer to this process as flattening (borrowing the terminology
used in databases to refer to the process to convert a nested query into a non-nested one).
The flattening process takes a user action, 𝑈𝐴 =< 𝐸, 𝑃,𝐶 >12, and generates a tree structure,

T𝑈𝐴 , that contains the high-level plan required to process it in terms of other 𝑈𝐴s. The T𝑈𝐴

generated in this step (see Fig. 11(a)) fulfills the following: 1) The first level of the tree flattens 𝑈𝐴

by extracting the entities of interest from 𝐸 (e.g., all the instances of the class “Room” in our running
example –Room24, Room111, and Room164–). Thus, this level contains a set of 𝑈𝐴s such that
𝑈𝐴𝑖 =< 𝜀𝑖 , 𝑃,𝐶 > where 𝜀𝑖 ∈ 𝐸 and ⟨𝜀𝑖, rdf:type, semic:Entity⟩. 2) For each 𝑈𝐴𝑖 , the next level
flattens the set of internal𝑈𝐴s that need to be processed to compute𝐶 (e.g., the requests to get the
occupancy and capacity of the room). This is a set of𝑈𝑅s such that𝑈𝑅𝑖 𝑗 =< 𝜀𝑖 , 𝜌 𝑗 ,∅ > where 𝜌 𝑗

refers to the j-𝑡ℎ property needed to compute a condition 𝑐 ∈ 𝐶 . For instance, Fig. 12 shows the two
requests𝑈𝑅21 and𝑈𝑅22 to obtain the capacity and occupancy of Room111. Note that conditions
require data to evaluate them and such data is obtained through requests and not commands. 3) The
last level of the tree flattens the𝑈𝐴s that need to be processed to perform the user action on each
property in 𝑃 (e.g., the actuable property of spaces to decrease their temperature). Thus, it contains
the𝑈𝐴s leaf nodes such that𝑈𝐴 𝑗 =< 𝜀𝑖 , 𝜌 𝑗 ,∅ > where 𝜌 𝑗 ∈ 𝑃 .
The flattening algorithm takes as input the user action, 𝑈𝐴, and the domain model M, and

outputs the tree explained above. First, the algorithm extracts the list of entities, properties, and
conditions associated to𝑈𝐴 . Extracting properties and conditions is straightforward but extracting
entities in 𝐸 requires an additional step since the𝑈𝐴 might defined them semantically (e.g., “Room”).
Internally, the method 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 (𝑈𝐴,M) returns the same set 𝐸 if it contains a set of entities
such that ⟨𝜀𝑖, rdf:type, semic:Entity ∀𝜀𝑖 ∈ 𝐸⟩ (e.g., if 𝐸 =< 𝑅𝑜𝑜𝑚1, 𝑅𝑜𝑜𝑚2 >). Otherwise, if ⟨𝜀𝑖,
rdfs:subClassOf, semic:Entity⟩ ∀𝜀𝑖 ∈ 𝐸 (e.g., if 𝐸 =< 𝑅𝑜𝑜𝑚 >) then the method uses a Description
Logic reasoner [45] to obtain any instance𝑚 𝑗 ∈ M such that ⟨𝑚 𝑗, rdf:type, 𝜀𝑖 ⟩. Thus, by taking
the hierarchical nature of the representation into account, if𝑚 𝑗 is an instance of a 𝜀𝑘 such that
⟨𝜀𝑘, rdfs:subClassOf, 𝜀𝑖 ⟩ then 𝑚 𝑗 will be returned. For instance, if 𝜀𝑖=⟨Room, rdfs:subClassOf,

semic:Entity⟩, 𝜀𝑘=⟨Meeting Room, rdfs:subClassOf, Room⟩, and𝑚 𝑗=⟨Room 111, rdf:type, Meeting

Room⟩, then𝑚 𝑗 will be returned for a𝑈𝐴 where 𝜀𝑖 =“Room”∈ 𝐸 .

12Note that in the following we will omit parameters associated with actions (which are passed down from the user action
to the leaves of the plan tree) to improve readability.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:19

6.2 Execution Plans Generation
After flattening, T𝑈𝐴 contains the set of internal𝑈𝐴s to be processed to handle the user action, i.e.,
the different𝑈𝐴𝑖 in each level of the flattened tree of Fig. 11(a). Each𝑈𝐴𝑖 ∈ T𝑈𝐴 will require a set of
device actions, 𝐷𝐴 , to be executed. Note that more than one type of device could be able to perform
such action so all the possible options have to be included as different plans. For instance, Fig. 12
shows that to retrieve the occupancy of “Room111”, the previous step generated 𝑈𝑅22. The goal
of the execution plans generation step, in this example, will be to determine that such occupancy
can be computed using two different virtual sensors (𝑉𝑆𝑅1 and 𝑉𝑆𝑅2) utilizing different types of
underlying sensors deployed in the space.

The execution plans generation step expands T𝑈𝐴 by extending each𝑈𝐴𝑖 with a set of execution
plans as T𝑈𝐴𝑖

. Fig. 11(b) shows the structure of the execution plans for a particular𝑈𝑅 =< 𝜀𝑖 , 𝜌 𝑗 ,∅ >

that is used to expand the highlighted node in Fig. 11(a). The constraints of T𝑈𝐴𝑖
are as follows:

(1) Each level of the tree contains a 𝑆𝑅 =< 𝑠𝑘 , 𝑜 𝑗 , 𝜀𝑖 > which can be either for a virtual sensor,
notated by𝑉𝑆𝑅 and such that ⟨𝑠𝑘, rdfs:subClassOf, semic:VirtualSensor⟩, or for a physical sensor,
𝑃𝑆𝑅 and such that ⟨𝑠𝑘, rdfs:subClassOf, semic:PhysicalSensor⟩. (2) For each 𝑉𝑆𝑅 there will be
an additional level with requests for those (physical or virtual) sensors that can obtain the input
required by 𝑠𝑘 . (3) The leaf nodes of the tree contain only 𝑃𝑆𝑅 . In our running example of Fig. 12
we can see that the constraints are met. First, and focusing on 𝑈𝑅22, we see that each level of
its subtree contains either virtual sensor requests (i.e., 𝑉𝑆𝑅1, 𝑉𝑆𝑅2, and 𝑉𝑆𝑅3) or physical sensor
requests (i.e., 𝑃𝑆𝑅1, 𝑃𝑆𝑅2, and 𝑃𝑆𝑅3). Also, each virtual sensor request is always followed by one or
more virtual/physical sensor requests and the leaf nodes are always physical sensor requests. For
instance, 𝑉𝑆𝑅2, which transforms image data into occupancy, is followed by 𝑃𝑆𝑅3, which obtains
images from cameras, and this is the leaf node at this step13.
Thus, this step iterates for each 𝑈𝐴𝑖 =< 𝜀𝑖 , 𝜌 𝑗 ,∅ > node in T𝑈𝐴 and extracts the different

execution plans possible. First, the algorithm determines which device classes can execute the
required action (i.e., which sensors can capture observations of the type associated with the property
of interest or which actuators can perform actions of the type associated with the property of
interest). Note that more than one device 𝑑 can be obtained for the same property. For instance,
two different virtual sensors could retrieve the occupancy of a room using different inputs (e.g.,
location data or video camera feeds). For each 𝑑 retrieved, the algorithm creates a device action,
𝐷𝐴𝑑 where 𝐷𝐴𝑑 = 𝑆𝑅𝑑 if 𝑑 = 𝑠 or 𝐷𝐴𝑑 = 𝐴𝐶𝑑 if 𝑑 = 𝑎, and appends it as a node under the
corresponding 𝑈𝐴𝑖 node. If ⟨𝑑, rdfs:subClassOf, semic:VirtualSensor⟩ then such virtual sensor
might need additional input sensor data. For each of the input observation types defined for the
virtual sensor, the algorithm retrieves devices that can capture such data and appends them to that
node. This process is performed iteratively until all the leaf nodes of the tree are 𝑃𝑆𝑅 or 𝐴𝐶 .

6.3 Plan Realizability Checking
A plan could be unrealizable given the deployment of devices in the scenario. For example, in
Fig. 12 consider the plan involving the request to the virtual sensor which translates images into
occupancy, 𝑉𝑆𝑅2, which takes input from a request to a camera sensor, 𝑃𝑆𝑅2. That plan will be
unrealizable for a specific room that is not in the view frustum of any video camera.
The plan realizability checking step prunes down branches of the extended T𝑈𝐴 (i.e., T𝑈𝐴 con-

taining all the possible execution plans) that are unrealizable and classify the remaining regarding
their feasibility. In the general translation tree of Fig. 11, we have marked some of the plans ac-
cording to their realizability as an output of this step. Note that the result could be an empty tree
if the whole 𝑈𝐴 is unrealizable because of a lack of devices that can capture raw observations or

13Note that the figure shows another node after it, 𝐷𝐴3, but this node is added in the next step.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:20 Roberto Yus, et al.

perform the required commands. In this step, SemIoTic performs a reverse level order traversal
of the tree starting with the leaf nodes, which by definition contain a 𝐷𝐴 =< 𝐷, 𝜀𝑖 , 𝑜 𝑗 > which
is either a 𝑃𝑆𝑅 or a 𝐴𝐶 . Given such node, N𝐷𝐴 , the algorithm obtains the set of those specific
instances of physical sensors/actuators deployed in the space that can perform such action, D, by
using the function checkCoverage(𝜀𝑖). The checkCoverage function returns all devices 𝑑 such
that ⟨𝑑, semic:captures, 𝑜 𝑗 ⟩ (i.e., 𝑑 is a device that can capture observations or actuate actions of
the type related to the property of interest) and can cover the entity 𝜀𝑖 by using the semic:Extent
associated with 𝜀𝑖 and the semic:coverage property associated with 𝑑 . In particular, the function
runs a GeoSPARQL query that retrieves all devices whose coverage extent intersects with the
extent of the instance. Since the definition of extents is based on the GeoSPARQL ontology (see
Section 4), the query uses the built-in geof:sfIntersects method that computes such intersections.
For example, in Fig. 12 𝑃𝑆𝑅3 requires images from cameras which can cover “Room111”. The result
of executing checkCoverage(“Room111”) returns “Camera1” since its coverage/view frustum has
been defined as a triangle that intersects the extent of the room. Also, if the entity is an entity
whose location/extent is not known at the moment (e.g., for a specific person), the checkCoverage
function will return all devices covering any portion of the smart space in order to maximize the
chances of retrieving the required data.
If D = ∅ then N𝐷𝐴 is removed from T𝑈𝐴 . In such a case, SemIoTic checks N𝐷𝐴 parent nodes

and those are also removed if they require the processing of 𝐷𝐴𝑖 (e.g., if the parent is a 𝑉𝑆𝑅 that
takes as input the observations of 𝐷𝐴𝑖). This is done recursively and nodes are removed until a
parent of an unrealizable node does not require such node (e.g., because it can obtain its input data
from another child). If D ≠ ∅ then the node N𝐷𝐴 that specified an action on a general device type
𝐷 has to be replaced by specific actions on the devices in D. For each 𝑑𝑘 ∈ D SemIoTic creates a
device action 𝐷𝐴𝑘 =< 𝑑𝑘 , 𝜀𝑖 , 𝑜 𝑗 > which gets added as child to N𝐷𝐴 .

6.4 Feasibility checking
Some of the execution plans generated can be realizable but unfeasible. This can be determined
regarding different criteria including how costly (e.g., in terms of processing time or even eco-
nomically) the execution would be or whether it would conflict with existing user policies. For
instance, in Fig. 12 the request for occupancy of Room111 can be satisfied by capturing video data
and then processing it or by capturing connectivity data. If the user defined that processing cost
is an important aspect, e.g., by defining a parameter such as 𝑡𝑖𝑚𝑒𝐶𝑜𝑠𝑡 < 1 in the original request,
then processing video will be unfeasible if the QoS parameter of the virtual sensor that handles the
processing is greater than 1 second.
SemIoTic computes a feasibility score for each device action 𝐷𝐴𝑘 =< 𝑑𝑘 , 𝜀𝑖 , 𝑜 𝑗 > in each plan

and adds it to the metadata of its associated node N𝐷𝐴𝑘
. This feasibility score is used to compare

whether a plan is more desirable than others. To compute the feasibility score of a 𝐷𝐴𝑘 (represented
as a cost 𝐶 (𝐷𝐴𝑘)), SemIoTic uses the different cost metrics defined inM for that specific device
(see Section 4). These metrics include processing time (as number of seconds), quality of the answer
(from a scale from 0 to 1 where the lowest the highest the quality), economical cost (as amount of
dollars), and conflicting policies (as the number of policies that prevent the access of such device).
The previous metrics are mostly static values that are defined in the domain model per device, as
showed in the example in Section 4.1, except for the conflicting policies metric. This is computed by
using the checkConflict(𝑑) method which uses the set of all𝑈𝑃s defined by users of SemIoTic.
The method checks whether policies restrict access to 𝑑 . Given a user defined policy𝑈𝑃𝑛 the same
translation process described so far is applied to generate possible execution plans. Thus, SemIoTic
generates a T𝑈𝑃𝑛 that contains all the different devices involved in the processing of the policy. If
there exists a node N𝑚 ∈ T𝑈𝑃𝑛 such that N𝑚 = 𝐷𝐴 =<d, 𝜀 𝑗 , 𝑜𝑘 > and the preferred action defined

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:21

for the𝑈𝑃𝑛 is to deny the access, then checkConflict() returns true. Then, the number of policies
that restrict access to each device are counted and this information is appended to the node.

The metrics associated with a specific node are aggregated using a cost model based on weights
𝐶 (𝐷𝐴𝑘) =

∑
𝑗=1𝑤𝑘𝑐 𝑗𝑘 where𝑤𝑘 is the weight assigned to the 𝑘 − 𝑡ℎ cost, 𝑐 𝑗𝑘 , associated with the

device 𝑑𝑘 in 𝐷𝐴𝑘 . The weights are useful in situations where the administrator of a SemIoTic-
enabled smart space decides to impose constraints on user requests. For instance, that preserving
people privacy is a must or that processing time is the most important criteria. By default we
consider that the value for the weights are assigned uniformly. The administrator can modify the
values of the weights associated to each cost (as defined in the ontology) through the Portal GUI
interface used to configured their SemIoTic instance (see Fig 4).

7 ACTION EXECUTION
In this section, we present the selection and execution of a plan from the possible plans resulting
from the translation of a user action. Then, we detail the execution of device actions using device
wrappers and virtual sensors to access/control IoT devices.

7.1 Plan Selection and Execution
The translation of a user action𝑈𝐴 can result in several feasible execution plans. If the goal is to
maximize the chances of carrying out the action (as devices might fail or produce noisy results),
SemIoTic can execute them all. However, in general this might result in a waste of resources as we
would be duplicating efforts to obtain the same result. Thus, SemIoTic chooses a plan according
to the score computed in the previous step. This way, it computes the feasibility of each plan, by
recursively aggregating the cost of its nodes, and removes all the branches of T𝑈𝐴 which do not
have minimal cost. Notice that, the flexible and modular design of SemIoTic makes it possible to
use other more sophisticated optimization functions to assign costs and select plans.

Once a single plan has been selected, the next step is to execute it. The execution engine executes
first each𝑈𝐴𝑖 ∈ T𝑈𝐴 that is needed to compute the condition component of𝑈𝐴 (if any). Then, after
checking whether the condition is satisfied, it executes each𝑈𝐴 𝑗 ∈ T𝑈𝐴 related to the properties of
interests in𝑈𝐴. Given a𝑈𝐴𝑘 ∈ T𝑈𝐴 the execution engine performs a reverse level order traversal
of the subtree T𝑈𝐴𝑘

. Each node N𝑚 ∈ T𝑈𝐴𝑘
is handled as follows depending on its type. If𝑚 = 𝐴𝐶 ,

the appropriate wrapper is notified for actuating a device. Then, if𝑚 = 𝑉𝑆𝑅 , the engine sets up the
required data inputs based on its children nodes. This is performed by creating consumers that
subscribe to receive data from virtual/physical sensors. Note that if𝑚 = 𝑃𝑆𝑅 , the communication
with its corresponding wrapper is handled by the 𝑉𝑆𝑅 sensor parent node. Finally, if𝑚 is the root
𝑉𝑆𝑅/𝑃𝑆𝑅 node, the engine calls the corresponding virtual sensor or wrapper, respectively. In the
case of a 𝑉𝑆𝑅 root, that call will trigger the chain of calls to predecessor nodes.

7.2 Device Wrapper Design
Accessing physical sensors or actuators is challenging as they introduce multiple levels of hetero-
geneity. Any IoT standard protocol can be utilized by a device to push/pull data. These protocols
differ significantly in terms of interaction paradigms – i.e., CoAP based on Client/Server interactions,
MQTT following Publish/Subscribe and WebSocket based on the Streaming interactions [9, 24].
Input and output data of these protocols are defined in multiple data-serialization formats (e.g.,
JSON, XML, protobuf, etc.). Finally, to access these data, protocols require to use a scope parameter
that corresponds to an operation, resource, filter (e.g., topic-based) or stream identifier. These may
differ from device to device even if they observe the same type of data (e.g., temperature).
The design of SemIoTic wrappers (see Fig. 13) handles such heterogeneity by providing a

device-agnostic implementation for enabling cross-layer interoperability between SemIoTic and

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:22 Roberto Yus, et al.

IoT devices. Our wrapper design consists of two main parts: connector and mapping. Inspired by
the service-oriented architecture (SOA), we define two types of connectors: (i) provider – connects
SemIoTic with the wrapper providing the requested data; (ii) consumer – connects the wrapper with
the IoT device for consuming its data. Then, the mapping part bridges the provider and consumer
connectors by performing: (i) data/scope mapping and (ii) protocol mediation between SemIoTic
and the IoT devices.

Fig. 13. Device wrapper design.

A device action 𝐷𝐴 =⟨𝑑𝑖, 𝑎 𝑗, 𝜀𝑘 ⟩, a leaf node of the T𝑈𝐴 tree structure, is a 𝑃𝑆𝑅 or a 𝐴𝐶 that
can be handled by a device wrapper. As shown in Fig. 13, a 𝑃𝑆𝑅𝑖 or 𝐴𝐶𝑖 can be received by the
SemIoTic provider connector in JSON format and then forwarded to the Wrapper Handler. Note
that the provider connector is only required if the wrapper is deployed in another machine other
than SemIoTic’s machine. Otherwise, the Wrapper Handler receives the 𝑃𝑆𝑅𝑖 /𝐴𝐶𝑖 directly from
SemIoTic. The Wrapper Handler component provides callbacks for handling commands, single-
response requests, streaming-response requests, and requests for terminating a stream. In particular,
Listing 1 shows the implementation of the single-response request (lines 4-8) which is generic
enough to support any request to any sensor. This incoming 𝑃𝑆𝑅𝑖 is then given as input to the
Request Builder component (line 5) that performs data and scope mapping for generating the
wrapper request (𝑊𝑅𝑖) which is compatible with the corresponding IoT sensor.

To enable developers request data from any IoT device employing any IoT protocol, they have to
only specify the device’s protocol name when instantiating the Wrapper Handler (line 2). Then, we
leverage the Data eXchange (DeX) API [9], which implements post and get DeX primitives for
sending/receiving messages using existing IoT protocols such as CoAP, MQTT, XMPP, etc. The
primitives of this API require as input the parameters < 𝜋,𝜓,𝑚𝑝𝑜𝑠𝑡 >, where 𝜋 is the destination
of the physical device,𝜓 is the scope parameter and𝑚𝑝𝑜𝑠𝑡 is the request data or the command to
be sent to the device. This information has to be provided by the developer in the Request Builder
module as part of the𝑊𝑅𝑖 , which we will explain in the following. Then, we instantiate the device
consumer connector that implements single-response requests using the DeX primitive postExGet
with < 𝜋,𝜓,𝑚𝑝𝑜𝑠𝑡 > as input parameters. More details regarding the definition of the DeX primitives
and the interaction types they support can be found in [9]. We introduce two additional parameters
to the DeX API, < 𝜆, 𝛿 >, to manage streaming-requests. Let 𝜆 be the frequency that response items
(through multiple𝑚𝑔𝑒𝑡 parameters) must be received and 𝛿 be the duration the request is active. If
a response is expected, this is received through the𝑚𝑔𝑒𝑡 parameter. The mediation of the device
response (𝑊𝑅𝑒𝑠𝑖) to the format required by SemIoTic (𝑃𝑆𝑅𝑒𝑠𝑖) is encoded by the developer in the
Response Builder module (line 7).

1 class WHandler extends Handler {
2 public WHandler(String prot) { this . protocol = prot ; /* device protocol name - e.g., CoAP */ }
3 @Override /* code for handling requests */
4 public void handleRequest(PSRequest psr) {
5 RequestBuilder rb = new RequestBuilder(psr) ; DevConsConnector dc = new DevConsConnector(this.getProtocol());
6 String getMsg = dc.getDexPrim().postExGet(rb . getDest () , rb .getScope () , rb .getPMsg()) ;

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:23

7 ResponseBuilder resb = new ResponseBuilder(psr,getMsg);
8 psr . respond(resb .getWRes()) ; } }

Listing 1. The SemIoTic Wrapper Handler.

The Request Builder module has to be implemented by the developer to define the mapping of the
device action parameters to the expected parameters of the DeX API (i.e., < 𝜋,𝜓,𝑚𝑝𝑜𝑠𝑡 >). These
can be defined by considering the SemIoTic device domain model and the technical specification
of the physical device: 𝜋 (destination) corresponds to the URI of the real sensor (defined when
describing the sensor in the model);𝜓 (scope) corresponds to the operation, resource, topic or stream
identifier that the data can be received from (can be identified from the list of observations in the
sensor domain model and the specification of the device);𝑚𝑝𝑜𝑠𝑡 (post message) which is constructed
based on the labels associated with the parameters defined in the user request and the parameters
that the sensor requires. Finally, The Response Builder module has to be also implemented by the
developer of the wrapper to map the data returned by the sensor (𝑊𝑅𝑒𝑠𝑖) to JSON format (𝑃𝑆𝑅𝑒𝑠𝑖)
for the observation type in the domain model.
To summarize, if a sensor employs the CoAP protocol to receive wrapper requests (𝑊𝑅𝑖), the

developer specifies the protocol name in the wrapper handler and refines the request/response
builder modules. Suppose that the same sensor uses MQTT, then the developer has to only modify
the protocol name and refine the request/response builders. We implement the remaining handlers
of Listing 1 to enable wrapper developers supporting any possible interaction type found in the IoT.
Note that the streaming-request is implemented by taking into account the frequency and duration
parameters – i.e., < 𝜆, 𝛿 >. Hence, the device consumer connector must request data with a specific
frequency and for a specific duration given by the application. In case an IoT protocol does not
support streaming interactions (e.g., HTTP), we implement these over the DeX API. In particular,
we repeat a single-response request with the given frequency for the given duration. Any such
streaming request can be terminated by the application using stoppsr.

7.3 Virtual Sensor Design
Weuse the concept of virtual sensors to encapsulate the enrichment of physical phenomena captured
by sensors into semantically meaningful information (e.g., extracting who is in a room based on
images captured by video cameras). There are multiple ways of performing such enrichment, even
for the same task, using different types of input information (e.g., different algorithms exist for face
recognition using different features). SemIoTic has to be agnostic to specific virtual sensors and
able to interact with any of them. We provide a specification for the development of virtual sensors,
similar to the one described above for device wrappers, to deal with such heterogeneity.

Fig. 14. Virtual sensor design.

As depicted in Fig. 14, our design consists of three main components: the provider connector
for providing requested data, a set of consumer connectors to consume data from one or more
IoT devices, and the code that processes the incoming data to provide the main response. When
a virtual sensor artifact is deployed, the Virtual Sensor Handler component awaits for incoming
interactions, either virtual sensor requests (𝑉𝑆𝑅) or configuration parameters (i.e., notifications for
setting up data connector consumers). The purpose of the latter (see setConsumer method –line 2–

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:24 Roberto Yus, et al.

in Listing 2) is to configure what the specific inputs (to which we refer as consumers) of the virtual
sensor would be according to the selected plan for a 𝑈𝐴. For instance, for the virtual sensor that
detects people in images, the configuration notification could ask it to use as input images coming
from the video camera in room 111.
When the virtual sensor receives a 𝑉𝑆𝑅 (see handleRequest callback –line 4– in Listing 2)

it needs to collect data from the configured consumers, perform the virtual sensing task on the
collected data, and return back as response the requested (single or a stream) observation. First, the
callback instantiates a list of responses that will be received later from the configured input sensors
(line 5). Then, it interacts with each input/consumer to retrieve their observations. To this end,
the developer of the virtual sensor can select between three request types: (i) synchronous request
(lines 7-8): the consumer requests data and is blocked until the response is given to be stored in the
overall responses list; (ii) asynchronous request (lines 9-11): the consumer requests data and the
response is given at some point later to be stored in the overall responses list; and (iii) streaming
request (lines 12-14): the consumer requests data with a specific frequency and for a duration of
time i.e., < 𝜆, 𝛿 >. Multiple responses are given at arbitrary points of time but within the requested
duration to be stored in the overall responses list. Finally, the developer has to implement the code
snippet that performs the actual virtual sensing (i.e., processing the incoming observations and
generating the higher-level information) and then provide back the response (lines 17-18).

1 class VSHandler extends Handler {
2 public void setConsumer(SemConsConnector consumer, String plan) { consumersList .add(consumer,plan) }
3 @Override /* code for handling single-response requests */
4 public void handleRequest(VSRequest vsr) {
5 ArrayList<Response> consRespList = new ArrayList<Response>();
6 for (SemConsConnector consumer: ConsumersList) {
7 Response consResp = consumer.syncRequest() ; /* if sync request to consumer selected */
8 consRespList . add(consResp); /* consumer response list to be processed */
9 consumer.asyncRequest(new AsyncRequestCallback () { /* if async request to consumer selected */
10 @Override
11 public void onMessage (Response consResp) { consRespList . add(consResp); }}) ;
12 consumer.streamRequest(new StreamRequestCallback (freq,dur) { /* if streaming request to consumer selected */
13 @Override
14 public void onMessage (Response consResp) { consRespList . add(consResp); }}) ; }
15 /* code to process the incoming responses in consRespList */
16 /* */
17 /* provides the final response */
18 vsr . respond(new VSResponse); }
19 /* */

Listing 2. The SemIoTic Virtual Sensor Handler.

It is worth noting that the developer does not have to specify any device destination IP or
parameters of observations to be requested – these are already provided by SemIoTic (using
our domain model) during the plan execution phase and the configuration of the consumers.
Additionally, the developer does not need to deal with raw data coming directly from sensors as
wrappers take care of mapping such data into the one specified in SemIoTic model. Finally, in
contrast with wrappers, it is not necessary to perform data and scope mapping as well as protocol
mediation – virtual sensors exchange data with other virtual sensors and SemIoTic using the same
data semantics, IoT protocol and data format defined in our domain models.

8 EXPERIMENTS
In this section, we present the experiments performed to validate our approach. First, we describe
the experimental setup. Then, we evaluate the handling of user actions, efficiency of user action
execution, and scalability. Finally, we present a discussion based on the results.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:25

8.1 Experimental Setup
The SemIoTic ecosystem have been deployed at the University of California, Irvine (UCI). We
acted as “space administrators” and installed and configured SemIoTic as follows. First, we selected
the SemIoTic core system (see Fig. 3) and an application. This application (an extension of the
occupancy application shown in Fig. 10) showcases an exploratory discovery of the space by
enabling users to define actions to find the spaces defined in the model and their properties. In
particular, it guides the user to define the sal parameters (through HTML forms) of the user action
to actuate the property for controlling the temperature of a selected space when its occupancy
reaches a percentage of its capacity. It also generates another sal request to retrieve a stream
of occupancy and temperature data for the room. After posing the user actions to SemIoTic, the
application generates graphs to display the obtained data (see Fig. 10b).

The app’s dependencies include: (i) The “building” domain model and (ii) software components
that provide occupancy observations and control temperature. We selected the “wifi2occ” virtual
sensor, which converts WiFi connectivity data to occupancy data, and a wrapper to connect to
SkySpark, a software that handles the HVAC data in our buildings. Additionally, we selected a WiFi
wrapper component which converts WiFi data to SemIoTic’s format. In the current deployment,
we have real-time access to WiFi data produced from 484 WiFi APs located in 15 buildings. We
used Kubernetes to deploy the system on a server in the Donald Bren Hall building at UCI. Then,
using the Portal web interface (see Fig. 4), we defined the geographical space (buildings, floors,
areas, and rooms) of UCI (see Fig. 7), assigned the real WiFi AP to the designed areas, and added
accounts for space occupants (using an invitation link for registering to SemIoTic).
We deployed another instantation of SemIoTic to simulate a smart home to show how space

administrators can deploy IoT applications across different spaces. The installation process was
similar to the previous. The only difference was the selection of a different set of wrappers and
virtual sensors. In particular, we deployed a real Raspberry Pi with a camera sensor connected and
hence downloaded a wrapper to connect to it. Then, we downloaded a virtual sensor to extract
faces from pictures and another one that recognize faces and associates the person with a location.
We simulate the thermostat sensor with a software component and develop a sample wrapper to
communicate with it to retrieve temperature readings and control the temperature.

8.2 Handling runtime user actions
We evaluate the execution of the user requests posed by the application in both deployments. We
take the role of two space occupants (one at UCI and one at the smart home), and use the application
to control the temperature of two spaces, “Room 111” and “Living Room” in the SemIoTic-UCI
and SemIoTic-Home instances, respectively. The application poses the following user actions to
SemIoTic-UCI to control the temperature of the room and to retrieve occupancy and temperature
readings of the room (similar requests are generated for SemIoTic-Home):
⟨Room111, ControlTemperature, OccupancyProp>0.5xCapacityProp⟩
⟨Room111, OccupancyProp/TemperatureProp, ∅⟩
Both instances receive and handle the request as explained in Section 6. First, SemIoTic detects,

for the action to control the temperature, the need to retrieve the room’s occupancy and capacity
properties and then actuate the property to control the temperature if the condition is met. The
virtual sensor defined in both domain models to retrieve occupancy observations (which is the
value that the occupancy property requires) is included in the plan. Next, SemIoTic discovers
three virtual sensors in the model (using WiFi observations, bluetooth observations, and images,
respectively) that can generate the presence data required as input to the occupancy counter sensor.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:26 Roberto Yus, et al.

These are also included in the tree as possible plans. Then, each virtual sensor appends a request to
physical sensors 𝑃𝑆𝑅𝑖 for consuming their output data (WiFi APs, bluetooth beacons, and cameras).

Fig. 15. Plans generated to handle a user action.

When checking realizability and feasibility of the plan, SemIoTic-UCI detects that there are no
cameras or bluetooth beacons covering room 111. Thus, the final plan selected (see𝑈𝑅2 in Fig. 15)
involves a request to the virtual sensor that generates occupancy data from presence data (Pres2Occ
VS, 𝑉𝑆𝑅1), which is the same in the plan for the home, followed by a request to the virtual sensor
that generates presence data using connectivity observations (Con2Pres VS, 𝑉𝑆𝑅2), followed by a
request to the WiFi AP covering the room. SemIoTic-Home follows a similar process by detecting a
camera with the living room in its view frustum (there are no WiFi APs or beacons deployed). This
way, it generates a plan (see𝑈𝑅1 in Fig. 15) that involves a request to the virtual sensor producing
presence based on recognizing faces (Face2Pres VS, 𝑉𝑆𝑅3), followed by a request to the virtual
sensor that extracts faces from images (Img2Face VS, 𝑉𝑆𝑅4), followed by a request to the camera
(using a wrapper) to capture images. At execution time, each instance calls the appropriate virtual
sensors and sensor wrappers according to the selected plan.
The application populates the temperature and occupancy graph (see Fig. 16) by using their

definitions in the domain model. Underneath, SemIoTic-UCI retrieves data from the HVAC system
and WiFi APs whereas SemIoTic-Home uses the simulated thermostat and the Raspberry Pi with
a videocamera. Notice in Fig. 16 how, in the case of the building, the room starts getting full at
the start of the meeting at 9am which increases the temperature. When the occupancy crosses the
boundary defined (in this case 75% of the capacity) the parallel user action retrieves these data and
turns on the AC. Then, after some delay, the temperature starts lowering down. In the case of the
smart home the situation is similar even when the underlying sensors are completely different.

8 8:30 9 9:30 10 10:30

Time (hour)

0

20

30

40

60

O
c
c
u
p
a
n
c
y

60

65

70

75

80

T
e
m

p
e
ra

tu
re

 (
F

)occupancy

threshold capacity

temperature

15:50 16:00 16:10 16:20 16:30 16:40 16:50

Time (hour)

0

1

2

3

4

5

6

O
c
c
u

p
a

n
c
y

60

65

70

75

80

T
e

m
p

e
ra

tu
re

 (
F

)

temperature

threshold capacity

occupancy

Fig. 16. Graphs displayed by the application using SemIoTic

In the case of the smart home, we decided to include a third user action: a policy that restricts the
sharing of data. The policy (⟨Mary, LocationProp, LocationProp=PrivateSpace, capture, deny⟩) is
processed in parallel with the other two actions and, when translated, prevents access to video
camera data as it can be used to derive the location of Mary. Notice that the occupancy curve of

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:27

the room drops to zero at 16:15. This is the moment when we simulated Mary arriving in the living
room. At that moment, video camera data cannot be captured and this prevents the virtual sensor
to obtain occupancy as the plan becomes unrealizable. Notice also, that another consequence is
that the temperature starts increasing slightly as the action that controls the temperature cannot
be processed due to the lack of occupancy data. At 16:35 Mary leaves the leaving room and the
processing of both actions gets resumed.

8.3 Evaluating the efficiency of user action execution
We evaluate the efficiency of user action execution involving plans with different level of complexity.
Since we would like to explore the performance with increasing numbers of sensors/virtual sensors,
we perform this experiment using simulated devices and virtual sensors. Virtual sensors are
implemented in Java and their endpoints using the Restlet framework14 for exchanging data in
REST and JSON format. To simulate data processing in virtual sensors, their code performs an
operation for a time extracted from the range 10-40ms. Wrappers are implemented in Java using
Restlet and the Eclipse Californium CoAP framework to exchange data with IoT devices in JSON
and XML formats using REST or CoAP. Wrappers exchange data with SemIoTic using the common
format and protocol (REST and JSON). Finally, IoT devices, which in this experiment are replaced
by other software components instead of real devices, are implemented using the data exchange
protocol (CoAP, REST) and data format (JSON, XML) of the corresponding connected wrapper.

To represent a realistic deployment between IoT devices and wrappers (i.e., realistic propagation
and transmission delays), we useMininet15. In particular, we create a virtual network in our machine
and we deploy the generated application code of IoT devices and wrappers to different Mininet
virtual hosts. The same machine hosts the SemIoTic instance and virtual sensors. We utilize a
modest machine, an i5-8250U CPU (8 GB RAM) with an Ubuntu 16.04 OS, to test the performance of
the system in deployments such as a smart home where higher-end servers might not be available.

Next, we generate plans with complexity levels 1 to 5. We equate complexity level to the number
of levels in the plan to be processed. Finally, we simulate user actions that result in the above plans
posed by multiple users in parallel. To this end, we use LOCUST16, an open source load testing tool,
which allows to define multiple users, along with their behaviour defined as a Python script. Upon
the arrival of responses on LOCUST, we measure the round-trip response time of each action and
then we estimate the average values for all user actions.
We define through LOCUST 10 users each sending one user action in parallel and measure the

average response time across all actions (Fig. 17 presents the measured round-trip response times).
For a level-3 complexity plan, which involves 3 virtual sensors and 6 physical sensors, the resulting
average response time for executing 10 requests is 148.7 ms. When we increase the complexity of
the plan to level-5, which involves 30 physical sensors and 15 virtual sensors, the maximum average
response time is 969.9 ms. Note that the execution of the plans is synchronous, meaning that every
component (virtual sensor, wrapper) forwards the request to the next one and then it blocks its
processing until it receives the response. Thus, the overhead introduced by our approach to generate
and execute the plan by requesting data from IoT devices through wrappers, and transferring that
information to the virtual sensors is small. Our approach handles efficiently the execution of plans
in reception of data from 30 IoT devices (physical sensors) that are processing in 15 virtual sensors.

14https://restlet.talend.com
15http://mininet.org
16https://locust.io

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://restlet.talend.com
http://mininet.org
https://locust.io

1:28 Roberto Yus, et al.

Fig. 17. Response time values when handling 10 re-
quests from different execution plans.

Number
of users

Requests
/ sec

Response time (ms)
Level-2 Level-4

10 1 49 552
25 3 55 782
50 9 64 1,024
75 12 73 -
100 20 92 -

Table 1. Response time values when handling re-
quests from 100 simultaneous users.

Next, we evaluate the performance with increasing number of simultaneous user actions. Our
semic metaontology is defined to generate plans of 2 and 4 levels of complexities for this experiment.
Then, we defined through LOCUST 100 simultaneous users, each sending 1-20 requests per second
according to a Poisson process. We defined the hatch rate of users, which is one in this scenario, as
the rate per second in which users are spawned until they reach 100.
Table 1 presents the average response time when handling increasing number of simultaneous

user requests. Based on Table 1, our approach, with the experimental setup explained before, can
handle efficiently 2,000 user requests per second within 92 ms when executing level-2 complexity
plans (involving one virtual sensor and 2 IoT devices). When executing level-4 complexity plans
(involving 7 virtual sensors and 14 IoT devices), our approach can handle up to 450 requests per
second with an average response time of 1,024 ms. This is because the buffers of virtual sensors
and wrappers fill up quicker with requests due to the synchronous nature of interactions. Hence,
our machine runs out of memory while the CPU utilization reaches 100%.

8.4 Measuring Development Effort
In the following experiment we take the role of content developers and we compare the required
effort for developing an application with and without using SemIoTic.
We developed an algorithm that generates scenarios with different levels of complexity. A

scenario includes a set of sensors and virtual sensors –with varying number of inputs– which
results in multiple execution plans. The algorithm starts by generating a virtual sensor and then
a random number of inputs (virtual or physical sensors) by considering a maximum number of
inputs 𝑛𝑖𝑛 (𝑣𝑠 𝑗) defined as a parameter. Then, this process is performed iteratively for each new
virtual sensor until the execution plan reaches a given level of complexity 𝑛

𝑐𝑙
. The output is an

execution plan involving |𝑃𝑆 | physical sensors and |𝑉𝑆 | virtual sensors. Using this algorithm we
generated scenarios with increasing 𝑛

𝑐𝑙
(from 1 to 7) and with 𝑛𝑖𝑛 (𝑣𝑠 𝑗) = 4. For each level the

algorithm created 500 different scenarios and then computed the average |𝑃𝑆 | and |𝑉𝑆 |.
The algorithm also estimates the development effort to implement these plans. For that, it takes

into account the cost in terms of lines of code (LoC) to be developed (without considering common
tasks that have to be developed with and without SemIoTic such as the definition of the logic/GUI of
the app, logic of the virtual sensing task, definition of metadata of the space and devices). Let 𝐿𝑜𝐶𝑤𝑖𝑡ℎ

be the number of LoC required to develop with SemIoTic as 𝐿𝑜𝐶𝑤𝑖𝑡ℎ = 𝑛
𝑤𝑟𝑎𝑝

𝑙𝑜𝑐
× |𝑃𝑆 |. Where 𝑛𝑤𝑟𝑎𝑝

𝑙𝑜𝑐
is

the average LoC required to develop the data and scope mapping of a wrapper. The metric does not
include virtual sensor development as we provide developers with the appropriate generic artifact
so that they just need to implement the logic of the virtual sensing task. We measured the average
𝑛
𝑤𝑟𝑎𝑝

𝑙𝑜𝑐
to be 5 LoC in the simple data type wrappers generated for the previous experiments. Then,

let 𝐿𝑜𝐶𝑤/𝑜 be the number of LoC to develop without SemIoTic as 𝐿𝑜𝐶𝑤/𝑜 =
∑ |𝑉𝑆 |

𝑗=1 𝑛𝑖𝑛
𝑙𝑜𝑐

× 𝑛𝑖𝑛 (𝑣𝑠 𝑗).
Where 𝑛𝑖𝑛

𝑙𝑜𝑐
is the average LoC required to setup an input data source (setup a consumer, configure

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:29

its URI, etc). Defining 𝑛𝑖𝑛
𝑙𝑜𝑐

is challenging as this may differ depending on the protocol and specific
device (e.g., in [9] the authors setup an MQTT subscriber by using 8 LoC without considering the
data mapping task). We assume the best case scenario when developing plans without SemIoTic by
considering 5 LoC for setting up a consumer and 2 additional LoC to perform data mapping for a
simple message type. Thus, we consider 𝑛𝑖𝑛

𝑙𝑜𝑐
= 7.

level 1 level 2 level 3 level 4 level 5 level 6 level 7

Complexity

0

200

400

600

800

N
u
m

b
e
r

o
f
S

e
n
s
o
rs Virtual sensors

Physical sensors

0

50

(a)

Complexity

0

2000

4000

6000

8000

L
in

e
s
 o

f
C

o
d

e

w/o SemIoTic

w SemIoTic & 100% wrappers

w SemIoTic & 50% wrappers

w SemIoTic & 25% wrappers

500

(b)

Level 3 Level 4Level 1 Level 2 Level 6 Level 7Level 5

Fig. 18. Development effort with (w) and without (w/o) SemIoTic.

Fig. 18(a) shows a plot of the average |𝑃𝑆 | and |𝑉𝑆 | with increasing level of complexity. For
instance, a plan with complexity 5 would require interacting with 62 virtual sensors and 112 physical
sensors. Fig 18(b) shows the number of LoC required to develop an application, with and without
SemIoTic, vs. the complexity of the scenario. With SemIoTic, we vary the number of wrappers
required as a percentage of the number of physical sensors (as some sensors could be of the
same type/brand and handled by the same wrapper). For instance, in our previous experiment for
the smart building the ratio was less than 1% as we developed 4 wrappers in total for cameras
(around 40), HVAC sensors (around 7K), WiFi APs (around 60), and bluetooth beacons (around 200).
Fig 18(b) shows, for instance, that developing the complexity 5 plan requires 1.2K LoC without
SemIoTic compared to 500, 300, 100, and 30 LoC using SemIoTic (having to develop wrappers
for 100%, 50%, 25%, and 5% of the total physical sensors). Based on the results in Fig. 18(b), developing
an application using SemIoTic reduces the effort (in terms of LoC) by 97% to 55%. Notice that
this experiment measures development effort just in terms of LoC and thus it does not consider
other efforts which SemIoTic alleviates. For instance, the effort required to find/understand/utilize
libraries to handle interactions with different protocols, to develop the logic to handle such complex
plans, to handle user needs in a more semantically meaningful way, etc.

8.5 Discussion
SemIoTic aims to facilitate the development of IoT applications in different smart spaces. While
its translation of low-level to high-level information adds latency, this has to be performed at
some point since IoT data is too low-level for users to consume. Today, this is usually done at the
application level (which is sometimes pushed to the cloud). This means that applications have to
receive low-level data, which can incur in additional network latency costs, and then translate it.
In SemIoTic, this is done within the system to avoid that additional network transmission costs;
reduce the complexity and interactions between IoT applications and heterogeneous devices; and
facilitate IoT developers that might not be familiar with low-level IoT data.
The experiments have shown the feasibility of our approach in small and medium scale IoT

deployments. Scalability depends on several factors such as: (i) the number of data requests; (ii) the

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

1:30 Roberto Yus, et al.

complexity-level of the generated plans – i.e., the number of VSs involved in each plan; (iii) the time
VSs take to process raw data; and (iv) the type of each user action – i.e., synchronous, asynchronous,
and streaming. Based on the experiment in Section 8.3, SemIoTic handles up to 450 requests per
second from 50 simultaneous space occupants with an average response time of 1,024 ms. Every
request is served using a plan that involves on average 7 virtual sensors and 14 IoT devices and
every virtual sensor processes data for a time extracted from a range of 10-40ms.

Scenarios that require a much larger scale (e.g., a SemIoTic managing the sensors in a smart city)
would require extensions to support real-time operations. In particular, translating each user action
in real-time might not be feasible in such scenarios but it also might not be required. Strategies
that cache both previous translation plans, as well as previous results obtained when processing
different user actions, can help in those situations. However, this presents additional challenges
such as maintaining the cache, updating it when the underlying sensor infrastructure changes, etc.

Additionally, we have shown that SemIoTic decreases application development effort measured
in terms of LoC written. It would be interesting to understand and measure also how the reduction
in the LoC required to develop a smart application translates into decreasing the overall application
development time. However, designing and performing such a study in a meaningful manner is not
trivial and presents several challenges that made it infeasible for this paper. This include, among
others, gathering a statistically relevant group of diverse engineers with knowledge/experience on
the development of IoT applications and IoT communication/data protocols.

9 CONCLUSIONS
Wehave presented the SemIoTic ecosystem, a holistic approach to facilitate application development,
space management, service provision, and reusability of IoT content across different smart spaces
from diverse domains. The ecosystem includes three main components: (1) a Marketplace which
serves as a repository of content (i.e., applications, domain models, wrappers, and virtual sensors)
for a smart space; (2) a Hub that enables users to discover smart spaces around them; and (3) the
network of SemIoTic-enabled smart spaces which offer applications to users. SemIoTic facilitates the
development of space and sensor agnostic applications by offering interfaces to express requirements
(i.e., requests for data, commands, and policies) based on high-level semantically meaningful
concepts. Then, SemIoTic translates those into actions on the underlying IoT device infrastructure
deployed in each smart space. Finally, it communicates with the devices to retrieve data or actuate
them. We have shown the feasibility of our approach through a reference implementation and
the deployment at the University of California Irvine campus. In the future, we plan to continue
deploying the system in other smart spaces and domains, such as nursing homes, and promoting the
development of content for it. We also plan to deal with other challenges related to the definition
and management of consistent user-defined policies.

ACKNOWLEDGMENTS

This material is based on research sponsored by DARPA under Agreement No. FA8750-16-2-0021. The U.S.
Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government. This work is also supported by NSF Grants No. 1527536, 1545071,
1952247, 2008993, 2032525, and 2133391. Also, we would like to thank Andrei Homentcovschi, DongCheol
Jwa, HyeEun Song, Hyunji Lee, Jorge Carlos, Lasse Nordahl, Leo Peng, MyoungHoon Han, Nada Lahjouji,
Nathan Ma, Rayan Al Atab, Tristan Jogminas, Stuart McClintock, Vikram Miryala, William Sun, and Yiming
Wang for their help with the implementation.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:31

REFERENCES
[1] [Online; accessed May-2021]. SemIoTic. https://tippers.ics.uci.edu/semiotic
[2] [Online; accessed September-2021]. Project Haystack. https://project-haystack.org
[3] Mussab Alaa, A. A. Zaidan, B. B. Zaidan, Mohammed Talal, and Miss Laiha Mat Kiah. 2017. A review of smart home

applications based on Internet of Things. J. Netw. Comput. Appl. 97 (2017).
[4] Pandarasamy Arjunan, Nipun Batra, Haksoo Choi, Amarjeet Singh, Pushpendra Singh, and Mani B Srivastava. 2012.

Sensoract: a privacy and security aware federated middleware for building management. In 4th ACM Workshop on
Embedded Sensing Systems for Energy-Efficiency in Buildings.

[5] Luigi Atzori, Antonio Iera, and Giacomo Morabito. 2010. The Internet of Things: A survey. Comput. Networks 54, 15
(2010).

[6] Bharathan Balaji, Arka Aloke Bhattacharya, Gabriel Fierro, Jingkun Gao, Joshua Gluck, Dezhi Hong, Aslak Johansen,
Jason Koh, Joern Ploennigs, Yuvraj Agarwal, Mario Berges, David E. Culler, Rajesh E. Gupta, Mikkel Baun Kjærgaard,
Mani B. Srivastava, and Kamin Whitehouse. 2016. Brick: Towards a Unified Metadata Schema For Buildings. In 3rd
ACM Int. Conf. on Systems for Energy-Efficient Built Environments, BuildSys.

[7] Debasis Bandyopadhyay and Jaydip Sen. 2011. Internet of Things: Applications and Challenges in Technology and
Standardization. Wireless Personal Communications 58, 1 (2011).

[8] Robert Battle and Dave Kolas. 2011. Geosparql: enabling a geospatial semantic web. Semantic Web Journal 3, 4 (2011),
355–370.

[9] Georgios Bouloukakis, Nikolaos Georgantas, Patient Ntumba, and Valérie Issarny. 2019. Automated synthesis of
mediators for middleware-layer protocol interoperability in the IoT. Future Gener. Comput. Syst. 101 (2019).

[10] Joshua Cao, Jesse Chong, Marissa Lafreniere, Owen Yang, Primal Pappachan, Sharad Mehrotra, and Nalini Venkatasub-
ramanian. 2020. The ZotBins Solution to Waste Management Using Internet of Things: Poster Abstract. In 18th Conf.
on Embedded Networked Sensor Systems, Sensys.

[11] Angelo Paolo Castellani, Thomas Fossati, and Salvatore Loreto. 2012. HTTP-CoAP cross protocol proxy: an implemen-
tation viewpoint. In 9th IEEE Int. Conf. on Mobile Ad-Hoc and Sensor Systems, MASS.

[12] David A Chappell. 2004. Enterprise service bus. " O’Reilly Media, Inc.".
[13] Bo Cheng, Da Zhu, Shuai Zhao, and Junliang Chen. 2016. Situation-aware IoT service coordination using the event-

driven SOA paradigm. IEEE Transactions on Network and Service Management 13, 2 (2016).
[14] Matteo Collina, Giovanni Emanuele Corazza, and Alessandro Vanelli-Coralli. 2012. Introducing the QEST broker:

Scaling the IoT by bridging MQTT and REST. In 23rd IEEE Int. Symposium on Personal, Indoor and Mobile Radio
Communications, PIMRC.

[15] Michael Compton, Payam Barnaghi, Luis Bermudez, Raúl García-Castro, Oscar Corcho, Simon Cox, John Graybeal,
Manfred Hauswirth, Cory Henson, Arthur Herzog, Vincent Huang, Krzysztof Janowicz, W. David Kelsey, Danh Le
Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin Page, Alexandre Passant, Amit Sheth,
and Kerry Taylor. 2012. The SSN ontology of the W3C semantic sensor network incubator group. Journal of Web
Semantics 17 (2012).

[16] Michael Compton, Payam M. Barnaghi, Luis Bermudez, Raul Garcia-Castro, Óscar Corcho, Simon J. D. Cox, John
Graybeal, Manfred Hauswirth, Cory A. Henson, Arthur Herzog, Vincent A. Huang, Krzysztof Janowicz, W. David
Kelsey, Danh Le Phuoc, Laurent Lefort, Myriam Leggieri, Holger Neuhaus, Andriy Nikolov, Kevin R. Page, Alexandre
Passant, Amit P. Sheth, and Kerry Taylor. 2012. The SSN ontology of the W3C semantic sensor network incubator
group. J. Web Semant. 17 (2012).

[17] Bruno Costa, Paulo F. Pires, and Flávia Coimbra Delicato. 2016. Modeling IoT Applications with SysML4IoT. In 42th
Euromicro Conf. on Software Engineering and Advanced Applications, SEAA.

[18] Laura Daniele, Frank den Hartog, and Jasper Roes. 2015. Created in Close Interaction with the Industry: The Smart
Appliances REFerence (SAREF) Ontology.

[19] Hasan Derhamy, Jens Eliasson, and Jerker Delsing. 2017. IoT interoperability—on-demand and low latency transparent
multiprotocol translator. IEEE Internet of Things Journal 4, 5 (2017).

[20] Pratikkumar Desai, Amit P. Sheth, and Pramod Anantharam. 2015. Semantic Gateway as a Service Architecture for
IoT Interoperability. In IEEE Int. Conf. on Mobile Services, MS, Onur Altintas and Jia Zhang (Eds.).

[21] Gabe Fierro, Marco Pritoni, Moustafa AbdelBaky, Paul Raftery, Therese Peffer, Greg Thomson, and David E. Culler.
2018. Mortar: an open testbed for portable building analytics. In 5th Conf. on Systems for Built Environments, BuildSys,
Rajesh Gupta, Polly Huang, and Marta Gonzalez (Eds.).

[22] Yi Gao, Jiadong Zhang, Gaoyang Guan, and Wei Dong. 2020. LinkLab: A Scalable and Heterogeneous Testbed for
Remotely Developing and Experimenting IoT Applications. In 2020 IEEE/ACM Fifth Int. Conf. on Internet-of-Things
Design and Implementation, IoTDI.

[23] Gartner. 2019. 5.8 Billion Enterprise and Automotive IoT Endpoints Will Be in Use in 2020. https://www.gartner.com/
en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

https://tippers.ics.uci.edu/semiotic
https://project-haystack.org
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io
https://www.gartner.com/en/newsroom/press-releases/2019-08-29-gartner-says-5-8-billion-enterprise-and-automotive-io

1:32 Roberto Yus, et al.

[24] Nikolaos Georgantas, Georgios Bouloukakis, Sandrine Beauche, and Valérie Issarny. 2013. Service-Oriented Distributed
Applications in the Future Internet: The Case for Interaction Paradigm Interoperability. In 2nd European Conf. on
Service-Oriented and Cloud Computing, ESOCC, Kung-Kiu Lau, Winfried Lamersdorf, and Ernesto Pimentel (Eds.),
Vol. 8135.

[25] Thomas R. Gruber. 1993. A translation approach to portable ontology specifications. Knowledge Acquisition 5, 2 (1993).
[26] Armin Haller, Krzysztof Janowicz, Simon J. D. Cox, Maxime Lefrançois, Kerry Taylor, Danh Le Phuoc, Joshua Lieberman,

Raúl García-Castro, Rob Atkinson, and Claus Stadler. 2019. The modular SSN ontology: A joint W3C and OGC standard
specifying the semantics of sensors, observations, sampling, and actuation. Semantic Web 10, 1 (2019).

[27] Jan Janak and Henning Schulzrinne. 2016. Framework for rapid prototyping of distributed IoT applications powered
by WebRTC. In 2016 Principles, Systems and Applications of IP Telecommunications, IPTComm.

[28] Minsung Jang, Hyunjong Lee, Karsten Schwan, and Ketan Bhardwaj. 2016. SOUL: an edge-cloud system for mobile
applications in a sensor-rich world. In 2016 IEEE/ACM Symposium on Edge Computing, SEC.

[29] Krzysztof Janowicz, Armin Haller, Simon J.D. Cox, Danh Le Phuoc, and Maxime Lefrançois. 2019. SOSA: A lightweight
ontology for sensors, observations, samples, and actuators. Journal of Web Semantics 56 (2019).

[30] Tomasz Kalbarczyk and Christine Julien. 2018. Omni: An application framework for seamless device-to-device
interaction in the wild. In 19th Int. Middleware Conf.

[31] Konstantinos Kotis and Artem Katasonov. 2013. Semantic Interoperability on the Internet of Things: The Semantic
Smart Gateway Framework. IJDST 4, 3 (2013).

[32] Pratik Lade, Yash Upadhyay, Karthik Dantu, and Steven Y Ko. 2016. Developing Adaptive Quantified-Self Applications
Using DynaSense. In 2016 IEEE First Int. Conf. on Internet-of-Things Design and Implementation, IoTDI.

[33] Yiming Lin, Daokun Jiang, Roberto Yus, Georgios Bouloukakis, Andrew Chio, Sharad Mehrotra, and Nalini Venkata-
subramanian. 2020. LOCATER: Cleaning WiFi Connectivity Datasets for Semantic Localization. Proc. VLDB Endow. 14,
3 (2020).

[34] Marcin Luckner, Maciej Grzenda, Robert Kunicki, and Jaroslaw Legierski. 2020. IoT Architecture for Urban Data-Centric
Services and Applications. ACM Trans. Internet Techn. 20, 3 (2020).

[35] Behailu Negash, Amir M Rahmani, Tomi Westerlund, Pasi Liljeberg, and Hannu Tenhunen. 2016. LISA 2.0: lightweight
internet of things service bus architecture using node centric networking. J. of Ambient Intelligence and Humanized
Computing 7, 3 (2016).

[36] Joseph Noor, Hsiao-Yun Tseng, Luis Garcia, and Mani Srivastava. 2019. Ddflow: visualized declarative programming
for heterogeneous iot networks. In Int. Conf. on Internet of Things Design and Implementation.

[37] Ioannis V. Papaioannou, Dimitrios T. Tsesmetzis, Ioanna Roussaki, and Miltiades E. Anagnostou. 2006. A QoS Ontology
Language for Web-Services. In 20th Int. Conf. on Advanced Information Networking and Applications, AINA.

[38] Primal Pappachan, Martin Degeling, Roberto Yus, Anupam Das, Sruti Bhagavatula, William Melicher, Pardis Emami
Naeini, Shikun Zhang, Lujo Bauer, Alfred Kobsa, Sharad Mehrotra, Norman M. Sadeh, and Nalini Venkatasubramanian.
2017. Towards Privacy-Aware Smart Buildings: Capturing, Communicating, and Enforcing Privacy Policies and
Preferences. In 37th IEEE Int. Conf. on Distributed Computing Systems Workshops, ICDCS.

[39] Primal Pappachan, Roberto Yus, Sharad Mehrotra, and Johann-Christoph Freytag. 2020. Sieve: A Middleware Approach
to Scalable Access Control for Database Management Systems. Proc. VLDB Endow. 13, 11 (2020).

[40] Ferry Pramudianto, Carlos Alberto Kamienski, Eduardo Souto, Fabrizio F. Borelli, Lucas L. Gomes, Djamel Sadok,
and Matthias Jarke. 2014. IoT Link: An Internet of Things Prototyping Toolkit. In IEEE 11th Int. Conf. on Ubiquitous
Intelligence and Computing.

[41] Eric Prud’hommeaux and Andy Seaborne. 2008. SPARQL Query Language for RDF. W3C Recommendation. http:
//www.w3.org/TR/rdf-sparql-query/

[42] Felix Maximilian Roth, Christian Becker, Germán Vega, and Philippe Lalanda. 2018. XWARE - A customizable
interoperability framework for pervasive computing systems. Pervasive Mob. Comput. 47 (2018).

[43] Eun-Jeong Shin, Roberto Yus, Sharad Mehrotra, and Nalini Venkatasubramanian. 2017. Exploring fairness in par-
ticipatory thermal comfort control in smart buildings. In 4th ACM Int. Conf. on Systems for Energy-Efficient Built
Environments, BuildSys.

[44] Sabrina Sicari, Alessandra Rizzardi, Luigi Alfredo Grieco, and Alberto Coen-Porisini. 2015. Security, privacy and trust
in Internet of Things: The road ahead. Comput. Networks 76 (2015).

[45] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. 2007. Pellet: A practical OWL-DL
reasoner. J. Web Semant. 5, 2 (2007).

[46] Tania Tudorache, Csongor Nyulas, Natalya Fridman Noy, and Mark A. Musen. 2013. WebProtégé: A collaborative
ontology editor and knowledge acquisition tool for the Web. Semantic Web 4, 1 (2013).

[47] Itorobong S. Udoh and Gerald Kotonya. 2018. Developing IoT applications: challenges and frameworks. IET Cyper-Phys.
Syst.: Theory & Appl. 3, 2 (2018).

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

The SemIoTic Ecosystem: A Semantic Bridge between IoT Devices and Smart Spaces 1:33

[48] Roberto Yus, Georgios Bouloukakis, Sharad Mehrotra, and Nalini Venkatasubramanian. 2019. Abstracting Interactions
with IoT Devices Towards a Semantic Vision of Smart Spaces. In 6th ACM Int. Conf. on Systems for Energy-Efficient
Buildings, Cities, and Transportation, BuildSys.

ACM Trans. Internet Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.

	Abstract
	1 Introduction
	2 Related Work
	2.1 IoT Frameworks
	2.2 IoT Interoperability

	3 SemIoTic Ecosystem
	3.1 SemIoTic Marketplace: Discovering Content
	3.2 SemIoTic-Enabled Smart Space: Managing IoT Devices
	3.3 SemIoTic Hub: Discovering Smart Spaces

	4 semic Meta-Ontology
	4.1 Defining Domain Models based on semic

	5 Interacting with SemIoTic
	5.1 Action Language
	5.2 SemIoTic API
	5.3 Developing Applications Interfacing with SemIoTic

	6 Translating sal Actions
	6.1 Flattening
	6.2 Execution Plans Generation
	6.3 Plan Realizability Checking
	6.4 Feasibility checking

	7 Action Execution
	7.1 Plan Selection and Execution
	7.2 Device Wrapper Design
	7.3 Virtual Sensor Design

	8 Experiments
	8.1 Experimental Setup
	8.2 Handling runtime user actions
	8.3 Evaluating the efficiency of user action execution
	8.4 Measuring Development Effort
	8.5 Discussion

	9 Conclusions
	Acknowledgments
	References

