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ABSTRACT 
 
 
 

 
Title of Document: DEVELOPING NOVEL TOOLS TOWARD β-

AMYLOID-NEURON INTERACTION 
DISCOVERY.   

  
 Natasha Patrice Wilson, Doctorate of 

Philosophy, 2016 
  
Directed By: Mariajosé Castellanos, Assistant Professor and 

Theresa A. Good, Adjunct Professor, 
Department of Chemical, Biochemical and 
Environmental Engineering 

 
 

β-amyloid(Aβ) is the primary protein component of senile plaques associated 

with Alzheimer’s disease (AD) histopathology. Because of Aβ’s longstanding 

implication in the initiating events leading to AD pathology in in vitro and in vivo 

experimental preparations, it is commonly considered the causative agent of AD.  

Yet, though well studied, there still exists a lack of consensus concerning Aβ’s 

interactions with neurons and resulting alterations in neuronal signaling. We 

hypothesize that this lack of consensus is due to an incomplete framework for 

interpreting experimental data and discriminating between different hypotheses for 

Aβ-neuron interactions. In our work, we propose two changes to this framework in 

order to design better experiments to elucidate Aβ’s interactions with neurons: 1) 

using computational models to discriminate between different hypotheses of Aβ-

neuron interactions by making predictions and comparing them to experimental data, 



  

and 2) assume a complex intracellular signaling network model instead of a linear 

pathway hypothesis. By developing our models with these two changes in mind, our 

results demonstrate the ability of an electrophysiological neuron model to make 

discriminating predictions under experimentally testable conditions. Our results also 

show that a complex, intracellular signaling model reveals that 20 years of 

experimental data collected investigating Aβ-induced intracellular signaling are not 

self-consistent. With data that is more consistent internally and with a complex, 

intracellular network, the methodology we developed has the potential to discriminate 

between hypotheses of Aβ-neuron interactions. Finally, we demonstrate, using 

network analysis, the need to move away from a simple, linear pathway hypothesis 

toward a more complex system and how the inconsistencies in our dataset collected 

from the literature could have arisen. We make recommendations of discriminating 

experiments using path length analysis and our Signal Flow Method that we 

developed. With further development of these computational tools, we can move 

closer to designing experiments to identify Aβ-neuron interactions with greater 

discriminatory power. With this understanding of Aβ’s deleterious effects on neurons, 

better treatments can be designed. Furthermore, these methods could be applied to 

other misfolded protein (amyloid) diseases, such as Parkinson’s disease, or other 

diseases where a known agent interacts extracellularly via an unknown receptor in 

neurons to cause cellular dysfunction.  
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Chapter 1: Introduction 

 

1.1 The Role of β-Amyloid in Alzheimer’s Disease Etiology 

1.1.1 Overview 

 
Alzheimer’s disease (AD) is a neurodegenerative disease that causes learning 

and memory dysfunction. Approximately 5.3 million Americans are living with AD 

in 2015[1]. The current healthcare cost associated with AD and other dementias (of 

which AD is the most prevalent) is $226 billion dollars and is expected to rise over 

the next 35 years to $1.1 trillion dollars[1]. AD is the “sixth leading cause of death in 

the U.S.” and out of the top ten causes of death is the only one that “cannot be 

prevented, cured or attenuated”[1]. The histopathological features of AD are senile 

plaques and neurofibrillary tangles[2]. These senile plaques are found in the 

extracellular space; while the neurofibrillary tangles are found in the intracellular 

space. Senile plaques are comprised primarily of a 39-43 amino acid peptide widely 

known as β-amyloid (Aβ); neurofibrillary tangles are primarily composed of hyper-

phosphorylated tau. AD was discovered in 1907 by Alois Alzheimer, who studied the 

behavior of two patients who were subsequently found, upon autopsy, to have senile 

plaques and neurofibrillary tangles in areas of massive neuronal loss[3]. However, it 

was not until 1984 when Glenner and Wong[4] isolated and characterized the Aβ 

peptide[4]. It was at this point that Aβ became associated with AD pathogenesis.  
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AD is a highly complex disease. There are two types of AD, familial and 

sporadic.  Only 5% of AD sufferers have the familial variety of the disease, which is 

inheritable due to genetic defects in the amyloid precursor protein (APP), presenilin 1 

and 2 genes[5].  Familial AD (FAD) gives rise to an early onset of the 

neurodegenerative processes of the disease (around age 40). The other 95% of cases 

are sporadic AD, which has a similar symptomatology as FAD, for which inheritable 

genetic pre-determinants are still under investigation[6]. The etiology of AD remains 

unknown, but there are a host of genetic, epigenetic and cellular responses that have 

been implicated in the pathogenesis of this disease.  
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Figure 1: A diagram of AD’s effect on individuals, caregivers, and the nation. 

Information contain in this diagram from[1]. 



 

 4 
 

 

1.1.2 The Amyloid Cascade Hypothesis 

 
After close to a decade of research, Hardy and Higgins first proposed the 

Amyloid Cascade Hypothesis (ACH) as an explanation for the pathogenesis of 

AD[7]. The ACH posits that an over-accumulation of Aβ occurs due to mutations in 

the Amyloid Precursor Protein (APP). In this seminal paper, Hardy and Higgins 

describe the proteolytic cleavage of APP that produces Aβ. Once formed from APP, 

Aβ, in the extracellular space, adversely interacts with neurons, which causes aberrant 

intracellular signaling. In 2002, Hardy and Selkoe offered a more refined and detailed 

presentation of the ACH[8], which especially included more genetic evidence that 

mutations in presenilins 1 and 2 result in the over-accumulation of Aβ. These 

presenilin genes directly affect γ-secretase, one of two proteins responsible for 

cleaving Aβ from APP, resulting in altered APP metabolism and overproduction of 

Aβ[8]. Hardy and Selkoe go on to describe the cascade begetting a number of 

detrimental processes, including apoptosis. This aberrant signaling also produces 

hyper-phosphorylated tau. As cell death takes place, this causes widespread neuronal 

dysfunction across the affected brain areas. Though the development of the ACH 

stems from discoveries about the etiology of familial AD, researchers have generally 

assumed a similar etiology for sporadic case of AD. However, in the cases of sporadic 

AD the initiating cause of the disease progression is still under investigation. There 

are multiple proposed etiologies, primarily having to do with age-related Aβ 

accumulation and clearance[5]; in some cases, having to do with the possible effect of 
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head injury[9]. Therefore, the ACH has become the prevailing hypothesis for Aβ’s 

role in AD etiology, though it is not without its opponents[9-14].  

 

A constant challenge to the ACH has been Aβ’s central causative role. This is 

due primarily to a lack of correlation between plaque burden and cognitive 

impairments[8-11, 13-16]. It has been observed that changes senile plaque and even 

neurofibrillary tangle accumulation occur decades prior to symptoms of cognitive 

decline and cellular death[16]. Therefore, researchers have proposed refinements to 

the ACH in order to reconcile Aβ’s seemingly disjointed role in disease progression. 

For example, it has been postulated that the presence of highly toxic, oligomeric Aβ 

species may explain the discrepancy between plaque burden and cognitive decline[8, 

17]. Difficulties in isolating and identifying these soluble oligomeric toxic structures 

of Aβ has made it difficult to examine this refinement of the ACH[17]. Another 

proposed refinement to the hypothesis states that Aβ “is necessary, but not 

sufficient”[16] for AD pathogenesis, and that other processes such as ageing, reactive 

oxidation and tauopathies work in concert with Aβ in AD progression[11, 14-16, 18]. 

However, Aβ may act as a trigger for these processes[16], in which case the failure of 

many Aβ drug therapies could be due to not treating the patients early enough to 

avoid the trigger initiated by Aβ.  This is a therapeutic challenge since the early stages 

of the disease are not readily identifiable and the early mechanisms of Aβ’s actions on 

neurons still remains unknown. Despite the many challenges in proving the Amyloid 

Cascade Hypothesis, this hypothesis was the catalyst of continued efforts to identify 

Aβ’s specific role and its mechanism of action on neurons.  
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Figure 2: A diagram describing Aβ as a trigger of cognitive decline characteristic of AD. Karran et 

al[16] propose that Aβ may not be the primary initiator of AD progression, but rather acts as a trigger for 

cognitive decline.  When other potential factors, such as aging, environment, presence of reactive oxidation 

species, etc, are present, and Aβ levels reach a certain threshold in the brain, Aβ triggers the pathology of 

AD, particularly cognitive decline.  
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The majority of research efforts since this seminal paper[7] has used the 

Amyloid Cascade Hypothesis as a de facto hypothesis for experimental programs. In 

particular, in vitro experimentation focuses almost exclusively on identifying Aβ’s 

early action on neurons. In challenging the veracity of the ACH, some researchers put 

forth the objection to the clinical relevance of an in vitro system[8, 14, 16]. In 

general, the concern is that the concentrations used for Aβ in in vitro experiments are 

not biologically relevant. While concentrations of Aβ in the brain tend to be in the 

picomolar range, experimentalists have used concentrations between 1nM-100µM[19, 

20]. These higher concentrations may cause the acute effects of neurotoxicity 

observed, but because they are not physiologically relevant concentrations, the results 

may not translate well to the in vivo system[16, 18]. Another concern with in vitro 

experiments is time scale. AD progression takes place over decades, whereas in vitro 

experiments demonstrate neurotoxicity and neuronal death in a period of hours to 

days. However, the need for understanding the results of in vitro experiments is 

becoming more apparent with the newer refinements in the ACH. If Aβ is triggering a 

litany of other processes early on in the disease process, then it is likely that 

understanding the short-time scale interaction of Aβ with the neuron might open up 

other avenues for drug therapy design early in the disease progression. Though oft 

challenged, in vitro experiments do provide evidence of Aβ’s neurotoxic effects and 

continues to provide evidence for the ACH.  

 

1.1.3 In vitro studies of Aβ-neuron interactions in primary culture neurons 
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In order to elucidate the underlying mechanisms of Aβ-induced neurotoxicity 

proposed by the ACH, researchers have observed changes in intracellular processes 

using in vitro experiments on neurons exposed to Aβ. More than two decades worth 

of in vitro experiments have not produced a consensus on a mechanism of action for 

Aβ[17, 18, 21-23]. A multi-factorial problem, there are multiple potential factors for 

this non-consensus: different Aβ-species and aggregation states used by various 

laboratory preparations, a large Aβ concentration range, and differing timescales of 

Aβ exposure to cells prior to measurement of cellular processes. However, with these 

factors potentially confounding the comparison of results from reports in the field, 

one could conclude that if it is a mixture of these factors that are providing divergent 

data that within any particular factor there might still be some consensus. However, 

this is not what is evidenced by the data from the literature. Instead, when the data are 

collected and categorized by the aforementioned factors, there still exists a non-

consensus even within the factors. Therefore, there must be another reason for this 

non-consensus, which will be raised toward the end of this section.  

 

 1.1.3.1 Aβ species and aggregation state 

 

Aβ is a 39-43 amino acid peptide and it exists in the brain and cerebral 

spinal fluid as a mixture of peptide lengths[21]. It is believed that Aβ(1-40) is 

the most abundant peptide length found in the brain and then Aβ(1-42). Aβ(1-

42) is considered the more toxic of the two species (1-40 and 1-42) and that an 

increase in the ratio of Aβ(1-42):Aβ(1-40) may trigger neurotoxicity in the 
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brain associated with AD. Other species are used by experimentalists, on 

occasion: Aβ(25-35), Aβ(1-38) and Aβ(1-39). Aβ(25-35) is used because it is 

believed that the active portion of the peptide is found within these 10 amino 

acids. With respect to aggregation state, fibrils have been primarily used 

because their preparation and characterization are well-defined, and it is 

mature fibrils that make up the plaques that are identifiable upon autopsy[3]. 

However, monomers and various types of oligomers are also used. Monomers 

are usually considered not to be neurotoxic, and in some cases may be 

neuroprotective[24]. On the other hand, both oligomers and fibrils have shown 

neurotoxicity in neuronal cultures with oligomers being more neurotoxic than 

fibrils[17]. The solubility and multi-meric state of oligomers, makes stable 

oligomers difficult to reproducibly prepare and to characterize in 

experimentation. Here, experiments in which each species type was used will 

be discussed, with aggregation state being discussed within as a subtopic.  
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Table 1.1: Mechanisms of Aβ’s action on neurons observed by various investigators using 

different Aβ species and aggregation states.  This table shows the different mechanisms that have 

been observed in experiments using Aβ(1-40), Aβ(1-42), Aβ(1-38), Aβ(1-39), and Aβ(25-35) 

species; fibrils (diagonal-lined box),  oligomers (checkered box), or both (black box). No category 

of mechanisms has a consensus of all of the species types or aggregation states.  
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In general, the mechanisms of Aβ-neuron interactions proposed in the 

literature can be placed into five categories: ion channel-mediated, receptor-

mediated (excluding ion channels and ion-conducting receptors such as 

NMDA receptors), membrane-mediated, Aβ ion channel or pore, and other 

(Table 1.1).  Various laboratories have used Aβ(1-40), Aβ(1-42), Aβ(25-35), 

Aβ(1-38), and Aβ(1-39) species in their experiments. In the first decade of 

research in this area, controlling Aβ structure and aggregation state was 

difficult. With fibrils being the more stable aggregate, these were used most 

often in experimental preparations. In the next decade, more sophisticated 

techniques for isolating particular structures of Aβ, as well as isolating soluble 

oligomers, were developed[25]. The greater availability of synthetic Aβ 

peptides of various lengths also added in greater control over Aβ species. The 

species used in the first decade of research were primarily Aβ(1-40), Aβ(1-42) 

and Aβ(25-35). In the second decade of research, more emphasis was placed 

on the greater toxicity of Aβ(1-42) than Aβ(1-40)[26], and so Aβ(1-42) was 

used predominantly, followed by Aβ(1-40). So, for example, in Table 1.1, it 

would make sense, given the predominant use of Aβ(1-40) and Aβ(1-42), 

especially in the second decade of research, the oligomeric states are observed 

only for Aβ(1-40) and Aβ(1-42). In the second decade of research, other Aβ 

species, such as Aβ(1-39) and Aβ(1-38), are not used with much frequency.   

 

Of the five categories of mechanisms in Table 1.1, four of them have 

been observed by different groups as potential mechanisms by which Aβ(1-



 

 12 
 

40) and Aβ(1-42) interacts with neurons. Other species, which are used less in 

most preparations (Aβ(1-38), Aβ(1-39), Aβ(25-35)) each have been observed 

in only one category of mechanisms. Again, this is likely due to the infrequent 

use of these species in experimental preparations. Ion channel-mediated 

mechanisms in experimental preparations using fibrillar Aβ(1-40)[27-31], 

Aβ(1-39)[27] and Aβ(25-35)[29, 32], and both fibrillar[30, 32] and oligomeric 

Aβ(1-42), have been observed. The species and aggregation states used in 

cases where a receptor-mediated mechanism was postulated were Aβ(1-

40)[33-35], Aβ(1-42)[35, 36] fibrils and oligomers. Aβ(1-42)[37] oligomers 

were used in preparations where membrane-mediated mechanisms were 

hypothesized. Aβ(1-40)’s[38] action on neurons has been postulated, also, 

through a Aβ channel or pore. This mechanism has also been observed often 

in acellular membranes[39, 40]. Other mechanisms have been reported 

involving Aβ(1-40), Aβ(1-42), Aβ(1-39), and Aβ(25-35). Some of these 

mechanisms have involved changes in glucose uptake[41], attenuation of Aβ-

related neurodegeneration via a GSK-3β pathway[42, 43], impairment of 

long-term potentiation[44], increased transcription factor[45] and gene 

expression[46], among others[20, 47-53]. The variety of mechanisms amongst 

experimental preparations involving different Aβ species and aggregation 

states indicates that it is unlikely that the lack of consensus on Aβ-neuron 

interactions is due to the use of different species and aggregation states of Aβ.  
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Table 1.2: Mechanisms of Aβ’s action on neurons observed by various investigators using 

different Aβ concentrations.  This table shows the different mechanisms that have been observed in 

experiments using nanomolar, low and high micromolar concentrations of Aβ. Each grey box 

represents the proposed hypothesis for Aβ-neuron interactions based on results from experimental 

data at each concentration range. In this figure, the specific aggregation states are not identified since 

Aβ concentrations are reported for the monomer, and the active states are not reported. The data here 

suggest possible promiscuity of Aβ, as at least three different mechanisms (ion-channel-mediated, 

receptor-mediated, and other) are proposed across the concentration range.   
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1.1.3.2 Concentration 

 

The concentration of Aβ monomer used in experiments ranges, in 

general, between 1nM-100µM[19, 20]. Picomolar concentrations of Aβ have 

been shown to act positively on synapses[54, 55]. There have been questions 

about the physiological relevance of high micromolar concentrations of 

Aβ[16]. Rarely, or if at all, are the concentration of active aggregates reported. 

Therefore, though the intended aggregate might be fibrils or oligomers, it is 

likely that all three states: monomer, oligomers and fibril, exist in the 

preparation in equilibrium[56, 57]. Though there are mechanisms that are 

observed across the concentration range (ion channel-, receptor-mediated, and 

other) (Table 1.2), this would be more suggestive of the promiscuity of the 

Aβ peptide, rather than a consensus on its mechanism of action. It has been 

suggested that Aβ might act in a more promiscuous manner on neurons, 

possibly affecting multiple receptors and/or receptor-types[17, 58].  

 

For preparations in which fibrils were the intended species, across the 

concentration range, ion channel-mediated mechanisms are observed[27-32]. 

However, receptor-mediated mechanisms are also observed for fibrils in the 

nanomolar[34, 59] and low micromolar[35, 60-62] range. Other mechanisms 

have also been proposed for experiments involving fibrils in the low[36, 41-

43, 46, 47, 52, 63] and high micromolar range[36, 41, 50, 53]. With respect to 
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preparations in which oligomers were the intended species, for the nanomolar 

range, other mechanisms have been observed. For example, Aβ oligomers 

have been shown to inhibit long-term potentiation[44] and cause PAK 

signaling deficits[64]. At low micromolar concentration, Aβ oligomers act via 

membrane-mediated mechanisms according to reports by various 

investigators[37, 65, 66]. Finally, at high micromolar concentrations, 

oligomers have been shown to interact with neurons via receptor-mediated 

mechanisms, such as interactions with the cellular prion protein[61]. Again, 

noting that these preparations do not necessarily represent a pure 

concentration of each aggregate, these data do not suggest a consensus, but 

possibly give credence to hypotheses describing the promiscuity of Aβ.  

 

 1.1.3.3 Time scale 
 

The timescales for experiments done with Aβ vary widely from 

milliseconds to days (Table 1.3). This is strongly a function of the type of 

experimental tools being used and the outcome the experimentalist desires to 

measure. Many investigators are interested in the link between Aβ and 

neurotoxicity, and so cell viability measurements are frequently employed. 

The neurotoxic effects of Aβ take place within hours to days[67, 68] .  

 

The temporal progression for most signaling events starts with the 

extracellular cue acting on a receptor or channel. This occurs during the 

milliseconds to seconds time frame[69]. In the literature data, Aβ-induced 
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mechanisms, such as ion channel-mediated mechanisms[28-32] and receptor-

mediated mechanisms[62, 70-72] have been observed at this time scale.  

 

Receptor-[33, 62], membrane-mediated[37, 73] and other 

mechanisms[43, 44, 46, 53, 71] have been reported in the literature to occur at 

the seconds to days timescale; however, at times greater than 60 minutes, 

changes in gene expression will occur, resulting in changes in protein 

expression[74]. This is significant when analyzing these data from the 

literature on Aβ and attempting to determine the initiating event. At the 

shorter time scale (< 60 minutes), it is possible to connect signaling events 

with the initial extracellular cue, albeit not a trivial task due to the complexity 

of intracellular signaling. However, as the timescale moves into hours or days, 

genetic and even epigenetic changes occur that can change the state of the 

neuron from the original state[18]. This may be a result of the initiating event, 

but not necessarily directly correlated, as a host of other processes may take 

place simultaneously. Therefore, the closer in time that a signaling event is 

measured to the initiating event, the more likely that the measured event is 

attributable to the initiating event[69]. With that being said, the data collected 

on the longer timescale ( > 60 minutes) may not correlate directly to the 

hypothesized initiating event because what is being measured is the result of 

downstream processes (gene and protein expression changes). But even for 

shorter timescale (< 60 minutes) data, there is still a lack of consensus on Aβ 
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mechanism of action, although ion channel-mediated mechanisms seem to 

predominate.   
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Table 1.3: Mechanisms of Aβ’s action on neurons observed by various investigators at different 

timescales.  This table shows the different mechanisms that have been observed in experiments at 

different timescales of Aβ incubation time, again, with fibrils (diagonal-lined box), oligomers 

(checkered box), or both (black box). No consensus is observed across the timescales.  
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As this discussion shows, there are factors in the experiments that are controllable. 

Each laboratory, in preparing their experiments, chooses these factors differently. It is 

possible that these non-standardized experimental preparations each contributes to the 

lack of consensus, but are not the primary factors. We propose that methods for 

discriminating between hypotheses, especially given a complex system, is the missing 

factor which could bring consensus to the widely disparate data in the literature. 

 

Because intracellular signaling does not occur as a series of linear pathways, 

but rather as a highly connected network of interacting proteins[75], many of the 

proteins being measured in the field are interconnected. This interconnectedness 

means that a significant number of proteins in a neuronal signaling network can 

receive a signaling from multiple pathways. It is important, therefore, to explore areas 

of signaling that are discriminatory. By utilizing computational tools, we can explore 

these systems, and their associated data, in silico and determine the best experimental 

methods that would allow for discrimination between hypotheses, whether a priori or 

a posteriori.  We will do this, first, a priori by recreating, in silico, experimentally 

testable conditions and discriminating between hypotheses by testing the model’s 

results against literature-derived data. We call this a priori because the assumption 

about Aβ-neuron interactions in silico are made beforehand (a priori), following the 

same methodology as would the experimentalist. Secondly, we will do this a 

posteriori by inferring Aβ-neuron interactions from literature-derived data on a 

complex system. This is a posteriori because we are inferring Aβ-neuron interactions 

from the data. Here, we also depart from a simplistic, linear view of intracellular 
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signaling in order to embrace the actual complexity of the system. In our final 

analysis, we attempt to justify this departure. In the next section, we will describe in 

greater depth the computational approaches available and the rationale for our 

computational strategy. 

 

 1.2 Computational Approaches for Modeling Aβ’s Early Action on 

Neurons 

1.2.1 Overview 

 
Computational and mathematical modeling has been introduced to the 

biological world, allowing for the exploration of the complex mechanisms underlying 

biological processes. This type of modeling allows for what could be deemed in silico 

experimentation.  The interface between modeling and experiments will always be a 

dynamic one within the field of biology, whereby experimental results are needed in 

order to build, refine and test the model and its predictions.  The mathematical and 

computational tools for modeling are almost as varied as the types of systems to be 

modeled.  

 

When designing a mathematical model, the complexity of the system, the 

spatial and temporal details of the system, the computability and computational 

expense of the proposed mathematical framework are typically taken into account. 

Beginning with the fullness of spatial and temporal complexity, partial differential 

equations can be used in order to simulate both the spatial and temporal changes in 
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metabolite concentration or protein activity, for example[76, 77]. Ordinary 

differential equations are oft employed when little to no spatial information is 

required or available for use in order to simulate temporal changes[76-78]. These two 

methods mentioned so far, depending on the complexity of the system, may require 

many parameters that have to be experimentally determined under specific 

conditions. This is problematic as the size of the system increases, such as when 

modeling complex systems. 

 

There are other modeling paradigms that allow for an increase in model size 

without an increase in the number of parameters. These modeling paradigms lose 

temporal detail or are without it at all. Boolean modeling assumes that each 

component of a system can take on a state value, usually on (=1) or off (=0)[78, 79]. 

Then, a transfer function is created (a linear combination of the input variables) that 

makes a prediction about the current state value of a set of components from the 

previous state of the inputs. This methodology has been used for modeling 

intracellular signaling because of the lack of need for parameters, and because the 

activity of intracellular proteins can be approximated to be on/off (Hill kinetics). Flux 

balance analysis makes an assumption about the system being at steady state and 

estimates the flux of (or the rates of) reactions via a global, constrained 

optimization[77, 80]. Again, because of the steady-state assumption, the number of 

parameters are reduced, but not absent as thermodynamic data are widely used as 

constraints on reaction fluxes. In addition, flux balance analysis is more compatible 

with metabolic modeling than modeling intracellular signaling because flux 
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information through pathways in metabolism can be constrained via conservation of 

mass[81]. However, intracellular signaling consists of reversible changes in the state 

of a protein, which is neither accumulated nor depleted. Thus, it is of greater 

importance to predict the state of a signaling protein (whether it is activated or 

inhibited) than to predict the flux of a signal through the pathway. Finally, topological 

analysis requires only knowledge of the components and their interacting partners in 

order to analyze the possible paths that could be traveled through chemical space[75, 

82].  Choosing an appropriate modeling schema and its implementation requires a 

detailed understanding of the underlying system and experimental data either for 

training, testing, and/or verification of the model’s predictions.  

The follow sections will describe some of the modeling paradigms used to 

model Aβ-neuron interactions.  

 

1.2.2 Electrophysiology Models 

 
In 1952, A.L. Hodgkin and A.F. Huxley published their seminal paper 

describing a mathematical model for the membrane conductance in the giant axon of 

a squid[83]. This mathematical formulation, borrowed from the mathematics of 

electrical circuit design, has since been used in electrophysiology to model and 

predict membrane conductances due to various types of ion channels present in 

biological membranes[84]. There having been few computational models that have 

examined the mechanisms of Aβ-neuron interactions, and they have mostly been 

electrophysiological models of the Hodgkin and Huxley type[85-87]. These models 

primarily focused on the interaction between Aβ and the fast-inactivating potassium 
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channel[85-88] or a Aβ pore[89]. They also focus on excitability of neurons due to 

Aβ, which means they modeled only one type of electrophysiology experiment – 

current clamp. In a current-clamp experiment, the current applied to a neuron is held 

constant while the change in voltage across the neuron is measured. Once a threshold 

current is applied, an action potential (or several) occurs. The strength of the applied 

current needed to evoke an action potential and the frequency of these potentials are 

what determine the neuron’s excitability, with and without the presence of Aβ.  

 

In Section 1.3.2, we describe how our work with an electrophysiological 

neuronal model expands on work done in this area in order to test multiple Aβ-neuron 

interactions under three experimentally testable conditions.  

 

1.2.3 Intracellular Signaling Networks 

 
 

In 1970, Martin Rodbell won the Nobel Prize in physiology or medicine in 

1994 for his discovery of G-proteins[90]. This began the era of research into 

intracellular signaling. From his simplistic, three component model of G-protein 

signaling, the field advanced to multi-component models with more complex 

interactions such as cross-talk and feedback. A well-known example of such a model 

is the Kholodenko MAPK pathway[91], a nine-component pathway with 6 feedback 

loops. With the advent of the proteomics era and high-throughput experimentation, in 

less than a decade the number of components in a model of intracellular signaling had 

increase 10-100 fold[75]. Now, there is enough experimental data to construct, 
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complex, systems-level models, rather than single pathways, for intracellular 

signaling.  

 

Over the past 15 years, investigations into Aβ’s effect on intracellular 

signaling began to predominate the literature. The search had begun for a pathway to 

target pharmacologically in order attenuate or treat AD. As this data became more 

abundant, the number of hypotheses for Aβ-neuron interactions also began to 

increase. It would appear that Aβ has effects on multiple pathways, instead of through 

a single pathway[17, 58]. In order to better understand the potential pathways that Aβ 

could affect, models of intracellular signaling have been used.  

 

To date, there have been no reports of using intracellular signaling network 

models to identify Aβ-neuron interactions.  Of reports on intracellular signaling 

networks used in AD research, AlzPathway[92] and AlzPlatform[93] stand out as 

highly comprehensive databases of information on AD. However, neither of these 

databases is used to bring consensus to nor to identify Aβ-neuron interactions based 

on known intracellular pathways in neurons and literature-derived experimental data.   

  

In Sections 1.3.3, we describe how we used a CA1 hippocampal neuronal 

signaling network to attempt to infer Aβ-neuron interactions that would explain the 

data found in the literature. In Section 1.3.4, we describe how we use this network to 

identify signaling motifs, their potential impact on experimental design, and 

interpretation of available experimental data in the literature.  
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1.3 This work 

1.3.1 Overview 

 
The work of this dissertation entails the development and evaluation of 

computational tools that were designed to identify Aβ-neuron interactions. 

Developing and utilizing such tools allows us to generate and test hypotheses of a 

complex system, and to identify potential confounding factors in an experiment so as 

to improve experimental design. The goal of this work was to produce experimentally 

testable results from various simulations such that, once tested, would provide 

experimental data that could discriminate between hypotheses of the Aβ-neuron 

interactions. Discrimination between hypotheses is the key. Currently, experiments 

are being designed and tested in a manner in which each investigator might prove his 

or her hypothesis (and thereby reject the null hypothesis of his or her experiment) but 

does not necessarily confirm or reject the results of another laboratory (see Section 

1.1.3). This has left the field full of experimental data from in vitro experiments 

without convergence or consensus.  Since the first formulation of the Amyloid 

Cascade Hypothesis, the results of in vitro experiments have fueled the conviction 

that Aβ is directly toxic to neurons, but those same experiments have failed to neither 

lead to a consistent mechanism of action for Aβ responsible for its toxicity nor yield 

actionable targets for therapeutic strategies.  
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In order to accomplish the aforementioned goal, it was necessary to bring 

together the current literature data appropriate for the type of computational models 

available. Then, the approach was taken to develop further and/or utilize already 

compiled computational algorithms suitable for the type of modeling required. This 

was to avoid re-inventing the wheel and instead either re-purposing the model to give 

the experimentally testable outputs required or applying an algorithm developed for 

one application to another, more complex problem. Subsequently, relevant 

hypotheses were tested to demonstrate the feasibility of utilizing each tool. For each 

tool, there were complications and drawbacks to their usefulness toward identifying 

Aβ-neuron interactions. However, in no case was the computational model proven 

insufficient for the applied problem, but rather that the modeling program was 

severely data-limited.  

 

1.3.2 Electrophysiological Model of Aβ’s Action on a Neuron 

In this work (found in Chapter 2), an electrophysiological model neuron[86] 

was used to test Aβ-neuron interactions under three experimentally testable 

conditions. These experimental conditions are: current-clamp, voltage-clamp and high 

potassium membrane depolarization. These are three typical experimental designs for 

electrophysiology experiments. As discussed in Section 1.2.2, most electrophysiology 

models of neurons used to test Aβ-neuron interactions focus on modeling current-

clamp experiments because of the action potential. The shape and frequency of action 

potentials are extremely important for fast inter-neuronal communication. However, 

the other two types of experiments, voltage-clamp and high potassium membrane 
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depolarization, are also used in the area of electrophysiology, in general, in order to 

identify and study the dynamics of channel opening and closing. This information is 

important, especially the dynamic information of channel opening and closing from 

voltage-clamp experiments, because changes in those dynamics in the presence of 

another compound, such as Aβ, can provide a detailed mechanism for its action on an 

ion channel and/or the membrane. Being able to model these three different 

experimental designs also provides various means of discriminating between the 

potential effects of Aβ on a neuron (pending that Aβ interacts either with an ion 

channel or the membrane) in well-understood, experimentally testable ways. In this 

work, we were able to identify the high potassium membrane depolarization 

experiment as being the most discriminatory of the three experimental conditions 

simulated for two common hypotheses of Aβ-neuron interactions.  Though there were 

some observable differences in the results from simulations of the other experimental 

conditions, these differences were not able to distinguish one mechanism from the 

other.  

 

1.3.3  Identifying Aβ-Neuron Interactions by Inferring Network Topology from 

Experimental Data 

 
The aim of this work (found in Chapter 3) was to identify Aβ-neuron 

interactions by inferring network topology from literature-derived in vitro 

experimental data with primary culture neurons exposed to Aβ. This work was 

departure from the electrophysiological neuronal model in order to utilize data that 

had been collected in the field on the activity of proteins involved in intracellular 
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signaling. In order to accomplish this aim, CellNOptR[94] was utilized. CellNOptR is 

a reverse engineering algorithm that infers network topology from a prior knowledge 

network[94] and experimental data. A prior knowledge network contains all of the 

information about interacting pairs of proteins involved in intracellular signaling. 

CellNOptR uses experimental data to test different network configurations using 

Boolean logic in order to make predictions about the state of proteins in the network. 

The state of a protein is determined by a Boolean function, which is a function of the 

state of its adjacent inputs that takes on a value of either 0 (off) or 1 (on). These 

predicted values of the state are compared to the normalized experimental data to 

determine which network configuration best describes the data. The prior knowledge 

network for this work was a CA1 hippocampal neuronal network[95]. CA1 

hippocampal neurons are the neuronal population most affected in AD. Therefore, 

this network was most applicable to the system.  

 

Again, discrimination between hypotheses is necessary here for testing 

multiple hypotheses for how Aβ could potentially interact with a neuron. Different 

Aβ-neuron interactions were included in the prior knowledge network prior to 

inputting the network into CellNOptR. In this way, the results from CellNOptR for 

each hypothesis could be compared to those of another hypothesis. The hypothesis 

with the best fit to the data would be the most likely candidate for further study. 

Therefore, consensus could be found by placing the experimental data in the proper 

context of its more complex, interacting system. In this work, we collected data from 

over the past two decades of in vitro experimentation on Aβ’s early action on 
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neurons. We found in using CellNOptR to discriminate between different hypotheses 

of Aβ-neuron interactions utilizing a CA1 hippocampal neuronal signaling network 

that the data are not self-consistent. Many of the data points collected in the literature 

thus far have been collected from areas of the network that are not discriminatory due 

to their presence in multiple signaling pathways and/or in network motifs, such as 

feedback loops. This is discussed in greater detail in the work done in Chapter 4.  

 

1.3.4 Using Network Analysis to Identify Network Motifs for Experimental 

Design to Identify Aβ-Neuron Interactions 

 
The goal of this work (found in Chapter 4) was to demonstrate that the 

complexity of the CA1 hippocampal network precludes the use of a linear pathway 

hypothesis for Aβ’s action on neurons. At the cellular level, the intracellular signaling 

landscape is quite complex. Each protein exists within a particular network context; 

which determines, along with the kinetics of the system, the activity of that particular 

protein. On the one hand, a linear pathway hypothesis would assume that a protein 

has a single modulator and in turn modulates the activity of only one other substrate. 

On the other hand, a protein within a complex network may be modulated by multiple 

proteins, may modulate more than one substrate, and/or be involved in feedback or 

feedforward mechanisms[69, 75]. The cellular contexts in both of these cases are 

different for each protein. In this work, we utilize network analysis tools, such as path 

length analysis, signal flow, and counting feedback loops, to demonstrate that the 

linear pathway hypothesis insufficiently describes the cellular context for many 

proteins in a CA1 hippocampal neuron[95]; in particular, for those proteins 
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commonly measured in in vitro experiments aimed at identifying the mechanisms of 

Aβ-neuron interactions. In this work, we assessed general network properties of a 

CA1 hippocampal neuronal network to determine that a linear pathway hypothesis 

would be insufficient to describe the cellular context of most proteins in the network.  

Then, we developed tools to be used to design discriminatory experiments, providing 

the necessary information about the cellular context of a particular protein in the 

network. The Signal Flow Method provides an approximate time-course behavior of 

individual proteins given a particular set of inputs. Path length analysis allows for 

determining the number and type of feedback loops in which a particular protein 

participates. Knowing this information prior to designing an experiment can aid in 

either choosing the number of time points to collect, as in the case of proteins in 

feedback loops, and choosing the right sets of proteins to measure given a particular 

set of inputs.   

 

1.3.5 Significance of This Research 

 
Our goal in the work of this dissertation was to provide tools for improving 

experimental design toward finding consensus on Aβ’s early action on neurons.  In 

this dissertation, we revealed two primary issues leading to this lack of consensus in 

the data from in vitro experimentation in this field: the need for methods with 

discriminatory power to distinguish between hypotheses from experimental results 

and the need to move away from a linear pathway hypothesis toward a complex, 

systems-level network to describe the underlying neuronal system. We proposed that 

computational modeling be a solution for both of these issues; for the first issue, the 
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model’s predictions for each hypothesis can be compared to experimental results in 

order to select the hypothesis that best describes the data. The computational model 

also allows for further refinements in the understanding of the system to be made, 

which can better inform experimental design. Our work in Chapters 2 and 3, were 

toward demonstrating the discriminatory power of each computational model on 

literature-derived data on Aβ’s action on neurons. For the second issue, in Chapter 4, 

we used a computational model of a CA1 hippocampal neuron to demonstrate the 

inadequacy of a linear pathway hypothesis to fully describe signaling in neuronal 

populations used in in vitro experimentation, and developed tools to design more 

discriminatory experiments. Therefore, such a model can be used as an alternative set 

of prior knowledge to inform hypothesis generation and experimental design.  

  
 In developing these tools, another goal was to make them as generic as 

possible such that they might apply to other similar problems and systems. In 

Chapter 2, the neuronal model adapted from the Good and Murphy model[86], can 

be used to compare any ion channel or receptor-based mechanism present in a 

hippocampal neuron under electrophysiology experimental conditions. Even the type 

of neuron can be changed by the identification of the types of ion channels and ion-

conducting receptors that exist in its membrane, adjusting the capacitance, and 

perhaps also the surface area of the membrane. This modeling methodology may be 

applicable to other neurological diseases such as Parkinson’s disease[96], a disease 

which may have similar misfolded protein (amyloid)-related etiology as Alzheimer’s 

disease[97, 98].  

 



 

 32 
 

In Chapter 3, the algorithm that was used, CellNOptR[94], can take as inputs 

any signaling network and associated data, and hence why we found it to be 

applicable to our system. Given an intracellular signaling network, an associated 

dataset, and hypotheses for how a given molecule or protein interacts with that 

network, ideally one should be able to discriminate between hypotheses based on 

goodness-of-fit to the data (objective function). And this was the subject of our work 

in Chapter 3.  

 

 In Chapter 4, again, our goal was to create tools that were generic to an 

extent. The Signal Flow Method and path length analysis could all be done with any 

network in which the adjacency matrix was available. Given a list of interactions, in 

the proper format, we created an algorithm that could populate the adjacency matrix 

needed for these methods. These methods are especially useful for large networks in 

which following the signal propagation through the various proteins in the network 

would be difficult to do by human intuition alone. Also, we were able to use path 

length analysis to identify all feedback loops that started and ended with the same 

protein. This could be useful for many types of networks as feedback is a common 

motif in many real networks[75, 82, 99]. The Signal Flow Method, for example, 

could be useful for studying the effect of cross-talk on particular proteins in pathways 

of interest, such as cross-talk in protein phosphorylation events collected using 

phosphoproteomics[100]. For instance, phosphorylation events, such as those 

associated with the mitogen-activated protein kinase (MAPK) pathway, have been 

shown to arise from multiple pathways via cross-talk, but were previously thought to 
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be specific to a particular stimulus[100] (linear pathway hypothesis). The Signal Flow 

Method can highlight all of the input pathways that could give rise to phosphorylation 

of MAPK. 

 

1.4 Conclusions 

 

To understand the mechanisms of Aβ-neuron interactions has been a major 

experimental driving force for more than two decades in the field of AD research. 

Though recent failures of drug therapies targeting Aβ has called for a re-evaluation of 

the Amyloid Cascade Hypothesis (and some propose to reject it all together), the role 

of Aβ in the disease progression is still considered to be an important role, even if it is 

not the sole initiating factor. However, a continual impediment in understanding the 

mechanisms of Aβ’s neurotoxic effects on neurons via in vitro experimentation has 

been a lack of experimental consensus on the mechanisms of Aβ’s early action on 

neurons. In our discussion of the experimental data, we argue that the controllable 

differences in experimental preparations between laboratories, such as Aβ species and 

aggregation state, Aβ concentration, and timescale of the experiments, are not the 

primary reasons for a lack of consensus (although they probably do contribute to 

uncertainty in the field). This is because within each controllable factor of the 

laboratory preparations, there is not a consensus with respect to any particular 

mechanism of Aβ-neuron interaction (see Tables 1.1-1.3).  
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  We proposed that computational approaches could be applied to the system in 

order to analyze the current experimental data against a model for the system and then 

test different hypotheses for Aβ-neuron interactions. We introduced our work using a 

computational electrophysiological model neuron to test Aβ’s action on ion channels 

in the membrane. We also introduced our work with a CA1 hippocampal neuronal 

signaling network, utilizing a reverse-engineering algorithm to identify Aβ-neuron 

interactions from experimental data. Finally, we introduced our work using network 

analysis to identify the cellular context of proteins in a CA1 hippocampal neuronal 

signaling network, and to show that the cellular context of proteins commonly 

measured in in vitro experiments with Aβ are involved in complex interactions, such 

a feedback.  

  

 Given these approaches, we hope to further guide experiments in this area of 

AD research toward the end of finding consensus on Aβ’s early action on neurons. 

Though a standardized methodology for preparing experiments would greatly aid this 

endeavor (standardized Aβ species and aggregation state, concentration and timescale 

used), we have shown that these are not the only confounding factors. Instead, we 

propose that the system is complex and that by assuming a more complex model for 

the system, we could identify Aβ-neuron interactions that explain the current 

literature data.   

 



 

 35 
 

1.5 References 

 
1. Association As. 2015 Alzheimer's Disease Facts and Figures 2016 [cited 2016 

January 15]. 

2. Small D, Cappai R. Alois Alzheimer and Alzheimer's disease: a centennial 

perspective. Journal of Neurochemistry. 2006;99(3):708-10. doi: DOI 

10.1111/j.1471-4159.2006.04212.x. PubMed PMID: ISI:000241345100002. 

3. Moller H, Graeber M. The case described by Alois Alzheimer in 1911 - 

Historical and conceptual perspectives based on the clinical record and 

neurohistological sections. European Archives of Psychiatry and Clinical 

Neuroscience. 1998;248(3):111-22. PubMed PMID: ISI:000075335600001. 

4. Glenner GG, Wong CW. Alzheimer's disease: initial report of the purification 

and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys 

Res Commun. 1984;120(3):885-90. doi: S0006-291X(84)80190-4 [pii]. PubMed 

PMID: 6375662. 

5. Vinters HV. Emerging concepts in Alzheimer's disease. Annu Rev Pathol. 

2015;10:291-319. doi: 10.1146/annurev-pathol-020712-163927. PubMed PMID: 

25387055. 

6. Weiner M. Further insights into Alzheimer disease pathogenesis. Nature 

Reviews Neurology. 2013;9(2):65-6. doi: 10.1038/nrneurol.2012.275. PubMed 

PMID: WOS:000315250400002. 

7. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. 

Science. 1992;256(5054):184-5. PubMed PMID: 1566067. 



 

 36 
 

8. Hardy J, Selkoe D. Medicine - The amyloid hypothesis of Alzheimer's 

disease: Progress and problems on the road to therapeutics. Science. 

2002;297(5580):353-6. PubMed PMID: ISI:000176892600038. 

9. Armstrong RA. The Pathogenesis of Alzheimer's Disease: A Reevaluation of 

the "Amyloid Cascade Hypothesis". International Journal of Alzheimer's Disease. 

2011;2011. 

10. Davis JN, Chisholm JC. The 'amyloid cascade hypothesis' of AD: decoy or 

real McCoy? Trends Neurosci. 1997;20(12):558-9. PubMed PMID: 9416666. 

11. Reitz C. Alzheimer's Disease and the Amyloid Cascade Hypothesis: A Critical 

Review. International Journal of Alzheimer's Disease. 2012;2012. 

12. Drachman DA. The amyloid hypothesis, time to move on: Amyloid is the 

downstream result, not cause, of Alzheimer's disease. Alzheimers Dement. 

2014;10(3):372-80. doi: 10.1016/j.jalz.2013.11.003. PubMed PMID: 24589433. 

13. Herrup K. The case for rejecting the amyloid cascade hypothesis. Nature 

Neuroscience. 2015;18(6):794-9. doi: 10.1038/nn.4017. PubMed PMID: 

WOS:000355218300006. 

14. Mullane K, Williams M. Alzheimer's therapeutics: Continued clinical failures 

question the validity of the amyloid hypothesis-but what lies beyond? Biochemical 

Pharmacology. 2013;85:289-305. 

15. Hardy J. The amyloid hypothesis for Alzheimer's disease: a critical 

reappraisal. J Neurochem. 2009;110(4):1129-34. doi: JNC6181 [pii] 

10.1111/j.1471-4159.2009.06181.x. PubMed PMID: 19457065. 



 

 37 
 

16. Karran E, Mercken M, De Strooper B. The amyloid cascade hypothesis for 

Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug 

Discov. 2011;10(9):698-712. doi: 10.1038/nrd3505. PubMed PMID: 21852788. 

17. Kayed R, Lasagna-Reeves C. Molecular Mechanisms of Amyloid Oligomers 

Toxicity. J Alzheimers Dis. 2012. doi: Q5167K4JP4351322 [pii] 

10.3233/JAD-2012-129001. PubMed PMID: 22531422. 

18. De Strooper B, Karran E. The Cellular Phase of Alzheimer's Disease. Cell. 

2016;164(4):603-15. doi: 10.1016/j.cell.2015.12.056. PubMed PMID: 

WOS:000369998300008. 

19. Chen C. beta-amyloid increases dendritic Ca2+ influx by inhibiting the A-type 

K+ current in hippocampal CA1 pyramidal neurons. Biochemical and Biophysical 

Research Communications. 2005;338(4):1913-9. doi: 

10.1016/j.bbrc.2005.10.169|10.1016/j.bbrc.2005.10.169. PubMed PMID: 

WOS:000233815900036. 

20. Shelat PB, Chalimoniuk M, Wang JH, Strosznajder JB, Lee JC, Sun AY, et al. 

Amyloid beta peptide and NMDA induce ROS from NADPH oxidase and AA release 

from cytosolic phospholipase A2 in cortical neurons. J Neurochem. 2008;106(1):45-

55. doi: JNC5347 [pii] 

10.1111/j.1471-4159.2008.05347.x. PubMed PMID: 18346200. 

21. Benilova I, Karran E, De Strooper B. The toxic A beta oligomer and 

Alzheimer's disease: an emperor in need of clothes. Nature Neuroscience. 

2012;15(3):349-57. doi: 10.1038/nn.3028. PubMed PMID: WOS:000300793100006. 



 

 38 
 

22. LaFerla F. Calcium dyshomeostasis and intracellular signalling in Alzheimer's 

disease. Nature Reviews Neuroscience. 2002;3(11):862-72. doi: DOI 10.1038/nrn960. 

PubMed PMID: ISI:000179041700017. 

23. Demuro A, Parker I, Stutzmann G. Calcium Signaling and Amyloid Toxicity 

in Alzheimer Disease. Journal of Biological Chemistry. 2010;285(17):12463-8. doi: 

DOI 10.1074/jbc.R109.080895. PubMed PMID: ISI:000276787800001. 

24. Giuffrida ML, Caraci F, Pignataro B, Cataldo S, DeBona P, Bruno V, et al. 

beta-Amyloid Monomers are Neuroprotective. The Journal of Neuroscience. 

2009;29(34). 

25. Ryan DA, Narrow WC, Federoff HJ, Bowers WJ. An improved method for 

generating consistent soluble amyloid-beta oligomer preparations for in vitro 

neurotoxicity studies. J Neurosci Methods. 2010;190(2):171-9. doi: 

10.1016/j.jneumeth.2010.05.001. PubMed PMID: 20452375; PubMed Central 

PMCID: PMCPMC2902796. 

26. El-Agnaf OMA, Mahil DS, Patel B, Austen BM. Oligomerization and 

Toxicity of beta-Amyloid-42 Implicated in Alzheimer's Disease. Biochemical and 

Biophysical Research Communications. 2000;273. 

27. Good T, Smith D, Murphy R. beta-amyloid peptide blocks the fast-

inactivating K+ current in rat hippocampal neurons. Biophysical Journal. 

1996;70(1):296-304. PubMed PMID: ISI:A1996TY68300024. 

28. MacManus A, Ramsden M, Murray M, Henderson Z, Pearson HA, Campbell 

VA. Enhancement of (45)Ca(2+) influx and voltage-dependent Ca(2+) channel 

activity by beta-amyloid-(1-40) in rat cortical synaptosomes and cultured cortical 



 

 39 
 

neurons. Modulation by the proinflammatory cytokine interleukin-1beta. J Biol 

Chem. 2000;275(7):4713-8. PubMed PMID: 10671502. 

29. Rovira C, Arbez N, Mariani J. Abeta(25-35) and Abeta(1-40) act on different 

calcium channels in CA1 hippocampal neurons. Biochem Biophys Res Commun. 

2002;296(5):1317-21. PubMed PMID: 12207918. 

30. Plant LD, Webster NJ, Boyle JP, Ramsden M, Freir DB, Peers C, et al. 

Amyloid beta peptide as a physiological modulator of neuronal 'A'-type K+ current. 

Neurobiol Aging. 2006;27(11):1673-83. doi: 10.1016/j.neurobiolaging.2005.09.038. 

PubMed PMID: 16271805. 

31. Sun XD, Mo ZL, Taylor BM, Epps DE. A slowly formed transient conformer 

of Abeta(1-40) is toxic to inward channels of dissociated hippocampal and cortical 

neurons of rats. Neurobiol Dis. 2003;14(3):567-78. PubMed PMID: 14678772. 

32. Yu SP, Farhangrazi ZS, Ying HS, Yeh CH, Choi DW. Enhancement of 

outward potassium current may participate in beta-amyloid peptide-induced cortical 

neuronal death. Neurobiol Dis. 1998;5(2):81-8. doi: 10.1006/nbdi.1998.0186. 

PubMed PMID: 9746905. 

33. Yankner BA, Caceres A, Duffy LK. Nerve growth factor potentiates the 

neurotoxicity of beta amyloid. Proc Natl Acad Sci U S A. 1990;87(22):9020-3. 

PubMed PMID: 2174172; PubMed Central PMCID: PMCPMC55092. 

34. Yaar M, Zhai S, Pilch P, Doyle S, Eisenhauer P, Fine R, et al. Binding of 

beta-amyloid to the p75 neurotrophin receptor induces apoptosis - A possible 

mechanism for Alzheimer's disease. Journal of Clinical Investigation. 



 

 40 
 

1997;100(9):2333-40. doi: 10.1172/JCI119772. PubMed PMID: 

WOS:A1997YF66000024. 

35. Vigo F, Kedikian G, Heredia L, Heredia F, Anel A, Rosa A, et al. Amyloid-

beta precursor protein mediates neuronal toxicity of amyloid beta through Go protein 

activation. Neurobiology of Aging. 2009;30(9):1379-92. doi: DOI 

10.1016/j.neurobiolaging.2007.11.017. PubMed PMID: ISI:000268783200004. 

36. Koh JY, Yang LL, Cotman CW. Beta-amyloid protein increases the 

vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res. 

1990;533(2):315-20. PubMed PMID: 2289145. 

37. Williamson R, Usardi A, Hanger DP, Anderton BH. Membrane-bound beta-

amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. 

FASEB J. 2008;22(5):1552-9. doi: 10.1096/fj.07-9766com. PubMed PMID: 

18096814. 

38. Whitson JS, Appel SH. Neurotoxicity of A beta amyloid protein in vitro is not 

altered by calcium channel blockade. Neurobiol Aging. 1995;16(1):5-10. doi: 

0197458095800029 [pii]. PubMed PMID: 7723935. 

39. Arispe N, Pollard HB, Rojas E. Giant multilevel cation channels formed by 

Alzheimer disease amyloid beta-protein [A beta P-(1-40)] in bilayer membranes. Proc 

Natl Acad Sci U S A. 1993;90(22):10573-7. PubMed PMID: 7504270; PubMed 

Central PMCID: PMCPMC47819. 

40. Kawahara M, Arispe N, Kuroda Y, Rojas E. Alzheimer's disease amyloid 

beta-protein forms Zn(2+)-sensitive, cation-selective channels across excised 



 

 41 
 

membrane patches from hypothalamic neurons. Biophys J. 1997;73(1):67-75. doi: 

S0006-3495(97)78048-2 [pii] 

10.1016/S0006-3495(97)78048-2. PubMed PMID: 9199772; PubMed Central 

PMCID: PMCPMC1180909. 

41. Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP. Beta-amyloid-Peptide 

Impairs Glucose Transport in Hippocampal and Cortical Neurons: Involvement of 

Membrane Lipid Peroxidation. The Journal of Neuroscience. 1997;17(3). 

42. Alvarez G, Muñoz-Montaño JR, Satrústegui J, Avila J, Bogónez E, Díaz-Nido 

J. Lithium protects cultured neurons against beta-amyloid-induced 

neurodegeneration. FEBS Lett. 1999;453(3):260-4. PubMed PMID: 10405156. 

43. Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M, Inestrosa 

NC. Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell 

Res. 2004;297(1):186-96. doi: S0014482704000837 [pii] 

10.1016/j.yexcr.2004.02.028. PubMed PMID: 15194435. 

44. Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, et al. 

Soluble oligomers of beta amyloid (1-42) inhibit long-term potentiation but not long-

term depression in rat dentate gyrus. Brain Res. 2002;924(2):133-40. PubMed PMID: 

11750898. 

45. Pugazhenthi S, Wang M, Pham S, Sze CI, Eckman CB. Downregulation of 

CREB expression in Alzheimer's brain and in Aβ-treated rat hippocampal neurons. 

Mol Neurodegener. 2011;6:60. doi: 1750-1326-6-60 [pii] 

10.1186/1750-1326-6-60. PubMed PMID: 21854604; PubMed Central PMCID: 

PMCPMC3174124. 



 

 42 
 

46. Fogarty M, Downer E, Campbell V. A role for c-Jun N-terminal kinase 1 

(JNK1), but not JNK2, in the beta-amyloid-mediated stabilization of protein p53 and 

induction of the apoptotic cascade in cultured cortical neurons. Biochemical Journal. 

2003;371:789-98. doi: 10.1042/BJ20021660. PubMed PMID: 

WOS:000182733400016. 

47. Alvarez A, Muñoz JP, Maccioni RB. A Cdk5-p35 stable complex is involved 

in the beta-amyloid-induced deregulation of Cdk5 activity in hippocampal neurons. 

Exp Cell Res. 2001;264(2):266-74. doi: S0014-4827(01)95152-3 [pii] 

10.1006/excr.2001.5152. PubMed PMID: 11262183. 

48. Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, et al. 

Synaptic targeting by Alzheimer's-related amyloid beta oligomers. J Neurosci. 

2004;24(45):10191-200. doi: 24/45/10191 [pii] 

10.1523/JNEUROSCI.3432-04.2004. PubMed PMID: 15537891. 

49. Zempel H, Thies E, Mandelkow E, Mandelkow E-M. Beta-amyoid Oligomers 

Cause Localized Calcium Elevation, Missorting of Endogenous Tau into Dendrites, 

Tau Phosphorylation, and Destruction of Microtubles and Spines. Journal of 

Neuroscience. 2010;30(36). 

50. Abramov AY, Ionov M, Pavlov E, Duchen MR. Membrane cholesterol 

content plays a key role in the neurotoxicity of β-amyloid: implications for 

Alzheimer's disease. Aging Cell. 2011;10(4):595-603. doi: 10.1111/j.1474-

9726.2011.00685.x. PubMed PMID: 21332922. 



 

 43 
 

51. Jung C-G, Uhm K-O, Miura Y, Hosono T, Horike H, Khanna KK, et al. Beta-

amyloid increases the expression level of ATBF1 responsible for death in cultured 

cortical neurons. Molecular Neurodegeneration. 2011;6(47). 

52. Yang S, Hsieh W, Liu D, Tsai L, Tung C, Wu J. The involvement of nitric 

oxide in synergistic neuronal damage induced by beta-amyloid peptide and glutamate 

in primary rat cortical neurons. Chinese Journal of Physiology. 1998;41(3):175-9. 

PubMed PMID: WOS:000077697700008. 

53. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE. beta-

Amyloid peptides destabilize calcium homeostasis and render human cortical neurons 

vulnerable to excitotoxicity. J Neurosci. 1992;12(2):376-89. PubMed PMID: 

1346802. 

54. Palop J, Mucke L. Amyloid-beta-induced neuronal dysfunction in Alzheimer's 

disease: from synapses toward neural networks. Nature Neuroscience. 

2010;13(7):812-8. doi: 10.1038/nn.2583. PubMed PMID: WOS:000279173900011. 

55. Rammes G, Hasenjäger A, Sroka-Saidi K, Deussing JM, Parsons CG. 

Therapeutic significance of NR2B-containing NMDA receptors and mGluR5 

metabotropic glutamate receptors in mediating the synaptotoxic effects of β-amyloid 

oligomers on long-term potentiation (LTP) in murine hippocampal slices. 

Neuropharmacology. 2011;60(6):982-90. doi: 10.1016/j.neuropharm.2011.01.051. 

PubMed PMID: 21310164. 

56. Murphy RM, Pallito MM. Probing the Kinetics of beta-Amyloid Self-

Association. Journal of Structural Biology. 2000;130. 



 

 44 
 

57. Broersen K, Rousseau F, Schymkowitz J. The culprit behind amyloid beta 

peptide related neurotoxicity in Alzheimer's disease: oligomer size or conformation. 

Alzheimer's Research & Therapy. 2010;2(12). 

58. Patel A, Jhamandas J. Neuronal receptors as targets for the action of amyloid-

beta protein (A beta) in the brain. Expert Reviews in Molecular Medicine. 2012;14. 

doi: 10.1017/S1462399411002134. PubMed PMID: WOS:000300516400001. 

59. Yankner B, Lu T. Amyloid beta-Protein Toxicity and the Pathogenesis of 

Alzheimer Disease. Journal of Biological Chemistry. 2009;284(8):4754-8. doi: 

10.1074/jbc.R800018200. PubMed PMID: WOS:000263416600002. 

60. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M. 

Peroxisome proliferator-activated receptor gamma is expressed in hippocampal 

neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt 

signaling. Exp Cell Res. 2005;304(1):91-104. doi: 10.1016/j.yexcr.2004.09.032. 

PubMed PMID: 15707577. 

61. Laurén J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular 

prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. 

Nature. 2009;457(7233):1128-32. doi: 10.1038/nature07761. PubMed PMID: 

19242475; PubMed Central PMCID: PMCPMC2748841. 

62. Chacon PJ, Garcia-Mejias R, Rodriguez-Tebar A. Inhibition of RhoA GTPase 

and the subsequent activation of PTP1B protects cultured hippocampal neurons 

against amyloid β toxicity. Mol Neurodegener. 2011;6(1):14. doi: 1750-1326-6-14 

[pii] 



 

 45 
 

10.1186/1750-1326-6-14. PubMed PMID: 21294893; PubMed Central PMCID: 

PMCPMC3038970. 

63. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, et al. 

Tau reduction prevents Abeta-induced defects in axonal transport. Science. 

2010;330(6001):198. doi: 10.1126/science.1194653. PubMed PMID: 20829454; 

PubMed Central PMCID: PMCPMC3024010. 

64. Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, et al. Role of 

p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. 

Nat Neurosci. 2006;9(2):234-42. doi: 10.1038/nn1630. PubMed PMID: 16415866. 

65. Lacor P. Advances on the understanding of the origins of synaptic pathology 

in AD. Current Genomics. 2007;8(8):486-508. doi: 10.2174/138920207783769530. 

PubMed PMID: WOS:000254654000002. 

66. Berman D, Dall'Armi C, Voronov S, McIntire L, Zhang H, Moore A, et al. 

Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate 

metabolism. Nature Neuroscience. 2008;11(5):547-54. doi: 10.1038/nn.2100. 

PubMed PMID: WOS:000255327300013. 

67. Patel D, Good T. A rapid method to measure beta-amyloid induced 

neurotoxicity in vitro. Journal of Neuroscience Methods. 2007;161(1):1-10. doi: 

10.1016/j.jneumeth.2006.10.004|10.1016/j.jneymeth.2006.10.004. PubMed PMID: 

WOS:000245490900001. 

68. Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, Rydel R. 

Nucleation-dependent polymerization is an essential component of amyloid-mediated 



 

 46 
 

neuronal cell death. Journal of Neuroscience. 2005;25(5):1071-80. doi: 

10.1523/JNEUROSCI.2381-04.2005. PubMed PMID: WOS:000226750600004. 

69. Kholodenko B. Cell-signalling dynamics in time and space. Nature Reviews 

Molecular Cell Biology. 2006;7(3):165-76. doi: 10.1038/nrm1838. PubMed PMID: 

WOS:000235590500012. 

70. Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, et al. 

Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci. 

2005;8(8):1051-8. doi: nn1503 [pii] 

10.1038/nn1503. PubMed PMID: 16025111. 

71. Li S, Jin M, Koeglsperger T, Shepardson NE, Shankar GM, Selkoe DJ. 

Soluble Aβ oligomers inhibit long-term potentiation through a mechanism involving 

excessive activation of extrasynaptic NR2B-containing NMDA receptors. J Neurosci. 

2011;31(18):6627-38. doi: 31/18/6627 [pii] 

10.1523/JNEUROSCI.0203-11.2011. PubMed PMID: 21543591; PubMed Central 

PMCID: PMCPMC3100898. 

72. Arispe N, Pollard HB, Rojas E. beta-Amyloid Ca(2+)-channel hypothesis for 

neuronal death in Alzheimer disease. Mol Cell Biochem. 1994;140(2):119-25. 

PubMed PMID: 7898484. 

73. Sepulveda FJ, Parodi J, Peoples RW, Opazo C, Aguayo LG. Synaptotoxicity 

of Alzheimer beta amyloid can be explained by its membrane perforating property. 

PLoS One. 2010;5(7):e11820. doi: 10.1371/journal.pone.0011820. PubMed PMID: 

20676404; PubMed Central PMCID: PMCPMC2910737. 



 

 47 
 

74. Chiang LW, Grenier JM, Ettwiller L, Jenkins LP, Ficenec D, Martin J, et al. 

An orchestrated gene expression component of neuronal programmed cell death 

revealed by cDNA array analysis. Proc Natl Acad Sci U S A. 2001;98(5):2814-9. doi: 

98/5/2814 [pii] 

10.1073/pnas.051630598. PubMed PMID: 11226323; PubMed Central PMCID: 

PMCPMC30222. 

75. Barabasi A, Oltvai Z. Network biology: Understanding the cell's functional 

organization. Nature Reviews Genetics. 2004;5(2):101-U15. doi: 10.1038/nrg1272. 

PubMed PMID: WOS:000188602400012. 

76. Hughey JJ, Lee TK, Covert MW. Computational modeling of mammalian 

signaling networks. WIREs Systems Biology and Medicine. 2009. 

77. Klipp E, Liebermeister W. Mathematical modeling of intracellular signaling 

pathways. Bmc Neuroscience. 2006;7. doi: 10.1186/1471-2202-7-S1-S10. PubMed 

PMID: WOS:000203525800010. 

78. Kholodenko B, Yaffe M, Kolch W. Computational Approaches for Analyzing 

Information Flow in Biological Networks. Science Signaling. 2012;5(220). doi: 

10.1126/scisignal.2002961. PubMed PMID: WOS:000303002700007. 

79. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA. Logic-based 

models for the analysis of cell signaling networks. Biochemistry. 2010;49(15):3216-

24. doi: 10.1021/bi902202q. PubMed PMID: 20225868; PubMed Central PMCID: 

PMCPMC2853906. 

80. Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of Cellular 

Signalling Networks and Analysis of Their Properties. Nature Reviews. 2005;6. 



 

 48 
 

81. Orth J, Thiele I, Palsson B. What is flux balance analysis? Nature 

Biotechnology. 2010:245-8. doi: DOI 10.1038/nbt.1614. PubMed PMID: 

ISI:000275288300022. 

82. Albert R, Barabasi A. Statistical mechanics of complex networks. Reviews of 

Modern Physics. 2002;74(1):47-97. doi: 10.1103/RevModPhys.74.47. PubMed 

PMID: WOS:000174548700003. 

83. Hodgkin AL, Huxley AF. A quantitative description of membrane current and 

its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500-44. 

PubMed PMID: 12991237; PubMed Central PMCID: PMCPMC1392413. 

84. Herz A, Gollisch T, Machens C, Jaeger D. Modeling single-neuron dynamics 

and computations: A balance of detail and abstraction. Science. 2006;314(5796):80-5. 

doi: DOI 10.1126/science.1127240. PubMed PMID: ISI:000241031200039. 

85. Morse TM, Carnevale NT, Mutalik PG, Migliore M, Shepherd GM. Abnormal 

Excitability of Oblique Dendrites Implicated in Early Alzheimer's: A Computational 

Study. Front Neural Circuits. 2010;4. doi: 10.3389/fncir.2010.00016. PubMed PMID: 

20725509; PubMed Central PMCID: PMCPMC2901152. 

86. Good TA, Murphy RM. Effect of beta-amyloid block of the fast-inactivating 

K+ channel on intracellular Ca2+ and excitability in a modeled neuron. Proc Natl 

Acad Sci U S A. 1996;93(26):15130-5. PubMed PMID: 8986775; PubMed Central 

PMCID: PMCPMC26368. 

87. Zou X, Coyle D, Wong-Lin K, Maguire L. Beta-amyloid induced changes in 

A-type K(+) current can alter hippocampo-septal network dynamics. J Comput 

Neurosci. 2011. doi: 10.1007/s10827-011-0363-7. PubMed PMID: 21938438. 



 

 49 
 

88. Culmone V, Migliore M. Progressive effect of beta amyloid peptides 

accumulation on CA1 pyramidal neurons: a model study suggesting possible 

treatments. Frontiers in Computational Neuroscience. 2012;6:1-9. doi: 

10.3389/fncom.2012.00052. PubMed PMID: WOS:000306605600001. 

89. Ullah G, Demuro A, Parker I, Pearson JE. Analyzing and Modeling the 

Kinetics of Amyloid Beta Pores Associated with Alzheimer's Disease Pathology. 

PLoSOne. 2015. 

90. Rodbell M. Martin Rodbell - Biographical Stockholm, Sweden: Nobel 

Foundation; 1995 [cited 2016 February 12]. 

91. Kholodenko BN. Negative feedback and ultrasensitivity can bring about 

oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem. 

2000;267(6):1583-8. PubMed PMID: 10712587. 

92. Mizuno S, Iijima R, Ogishima S, Kikuchi M, Matsuoka Y, Ghosh S, et al. 

AlzPathway: a comprehensive map of signaling pathways of Alzheimer's disease. 

BMC Syst Biol. 2012;6:52. doi: 10.1186/1752-0509-6-52. PubMed PMID: 

22647208; PubMed Central PMCID: PMCPMC3411424. 

93. Liu H, Wang L, Lv M, Pei R, Li P, Pei Z, et al. AlzPlatform: An Alzheimer's 

Disease Domain-Specific Chemogenornics Knowledgebase for Polypharmacology 

and Target Identification Research. Journal of Chemical Information and Modeling. 

2014;54(4):1050-60. doi: 10.1021/ci500004h. PubMed PMID: 

WOS:000335201200004. 

94. Saez-Rodriguez J, Alexopoulos L, Epperlein J, Samaga R, Lauffenburger D, 

Klamt S, et al. Discrete logic modelling as a means to link protein signalling networks 



 

 50 
 

with functional analysis of mammalian signal transduction. Molecular Systems 

Biology. 2009;5. doi: 10.1038/msb.2009.87. PubMed PMID: 

WOS:000273359200002. 

95. Ma'ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, et 

al. Formation of regulatory patterns during signal propagation in a Mammalian 

cellular network. Science. 2005;309(5737):1078-83. doi: 309/5737/1078 [pii] 

10.1126/science.1108876. PubMed PMID: 16099987; PubMed Central PMCID: 

PMCPMC3032439. 

96. Oliveira LM, Falomir-Lockhart LJ, Botelho MG, Lin KH, Wales P, Koch JC, 

et al. Elevated α-synuclein caused by SNCA gene triplication impairs neuronal 

differentiation and maturation in Parkinson's patient-derived induced pluripotent stem 

cells. Cell Death Dis. 2015;6:e1994. doi: 10.1038/cddis.2015.318. PubMed PMID: 

26610207; PubMed Central PMCID: PMCPMC4670926. 

97. Bucciantini M, Giannoni E, Chiti F, Baroni F, Formigli L, Zurdo J, et al. 

Inherent toxicity of aggregates implies a common mechanism for protein misfolding 

diseases. Nature. 2002;416(6880):507-11. doi: 10.1038/416507a. PubMed PMID: 

11932737. 

98. Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its 

association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15(6):384-

96. doi: 10.1038/nrm3810. PubMed PMID: 24854788. 

99. Sauro HM, Kholodenko BN. Quantitative analysis of signaling networks. 

Progress in Biophysics & Molecular Biology. 2004;86. 



 

 51 
 

100. Riley NM, Coon JJ. Phosphoproteomics in the Age of Rapid and Deep 

Proteome Profiling. Anal Chem. 2016;88(1):74-94. doi: 

10.1021/acs.analchem.5b04123. PubMed PMID: 26539879; PubMed Central 

PMCID: PMCPMC4790442. 

 

 

 

 

 

 



 

 52 
 

Chapter 2: Modeling the short-time scale dynamics of β-
amyloid-neuron interactions.1  
 
 

2.1 Introduction 
 
 
 
 

“Do not despise these small beginnings…” ~Zechariah 4:10 (The Bible) 

 

Beta-amyloid (Aβ) is a 39-43 amino acid peptide that accumulates in the 

extracellular matrix of hippocampal and cortical regions of Alzheimer diseased 

brains[3]. Aβ is suspected to play a key role in initiating a cascade of intracellular 

reactions that lead to neuronal dysfunction and cell death associated with Alzheimer’s 

disease (AD)[4], the most common form of dementia[5]. Exogenous exposure of 

neurons to Aβ, during in vitro experiments, have shown that Aβ elicits a variety of 

intracellular responses including increased calcium influx[6, 7], altered kinase and 

phosphatase activities[8-10], disrupted regulation of transcriptions factors[11, 12], 

and alterations in ion channel and receptor gene expression[13]. Because intracellular 

functions are altered in the presence of extracellular Aβ, it has been hypothesized that 

Aβ interacts with neuronal surfaces. Monomeric Aβ may interact with certain features 

of cellular membranes acting as a locus for attachment, oligomerization and eventual 

fibril formation. The resulting toxic structures alter membrane morphology[14] via 

                                                
1 Wilson NP, Gates B, Castellanos M. Modeling the short time-scale dynamics of β-amyloid-neuron 
interactions. J Theor Biol. 2013. doi: 10.1016/j.jtbi.2013.02.012. PubMed PMID: 23454082. 



 

 53 
 

protein-protein[15] or protein-lipid interactions[16]. After over twenty-years of 

research, there is no consensus on the exact mechanisms of Aβ-neuron interactions.  

 

A mechanistic description of Aβ’s interaction with neurons requires reconciling a 

wealth empirical data performed under various conditions, making comparison of 

relevant mechanisms challenging. Computational modeling offers avenues for 

discriminating between mechanisms under experimentally testable conditions. 

Although experimentalists have faced challenges with the use of different species and 

aggregation states of Aβ[2, 17-25], thereby causing debate around the exact nature of 

the toxic Aβ species[26], in a computational model, Aβ can be treated as generalized 

toxic aggregate that binds to the neuron with some affinity and elicits a response. 

Though a simplified depiction of quite complex phenomena, this allows for 

comparison of results from the model to experimental data from various laboratories 

in order to identify trends in neuronal response that may be common to all species; 

while delineating probable mechanistic explanations for differing responses in the 

presence of a particular Aβ species or aggregation state. Computational modeling also 

allows for the determination of the type of response and its time-scale a priori, giving 

flexibility to examine the short time-scale (ms-sec) response of neurons to Aβ 

exposure, which may proceed the induction of intracellular processes associated with 

neurotoxicity[27]. Capturing short time-scale responses can often be tedious or 

limited by the experimental design. And so, while experimental literature on Aβ’s 

interaction with neurons in vitro abounds, there is still a need for a tool that allows for 

comparison across experiments in order to begin developing a mechanistic model for 
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Aβ-neuron interactions.  Computational modeling is a powerful tool for analyzing the 

results of multiple hypotheses under controlled conditions. 

 

Herein, we present a computational study where short time-scale interactions of 

Aβ with the neuronal membrane are compared. Utilizing a mathematical model of a 

hippocampal neuron[28], we input mathematical expressions for two proposed 

mechanisms of Aβ-neuron interaction: Aβ’s block of fast-inactivating potassium (IA) 

channels and the membrane conductance increase by Aβ.  

 

A fairly well-studied hypothesis, in vitro experiments with both hippocampal and 

cortical neurons suggest that Aβ blocks IA channels in a [Aβ]-dependent manner, 

increases membrane excitability, and calcium influx[1, 17, 29, 30]. On the other hand, 

the membrane conductance increase mechanism posits that through Aβ’s interaction 

with the neuronal membrane, the dielectric constant is increased and the membrane 

becomes more permeable to ions and other compounds[24, 25, 31-33]. Though 

investigators have observed that Aβ evokes a current in artificial bilayers consistent 

with an increase in general membrane permeability[31, 32] and increases Ca2+ entry 

into hippocampal neurons[24], other physiological responses important to neuronal 

signaling, such as action potential (AP) generation and membrane excitability have 

not yet been examined for this mechanism.  

 

For each mechanism presented, we report the effects of Aβ on voltage properties 

of the membrane, membrane excitability, action potential generation and the 
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dynamics of Ca2+ entry; all measurable outputs that can be experimentally tested. 

Each mechanism was simulated under voltage-clamp, current-clamp and high [K+] 

membrane depolarized experimental conditions.  In comparing these two Aβ-neuron 

interactions via computational modeling, we demonstrate the model’s potential for 

hypothesis generation and comparison, which could be used to guide the rational 

design of experiments.    

 

2.2: Methods 

 2.2.1 Model Overview 

 
A rat hippocampal neuron model was used to demonstrate the effects of the IA 

channel block by Aβ on intracellular Ca2+ levels, under current-clamp conditions[28]. 

We adapted this model to simulate voltage-clamp and high [K+] membrane 

depolarization experiments, and can include multiple possible mechanisms of Aβ-

neuron interactions. The neuron is modeled as a wrinkled sphere with a radius of 

12µm and a surface area of 4 x 10-5 cm2[28].  

 

2.2.2  Current-clamped Neuron Model 

 

The general form of the current-clamped model[28] describes the voltage-time 

trajectory of ionic conductances in the neuronal membrane:  
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Cm

!V
!t

= "Iions + IAMPA + Iinject + Ileak   (1)
 

   

The expressions for the currents (I; µA), membrane capacitance (Cm; µF) and 

the membrane potential (V; mV) are described in detail here[28]. IAMPA = 0 for all 

simulations as current density for this receptor is low in the soma and requires the 

neurotransmitter, glutamate, for activation[34]. Each ion channel takes on a Hodgkin 

and Huxley[35] form. The leak current is adjusted such that a quiescent cell is 

achieved in the absence of any stimulus.  

 

We replaced the original IA channel current in the Good and Murphy model 

[28] with an IA channel current equation from[36] that better describes the dynamics 

of IA channel gating observed experimentally since the publication of the Good and 

Murphy model. This current is represented by the following equation:  

 

IA = gA *mN *h*(V !VK )  (2)  

 

where N is the order of the activation (N = 3 or f (V); 3 in our model)[36] and VK is 

the Nernst Potential for the K+ ion. The parameters m and h are the activation and 

deactivation parameters, respectively, which represent probabilities of an open IA 

channel based on the measured kinetics of channel gating[36]. The functions for m 

and h are given by m = 1-exp(-t/τr) and h = exp(-t/τd), respectively. τr and τd are the 
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time to peak (ms) and the delay constants (ms), respectively, and are functions of the 

membrane potential (V)[36].  

 

2.2.3 Voltage-clamped Neuron Model 

 
To create the voltage-clamped model, the following equation is the steady-

state solution to Eq. 1: 

 

 

0=+++∑ injectleakAMPAions IIII   (3) 

 

 

Therefore, in Equation 3, the magnitude of Iinject, the current required in voltage-

clamp experiment to maintain a constant voltage, is equal to the magnitude of the 

total ionic currents. In each simulation, two holding potentials (VH, before and after 

the command potential) and a command potential (VC) are invoked. The holding 

potential period allows ion channels to come to a closed and inactivated state. The 

command potential is a voltage set higher than resting potential of the cell (VR= - 67.5 

mV) thereby opening channels and allowing each current to reach steady state. For 

our simulations, VH is held at -100 mV; VC is held at potentials between -60 and 60 

mV, which represent the membrane potential range exhibited during an AP in 

hippocampal neurons. 

 



 

 58 
 

2.2.4 High [K+] Membrane Depolarized Neuron Model  

 
For the high [K+] membrane depolarized neuron model, the current-clamped 

model[28] is applied except that Iinject = 0 and a depolarizing concentration of 30 mM 

extracellular [K+] was simulated by changing the K+ Nernst potential (VK) from -89 

to -32 mV. 

 

2.2.5 Ca2+ Diffusion 

 
The general equation governing intracellular Ca2+ diffusion and dynamics 

is[28]:  

 

 

 
![Ca2+ ]
!t

= D"2[Ca2+ ]r # rBuffer   (4)
 

 

 

where terms are [Ca2+]r, the Ca2+ concentration at a radial distance r (M), D, the 

diffusivity(cm2/s) of Ca2+ inside the neuron and rBuffer, the rate at which the buffer 

uptakes Ca2+ (M/s). Ca2+ buffering is modeled as a reversible reaction governed by 

mass action kinetics[28]. 

 

In order to solve Eq. 4, two boundary conditions are required. The boundary 

condition at the neuron center (r = 0) is given by[28]: 
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(5)     0][ 0
2

=
∂

∂ +

r
Ca

 

 

 

where [Ca2+]0 is the concentration of Ca2+ at r = 0. This boundary condition accounts 

for symmetry. The second boundary condition describing Ca2+ flux across the 

membrane (r = R) is given by[28]: 

 

 

DA ![Ca
2+ ]R

!r
+
"ICa
2F

+ rpump # rleak  =  0   (6)  

 

 

where terms are [Ca2+]R, the Ca2+ concentration at the intracellular cell membrane, 

ΣICa , the sum of the current through Ca2+ channels, rpump, the rate at which Ca2+ is 

pumped out of the cell by the Na+-dependent Ca2+ pump, and rLeak, the rate at which 

Ca2+ leaks into the cell at the resting membrane potential. rLeak = rpump when [Ca2+] is 

equal to the initial intracellular [Ca2+] given at t = 0 (not shown here). Governing 

equations for the Ca2+ pump were taken from[28]. The differential equations were 

solved using fourth order Runge-Kutta method with a variable time step, and 

programmed in Visual C++. The partial differential equation for [Ca2+]r was solved 

numerically using the method of lines and the resultant [Ca2+]i is given as a function 
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of radial distance and time. [Ca2+]i presented were averaged over the entire volume of 

the neuron.  

 

2.2.6 Mechanisms of Aβ interactions with neuronal membrane 

 
We are modeling two hypothetical Aβ-neuron interactions to discriminate 

their effects on ion conductances and alterations in Ca2+ transients.   

 

2.2.6.1 Aβ’s block of IA channels mechanism 

 

The Aβ-induced IA channel block is represented by a kinetic inhibition 

equation[28]: 

 

 

(7)     
][

][
β

β
β AK

Ax
I

A +
=

 

 

 

where the terms are xAβ, the fraction of channels blocked by Aβ, [Aβ], the 

concentration of exogenous Aβ (µM) (represented as an aggregate), and KI, the 

inhibition constant for Aβ (µM). The simulated KI values were 0.5 and 1.5µM[1]. The 

expression, 1-xAβ, then describes the number of open IA channels. For this 

mechanism, the IA channel current expression is[28]: 
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(8)    )(***)1(* K
N

AAA VVhmxgI −−= β  

 

 

2.2.6.2 Membrane Conductance Increase Mechanism 

 

We have represented the membrane conductance mechanism[31, 32] in the 

model as a [Aβ]-dependent increase in capacitance and membrane conductance. The 

capacitance increase[31] is scaled by a difference in capacitance between a biological 

membrane[37] and a sparsely-tethered lipid bilayer such that when [Aβ] = 0, Cm = 1: 

 

 

(9)       1][05.0 += βACm  

 

 

where Cm is the membrane capacitance(µF/cm2).  

 

In a similar fashion as Eq. 9, a dimensionless equation for membrane 

conductance as a function of [Aβ][31] is given by: 

 

 

(10)   1][6285.11][165.39 2

0

+−== βββ AAf
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where terms are gAβ, the membrane conductance as a function of [Aβ](µM) and, go, 

the membrane conductance when no Aβ is present. The f parameter simulates an 

increase in general membrane permeability due to a Aβ-induced increase in the 

membrane dielectric constant.  

 

2.2.7 Choice of experimental data used to analyze predictions from the model 

 
Experimental data was collected from[1, 2, 11, 17, 20, 24, 29, 33, 38, 39]. In 

order to analyze the model’s predictions, we chose experimental data where Aβ 

incubation times where relatively short (30s – 1hr) and the responses measured were 

similar to simulation conditions (i.e., voltage-clamp, current-clamp and high [K+] 

membrane depolarization), to ensure the responses were representative of changes at 

the membrane surface and not other processes that occur on longer time-scales.  

Voltage-clamp responses measured in experimental data were percent original (peak) 

IA current[1, 2, 17, 29, 38] and change in conductance relative to the control at 

various [Aβ][33]. Responses under current-clamp conditions collected were 

membrane excitability via basal/spontaneous activity of neurons[1, 2], which is 

inversely related to threshold current needed to elicit an AP, and relative levels of 

Ca2+ influx, usually measured as the change in fluorescence over the baseline 

fluorescence (ΔF/F); though in the case of data from[39], we normalized the 

measured calcium concentration relative to the control (no Aβ present).  

Phosphorylated CREB relative levels were compared to the model’s predictions for 
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Ca2+ levels under high [K+] membrane depolarization since intermediate Ca2+ data 

was sparse in the literature. When at all possible, we used data from hippocampal or 

cortical neurons, which exist in brain areas affected by AD. However, data from Leão 

et al[2] and Demuro et al[20] were from medial septal neurons and SY5Y cells, 

respectively. Though medial septal neurons and SY5Y cells differ from hippocampal 

neurons, we chose to use experimental data from Demuro et al and Leão et al because 

the mechanisms of Aβ-neuron interaction being examined were relevant to those we 

simulated. Aβ species and aggregation state varied among all of the experimental data 

used for this paper. Nonetheless, in our model we treat Aβ as a toxic aggregate 

independent of its specific structure and therefore species and aggregation state did 

not play a role in how we chose data to compare.   

 

2.3: Results and Discussion 

2.3.1 Voltage-clamp simulations in the presence of Aβ 

 
We performed voltage-clamp simulations to ensure that each mathematical 

expression for Aβ’s action on a neuron would have the desired response in the model. 

Figure 2.1 shows the results of voltage-clamp simulations of Aβ’s IA channel block 

and the Aβ-induced membrane conductance mechanism at various [Aβ]. [Aβ] used in 

our simulations are within the typical [Aβ] range used on primary culture 

hippocampal neurons (1nM-50µM)[29, 40]. In Figure 2.1A, the Aβ IA channel block 

is shown. Inhibition of K+ current through this channel, as observed in experimental 

literature[1, 2, 17, 38], results in a decrease in peak amplitude of the current in a 
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[Aβ]-dependent manner, but has no effect on the activation or deactivation kinetics of 

the channel. We modeled Aβ’s block of IA channels using saturation kinetics (see 

Eqn. 7), where the KI for these simulations was 1.5µM. This KI was chosen as a 

reasonable estimate for inhibition of the channel observed in experimental 

literature[1, 29]. The inset of Figure 2.1A shows how the block of IA channels by Aβ 

varies with [Aβ]. A decreasing trend with increasing [Aβ] is observed. As can be seen 

by comparing the solid line representing the model with the experimental data, the 

choice of KI = 1.5µM is a reasonable estimate for the IA channel block, even though 

the simulated inhibition of IA channels trends lower than the experimental data.  

Experimental data from Ye et al[1] at 1µM represents almost a complete abolition of 

the IA current. Differences in the data amongst the experiments are likely due to 

varied Aβ preparations. The relative potencies and targets of specific Aβ aggregates is 

still an open question in the literature[41]. However, given the experimental data 

compared in the inset of Figure 2.1A, our model is able to replicate a general trend 

observed for the block of IA channels by Aβ.  

 

Voltage-clamp simulations of the membrane conductance increase mechanism 

show a [Aβ]-dependent increase in the leak current (Figure 2.1B). The large increase 

in the leak conductance, especially at [Aβ] > 0.1µM, is represented as an increasing 

polynomial function of [Aβ]. This large [Aβ]-dependent increase in membrane 

conductance has been observed experimentally[25, 31, 32]. As shown in the inset of 

Figure 2.1B, this general trend toward increased membrane conductance with 

increasing [Aβ] was demonstrated in rat hippocampal neurons[33], though the 



 

 65 
 

experimentally measured membrane conductance in hippocampal neurons appears to 

increase linearly as a function of [Aβ]. Equation 10 was adapted from experimental 

observations in artificial bilayers[31, 32], which are simplified model systems of 

neuronal membranes[14, 21]. From experiments in artificial membranes, the degree 

to which Aβ increases membrane conductance varies with phospholipid composition, 

with more negatively charged lipids reducing the effect of Aβ compared to more 

neutral compositions[31, 32]. Therefore, calibration of the effects of Aβ on a native 

neuronal membrane system, which tends to be more of a mixed composition of 

phospholipids, is necessary to more accurately depict the effect of this Aβ-neuron 

interaction. An additional consideration is that, as described by Gentet et al[37], the 

membrane capacitance has been shown not change due to the addition of membrane 

proteins to the neuronal membrane. Therefore, though the membrane conductance 

mechanism described herein contains a linear increase in capacitance with respect to 

[Aβ], it is very likely that there is no change in capacitance in an actual neuronal 

membrane. Though it is noteworthy that for the [Aβ] range used in this particular 

study, the calculated difference in the membrane capacitance is 1.005-1.15µF (for 

[Aβ]=0.01-3µM), which is within the experimental range demonstrated by Gentet et 

al for HeLa cells[37]. Importantly, as seen in Figure 2.1B, our model shows that a 

significant [Aβ]-dependent leak is observed. Such a large Aβ-induced leak current 

could be difficult to discriminate from an effect on a channel current.    
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Figure 2.1: The effect of Aβ-ion channel and Aβ-membrane interactions on the 

IA channel under voltage-clamp conditions. (A) IA channel current is shown at 

various [Aβ].  Current inhibition was simulated using saturation kinetics to describe a 

block of the IA channel pore (see Eq. 7) with an inhibition constant, KI, of 1.5 µM. 

Inset, percent peak current relative to the control ([Aβ] = 0) at various [Aβ]. 

Experimental data from Good et al[17] (open squares), Chen[29] (closed triangle), 

Leão et al[2] (closed circle), Jhamandas et al[38] (dash) and Ye et al[1] (cross) 

plotted for comparison. (B) The Aβ-induced increase in membrane conductance is 

represented by increases in both capacitance and membrane leak conductance (Eqs. 9 

& 10). Plotted here is the leak current at various [Aβ]. Inset, percent change in 

conductance relative to the control, as measured by the slope of the I-V curve vs. 

[Aβ]. The black bars represent the simulated control; grey bar is the model results for 

the membrane conductance increase mechanism. Experimental data from[33] is 

represented by the white bars. For these voltage-clamp simulations, VH = -100 mV 

for 26 ms before evoking VC, and for 10 ms after the VC; VC = 60mV for 50 ms. All 

Ca2+ and sodium channels, the delayed-rectifying, Ca2+-dependent, and the long after 

hyperpolarization K+ channels were blocked during these simulations. [Aβ] = 0 

(control), 1, and 3 µM. 
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2.3.2 Current-clamp simulations of a single AP, membrane excitability and 

[Ca2+]i 

 
   We used current-clamp simulations to evaluate the effect of each mechanism 

on AP generation and membrane excitability. An inject current of 0.5nA is applied to 

simulate the effect of neurotransmitter release from the pre-synaptic cell to the model 

neuron sufficient enough to elicit an AP. Again, we simulated each mechanism’s Aβ-

induced effect for [Aβ] ranging between 0 and 3µM. The Aβ-induced IA channel 

block decreases AP latency and increases AP height with a slight [Aβ]-dependence 

(Figure 2.2A), indicative of increased membrane excitability. These Aβ-induced 

alterations in firing properties of neurons have been examined both computationally 

and experimentally for the IA channel block[29, 42]. Though alterations in APs that 

our model predicts are slight, these can lead to more dramatic increases in AP height 

in the dendrites due to back-propagation[29, 42]. Disturbances in dendritic signal 

propagation can result in loss of input-output control, which is essential for effective 

inter-neuronal signaling[43]. In contrast to the IA channel block by Aβ, the Aβ-

induced membrane conductance increase mechanism (Figure 2.2B) shows a strong 

non-linear [Aβ]-dependence on AP latency, height and shape as well as the 

hyperpolarization period following the AP. For [Aβ] < 0.1µM, AP latency is 

increased. Conversely, at [Aβ] > 0.1µM, AP latency is decreased, indicating greater 

membrane excitability. Furthermore, the AP peak is lower and broader for increased 

[Aβ] > 0.1µM. The depth of the hyperpolarization period also shows a non-linear 

correlation at [Aβ] < 0.1µM, but an inverse correlation at [Aβ] > 0.1µM.  
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 This dichotomy in neuronal response to Aβ is due to the inverse relationship 

between capacitance and conductance, as both are increased by Aβ (Eqs. 9 & 10). 

Qualitatively, the implications of these opposite effects of the membrane conductance 

increase mechanism is that at lower concentrations (i.e., at [Aβ] < 0.1µM in our 

simulations), the neuron may be less responsive to external stimulus but at higher 

concentrations (i.e., [Aβ] > 0.1µM in our simulations) the neuron will become more 

responsive to external stimulus, and therefore more excitable, as compared to the case 

when no Aβ is present. Because information encoded in neurons is dependent on the 

height, shape and frequency of APs[44], then such changes in intrinsic membrane 

properties of neurons could be deleterious. To further examine the effects of Aβ on 

membrane excitability, the model neuron was given a subthreshold current (Iinject < 

0.5nA), which would be insufficient to elicit an AP when no Aβ is present. A 

decrease in the threshold current required to evoke an AP would result in a neuron 

that is more excitable, or more responsive to a subthreshold external stimulus. When 

Aβ blocks IA channels (Figure 2.2C), threshold current is decreased in a [Aβ]-

dependent manner until the simulated concentration reaches around 2.5µM. 
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Figure 2.2: Comparison Aβ-induced 

IA channel block and membrane 

conductance increase under current-

clamp conditions. Top panel: Current 

was injected into the model neuron was 

sufficient to elicit an AP (0.5nA) when 

[Aβ] = 0. Shown are the IA channel 

block by Aβ and (A) Aβ-induced 

membrane conductance increase (B). 

Bottom panel: Threshold current as a 

function of [Aβ] is plotted here for the 

IA channel block (C) and the membrane 

conductance increase (D). KI = 0.5µM 

(dotted line/solid squares) and 1.5 (A 

and C, solid line/solid diamonds). [Aβ] 

= 0 (control), 0.01, 0.05, 0.1, 0.25, 0.5, 

1, 1.5, 2.5 and 3µM. Current-clamp 

electrophysiology data from[1, 2] (C 

and D; square, circle) are plotted as the 

percent basal activity or the ratio of the 

Aβ-stimulated activity of the control 

activity in [Aβ]-dependent manner. 

Basal activity and threshold current are 

inversely related.  
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Experimental data for basal activity of neurons as a function of [Aβ][1, 2], as 

shown in Figures 2.2C and D, is a measure of membrane excitability that is inversely 

related to the threshold current required to elicit an AP. Basal activity of neurons vs. 

[Aβ] observed experimentally begins to plateau at [Aβ] = 1µM, and has saturated by 

time the [Aβ] = 2.5µM. Ye et al [1] attributed this Aβ-induced increase in basal 

activity of neurons to reductions in the K+ currents of the fast-inactivating type (A- 

and D-type), while Leão et al[2] reported increases in spontaneous (basal) activity 

due to the inhibition of IA and IM currents. The difference in the specific currents 

affected by Aβ that Ye et al and Leão et al observed were most likely tissue specific. 

In Figure 2.2D, the threshold current for the membrane conductance increase 

mechanism decreases to zero as [Aβ] increases, resulting in a spontaneously excitable 

neuron. Though our model shows that this spontaneously excitable neuron occurs at 

[Aβ] = 3µM, this result is a function of the parameters chosen to model the membrane 

conductance increase as discussed previously (see Section 3.1). Threshold current vs. 

[Aβ] for the membrane conductance increase mechanism in Figure 2.2D was 

compared to the same experimental data as in Figure 2.2C. Again, the behavior of 

the trends in Figures 2.2C and D are distinct. For the block of IA channels by Aβ, the 

[Aβ]-dependent effect on threshold current saturates at a non-zero value; whereas, the 

trends for membrane conductance mechanism demonstrate a neuron that is 

spontaneously excitable at high Aβ concentrations. The results from the threshold 

current vs. [Aβ] simulations are important for two reasons: (1) it reveals a difference 

between the two mechanisms, under physiologically relevant conditions, that lends 

further credence to experimental observations and (2) a spontaneously excitable 
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neuron observed for the membrane conductance increase mechanism at high Aβ 

concentrations is an experimentally testable result that differentiates these two 

mechanisms at a single [Aβ] concentration. 
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Figure 2.3: Effect of Aβ IA channel block and the membrane conductance 

increase on basal intracellular [Ca2+]. The model neuron was subjected to a 

subthreshold current of 0.3nA ([Aβ] = 0). Intracellular Ca2+ levels were averaged over 

the entire model neuron volume and the log of the peak [Ca2+] as a function of [Aβ] is 

plotted for the IA channel block (A) and membrane conductance increase (B). [Aβ] = 

0 (control), 0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.5, 2.5 and 3µM. In (A), KI = 0.5µM and 

1.5µM, represented by the dotted line and solid line, respectively. Experimental data 

of the relative (to baseline) peak increase in [Ca2+] from[39] (open diamonds), [29] 

(X), [20](open circles) and [24] (open triangles) are included here for comparison.  

 

 

Intracellular Ca2+ levels (Figure 2.3) are increased in the presence of Aβ (in 

general, at [Aβ] > 0.1µM) due to an increase in the neuron’s response to an external 

stimulus for both mechanisms under current-clamp conditions. The increase in [Ca2+]i 

levels is due to the induction of an AP at a subthreshold current of 0.3nA. As a result, 

for both mechanisms, a neuron exposed to a subthreshold stimulus, in the presence of 

Aβ, could experience an increase in basal [Ca2+]i through membrane 

depolarization[45]. Interestingly for the block of IA channels by Aβ, there is a notable 

difference between the [Aβ] at which a significant increase in Ca2+ influx takes place. 

For KI = 0.5µM, the results show a sharp increase in Ca2+ at a [Aβ] that is 10 fold less 

than at KI = 1.5µM. This makes sense because this effect is simulated by saturation 

kinetics and because KI represents the concentration at which the half-maximal rate of 
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inhibition occurs. Therefore, a significant change in Ca2+ influx should occur at this 

value, due to an increase in membrane excitability (Figure 2.2). Also, there appears 

to be no qualitative difference between the dynamics of calcium entry for KI = 0.5µM 

for the IA channel block and the membrane conductance increase by Aβ mechanisms. 

Though these two hypothesized mechanisms have differing mathematical 

representations, under this specific experimental condition, depending on the actual 

value of KI and the parameters for the membrane conductance, these two mechanisms 

could be indistinguishable. A general increasing trend in [Ca2+]i with increasing [Aβ] 

is also observed in the experimental data in Figure 3. However, between different 

experiments, the rate of increase in [Ca2+]i as a function of [Aβ] is very different. 

Another explanation for the lack of overlap between experimental and model results, 

is that calcium influx is a localized diffusional process; distribution of ion channels as 

well as calcium flux into and out of intracellular stores play a role in the precise 

response of a neuron to Aβ. Though our model does not take these two phenomena 

into account, our model is flexible enough for tuning as parameters for these two 

mechanisms are better evaluated experimentally or other potential mechanisms are 

proposed and tested.  

 

2.3.3 Simulations of high [K+] membrane depolarization and intracellular 

[Ca2+] 
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Figure 2.4: The effect of Aβ under membrane depolarized conditions for the Aβ 

block of the IA channel and the Aβ-induced membrane conductance increase. 

Membrane depolarization with 30mM [K+] was simulated by changing the Nernst 

potential of the K+ channels to -32 mV. [Aβ] = 0 (control), 0.01, 0.05, 0.1, 0.25, 0.5, 

1, 1.5, 2.5 and 3µM. Plotted here: the Aβ IA channel block and (A) Aβ-induced 

membrane conductance increase (B).  

 

 

We simulate co-current application of 30mM [K+] and Aβ, at various 

concentrations, to the extracellular solution. In Figure 2.4A, when the membrane is 

depolarized with high [K+], the IA channel block by Aβ increases AP latency in a 

[Aβ]-dependent manner. In Figure 2.4B, the Aβ-induced membrane conductance 

increase mechanism shows a non-linear correlation with [Aβ] of AP shape, height and 

latency, similar to the current-clamp results. At [Aβ] < 1µM, both mechanisms are 

predicted to increase AP latency. But, for the membrane conductance increase, at [Aβ 

] > 1µM, both AP latency and height are decreased. Unlike peak [Ca2+] under current-

clamp conditions, high [K+] membrane depolarization simulations also reveal that the 

two mechanisms show very different correlations with respect to peak [Ca2+]i 

(Figures 2.5A and B). Aβ’s block of IA channels results in decreasing [Ca2+]i with 

increasing [Aβ]. But, [Ca2+]i for the membrane conductance increase mechanism a 

strong, non-linear response is observed. Because under high [K+] conditions, the 

neuron does not reset to its normal resting potential, as seen in Figures 2.4A and B, 

Ca2+ channels are still open. Therefore, there is a direct correlation between AP 
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latency and Ca2+ influx in our simulations; as AP latency increases, Ca2+ influx 

decreases. This is evident in the differences in the responses in Figures 2.4 and 2.5 

between the two mechanisms. Though the implication of such a result would be of 

interest experimentally, there have been few experiments designed to elucidate the 

[Aβ]-dependent effect on [Ca2+]i under high extracellular [K+] conditions at the short 

time-scale. Because intermediate Ca2+ data is sparse in the literature under these 

conditions, we wanted to demonstrate how simulating [Ca2+]i under high [K+] 

conditions can provide potentially physiologically relevant information. Therefore, 

we compared our [Ca2+]i results to experimental data on phosphorylated CREB (p-

CREB) levels in the presence of Aβ. High [K+] membrane depolarization is 

commonly used to elicit and observe synaptic activity-dependent CREB 

phosphorylation[46, 47] and Aβ has been shown to reduce phosphorylation of CREB 

in a [Aβ]-dependent manner under high [K+] conditions[11, 48]. Investigators have 

described this reduction in p-CREB by Aβ to be Ca2+-dependent (primarily through 

L-type channels)[48, 49]. Therefore we compared both mechanisms to experimental 

data (Figure 2.5A and B) describing reduced p-CREB levels observed in neurons 

exposed to Aβ under high extracellular [K+][11]; since trends in p-CREB levels may 

be suggestive of trends in intracellular Ca2+ levels, though we acknowledge that other 

intracellular mechanisms may affect p-CREB levels[50].  
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Figure 2.5: Intracellular Ca2+ levels under high [K+] membrane depolarized 

conditions. Changing the Nernst potential of the K+ channels to -32 mV, we 

simulated high [K+] membrane depolarization with 30mM [K+]. [Aβ] = 0 (control), 

0.01, 0.05, 0.1, 0.25, 0.5, 1, 1.5, 2.5 and 3µM. Intracellular Ca2+ levels were averaged 

over the model neuron volume and the peak Ca2+ level as a function of [Aβ] is plotted 

for the IA channel block (A) and membrane conductance increase (solid line/solid 

diamonds) (B). In (A), KI = 0.5 and 1.5µM are represented by the dotted line/solid 

squares and solid line/solid diamonds, respectively. Phosphorylated CREB (p-CREB) 

relative levels at elevated extracellular [K+] are plotted as a function of [Aβ][11] 

(asterisks).  

 

 

 In the presence of Aβ and high [K+], p-CREB levels decrease in a [Aβ]-

dependent manner as experimental data shows in Figures 2.5A and B. Even though 

p-CREB levels were measured 1 hr after Aβ addition, Bito et al[47] showed that 

changes in the phosphorylation state of p-CREB can occur in less than 30 sec after 

applied stimulus. Since increased Ca2+ influx is related to increased p-CREB levels 

under high [K+] conditions, then, hypothetically, reduced [Ca2+] would correlate to 

reduced p-CREB levels. In Figures 2.5A and B, the IA channel block follows this 

decreasing trend, whereas the membrane conductance increase mechanism does not. 

If Aβ increased membrane conductance, then p-CREB relative levels should show a 

strong, non-linear trend as well. Yet, not only does this not occur in the experimental 
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data shown in Figure 2.5B, but the decreasing trend in the experimental data for p-

CREB levels of Aβ exposed neurons continues to decrease, linearly, at [Aβ] > 5µM 

(data not shown)[11, 48].  

 

2.3.4 Implications of this computational study 

 

Herein we tested the hypothesis that a computational neuron model can 

resolve the nature of short time-scale modifications of neuronal electrophysiology due 

to Aβ. Our neuron model was originally developed to examine the effects of the IA 

channel block by Aβ under current-clamp conditions[28]. Including voltage-clamp 

and high [K+] membrane depolarization experimental conditions into the model 

makes it more broadly useful because its predictions about the differences between 

each proposed mechanism of Aβ-neuron interaction gives results that are comparable 

to and expound upon data from experimental literature. Though we included just two 

hypothetical Aβ-neuron interactions, our model can yield predictions for any Aβ-

induced action on a neuron that is initiated by a Aβ-protein or -lipid interaction. 

Therefore, the model acts as a tool for both hypothesis generation and comparison. 

Importantly, the predictions from our model can be used to guide experimentation for 

discriminating between mechanisms of Aβ-neuron interaction, which to date has 

proven experimentally difficult[51]. 

 

From the comparison of Aβ’s block of IA channels and Aβ-induced increase in 

membrane conductance mechanisms, we observed differences in [Aβ]-dependence of 
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AP generation and membrane excitability in current-clamp (Figure 2.2) and 

membrane depolarization experimental conditions (Figure 2.4), and determined that 

threshold current experiments could differentiate the two mechanisms at a single [Aβ] 

(Figure 2.2C and D). Since many in vitro experiments with Aβ are typically 

performed at one [Aβ], this result is significant in that only a single point of data 

would be needed to distinguish these mechanistic effects. Though high [K+] 

membrane depolarization experiments do not represent a physiologically relevant 

condition, it is commonly used to study certain intracellular pathways[52], such as 

CREB phosphorylation[50, 53], that are synaptic activity-dependent. Through these 

high [K+] simulations, our model predicts trends in intermediate Ca2+ influx that 

could be integral in not only identifying a possible mechanism for Aβ-neuron 

interaction, but provides a link to its effects on downstream intracellular processes. 

Because of the distinct effects observed from our computational study under this 

infrequently used experimental condition, we recommend this as a hypothesis to be 

tested experimentally.   

 

There are many computational models of hippocampal neurons[54], which 

have been developed in-house[55, 56] or utilizing simulation programs such as 

NEURON[42, 57] and GENESIS[55, 58]. These models range from single 

compartment models[28, 56] to models with hundreds of compartments[42, 58]. 

Fewer models have been developed to simulate Aβ’s action on single neurons[42, 59-

61]. Moreover, no existing modeling paradigms examine more than one mechanism 

of Aβ-neuron interaction at a time. We report similar ion conductances as models 
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developed using NEURON[42, 62] or GENESIS[58, 63]. In addition, Ca2+ influx into 

our model neuron is described by Fickian diffusion providing spatio-temporal 

predictions of Ca2+ dynamics in the cell based on a theoretical framework. Neuron 

simulators, such as GENESIS[64] and NEURON[65], build-in a structure for creating 

morphologically detailed neurons. The addition of detailed morphology to the 

methodology presented in this paper would help us assess how different Aβ-neuron 

interactions could augment neuronal functions that are highly controlled spatially, 

such as input-output control[57, 66] and synaptic activity[29, 42].  

 

 A concern for all modeled systems is parameter choice. Parameters in our 

model for ion channel conductances, gating kinetics, initial conditions, and calcium 

dynamics have been taken from the Good and Murphy model[28]. Because it is 

known that IA channels are not homogenously distributed across the neuron[66], some 

sensitivity analysis was done around the ratio of the delayed-rectifying to the IA 

channel maximum conductance. The model is sensitive to this ratio, but the 

perturbation due to the block of the IA channel is not (data not shown). A sensitivity 

analysis was also performed around KI, the inhibition constant for the IA channel 

block. Previously, it was described by Good et al[17] that 10µM is an upper limit on 

the true value of the inhibition constant. In this sensitivity analysis, we used KI = 0.5, 

1.5 and 10 µM[1]. The sensitivity analysis showed that the model is sensitive to this 

parameter (data not shown), and therefore determining the value of this parameter 

experimentally would be useful for providing greater accuracy to our predictions. The 

parameters in the expressions used to describe the increase in capacitance and 
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conductance associated with Aβ from the membrane conductance mechanism were 

not tested for sensitivity of the model. Although, it is known that these parameters 

were derived, originally, from sparsely-tethered membranes[31], it likely that there 

would be significant error associated with these parameters  when comparing our 

results to empirical data performed on native membranes. Therefore, future work 

could incorporate a more detailed description of the parameter space involved with 

the membrane conductance increase mechanism through parameter sampling and 

experimental validation. 

 
 

2.4 Conclusions 

 
The ultimate goal of AD research is for a cure or adequate treatment for the 

disease. Most treatments have not been successful in ameliorating AD in patients[4]. 

Developing a wide variety of tools towards developing a mechanistic description of 

how Aβ interacts with the neuronal surface could be an avenue for drug design. One 

of the issues in this understanding is the lack of consensus around how Aβ interacts 

with the neuronal surface. We have developed a computational tool that allows us to 

discriminate between proposed Aβ-neuron interactions at the short time-scale, across 

three electrophysiology experimental systems. From examining the IA channel block 

and the membrane conductance increase by Aβ, we have compared the distinct 

behavior of these two mechanisms under various experimentally testable conditions. 

Importantly, our model provides information about the types of experiments which 

might distinguish these two mechanisms further; information that is not currently 
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available in the literature. This methodology can be used to make predictions about 

multiple hypotheses of Aβ’s early action on neurons that would be experimentally 

testable. Implementing this comparative modeling for other mechanisms that have 

been implicated in the literature for Aβ’s action on a neuron and testing those 

predictions experimentally could be an important step toward defining Aβ’s early role 

in AD progression.  

 

2.5 Appendix: Initial Conditions 

 
The initial conditions are as follows[28]:  

Initial Conditions 

V0 (mV) -67.5 

[Ca2+]r (nM) 50 

[B]r (mM) 0.225 

[Ca2+B]r (µM) 1.87 

mi 0 

hi 1 

  Table 1: Initial Conditions 
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Chapter 3: Toward inferring Aβ-neuron interactions using 
CellNOptR: a case study2 

 

3.1 Introduction 

 
“The great tragedy of science – the slaying of a beautiful hypothesis by an 

ugly fact.” ~ Thomas Huxley, English Biologist (1825-1895) 

 

β-amyloid (Aβ) is the primary protein component of senile plaques associated 

with Alzheimer’s disease (AD)[3]. Although highly studied, the details of the 

molecular mechanisms underlying Aβ’s role in AD remains undetermined. It is 

widely accepted that Aβ plays a primary, albeit complex, role in AD pathology. Aβ, 

in the form of mature fibrils, is found in the extracellular matrix of AD post-mortem 

brains, surrounding areas of massive neuronal loss[67]. This finding led, in turn, to in 

vitro studies involving the addition of Aβ to cells exogenously in order to observe 

Aβ’s direct effects on cell populations[4]. From initial studies, it was apparent that 

exogenously applied Aβ causes intracellular changes to cells that result in eventual 

cellular dysfunction and death. This suggests, then, a mechanism by which Aβ acts on 

the extracellular surface of neurons, thereby relaying aberrant intracellular signals to 

the cell causing dysfunction leading to cellular death [4, 68]. 

 

                                                
2 Co-authors: Angela Norton, Patrick O’Neil, Ivan Erill,  Mariajosé Castellanos, and Theresa A. Good 
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For over more than two decades, many hypotheses for Aβ’s interactions with 

neurons have been proposed. In general, they fall into three categories: Aβ-receptor, 

Aβ-lipid or some combination of the two, interactions. Earlier researchers proposed 

that Aβ’s interaction with the neuronal surface was fairly specific to a receptor or an 

ion channel[39, 69], or with the lipid membrane itself[20, 32]. However, as more 

signaling data became available, it was evident that the complex signaling phenomena 

observed could not be reconciled into just a specific interaction with a receptor or the 

lipid membrane[23, 70]. There may be multiple factors contributing to divergent 

responses of neurons to Aβ: Aβ aggregation state-dependent effects, Aβ species-

dependent effects, tissue-specific effects, measured response time-scale and 

promiscuity of Aβ interactions[23, 71, 72]. Though there may be a multiplicity of 

independent factors leading to observed Aβ effects on neurons, we hypothesize that 

the combined effect of these factors would give rise to an identifiable signaling 

landscape, characterized by the results of various experimental preparations. 

 

Extracellular signals are transduced via membrane receptors, ion channels and 

even the membrane itself to intracellular signals whose purpose is to alter cellular 

function in response to its environment. Physiologically favorable environments will 

favor a healthy cellular response while pathological environments may favor 

detrimental cellular responses, such as in some diseases[46, 73-76]. This makes 

understanding changes in cell signaling in the presence of a particular pathological 

state, such as exposure to Aβ, important to uncovering disease mechanisms. Because 

signaling networks must respond to a litany of extracellular cues in a noisy 
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environment, signaling networks are necessarily complex and integrative[77]. We, 

therefore, chose to examine computationally the effects of multiple proposed Aβ-

neuron interactions with a CA1 hippocampal signaling network[78]. This network, 

expertly curated from 1200 literature sources, consists of over 500 nodes and 1200 

interactions, with nodes being related to signaling molecules (kinases, phosphatases, 

receptors, G-coupled proteins, etc) and edges (interactions) related to the relationship 

between a pair of nodes (activation, inhibition, and binding)[78]. This network, 

hereby to be referred to as a prior knowledge network or PKN[79], was utilized in 

this study to attempt to deduce specific Aβ-induced network topologies based on 

hypothesized Aβ-neuron interactions.  

 

Deriving network topologies for complex, systems-level signaling networks is 

challenging. There are top-down[80-83] and bottom-up[79, 84-86] techniques that 

can be utilized for building network topologies. Top-down techniques require 

knowledge of all signaling molecules and their states in the presence of a particular 

set of extracellular cues of interest. This problem becomes intractable quickly, both 

computationally and experimentally, for only moderately sized networks (i.e., number 

of nodes < 100). For instance, utilizing a fairly simplistic, albeit informative[87], 

Boolean approach with two states, a network with 100 nodes would have to be 

observed on 2100 states, which is an unrealistic number of experiments or 

computations of random networks to perform. In cases where enough is known about 

the particular molecular species and their interactions, classical kinetic modeling 

could be employed; however, the parameter space is typically not well-defined for 
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even small networks (n < 50)[88]. Thus, bottom-up techniques are preferable for 

larger networks (n > 50). In this case, network topologies are found by data-driven 

means utilizing statistical search algorithms such as Bayesian networks[87] or 

information-theoretic simulations[84, 89]. These methods, though proven to be useful 

for developing specific network topologies given a set of experimental data, are not 

able to incorporate “prior knowledge” of particular pathways in the system beyond 

those inferred directly from the experimental data. 

 

In this work, we have chosen to utilize a bottom-up technique that is both 

data-driven and accounts for “prior knowledge” of signaling in the system of interest. 

This technique, implemented in the computational software CellNOptR, was 

developed by Saez-Rodriguez and coworkers[79]. Making use of a prior knowledge 

network, defined as a protein interaction map of signaling for a particular system, 

CellNOptR takes in experimental data as an input to infer network topologies specific 

to the inputted experimental data, or the training set. In this study, we utilized 

CellNOptR to attempt to infer network topologies that were consistent with literature-

derived experimental data for neurons exposed to Aβ, where the network included 

different specific hypotheses concerning the first steps in Aβ’s interaction with 

neurons. Although CellNOptR has been utilized to infer cell-type specific network 

topologies under experimental conditions[79, 90], the prior knowledge networks used 

were relatively small in comparison to the one used in our study (<100 nodes) and the 

dataset was very large (> 1000 data points in[79]). In this study, we tested various 

Aβ-neuron interactions as part of the PKN against literature-derived datasets. We 
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found that with a relatively small dataset that increasing dataset size does not 

necessarily improve the fit of network topologies found by CellNOptR. We also 

found that CellNOptR was able to find network topologies that fit scrambled datasets 

better than the real data set, which was an unexpected result. Lastly, regardless of 

which set of Aβ-neuron interactions selected, the fit to the data varied little between 

them. We suggest that part of the challenge of inferring interactions using a somewhat 

sparse literature-derived dataset lies in the availability of data at informative nodes in 

the network versus data at integrating, non-discriminative nodes. These results may 

help define better methodologies both for experimental data collection and network 

topology inference for complex signaling networks involving Aβ, or any other ligand 

or cell activator of interest. 

3.2 Methods 

3.2.1 Model description 

 
CellNOptR[79] is genetic algorithm-based software used to identify signaling 

network topology from experimental data by making use of a prior knowledge 

network (PKN). A PKN is a signaling network graph composed of all known 

signaling species and their interactions. For our purposes, a protein interaction map of 

a CA1 hippocampal neuronal signaling network with 545 species and 1235 

interactions was used[78]. The network (Figure 3.1) consists of nodes that represent 

receptors, ion channels, kinases, phosphatases, adapter, scaffolding proteins, and 

transcription factors; and edges that represent specific interactions between two 
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species, such as activation, inhibition or binding. To visualize the network, the nodes 

and their interactions were uploaded into Cytoscape[91]. 
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Figure 3.1: Prior knowledge network of a CA1 hippocampal network with a Aβ node. This CA1 

hippocampal network has 545 nodes (circles) and 1235 edges or interactions (lines). The Aβ node was 

added and its interactions were chosen per Section 3.2.3. The nodes represent protein species in the 

intracellular network (receptors, ion channels, kinases, phosphatases, adaptors, scaffolds, transcription 

factors, etc) and the interactions represent the biological reactions between each node, which result in 

activation, inhibition or binding.  
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Table 3.1: Description of datasets used for CellNOptR optimization. Two datasets are used in this 

study. Both datasets were curated based on the following criteria: to minimize variations in data that 

may arise from differences in cell phenotype we only included data from in vitro studies performed on 

primary culture hippocampal or cortical neurons. To minimize inclusion of effects associated with 

gene expression as opposed to signaling effects, we restricted data inclusion to that from experiments 

where the Aβ incubation time (the time after the application of Aβ to the neurons before measurement 

is taken) of 60 minutes or less. No attempt was made to control for Aβ aggregation state or 

morphology. Results from two datasets were compared, original and larger. In this table, the number 

of measured species (or proteins), the number of stimulated/inhibited species, the number of literature 

sources used to curate data and the number of nodes (and percent of total) that were present in the data 

are presented here for both datasets.  
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Experimental data were collected from literature-based sources listed in Table 

3.1. Data were chosen based on the following criteria: in vitro studies performed in 

primary cultures of hippocampal or cortical neurons, and Aβ incubation times of less 

than 60 minutes. Primary culture hippocampal or cortical neuronal preparations were 

chosen for this study because they are the primary neuronal population in the brain 

affected by Aβ. Aβ incubation time of less than 60 minutes was chosen in order to 

identify Aβ’s early action on neurons at the cell surface prior to any changes in gene 

expression, which tends to happen over longer periods of time[92]. Aβ species and 

aggregation state as well as concentration were not used as criteria for data selection. 

The following databases were searched: MEDLINE and Web of Science. Keywords 

utilized in the search are given in Appendix 3A. Numerical data were used wherever 

applicable; however, most data were curated directly from figures. Data were cross-

checked by two independent observers to ensure that inclusion criteria were correctly 

applied. Experimental data were inputted into a MIDAS format[79] and loaded into 

the CellNOptR software (Figure 3.2). Because CellNOptR is based on Boolean logic, 

experimental data were normalized from 0 (off/not active) to 1 (on/active). In order to 

test the effects of dataset size, we used the original dataset from our first literature 

curation and then added in additional data that was found from a second curation step 

to create what we referred to as the larger dataset. CellNOptR performs a genetic 

algorithm-based optimization in order to identify a set of network topologies that 

most closely explains the inputted experimental data. The objective function (Eq. 

3.2.1) compares the mean squared difference between the experimental data and the 

model predictions (Eq. 3.2.2). 
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The model’s predictions are determined from the Boolean steady state 

response of each node. The objective function (Eq. 3.2.1) was minimized during the 

course of the optimization in order to find the best solution.  
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Θ(P) is the objective function, which is in terms of the vector of edges, P, and is 

bipartite. The first part of the objective function is Θf, the mean square error between 

the experimental data (BE
k,l,t) and the model (BM

k,l,t). The second part is Θs, a penalty 

for model size such that, as Eq. 3.2.3 shows, models with a large number of edges (ve) 

are penalized more heavily than those with a smaller number of edges. Θs is scaled by 

α, an adjustable parameter set to its default value of 0.001 for the entirety of this 

study. Changing the size of α would change the relative magnitude of the 

contributions of the two parts of the objective function. The indices, k, l, and t, and 

the variables, s, m, and n represent the experimental condition, readout (measured 

node) and the time point (only initial and final in this study), respectively. The output 

from CellNOptR is a family of network solutions within a tolerance of the best 

solution (tolerance: 10%). The best solution is the solution with the overall minimum 
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objective function. Each interaction (or edge) is given a weight, which is the number 

of network topologies containing this interaction over the total solution set size. 

Therefore, a weight of 0 means that an interaction never occurs in the solution set and 

a weight of 1 means that the interaction always exists in the solution set.  
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Figure 3.2: Flow chart for CellNOptR. This flowchart shows the two inputs into 

CellNOptR, a prior knowledge network (PKN) with assumed Aβ-neuron interactions 

and literature-derived experimental data. The output is a family of networks, which in 

this study, would represent Aβ-induced signaling network topologies based on a 

particular set of Aβ-neuron interactions. The objective function is used to determine 

how well the best network topology matches the experimental data.  
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3.2.2 Statistical analysis 

 
In order to make comparisons between the results from CellNOptR between 

different Aβ-neuron interactions, we ran CellNOptR multiple times on the same PKN 

and experimental data set. This allowed us to create a distribution of best objective 

functions that could be used for comparison. Because there is some stochasticity in 

the solution from the genetic algorithm (primarily due to the mutation rate), the same 

solution was not necessarily found at each instance of the algorithm, even if the same 

two inputs were given it. Therefore, it was necessary to run the algorithm multiple 

times to account for the variation in the solutions. We expected that better solutions 

should have a distribution with a lower median best objective function, a small 

percentage of overlap, and shifted toward the left on the abscissa. Comparisons of the 

solutions for each Aβ-neuron interaction tested were made by comparing the median 

and distributions of the best objective function. In order to determine statistical 

significance of the comparisons of multiple mechanisms, the Kruskal-Wallis test was 

used[93]. This is a statistical test similar to an ANOVA, except that it is non-

parametric and does not require that the underlying distributions of the data be 

normally distributed. In order to perform pairwise comparisons, a Mann-Whitney U 

test was used with an a priori Bonferroni adjustment (see Appendix 3C)[93]. All 

statistical analysis, calculations of medians, associated plots were performed in the 

statistical program, Minitab[94].  
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3.2.3 Choice of Aβ-neuron interactions 

 
 

In this study, we chose Aβ-neuron interactions to test using CellNOptR. 

Though hypothetically we could have selected any of the nodes for an Aβ – cell 

interaction, we chose only cell surface receptors as hypothesized loci of Aβ-cell 

interaction. This is because we made the assumption, based on in vitro 

observations[70, 72] that Aβ initiates its action at the cell surface, and then relays 

aberrant signals through a pathway or sets of pathways affected by said receptors 

and/or ion channels. We tested two cases in which we selected the entire potential cell 

surface receptors/ion channels with which Aβ could possibly interact; we either 

activated or inhibited them. This case allowed CellNOptR to sample all possible Aβ-

neuron interactions that might explain the data. Aβ’s induction of ion channels (Aβ-

Ionotropic) mechanism is based on the long standing calcium hypothesis of 

Alzheimer’s disease[6, 7, 75], namely that Aβ causes a disruption in calcium 

homeostasis in the cell by adverse interactions with calcium conducting ion channels 

or by forming an ion conducting pore (of which calcium has the largest concentration 

gradient). We also chose to add Aβ’s interaction with G-coupled protein receptors, a 

mechanism hypothesized by[95, 96]. Another set of mechanisms tested was Aβ’s 

interaction with G-protein coupled receptors and Integrin receptors, based on results 

out of our laboratory[97] with a different cell type than that included in our curated 

data.  
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Mechanism Code Description References 
Iono_orig Aβ is connected to ionotropic 

(conduct ions) receptors and 
channels (see Appendix 3B). This 
network was optimized on the 
original data set in CellNOptR. 

[36, 37] 

rPKN_orig The PKN with the Aβ node 
connected to it is randomized, while 
maintaining a scale-free topology. 
This network was optimized on the 
original data set in CellNOptR 

-- 

Iono_larg Aβ is connected to ionotropic 
(conduct ions) receptors and 
channels (see Appendix 3B). This 
network was optimized on the larger 
data set in CellNOptR. 

[36, 37] 

Iono_larg_scram Aβ is connected to ionotropic 
(conduct ions) receptors and 
channels (see Appendix 3B). This 
network was optimized on a set of 
scrambled datasets in CellNOptR. 

-- 

ABfullact_larg Aβ is connected to all cell surface 
receptors and channels by activating 
edges. This network was optimized 
on the larger dataset in CellNOptR. 

[41] 

ABfull_act_scram Aβ is connected to all cell surface 
receptors and channels by activating 
edges. This network was optimized 
on a set of scrambled datasets in 
CellNOptR. 

-- 

ABfull_inhib_larg Aβ is connected to all cell surface 
receptors and channels by inhibiting 
edges. This network was optimized 
on the larger dataset in CellNOptR. 

[41] 

ABfull_inhib_scram Aβ is connected to all cell surface 
receptors and channels by inhibiting 
edges. This network was optimized 
on a set of scrambled datasets in 
CellNOptR. 

-- 

ABGPCRs_larg Aβ is connected to G-protein 
coupled receptors (GPCRs) by 
activation (see Appendix 3B). This 
network was optimized on the larger 
dataset in CellNOptR. 

[40, 42] 

ABGPCRInt_larg Aβ is connected to G-protein 
coupled receptors (GPCRs) and the 
Integrin receptor by activation (see 
Appendix 3B). This network was 
optimized on the larger dataset in 
CellNOptR. 

[40] 

ABGPCRs_scram Aβ is connected to G-protein 
coupled receptors (GPCRs) by 
activation (see Appendix 3B). This 
network was optimized on a set of 
scrambled datasets in CellNOptR. 

-- 
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As demonstrated experimentally in our lab with SH-SY5Y cells[97], it is 

hypothesized that Aβ might interact with both G-protein coupled receptors (GPCRs) 

and Integrin receptors, whereby aberrant signals from Aβ integrate at hub proteins, 

such as SRC or FYN. It is believed that Aβ-induced signaling through integrins, and 

GPCRs, followed by SRC and FYN may be the cause of neurotoxicity demonstrated 

in in vitro systems[97]. 

 

There are other hypotheses that could have been tested such as Aβ’s 

interaction with receptor tyrosine kinases[98], however, we chose a subset of these 

more specific interactions to test, while utilizing the cases in which all of the cell 

surface proteins were included so as to potentially capture any mechanisms we might 

have missed. 

 

 

 

 

 

 

 

Table 3.2: Table of Aβ-neuron interactions and “pseudo-controls” tested in this study. In this table, the 

first column contains the code names given to each interaction or pseudo-control as an identifier throughout 

the rest of this chapter. In the middle column is a description of the Aβ-neuron interactions and pseudo-

controls tested in the study. Included in the third column are the references for each interaction as they have 

been hypothesized in the literature.  
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Two ‘pseudo-controls’ were used, a randomized PKN and scrambled datasets. 

These are called ‘pseudo-controls’ because they do not function, in the strictest sense, 

like a positive or negative control, but act as worse case scenarios for the algorithm. 

In the case of the randomized PKN, this tests for biological significance of the 

network topologies found by the algorithm. If the network topologies are biologically 

significant, then they will perform better (have a lower best objective function) than 

those found by optimizing on the experimental data using the randomized PKN. The 

scrambled datasets test for the self-consistency of the experimental data itself. If the 

experimental data is self-consistent, then the expected result would be that network 

topologies found by CellNOptR should perform better than those found by optimizing 

on the scrambled datasets.  

 

3.3 Results and Discussion 

The goal of this work was to use a genetic algorithm-based method to test the 

likelihood that hypothesized Aβ-neuron interactions could give rise to experimental 

data from a fairly well characterized signaling network. To accomplish this goal, we 

performed simulations using CellNOptR on Aβ-ionotropic mechanisms against 

“pseudo-controls”. We chose ionotropic mechanisms, or channels/receptors that 

conduct ions such as calcium, potassium and sodium in and out of the cell, because of 

various experimental results in which Aβ was hypothesized to disrupt ion 

homeostasis through one or more of these channels or receptors[1, 13, 17, 29]. In 

Figure 3.3, the objective functions for the fit of experimental data to a signaling 

network including Aβ-ionotropic mechanisms were compared to randomized 
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PKNs(rPKN_orig); both were optimized on the same experimental dataset (original 

dataset). The rPKNs are sets of the original PKN along with Aβ, where the edges (or 

interactions) between nodes are randomized, while maintaining a power law 

distribution of the edges (scale-free). Here we observed that the median best objective 

function for the Aβ-ionotropic mechanisms was 0.24 and the median for the 

randomized PKN was 0.35. As the box plot (Figure 3.3B) shows, in addition to the 

median best objective function for the Aβ-ionotropic mechanisms being lower than 

that for the rPKN, it also has a smaller variation about the median. It was expected 

that the biological network should perform better on biological data than the rPKN in 

which biological significance is lost due to the interchange of protein-protein 

interactions. These first results indicated that a signaling model that included an Aβ 

interaction with a neuron that stimulated some ionotropic mechanism was more 

consistent with combined literature data than a random signaling network model that 

included no prior knowledge of signaling.  
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Figure 3.3: Histogram and box plots of the best objective function for ionotropic mechanisms 

versus the randomized prior knowledge network (rPKN) from CellNOptR. A) Histogram of the 

best objective function found from CellNOptR for the Aβ-Ionotropic mechanisms and the rPKN. 

Median for the Aβ-Ionotropic mechanisms was 0.24. Median for the rPKN was 0.35. B) Box plots of 

best objective function found from CellNOptR for the ionotropic mechanisms (left box plot) and the 

rPKN (right box plot). The median value is represented by the line in the middle of the box with the 

boundaries of the box representing the lower and upper 25% quartile. The lines above and below 

represent the minimum and maximum value of the best objective function and the stars are outliers.  
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Next, we examined if dataset size would have an influence on the ability of 

the CellNOptR algorithm to fit experimental data pulled from the literature to a 

signaling model that included Aβ activation of signaling through an ionotropic 

mechanism. We compared the fit of the network with the Aβ-ionotropic mechanisms 

to the original dataset, a larger dataset (about twice the size of the original) and 

scrambled datasets (“pseudo-control”). The objective function, a measure of the 

goodness-of-fit of the model to the data, is shown for each network/dataset 

comparison in Figure 3.4. With an increase in the size of the dataset, the expectation 

was that the algorithm would have more information about the state of the nodes in 

the network, thereby adding more constraints on the solutions found by CellNOptR. It 

was also expected that scrambled datasets would perform worse than both cases 

because of the disruption of the input/output relationships of the experimental dataset. 

Contrary to our expectations, what we observed (Figure 3.4) was that Aβ-ionotropic 

mechanism optimized on the original dataset had a lower median (0.24) than the 

larger dataset (0.33), and that the scrambled dataset (0.25) had a lower median value 

than the larger dataset. In addition, there was a significant overlap between their 

distributions. This suggests two things. First the increase in the dataset size may lead 

to less model reduction in the pre-processing step, particularly when more highly 

connected nodes are added to the dataset. CellNOptR performs a pre-processing step 

of network reduction by removing non-observable nodes, which is intended to reduce 

the search space in accord with the amount of data inputted into the algorithm. This 

reduction in search space might work with relatively small networks (<100 nodes) 
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with a low number of incoming interactions (less than 3), but with this much larger 

network and nodes that have high connectivity, the combinations of logic gates that 

must be tested increases dramatically with the addition of data or observations at new 

nodes in the network. With a larger search space, there may be more network 

configurations that only partially explain the data, but the majority of the search space 

is unlikely to be sampled. Second, the scrambled dataset performing better than the 

Aβ-ionotropic on the larger dataset can possibly be explained by certain 

configurations of the scrambled datasets may have been easier for the algorithm to 

optimize than others. This might suggest that when data from the literature on Aβ’s 

action on neurons are taken together as a set that the set may not be self-consistent, 

though this is not conclusive from our analysis. Self-consistency of a dataset could be 

described as each experimental data point being consistent with the whole when taken 

as part of a set. A third possible explanation would be that the experimental data 

taken from the literature do not support the hypothesis that Aβ interacts with a neuron 

and induces signaling via an ionotropic mechanism as a first step. There are many 

hypothesized mechanisms of Aβ-neuron interactions other than ionotropic 

mechanisms, therefore in further simulations, we explored some of these other 

mechanisms. 
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Figure 3.4: Aβ-ionotropic mechanisms optimized on different dataset sizes and types using 

CellNOptR. A) The Aβ-Ionotropic mechanisms were optimized on the original (solid gray bars) 

and larger dataset (horizontal lined bars). B) The larger dataset optimization (horizontal lined bars) 

was compared to the Aβ-Ionotropic mechanisms optimized on the scrambled dataset (diagonal 

lined gray bars). Box plots of C) Aβ-Ionotropic mechanisms on original (solid gray) versus larger 

dataset (horizontal lined bars) and D) larger dataset (horizontal lined bars) versus scrambled dataset 

(diagonal lined gray bars). The median value is represented by the line in the middle of the box 

with the boundaries of the box representing the lower and upper 25% quartile. The lines above and 

below represent the minimum and maximum value of the best objective function and the stars are 

outliers. 
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Figure 3.5: Box plots of various Aβ-neuron interactions tested against the larger and scrambled 

datasets. The Aβ-neuron interactions tested using CellNOptR on the larger and scrambled datasets are: 

Iono_larg, Iono_larg_scram, ABfullact_larg, ABfull_act_scram, ABfull_inhib_larg, ABGPCRs_larg, 

ABGPCRInt_larg and ABGPCRs_scram (see Table 3.2). Represented in these box plots are the 

median value is represented by the line in the middle of the box with the boundaries of the box 

representing the lower and upper 25% quartile. The lines above and below represent the minimum and 

maximum value of the best objective function and the stars are outliers. Statistical significance of the 

set was determined by Kruskal-Wallis test, since not all of the distributions met the normality test. 

Once it was found that there were statistically significant differences among the set, statistical 

hypothesis testing was done on pairwise comparisons. The brackets show those pairs that are not 

statistically significantly different (n.s.) based on a Mann-Whitney U test in Minitab. 
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We next constructed hypotheses of other Aβ signaling mechanisms to explore 

if hypotheses of those mechanisms (see Table 3.2 for description of mechanisms) 

would prove to be more consistent with experimental data curated from the literature. 

In Figure 3.5 we show the objective function for fits of the different hypotheses to 

the experimental data. We include models that described hypotheses of Aβ-induced 

neuron signaling via activation of all possible cell surface receptors/ion channels 

(ABfullact_larg, ABfull_act_scram), inhibition of all cell surface receptors/ion 

channels (ABfull_inhib_larg, ABfull_inhib_scram), activation of an ionotropic 

mechanism only (Iono_orig, Iono_larg_scram), GPCRs and Integrin 

(ABGPCRInt_larg), and GPCR mechanisms (ABGPCRs_larg, 

ABGPCRs_larg_scram) against the larger and scrambled datasets. To address 

sampling the entire space of possible Aβ-neuron interactions at the cell surface, we 

utilized the two hypotheses where Aβ activates/inhibits all cell surface 

receptors/channels in order to sample all of the potential Aβ-neuron interactions 

possible. Since CellNOptR samples the interaction space, then these two mechanisms, 

ideally, should be sufficient to sample the potential space of Aβ-neuron interactions 

using CellNOptR. We also chose particular sets of Aβ-neuron interactions based on 

certain hypotheses from the literature on Aβ (see Table 3.2). We did not test 

receptors with which Aβ hypothetically interacts that do not exist in this particular 

network structure. Perhaps in future work, we could add new receptors into the 

network, especially given some evidence of Aβ interacting with the PrPC 

receptor[99], however, at this time, a well curated prior knowledge signaling network 
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including receptors such as PrPC does not exist, which precluded our inclusion of 

extra receptors into our study.  

 

In Figure 3.5, we observed that all of the distributions of the objective 

functions for the specific hypotheses (ionotropic, GPCR-Integrin and GPCRs) are not 

statistically significant from each other. We tested the statistical significance of the 

set using a Kruskal-Wallis test instead of an ANOVA because some of the 

distributions of objective functions were not normally distributed. A post-hoc test 

using the Mann-Whitney U test with a Bonferroni adjustment was performed to test 

pairwise comparisons (see Appendix 3C). Also, all of the hypotheses optimized on 

scrambled datasets, except for when Aβ is connected to all cell surface 

receptors/channels (ABfull_inhib_scram), had a lower objective function than their 

counterpart optimized on the real dataset, and this difference was statistically 

significantly. Again, this is suggestive of a lack of self-consistency in the dataset. 

Researchers typically collect experimental data based upon a particular belief about 

the underlying behavior of the system. In effect, even if it is conceptual, an 

experimentalist would begin with a model of the system, and then run experiments in 

order to ascertain whether their (conceptual) model matches the empirical results 

from the system (see Figure 3.6). For example, if an experimentalist hypothesizes 

that a system has three components, where the output of two of the three components 

are coupled together, then the experimentalist might design an experiment to 

stimulate two components of the system and measure the output. If, in fact, the 

system is a three-component system with two coupled components, then the 
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hypothesis has been proven correct by the empirical data. If not, then the data will 

need to be reinterpreted into a new (conceptual) model and then retested. There are 

few examples[100, 101] where the hypothesis of Aβ-induced signaling in neurons has 

been assumed to be part of a highly interconnected intracellular network such as the 

one used in this study. Instead, most experimental hypotheses have assumed a linear 

pathway between Aβ and intracellular protein(s) of interest in the study. This suggests 

that there is a widening gap between our knowledge at the systems level (the 

interactions of various signaling pathways within a signaling network) and our 

experimental design.  
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Figure 3.6: Single pathway hypothesis versus network as experimental prior knowledge. The single 

pathway or linear pathway hypothesis assumes that Aβ acts on a cell surface receptor and/or channel in 

such a way that a linear pathway is adversely affected by its signal. On the other hand, the network 

hypothesis or systems-level approach assumes that Aβ interacts with cell surface receptors and/or channels 

in such a way that it has a network-wide effect due to the strongly interconnected signaling network in 

neurons.  
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This lack of a standard experimental prior knowledge of the system could be 

an alternative explanation of the lack of consistency across data collected by various 

laboratories used in this study. Having a standard of experimental prior knowledge of 

the system would allow experimentalists to design their experiments in a context-

dependent manner; that is, the experimentalist, with adequate knowledge of role that 

each protein plays in a number of pathways, could potentially design their experiment 

to minimize the effects of confounding factors such as cross-talk and feedback 

mechanisms (to be discussed in greater detail in Chapter 4).  

 

Notwithstanding, CellNOptR makes a simplifying assumption about the 

system, namely by modeling the change in state of each node using a Boolean 

function. Boolean networks have been shown to produce biologically relevant 

predictions[87]. However, our ultimate goal would be to model the spatio-temporal 

dynamics of these complex systems. This requires the interplay between achieving a 

systems-level network topology via computational modeling and good experimental 

design. Given that data that is currently collected on Aβ’s action on neurons is usually 

at a single-time point, it suffices that a Boolean network assumption should be able to 

identify network configurations that explain the data (pending the data is self-

consistent), and that this would help define the network topology that could be built 

upon with further kinetic and spatial information. Designing optimal experiments in 

which the data are self-consistent, but are also at a minimum presents a challenge, 

especially for large networks as that used in this case study. As mentioned previously, 
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there are few ways of estimating what might be the minimum dataset size for this 

type of optimization and what kind of experimental data would need to be collected 

for a system such as this[88]. This might be an area for future work (see Section 3.5 

Future Work). In addition, upon examination of the experimental datasets, both 

original and large, greater than 80% of the nodes measured have four or more 

connections to other nodes with the highest number of total connections being 42. 

Nodes with higher number of connections would be less discriminating in the 

network than those that have fewer connections because highly connected nodes tend 

to be where extracellular signals integrate before continuing to downstream pathways. 

In this network, we also see that these highly connected nodes play a significant role 

in crosstalk between receptor-mediated pathways and also in feedback mechanisms. 

This indicates that the data requirements for such nodes will be greater than at sparser 

sections of the network and that current single-time point experimental design based 

on a linear pathway assumption may be insufficient for network inference using an 

algorithm such as CellNOptR. 

  

In addition, these results suggest that there may be more to experimental 

design, in order to infer network topology from experimental data using a reverse 

engineering algorithm such as CellNOptR, than sheer size of the data. In the Saez-

Rodriguez paper[79], from whence the algorithm came, their dataset consisted of 

many treatment combinations of receptor stimuli as well as inhibitors of various 

proteins in the network. The combinatorial nature of the experimental design tests a 
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greater combination of input-output relationships in the network than the data from 

our random literature search.  

 

There exists very little literature that discusses the design of an optimal 

experimental dataset with a minimal number of treatment variables and/or 

measurements. Krupa[88] postulates an optimal experimental dataset design to 

identify a causal network. In his work, he derives an upper and lower bound on 

experimental dataset size, with the asymptotic lower bound being associated with a 

(N, K, 2)-universal matrix, in the case of a two state system, where N is the number 

of nodes in the network and K is the number of in-degree edges. From his proof of 

this bound, he also establishes a corollary whereby he determines that the minimum 

number of experiments necessary to identify a causal network increases 

logarithmically with the numbers of nodes in the network (N) and exponentially with 

the number of in-degree edges (K) to each node. Evidence has shown that in many 

biological networks, K is no greater than 3 on average[102], and this is true for the 

network in this study. Though the minimum number of experiments could be 

estimated from the lower bound proposed by Krupa, the construction of a (N, K, 2)-

universal matrix was not included in Krupa’s work. Therefore, the actual number of 

nodes that should be measured per experiment is not readily available from 

calculations of the minimum number of experiments.  
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3.4 Conclusions 

 

In conclusion, the mechanisms underlying Aβ’s action on neurons remain 

unknown. We postulated that using a reverse engineering algorithm, CellNOptR, 

which would allow us to input a prior knowledge network relevant to the 

experimental system and experimental data collected from the literature, that we 

could identify a set of Aβ-neuron interactions that give rise to a network structure that 

explains the data. However, we observed that data collected from the literature as 

individual data points as a set may not be self-consistent. This lack of self-consistency 

in the data could be part of what is leading to a lack of consensus amongst researchers 

who are trying to make sense of all the data primarily by intuition alone. Utilizing 

‘experimental prior knowledge’ such as the information contained in the network in 

this study might help with standardization of data collection in this field. Also, a 

greater understanding of the minimum dataset size needed for such network inference 

would aid in further advancement.  

 

3.5 Future Work 

 
Unfortunately, this case study was confounded not only by the complexity of 

the system, but also the difficulty of combining literature-derived data into a single 

dataset. Though this may have seemed naïve, at first, of an endeavor, this was not a 
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wasted effort because this procedure of surveying the currently literature, 

synthesizing data from various sources and drawing some conclusions about one’s 

results from these data is quite common as it is usually the focus of most 

experimental discussion sections in journal articles. However, rarely is there a 

mechanism used to systematically determine how consistent these data are when 

taken as a whole. There are other methods, such as a meta-analysis, which could be 

utilized in order to determine self-consistency of the data (among other metrics) 

however, this type of analysis typically assumes that the same variable[103] is being 

studied across studies, which is rarely the case with data from biological experiments 

in vitro. 

 

With this said, with respect to future work, there might be two potential areas: 

design of optimal experiments and determining the minimum dataset necessary to 

find a network topology using an algorithm such as CellNOptR. With regards to the 

latter, we have made some attempt (in collaboration with Patrick O’Neill in the 

laboratory of Dr. Ivan Erill in the Biological Sciences Department at UMBC) to 

develop an algorithm to map the hypothesis space given a partial data set. In order to 

illustrate, let’s consider the question at hand. We have a PKN for which we want to 

determine the Boolean truth table at each node (this is effectively what CellNOptR is 

doing). Each instance of the network for which there is a set of truth tables for each 

node is considered a hypothesis, H. A dataset, D, is defined as a complete observation 

of the state of all nodes in the PKN under a set of conditions. We want to know what 
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the probability is of finding a particular set of truth tables (the hypothesis) given a 

dataset. For this we make use of Bayes’ theorem (Eq. 3.6.1): 

 

P(H |D) = P(D |H )P(H )
P(D)

 (3.6.1) , 

 

where, P(H|D) is the probability of the hypothesis, H, given the data, D, otherwise 

known as a conditional probability. P(D|H) is the posterior distribution or the 

likelihood function of the data given the hypothesis. P(H) and P(D) are the probability 

of the hypothesis and the dataset, respectively, and correspond to 1/size of the 

hypothesis space or dataset. A pictorial view of the question is given in Figure 3.7. In 

order to make use of this theorem, it is necessary to find the posterior distribution 

(P(D|H)). In the case of observation of the full dataset, D, the posterior distribution 

can be found as follows: 

(3.6.2) 
otherwise 0,

data  with theconsistent is H ,1
)|(

⎭
⎬
⎫

⎩
⎨
⎧

=HDP
 

 

However, in the case of this study, we have an incomplete dataset, where 

many of the nodes are unobserved (Du) versus those that are observed (Do). 

Therefore, for an incomplete dataset, we postulate that the posterior distribution be 

described as such: 
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where, P(Do|H) is the posterior distribution for the observed data give the hypothesis, 

P((Do,Du)|H) is the probability of the dataset (consistent of observed and unobserved 

node states) given a hypothesis. P(Du) is the probability of the unobserved data, 

which is 1/size of the unobserved data.  

 

Another part of the problem that is again featured in Figure 3.7 is that during 

an experiment when the cell is stimulated or inhibited, typically these perturbations 

last throughout the entirety of the experimental observation time. Therefore, when 

this is the case, it can be assumed that the network dynamics will settle into an 

attractor state. An attractor state is the state toward which a particular system tends to 

evolve over time. As seen in Figure 3.7, there can be several network states that tend 

to evolve into a single attractor state, shown by the partition of the hypothesis state 

space. If we assume that in each experiment in which we collect a particular set of 

data that an attractor state is reached, then it is only necessary to find the hypotheses 

corresponding to a particular attractor state (or multiple) to which the system evolves 

that overlap with the experimental dataset space (as seen by the dotted rectangle in 

Figure 3.7).  
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Given our current dataset, from this statistical algorithm, we could get an idea 

of the probability of finding a hypothesis that is consistent with the experimental data 

with only a partial observation of the entire network for any given experiment. This 

information could then be used to infer the size of the dataset required to maximize 

this probability.  
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Figure 3.7: Hypothesis space containing partitions indicating the space in which Boolean 

network states tend to fall into a particular attractor ad infinitum. The larger circle represents a 

hypothetically hypothesis space where each dot represents a Boolean state of the network (hypothesis). 

The arrows represent a transition from one Boolean network state (usually the initial state) to another 

(usually the final state). The hypothesis space is partitioned by each attractor state which occupies that 

area, whereby multiple network states might evolve with time to an attractor state. The dotted rectangle 

represents the experimental data space wherein a subspace of the hypothesis space overlaps with this 

experimental data space and where the likelihood of the data given the hypothesis (P(D|H)) is high.  
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Appendix 3A: Keyword search 

 
 
MEDLINE 

beta amyloid AND neurons 

beta amyloid AND neurons NOT amyloid precursor protein 

beta-amyloid AND neurons 

beta-amyloid AND neurons NOT amyloid precursor protein 

amyloid-beta AND neurons 

amyloid-beta AND neurons NOT amyloid precursor protein 

 

Web of Science 

beta amyloid AND neurons 

beta-amyloid AND neurons 

amyloid-beta AND neurons 
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Appendix 3B: Aβ-neuron interaction lists 

 

Ionotropic mechanisms (Iono_orig, Iono_larg, Iono_larg_scram) 

AB -­‐1 NMR
AB 1 LTYPECA
AB 1 ABC
AB -­‐1 KV42
AB 1 ALPHA7NACHR
AB -­‐1 GIRK
AB -­‐1 KV12
AB -­‐1 KV11
AB -­‐1 KV41
AB -­‐1 KIR21
AB -­‐1 KIR23
AB 1 GABAAR
AB 1 RTYPECA
AB 1 PQCaCh
AB 1 NTYPECA  
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G-coupled protein receptors mechanism (ABGPCRs_larg, 

ABGPCRs_larg_scram) 

AB 1 PAR2
AB 1 BR1R
AB 1 CB1R
AB 1 ALPHA2AR
AB 1 D3R
AB 1 FIVEHT4R
AB 1 MGLUR1
AB 1 D2R
AB 1 MOPR
AB 1 BETA2AR
AB 1 A1R
AB 1 PAFR
AB 1 GABABR
AB 1 D1R
AB 1 SSTR1
AB 1 DOPR
AB 1 FIVEHT2AR
AB 1 M2R
AB 1 SSTR2
AB 1 NOPR
AB 1 MGLUR5
AB 1 MGLUR7
AB 1 M4R
AB 1 FIVEHT1AR
AB 1 CB2R
AB 1 M1R
AB 1 ALPHA1AR
AB 1 A2AR  
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G-protein coupled receptors and Integrin mechanisms (ABGPCRInt_larg) 

AB 1 INTEGRIN
AB 1 A2AR
AB 1 ALPHA1AR
AB 1 M1R
AB 1 CB2R
AB 1 FIVEHT1AR
AB 1 M4R
AB 1 MGLUR7
AB 1 MGLUR5
AB 1 NOPR
AB 1 SSTR2
AB 1 M2R
AB 1 FIVEHT2AR
AB 1 DOPR
AB 1 SSTR1
AB 1 PAR2
AB 1 D1R
AB 1 A1R
AB 1 BETA2AR
AB 1 MOPR
AB 1 D2R
AB 1 GABABR
AB 1 PAFR
AB 1 MGLUR1
AB 1 FIVEHT4R
AB 1 D3R
AB 1 ALPHA2AR
AB 1 CB1R
AB 1 BR1R  
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Activation of all cell surface receptors/channels mechanism (ABfullact_larg, 
ABfull_act_scram) 

 

AB 1 EPHB2
AB 1 KV43
AB 1 KV42
AB 1 TNFR1
AB 1 NCADHERIN
AB 1 GIRK
AB 1 AMPAR
AB 1 GABAAR
AB 1 KAL
AB 1 MGLUR1
AB 1 MGLUR5
AB 1 INTEGRIN
AB 1 PIP3
AB 1 PIP2
AB 1 PMCA
AB 1 FIVEHT1AR
AB 1 NMR
AB 1 M2R
AB 1 IR
AB 1 SSTR1
AB 1 SSTR2
AB 1 FIVEHT2AR
AB 1 PAFR
AB 1 FIVEHT4R
AB 1 D2R
AB 1 D1R
AB 1 RET
AB 1 FAS
AB 1 TRKB
AB 1 SYNDECAN
AB 1 L1
AB 1 CB1R
AB 1 A1R
AB 1 ALPHA1AR

AB 1 ALPHA2AR
AB 1 DISHEVELED
AB 1 AC5
AB 1 BETA2AR
AB 1 EGFR
AB 1 KV12
AB 1 KV11
AB 1 RTYPECA
AB 1 PDGFR
AB 1 A2AR
AB 1 M1R
AB 1 BR1R
AB 1 ALPHA7NACHR
AB 1 PAR2
AB 1 KV41
AB 1 KV14
AB 1 M4R
AB 1 KAR
AB 1 GAT1
AB 1 FASCIN
AB 1 GABABR
AB 1 CHOLESTEROL
AB 1 LRP
AB 1 MGLUR7
AB 1 LTYPECA
AB 1 KIR41
AB 1 PQCaCh
AB 1 NTYPECA
AB 1 D3R
AB 1 KIR23
AB 1 ERBB
AB 1 DOPR
AB 1 KOPR
AB 1 MOPR  
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Inhibition of all cell surface receptors/channels mechanism (ABfull_inhib_larg, 
ABfull_inhib_scram) 
 
 
AB -­‐1 EPHB2
AB -­‐1 KV43
AB -­‐1 KV42
AB -­‐1 TNFR1
AB -­‐1 NCADHERIN
AB -­‐1 GIRK
AB -­‐1 AMPAR
AB -­‐1 GABAAR
AB -­‐1 KAL
AB -­‐1 MGLUR1
AB -­‐1 MGLUR5
AB -­‐1 INTEGRIN
AB -­‐1 PIP3
AB -­‐1 PIP2
AB -­‐1 PMCA
AB -­‐1 FIVEHT1AR
AB -­‐1 NMR
AB -­‐1 M2R
AB -­‐1 IR
AB -­‐1 SSTR1
AB -­‐1 SSTR2
AB -­‐1 FIVEHT2AR
AB -­‐1 PAFR
AB -­‐1 FIVEHT4R
AB -­‐1 D2R
AB -­‐1 D1R
AB -­‐1 RET
AB -­‐1 FAS
AB -­‐1 TRKB
AB -­‐1 SYNDECAN
AB -­‐1 L1
AB -­‐1 CB1R
AB -­‐1 A1R
AB -­‐1 ALPHA1AR

AB -­‐1 ALPHA2AR
AB -­‐1 DISHEVELED
AB -­‐1 AC5
AB -­‐1 BETA2AR
AB -­‐1 EGFR
AB -­‐1 KV12
AB -­‐1 KV11
AB -­‐1 RTYPECA
AB -­‐1 PDGFR
AB -­‐1 A2AR
AB -­‐1 M1R
AB -­‐1 BR1R
AB -­‐1 ALPHA7NACHR
AB -­‐1 PAR2
AB -­‐1 KV41
AB -­‐1 KV14
AB -­‐1 M4R
AB -­‐1 KAR
AB -­‐1 GAT1
AB -­‐1 FASCIN
AB -­‐1 GABABR
AB -­‐1 CHOLESTEROL
AB -­‐1 LRP
AB -­‐1 MGLUR7
AB -­‐1 LTYPECA
AB -­‐1 KIR41
AB -­‐1 PQCaCh
AB -­‐1 NTYPECA
AB -­‐1 D3R
AB -­‐1 KIR23
AB -­‐1 ERBB
AB -­‐1 DOPR
AB -­‐1 KOPR
AB -­‐1 MOPR  
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Appendix 3C: Results from Kruskal-Wallis & Mann-Whitney U tests 

 
 
Identifier2           N  Median  Ave Rank      Z 
ABfull_act_scram     48  0.2680     196.2  -4.91 
ABfull_inhib_larg    48  0.3765     526.2   7.82 
ABfull_inhib_scram   48  0.2960     305.6  -0.69 
ABfullact_larg       60  0.3667     478.9   6.77 
ABfullact_rPKN       48  0.3511     426.0   3.96 
ABGPCRInt_larg       72  0.3367     358.3   1.68 
ABGPCRs_larg         84  0.3214     345.6   1.16 
ABGPCRs_scram        47  0.2261     113.8  -8.00 
Iono_larg           107  0.3292     349.3   1.56 
Iono_larg_scram      84  0.2477     153.7  -8.94 
Overall             646             323.5 
 
H = 270.06  DF = 9  P = 0.000 
H = 270.06  DF = 9  P = 0.000  (adjusted for ties) 

 
Pairwise comparisons (Mann-Whitney U test) 
Number of pairwise comparisons: 36 
Significance level (α) adjusted for Bonferroni adjustment: 0.00139 
 

N   Median 
Iono_larg        107  0.32920 
Iono_larg_scram   84  0.24773 
 
 
Point estimate for η1 - η2 is 0.07690 
99.9 Percent CI for η1 - η2 is (0.05217,0.10012) 
W = 13437.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
 

N   Median 
Iono_larg        107  0.32920 
ABfullact_larg    60   0.36675 
 
 
Point estimate for η1 - η2 is -0.04235 
99.9 Percent CI for η1 - η2 is (-0.06325,-0.02036) 
W = 7294.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
 
 

N   Median 
Iono_larg         107  0.32920 
ABfull_act_scram   48  0.26800 
 
 
Point estimate for η1 - η2 is 0.05191 
99.9 Percent CI for η1 - η2 is (0.02743,0.07897) 
W = 9928.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
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N   Median 
Iono_larg          107  0.32920 
ABfull_inhib_larg   48  0.37650 
 
 
Point estimate for η1 - η2 is -0.06144 
99.9 Percent CI for η1 - η2 is (-0.08450,-0.03368) 
W = 6568.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
 

N   Median 
Iono_larg           107  0.32920 
ABfull_inhib_scram   48  0.29601 
 
 
Point estimate for η1 - η2 is 0.01806 
99.9 Percent CI for η1 - η2 is (-0.01836,0.05683) 
W = 8793.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0840 
The test is significant at 0.0840 (adjusted for ties)[n.s] 
 

N   Median 
Iono_larg      107  0.32920 
ABGPCRs_larg    84   0.32141 
 
 
Point estimate for η1 - η2 is 0.00070 
99.9 Percent CI for η1 - η2 is (-0.01821,0.02090) 
W = 10337.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.8649 
The test is significant at 0.8649 (adjusted for ties)[n.s] 
 

N   Median 
Iono_larg        107  0.32920 
ABGPCRInt_larg    72   0.33669 
 
 
Point estimate for η1 - η2 is -0.00623 
99.9 Percent CI for η1 - η2 is (-0.02467,0.01530) 
W = 9275.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.2970 
The test is significant at 0.2970 (adjusted for ties)[n.s.] 
 
 

N   Median 
Iono_larg       107  0.32920 
ABGPCRs_scram    47  0.22613 
 
 
Point estimate for η1 - η2 is 0.09383 
99.9 Percent CI for η1 - η2 is (0.06409,0.12068) 
W = 10381.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
The test is significant at 0.0000 (adjusted for ties) 
 
 

N   Median 
Iono_larg_scram   84  0.24773 
ABfullact_larg    60  0.36675 
 
 
Point estimate for η1 - η2 is -0.11748 
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99.9 Percent CI for η1 - η2 is (-0.14574,-0.08701) 
W = 3866.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
Iono_larg_scram    84  0.24773 
ABfull_act_scram   48  0.26800 
 
 
Point estimate for η1 - η2 is -0.02356 
99.9 Percent CI for η1 - η2 is (-0.05512,0.00901) 
W = 5087.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0184 [n.s.] 
 

N   Median 
Iono_larg_scram     84  0.24773 
ABfull_inhib_larg   48  0.37650 
 
 
Point estimate for η1 - η2 is -0.13617 
99.9 Percent CI for η1 - η2 is (-0.16772,-0.10312) 
W = 3691.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
Iono_larg_scram     84  0.24773 
ABfull_inhib_scram  48  0.29601 
 
 
Point estimate for η1 - η2 is -0.05758 
99.9 Percent CI for η1 - η2 is (-0.09733,-0.01652) 
W = 4621.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

 
 
 
 
 
 
 
 
 
 
 
N   Median 

Iono_larg_scram   84  0.24773 
ABGPCRs_larg      84  0.32141 
 
 
Point estimate for η1 - η2 is -0.07523 
99.9 Percent CI for η1 - η2 is (-0.10184,-0.04781) 
W = 4701.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 

 
N   Median 

Iono_larg_scram   84  0.24773 
ABGPCRInt_larg    72  0.33669 
 
 
Point estimate for η1 - η2 is -0.08044 
99.9 Percent CI for η1 - η2 is (-0.10758,-0.04774) 
W = 4619.0 
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Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 
 

N   Median 
Iono_larg_scram   84  0.24773 
ABGPCRs_scram     47  0.22613 
 
 
Point estimate for η1 - η2 is 0.01671 
99.9 Percent CI for η1 - η2 is (-0.01783,0.05038) 
W = 5880.5 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.1069 
The test is significant at 0.1069 (adjusted for ties)[n.s.] 
 

N   Median 
ABfullact_larg     60  0.36675 
ABfull_act_scram   48  0.26800 
 
 
Point estimate for η1 - η2 is 0.09375 
99.9 Percent CI for η1 - η2 is (0.06371,0.12369) 
W = 4491.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfullact_larg     60  0.36675 
ABfull_inhib_larg  48  0.37650 
 
 
Point estimate for η1 - η2 is -0.01890 
99.9 Percent CI for η1 - η2 is (-0.04765,0.01083) 
W = 2915.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0284 [n.s.] 
 

N   Median 
ABfullact_larg      60  0.36675 
ABfull_inhib_scram  48  0.29601 
 
 
Point estimate for η1 - η2 is 0.05933 
99.9 Percent CI for η1 - η2 is (0.01837,0.10083) 
W = 3987.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 
 

N   Median 
ABfullact_larg   60  0.36675 
ABGPCRs_larg     84  0.32141 
 
 
Point estimate for η1 - η2 is 0.04271 
99.9 Percent CI for η1 - η2 is (0.01864,0.06708) 
W = 5665.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfullact_larg   60  0.36675 
ABGPCRInt_larg   72  0.33669 
 
 
Point estimate for η1 - η2 is 0.03824 
99.9 Percent CI for η1 - η2 is (0.01322,0.06246) 
W = 5048.0 
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Test of η1 = η2 vs η1 ≠ η2 is significant at 0.000 
 

N   Median 
ABfullact_larg   60  0.36675 
ABGPCRs_scram    47  0.22613 
 
 
Point estimate for η1 - η2 is 0.13441 
99.9 Percent CI for η1 - η2 is (0.10003,0.16637) 
W = 4572.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 
 

N   Median 
ABfull_act_scram   48  0.26800 
ABfull_inhib_larg  48  0.37650 
 
 
Point estimate for η1 - η2 is -0.11273 
99.9 Percent CI for η1 - η2 is (-0.14487,-0.08013) 
W = 1243.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfull_act_scram    48  0.26800 
ABfull_inhib_scram  48  0.29601 
 
 
Point estimate for η1 - η2 is -0.03194 
99.9 Percent CI for η1 - η2 is (-0.07755,0.00985) 
W = 1978.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0104 [n.s.] 
 

N   Median 
ABfull_act_scram   48  0.26800 
ABGPCRs_larg       84  0.32141 
 
 
Point estimate for η1 - η2 is -0.05113 
99.9 Percent CI for η1 - η2 is (-0.07914,-0.02289) 
W = 2045.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

 
 
N   Median 

ABfull_act_scram   48  0.26800 
ABGPCRInt_larg     72  0.33669 
 
 
Point estimate for η1 - η2 is -0.05554 
99.9 Percent CI for η1 - η2 is (-0.08621,-0.02456) 
W = 1937.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfull_act_scram   48  0.26800 
ABGPCRs_scram      47  0.22613 
 
 
Point estimate for η1 - η2 is 0.03972 
99.9 Percent CI for η1 - η2 is (0.00468,0.07518) 
W = 2794.5 
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Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0003 
The test is significant at 0.0003 (adjusted for ties) 
 

N   Median 
ABfull_inhib_larg   48  0.37650 
ABfull_inhib_scram  48  0.29601 
 
 
Point estimate for η1 - η2 is 0.08038 
99.9 Percent CI for η1 - η2 is (0.03550,0.12081) 
W = 3046.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfull_inhib_larg  48  0.37650 
ABGPCRs_larg       84  0.32141 
 
 
Point estimate for η1 - η2 is 0.06155 
99.9 Percent CI for η1 - η2 is (0.03382,0.08928) 
W = 4565.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfull_inhib_larg  48  0.37650 
ABGPCRInt_larg     72  0.33669 
 
 
Point estimate for η1 - η2 is 0.05808 
99.9 Percent CI for η1 - η2 is (0.02569,0.08569) 
W = 3988.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABfull_inhib_larg  48  0.37650 
ABGPCRs_scram      47  0.22613 
 
 
Point estimate for η1 - η2 is 0.15214 
99.9 Percent CI for η1 - η2 is (0.11765,0.18760) 
W = 3413.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

 
 
N   Median 

ABfull_inhib_scram  48  0.29601 
ABGPCRs_larg        84  0.32141 
 
 
Point estimate for η1 - η2 is -0.01688 
99.9 Percent CI for η1 - η2 is (-0.05643,0.02292) 
W = 2875.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.1343 [n.s] 
 
 

N   Median 
ABfull_inhib_scram  48  0.29601 
ABGPCRInt_larg      72  0.33669 
 
 
Point estimate for η1 - η2 is -0.01844 
99.9 Percent CI for η1 - η2 is (-0.06266,0.02464) 
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W = 2635.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.1503 [n.s.] 
 

N   Median 
ABfull_inhib_scram  48  0.29601 
ABGPCRs_scram       47  0.22613 
 
 
Point estimate for η1 - η2 is 0.07212 
99.9 Percent CI for η1 - η2 is (0.02849,0.11844) 
W = 3007.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABGPCRs_larg     84  0.32141 
ABGPCRInt_larg   72  0.33669 
 
 
Point estimate for η1 - η2 is -0.00597 
99.9 Percent CI for η1 - η2 is (-0.02855,0.01831) 
W = 6368.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.4228 [n.s.] 
 

N   Median 
ABGPCRs_larg    84  0.32141 
ABGPCRs_scram   47  0.22613 
 
 
Point estimate for η1 - η2 is 0.09192 
99.9 Percent CI for η1 - η2 is (0.06040,0.12171) 
W = 7121.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
 

N   Median 
ABGPCRInt_larg   72  0.33669 
ABGPCRs_scram    47  0.22613 
 
 
Point estimate for η1 - η2 is 0.09586 
99.9 Percent CI for η1 - η2 is (0.06046,0.12868) 
W = 5618.0 
Test of η1 = η2 vs η1 ≠ η2 is significant at 0.0000 
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Chapter 4: Identifying network motifs from network 
structure: impact on experimental design for inference of 
Aβ-neuron interactions3 

 

4.1 Introduction 

 
“He that breaks a thing to find out what it is has left the path of wisdom.” – J.R.R. 
Tolkien 
 
 

For many years, the community of researchers studying the effects of beta-

amyloid (Aβ) on in vitro preparations of neurons has attempted to identify Aβ-neuron 

interactions. The primary assumption, given knowledge of intracellular signaling, was 

that Aβ interacts with some cell surface mechanism such that a linear pathway from a 

particular receptor was adversely affected. In some cases, it was assumed that Aβ 

caused some disruption in the cellular membrane itself, which would cause complete 

dysregulation of intracellular signaling (particularly, calcium signaling), resulting in 

the onset of apoptosis[1-3]. Given this linear pathway hypothesis, standard practice in 

the field was that hypotheses were tested experimentally by adding Aβ exogenously 

to neurons and then measuring the activity of a known protein in a pathway of 

interest, and not measuring the activity any other protein in potentially intersecting 

pathways. Many different hypotheses have been formulated based on what could be 

defined as a Linear Pathway Hypothesis (LPH)[6], but to date, no converging 

evidence of a particular set of Aβ-neuron interactions responsible for the signaling 

                                                
3 Co-authors: Stephen Vicchio, Angela Norton, Theresa A. Good, and Mariajosé Castellanos 
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events observed has emerged. This has left the community, after over 20 years of 

research, without a strong consensus on Aβ’s early action on neurons.  

 

With the advent of the proteomics era, there has been a great increase in the 

understanding of intracellular signaling. Particularly, intracellular signaling can no 

longer be viewed as a set of linear, non-intersecting pathways of just a few 10s of 

molecules, but has to be viewed as a highly interconnected network of hundreds and 

even thousands of signaling molecules[7, 8]. Intracellular networks are made up of 

many signaling motifs that give rise to the signaling landscape of the cell and its 

emergent behavior[9]. Each cell can have nearly 100 (or more) receptors or channels 

at the surface to transduce a signal from a complex milieu of extracellular cues 

through the network in order to produce any number of physiological responses. This 

landscape is becoming more highly complex as more and more interactions are being 

discovered.  

 

Several researchers have studied the structure of networks in order to gain 

some fundamental knowledge of how networks develop and to infer network 

function[10-14]. Utilizing a branch of mathematics called graph theory, a network 

can be interpreted as a graph, where each protein is described as a node and the 

interaction between a pair of nodes is called an edge. A graph of a network is then 

just a set of nodes, i ∈1,2,…N and edges, e  ∈1,2,…E, such that it forms an ordered 

pair. The topology, or the structure, of the graph can be analyzed in various ways in 

order to understand how individual nodes interact in order to pass information from 



 

 168 
 

one node to another. A node can represent anything that interacts with something 

else. Therefore, network analysis is a broad field including social media networks, 

author-collaborator networks, ecological networks, metabolic networks and 

intracellular networks, to name a few[10]. There are some general topological 

features that have been found to be common among all real networks (in comparison 

to random networks). One main feature is called “small-world” or “scale-free”[15], 

which is described by a power law distribution of the number of edges per node. 

These features have been used to classify networks and to examine whether certain 

network topologies, arising from experimental data, represent real networks (i.e., 

small-world vs. random). In this chapter, we used ideas from network analysis to help 

demonstrate that by virtue of the topology of the network, the majority of the  

signaling pathways cannot be linear.  

   

What has also been of increasing interest in the area of Systems Biology with 

respect to networks has been the identification of network motifs. It has been 

postulated that biological networks are comprised of interacting smaller network 

motifs, which can give rise to different signaling landscapes given certain 

extracellular signals over time[7, 16]. Thus, understanding the structure and functions 

of these network motifs can provide a way to condense the complexity of the 

network, especially when studying the function of these networks in experiments. 

According to Barabasi and Oltvai[7], network motifs consist of particular subgraphs 

of a network graph that occur with greater frequency in comparison to other 

subgraphs. In general, for biological networks, motifs such as feed-forward and 
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feedback loops are prevalent. There are also cross-talk[17] and receptor trans-

activation  (or inhibition)[5], amongst others.  The interaction of many different 

network motifs gives rise to complex (non-linear) network behavior. For example, 

cross-talk between calcium and cyclic adenosine monophosphate (cAMP) pathway 

gives rise to oscillations[18, 19]; while different types of feedback mechanisms can 

give rise to various types of attractor states[20]. Identification of these types of 

network motifs can provide information about functional behavior of a node within its 

context in the network. Knowledge of the complexity of real biological networks calls 

into question the validity of the Linear Pathway Hypothesis that has been the basis for 

experimental design in cell biology over many decades. 

 

Using a signal flow algorithm and linear algebra techniques, we have been 

able to identify signaling network motifs that may give rise to complex behavior in a 

large CA1 hippocampal neuronal network. This complex behavior may be an 

explanation for the lack of consensus about Aβ-neuron interactions observed in in 

vitro experiments because experiments designed via LPH produce data too sparse to 

be discriminatory. In this chapter, we will identify network properties and motifs in a 

hippocampal neuronal network[21]. We will also demonstrate, on a significantly 

smaller network, the impact of these motifs on network dynamics and input inference 

based on LPH. Finally, we will make some associations between the behavior 

observed in the smaller network due to receptor trans-activation and feedback and the 

large network and how this information could guide experimental design toward 

discovering Aβ-neuron interactions.  
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4.2 Methods 

4.2.1 Signal Flow Method 

 
The Signal Flow Method is an algorithm that simulates the propagation of a 

signal through the network by the following mathematical equation (Eq. 4.2.1)[22, 

23]: 

 

4.2.1) (Eq. )(*),()1( txjiAtx ii =+  

 

where, xi(t+1) is the signal of node i at the current step (t+1), xi(t) is the signal of 

node i at the previous step (t). A(i,j) is the Adjacency matrix, which is an n x n matrix, 

where each entry in the matrix is specified as such (Eq. 4.2.2): 

 

4.2.2) (Eq. 
n)(inhibitio j oadjacent t is i if 1,-

j oadjacent tnot  is i if 0,
n)(activatio j oadjacent t is i if ,1

),(
⎪
⎩

⎪
⎨

⎧

=jiA  

 

The signal for each simulation is initiated at the Aβ node. Aβ is connected to the 

specified receptor/channel or set of receptors/channels. As the signal propagates 

through the network, the signal at each node is calculated at each discrete step via Eq. 

4.2.1. A discrete step is the next sequential movement in the network based on 

adjacency (A(i,j) matrix). It is not directly related to time since there is no associated 

kinetics or selectivity of interactions; however, an indirect relationship to time can be 
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inferred because of the hierarchical and directional nature of the network[24]. 

Because of the lack of selectivity for the interactions, there are additive effects, such 

that, for example, if the signals through three nodes into the current node are all 1, 

then the current node will take on the signal value of 3. There are no units for the 

signal as it is a mathematical construct used solely for simulating the signal 

propagation through the network from a set of inputs to its associated set of outputs. 

The method makes no allowances for different dynamics of signals traveling through 

a network.  Using the example from above, if the signals through three nodes 

represent signaling reactions that occur with different time constants (say on the order 

of milliseconds, seconds, and tens of seconds), then in the actual network inside the 

cell, those signals would not arrive at the intersecting node at the same time; however, 

in the signal flow model, so long as the number of steps to a node is the same, the 

signals arrive at the same time.  This algorithm was coded and run in Matlab R2010b. 

The adjacency matrix was built in Visual Basic Application through Excel and 

imported into Matlab as a text file read into a matrix function. The interaction list 

used to build the adjacency matrix was from[21].  

 

 4.2.1.1 Characterizing receptor trans-activation 

 

Receptor trans-activation (or inhibition) is characterized by the propagation of 

the signal through a receptor (or channel) that is not directly connected to the Aβ 

node during the simulation.  
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4.2.2 Identification of Feedback Motifs Via Path Length Analysis 

 
 

Path length analysis[25] was used to identify and calculate the number of 

feedback loops (cycles) of length k originating and ending with node i. The 

calculation of paths of length k is defined as (Eq. 4.2.3): 

 

4.2.3) (Eq. ),( k
PL jiAN =  

 

where, NPL is the number of path lengths per node, A(i,j) is the adjacency matrix (see 

Eq. 4.2.2) and k is the length of the path (1, 2,...k). In order to calculate the number of 

feedback loops per node, the diagonal of the path length matrix is given by (Eq. 

4.2.4): 

 

4.2.4) (Eq. )),(()( k
PLFB jiAdiagNdiagN ==  

where, NFB is the number of feedback loops per node, from node i to node i. Path 

length analysis was performed in Matlab R2010b. 

 

4.2.3 Kinetic Model 

 
A kinetic model of a small intracellular hippocampal signaling network[5] 

was developed utilizing reversible mass action kinetics given by Equation 4.2.5:  

 

4.2.5) (Eq. ][
,, bKfK rr

dt
Kd

−=  
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where, dt
Kd ][ is the rate of generation of protein K in nM-1s-2.  rK,f and rK,b are the 

forward and back reaction rates, respectively. The reaction list, compound list, 

equations, kinetic parameters and initial conditions are given in Appendices 4A – 4E. 

The time range for the simulations was 0-100s. To identify those proteins in this 

small kinetic model that exhibited non-monotonic behavior, the sign of the slope of 

the concentration versus time curve ( [ ]
dt

Kd ) was recorded. Then, those proteins that 

exhibited a change of sign (change in the slope of the derivative) were those that 

exhibited non-linear dynamic behavior under specified initial conditions.  

 

4.3 Results and Discussion 

4.3.1 Intrinsic Topological Properties of CA1 Hippocampal Neuronal 

Signaling Network Challenge the Linear Pathway Hypothesis (LPH) 

 
In this section, the general properties of the CA1 hippocampal neuronal 

signaling network were used to demonstrate why a Linear Pathway Hypothesis does 

not encompass the complexity of the system. Without encompassing this complexity, 

the LPH will likely give results that are confounded with other uncontrolled factors in 

an experiment.  

 

The Linear Pathway Hypothesis (LPH) is insufficient for hypothesis 

generation because: 
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1. Power law or near power law distribution of degrees in the network 

exists (Figure 4.1). This is a property of real networks known as “scale-free” 

or “small-world”[10]. If a network consisted of primarily linear, non-

intersecting pathways, then this “small-world” or “scale-free” property would 

not exist in such a network. The number of interactions would, instead, scale 

with the number of nodes (see Eq. 4.1). This is not true of a CA1 hippocampal 

neuronal signaling network, as demonstrated in Figure 4.1. In this figure, the 

top graph represents the number of in-coming interactions, or edges, also 

known as in-degree. In this graph, a power law distribution of the interactions 

is reported, where a large number of nodes have a small in-degree and a 

smaller amount of nodes have a large number of in-coming edges. The bottom 

graph shows the number of out-going interactions or edges, known as the out-

degree. Again, a power law distribution is reported, similar to the top graph. 

Taken together, these graphs demonstrate that this CA1 hippocampal neuronal 

signaling network is scale-free, and therefore not amenable to the Linear 

Pathway Hypothesis.  

 

N N !1( )
2

=
545(544)

2
=148, 240  maximum interactions vs. 1235 actual interactions (Eq. 4.3.1)

 

Ultimately, this means that the nodes in the network are highly 

interconnected. This makes pathways less distinguishable since many of them 
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intersect at proteins called “hub” molecules, which will be described in the 

next point.  

 

2. The presence of hub proteins. This is a corollary of the small-world or 

scale-free property in that there are a few proteins in this network that act as 

hubs (nodes with very large number of interactions). The presence of these 

hubs readily suggests that there is cross-talk or some other type of 

interconnectivity across pathways of different receptor types. Ma’ayan et 

al[21] identifies the hub proteins in this network as being: PKA, PKC, Gβγ, 

Calmodulin, NMDAR, SRC, Calcium, CAMKII, PSD95, GRB2, Gαi, MAPK, 

Calcineurin, Actin, Tubulin, and CREB. The presence of hub molecules in 

this neuronal network suggests, once again, a network that is not a set of linear 

pathways. The problem therein is that these hub proteins are highly studied in 

in vitro experiments studying the mechanisms of Aβ-neuron interaction[26-

39] (see Section 4.3.5) and are likely associated with multiple different 

receptor-mediated pathways, thus making it nearly impossible to infer the 

pathway from which the signal originated.   

 

3. As will be discussed further in the next section, there are network 

motifs that are naturally not congruent with LPH: such as receptor trans-

activation, cross-talk and feedback/feedfoward loops. The presence and high 

preponderance of (especially feedback/feedforward loops[21]) these network 
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motifs suggest a more interconnected network rather than a series of linear 

pathways.  

 

4. The β index is a measure of the level of connectivity in a graph (Figure 

4.2). The β index, given in Eq. 4.3.2, is calculated as the average number of 

links per node. 

  

(4.3.2) 26.2
545

1235
===

v
e

β  

 

The β index for trees and simple networks is less than one. On the other hand, 

a connected network with one cycle has a β index value of 1 and more 

complex networks have a value greater than 1[40, 41]. Examples of simple 

and complex networks are shown in Figure 4.2. Again, this network with a β 

index of 2.26 is a highly complex and interconnected graph, and therefore the 

LPH would not be a good assumption for hypothesis generation in such a 

system. This β index also gives us some indication that there are likely cycle 

(or loop) structures present in this network and we will discuss the 

implications of this in further detail in Sections 4.3.2 and 4.3.3.  
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Figure 4.1: Histograms of the in- and out-degrees of nodes in the CA1 

hippocampal neuronal network. Top, In-degree histogram where the abscissa is 

the number of incoming edges to each node (in-degree) and on the y-axis is the 

number of nodes. Bottom, similar to the top graph except that the abscissa is the 

number of outgoing edges (out-degree). In both graphs, the red curve represents a 

power law fit to the data. Graphical output generated from Network Analysis plug-

in in Cytoscape[4]. 
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What consequence does knowing the topological properties of this CA1 hippocampal 

neuronal signaling network have on experimental design for inferring Aβ-neuron 

interactions? Firstly, a simplistic, reductionist hypothesis of a linear pathway between 

Aβ and a downstream measured protein is insufficient to characterize what is known 

about the system. Many factors are left uncontrolled and unmonitored in the 

experiment, thereby confounding the interpretation of the results. Without sufficient a 

priori knowledge in the design of the experiment, though one might ‘prove his or her 

hypothesis’, the rationale as to the processes that preceded the observed event may 

not be correct. And this could have an effect on reproducibility of the experimental 

results as well. Secondly, complex systems are known to produce complex, non-

intuitive and sometimes unpredictable results[9]. This is typically referred to as 

emergent properties of the system[42]. These emergent properties are important 

because they usually give rise to the complex response of the system from an array of 

inputs and to the phenotypic response of the system to its environment[9]. These 

properties also become important as systems begin to interact and connect with other 

systems, such as neurons in a neural network in the brain. This is without taking into 

account the interplay between metabolic, signaling and regulatory networks.  

Therefore, it is necessary to begin to understand and to test the system as a system of 

interactions in order to identify this emergent behavior and to distinguish it from 

pathological behavior in the presence of a molecule such as Aβ. The first step in such 

an endeavor is to understand the intrinsic topological properties of the system and 

how that characterizes its complexity and interconnectedness. Given this information, 

the question the experimentalist should ask is: if  protein x is measured in order to 
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infer Aβ’s interaction with protein s, in how many other pathways is protein x 

potentially involved (in-degree, for example)? Is protein x involved in other types of 

network motifs (receptor trans-activation or feedback)? If the answers to these 

questions are yes, then the experimentalist must decide how to design the experiment 

to control and/or monitor the behavior of protein x within its context in the system. 

An example of how an experimentalist might design an experiment with some of 

these questions in mind will be given in Section 4.3.4. 
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Figure 4.2: Example networks  - trees, 

connected network with one cycle and a 

complex network. Top, a simple tree toy 

network with two trees consisting of 12 nodes 

and 10 edges. It β index is 0.833. Middle, a toy 

connected network with one cycle (shown in 

red) with 8 nodes and 8 edges. Its β index is 1. 

Bottom, CA1 hippocampal neuronal signaling 

network with 545 nodes and 1235 edges 

(complex network). Its β index is 2.26. β index 

values were calculated according to equation 

4.3.1. Network building and visualization done 

in Cytoscape[4].  
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4.3.2 Signal Flow Method is Used to Identify Signaling Motifs Based on 

Network Topology 

 
 

The goal of this work is to identify signaling network motifs based on network 

topology analysis. In order to accomplish this goal, we used the Signal Flow Method 

to propagate a signal from the Aβ node through the network. At each discrete step, 

the signal has passed from one set of nodes to the next set in the pathway(s). Because 

networks are hierarchical, each discrete step is analogous to some sequential time 

point in chemical space[24]. However, a direct correlation with time would require 

the knowledge of the kinetics of the system. Also, without kinetic information, all 

paths can equally be followed by the signal and so there is no selectivity for each 

path. This is a disadvantage of this method. However, this method is advantageous 

because it allows for the determination of the flow of a signal as it starts from 

different interactions of Aβ with receptors or channels on the neuronal surface with 

just topographical information as its input. For example, nodes that are utilized in 

particular pathways can be observed and at what depth (or discrete step) the signal 

passes through. Our results in Figures 4.3-4.7 demonstrate, using the Signal Flow 

Method, given a specific interaction of Aβ with a receptor or channel, the receptors 

that are trans-activated (or trans-inhibited). Receptor trans-activation (or inhibition) 

refers to the case in intracellular signaling when one receptor-mediated pathway 

activates (or inhibits) another receptor, and thereby modulates the function of that 

receptor-mediated pathway. In Figure 4.3, Aβ interacts with the integrin receptor. 
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Integrin was chosen because of recent work in our lab[43] and others[44, 45] that 

postulate interactions with integrins as being a target for Aβ induced neurotoxicity. 

The signal through three other receptors is shown here: the L-type calcium channel 

(LTYPECA), the N-methyl-D-aspartate receptor (NMDAR), and the metabotropic 

glutamate receptor 7 (MGLUR7). These receptors/channels have also been implicated 

in Aβ induced signaling[27, 46-48]. In this figure, starting with the top left graph, a 

signal of 1 is passed through the integrin receptor by way of Aβ. At the next discrete 

step and all subsequent steps thereof, the signal is 0. This is indicative of integrin not 

being directly involved in other network motifs that might regulate its function such 

as feedback/feedforward loops or receptor trans-activation. The possible involvement 

of any extracellular feedback mechanisms between its ligands and the receptor are not 

covered in this study nor are they present in the network. Moving to the top right 

graph, we see the signal passes through the LTYPECA at discrete step 3 and then at 

the next step the signal disappears. Two steps later, there is a sharp decrease in the 

signal. This is likely due to feedback mechanisms regulating the LTYPECA since it is 

between discrete steps 4 and 5 where feedback mechanisms, according to Ma’ayan et 

al[21], begin to appear.  

 

For NMR (bottom left graph), again the signal of 1 goes through the receptor 

at discrete step 3 and at discrete step 4 returns to 0. Then at discrete step 5, we see a 

decrease in signal until discrete step 7 when there is an increase in the signal. Again, 

this is likely due to feedback mechanisms that are modulating NMR’s function. Then 

in the bottom right graph, the MGLUR7 receives the signal at discrete step 6, but the 
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signal is 2 instead of 1. Since MGLUR7 receives this signal after the network has 

been fully traversed, this is indicative of it receiving the signal from two separate 

inputs that have received the signal of 1 in previous steps. Again, feedback 

mechanisms explain the increase in signal at the end of the simulation.  
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Figure 4.3: Signal through selected receptors for an interaction of Aβ with the integrin receptor. 

Using the Signal Flow Method, a signal of 1 was initiated at the Aβ node and allowed to propagate 

through the network via Equation 4.2.1. The four selected receptors shown here are integrin, L-type 

calcium channel (LTYPECA), the N-methyl-D-aspartate receptor (NMR) and the metabotropic 

glutamate receptor 7 (MGLUR7). Aβ was the initial node and interacts only with the integrin receptor 

here. The curve in each graph represents the signal at each discrete step taken through the network. 

Ten discrete steps were simulated. Simulations were run and graphs were produced in Matlab.  

Aβ -INTEGRIN 
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In Figure 4.4, a signal is propagated from the Aβ node through the epidermal 

growth factor receptor (EGFR), which is a well-studied receptor tyrosine kinase. 

Receptor tyrosine kinases have also been implicated in Aβ-induced signaling and 

neurotoxicity[49]. Again, in the top left graph, we see the signal of 1 pass through 

EGFR, however, in this case, unlikely with integrin, at discrete step 4 there is a -1 

signal that returns to EGFR. This would indicate some direct feedback from the 

EGFR pathway. From there, at discrete step 6, feedback mechanisms begin to 

regulate EGFR. Here, the integrin receptor receives no signal at any discrete step, 

which corroborates the behavior of integrin in Figure 4.3; that it is not regulated by 

any feedback mechanisms nor modulated by receptor trans-activation (or inhibition). 

LTYPECA in the left bottom graph receives a signal of -3 at discrete step 4. This 

likely means that there are three paths from the EGFR receptor that inhibit 

LTYPECA. From discrete step 4 on, feedback mechanisms are in play. MGLUR7 

receives the signal at discrete step 4 and then at discrete step 6 feedback mechanisms 

come on. What this Signal Flow Method also elucidates for us is the ability of a 

signal from a receptor-mediated pathway, such as the one from EGFR, might 

potential self-regulate its receptor via feedback.   
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Figure 4.4: Signal through selected receptors for an interaction of Aβ with the EGF receptor. 

Using the Signal Flow Method, a signal of 1 was initiated at the Aβ node and allowed to propagate 

through the network via Equation 4.2.1. The four selected receptors shown here are Epidermal 

growth factor receptor (EGFR), integrin, L-type calcium channel (LTYPECA), and the 

metabotropic glutamate receptor 7 (MGLUR7). Aβ was the initial node and interacts only with 

EGFR here. The curve in each graph represents the signal at each discrete step taken through the 

network. Ten discrete steps were simulated. Simulations were run and graphs were produced in 

Matlab (add in the particulars here). 

Aβ -EGFR 
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Aβ has been frequently hypothesized to interact with the NMDA receptor[50, 

51]. Support for this hypothesis was so widespread that a treatment for AD was 

created based on it called Memantine[52, 53]. However, Memantine, like many other 

drug treatments for AD, only alleviates symptoms rather than attenuating the disease 

progression. For this reason, however, we simulated the case of Aβ –NMDAR 

interaction (Figure 4.5). In the top left, NMR receives the signal of 1 initially and 

goes back down to 0 at subsequent steps until discrete step 3 where it receives a 

signal of -2. At discrete step 5 it goes back up to 0 and then after discrete step 6, 

feedback mechanisms begin to modulate NMR. Again, integrin is not modulated by 

NMR nor are there any feedback mechanisms. LTYPECA receives a signal of -4 at 

discrete step 4 indicating that there may be 4 paths by which LTYPECA is inhibited 

by NMR. Then after discrete step 6, feedback mechanisms increase the signal through 

LTYPECA. MGLUR7 receives the signal of 1 at discrete step 4, goes down to -1 and 

then from there has a sharp increase in the signal due to feedback.  

 

In Figure 4.6, a signal is passed from the Aβ through the G-protein coupled 

receptor, metabotropic glutamate receptor 7 (MGLUR7). MGLUR7 has been 

demonstrated in some experiments to play a potential role in Aβ-induced 

signaling[54, 55]. Here the signal of 1 passes through MGLUR7 (top left graph), then 

the signal returns to 0 until discrete 6 where a signal of 2 passes through and then 

feedback mechanisms take over in subsequent steps. This suggests that there are two 

activating paths returning to MGLUR7 possibly through direct feedback from its own 

pathway. Integrin remains unaffected by MGLUR7 receptor-mediated pathways, 
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while LTYPECA and NMR see sharp decreases in signal after discrete step 4 and 5 

and an increase at discrete step 9.  
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Figure 4.5: Signal through selected receptors for an interaction of Aβ with the NMDA 

receptor. Using the Signal Flow Method, a signal of 1 was initiated at the Aβ node and allowed 

to propagate through the network via Equation 4.2.1. The four selected receptors shown here are 

N-methyl-D-aspartate receptor (NMR), integrin, L-type calcium channel (LTYPECA), and the 

metabotropic glutamate receptor 7 (MGLUR7). Aβ was the initial node and interacts only with 

NMDAR here. The curve in each graph represents the signal at each discrete step taken through 

the network. Ten discrete steps were simulated. Simulations were run and graphs were produced 

in Matlab. 

Aβ-NMDAR 
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Figure 4.6: Signal through selected receptors for an interaction of Aβ with the MGLUR7 

receptor. Using the Signal Flow Method, a signal of 1 was initiated at the Aβ node and allowed to 

propagate through the network via Equation 4.2.1. The four selected receptors shown here are 

Metabotropic glutamate receptor 7 (MGLUR7), integrin, L-type calcium channel (LTYPECA), and 

the N-methyl-D-aspartate receptor (NMR). Aβ was the initial node and interacts only with 

MGLUR7 here. The curve in each graph represents the signal at each discrete step taken through the 

network. Ten discrete steps were simulated. Simulations were run and graphs were produced in 

Matlab. 

Aβ-MGLUR7 
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Finally in Figure 4.7, we have a signal passing through LTYPECA from Aβ. 

L-type calcium channels are the calcium channels that are frequently implicated in Aβ 

induced calcium dyshomeostasis[27, 46, 47]. LTYPECA received the signal and then 

goes back to 0 as the signal passes through other nodes in the pathway. Then, at 

discrete step 4 it receives an inhibiting signal of -2 and then subsequent feedback 

mechanisms begin to take effect. Integrin is unaffected. NMR receives a signal of -2 

at discrete step three. Taken together with results from Figure 4.5, it would appear 

that NMR- and LTYPECA- mediated pathways inversely modulate each other. From 

there, NMR has a steady increase in the signal until discrete step 7 where there is a 

sharp increase and then subsequent decrease and then increase again in the last two 

steps. MGLUR7 receives a signal of -1 at discrete step 5 and then immediately 

following are the effects of feedback mechanisms.  
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Figure 4.7: Signal through selected receptors for an interaction of Aβ with the 

LTYPECA channel. Using the Signal Flow Method, a signal of 1 was initiated at the Aβ 

node and allowed to propagate through the network via Equation 4.2.1. The four selected 

receptors shown here are L-type calcium channel (LTYPECA), integrin, the N-methyl-D-

aspartate receptor (NMDAR) and the Metabotropic glutamate receptor 7 (MGLUR7). Aβ was 

the initial node and interacts only with  the LTYPECA channel here. The curve in each graph 

represents the signal at each discrete step taken through the network. Ten discrete steps were 

simulated. Simulations were run and graphs were produced in Matlab. 

Aβ-LTYPECA 
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In the last set of results, the presence of feedback mechanisms was observed 

in these simulations. Feedback loops are abundant in this network. In Figure 4.8, 

utilizing path length analysis described in Section 4.2.2, we show that 30% of all of 

the nodes in this network are involved in feedback loops that originate and end with 

the same node. Of that 30%, 19% of the nodes are involved in both positive and 

negative feedback loops, 7% in positive feedback loops only and 4% in negative 

feedback loops only. Seventy percent of nodes in the network are not involved in a 

feedback loop that originates and ends with the same node, however, some of these 

nodes might be intermediaries in feedback mechanisms, but the task to elucidate all of 

the feedback loops in the network is computationally expensive. The following table 

(Table 4.1) lists the nodes that are involved in the different feedback types (positive, 

negative, positive and negative). The nodes that are not involved in any feedback 

loops are listed in Appendix 4E. With respect to the LPH, if a node was chosen from 

this 30% of the network that is involved in feedback for experimental hypothesis 

testing, then it is likely that depending on when the measurement is taken, there could 

be discrepancies between measured activities. This would be especially true in the 

case of nodes that involved in both positive and negative feedback loops as their 

transient behavior may alternate between increasing and decreasing (see Section 

4.3.5). The expected transient behavior of a node’s activity, independent of other 

regulatory effects, when part of only positive or only negative feedback loops would 

be always increasing or always decreasing, respectively[56, 57]. Thus, their transient 

behavior would be more predictable and could be compared across times in terms of 



 

 194 
 

direction of the trend (up or down) in comparison to the control. However, in terms 

those nodes that are involved in both positive and negative feedback would not be as 

predictable unless measured with two or more time points. This is because the node 

may be involved in a different type of feedback mechanism (either positive or 

negative) depending on the path length (in effect, time). The importance of this with 

respect to experimental design will be discussed further in Section 4.3.4. Once the 

effects of kinetics are introduced to the system, the behavior of feedback loops 

becomes interesting. Positive feedback loops can introduce bistability (or switch-like 

behavior) into the system[58, 59], while negative feedback loops in biology are 

typically associated with processes that maintain homeostasis[58, 60]. The interplay 

between positive and negative feedback loops gives the cell a diversity response to 

external stimuli (bistability, switching, etc), while being able to maintain its response 

within the bounds of normal cellular behavior (homeostasis)[58, 60]. 
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Figure 4.8: Percentage of nodes involved in feedback loops in a CA1 hippocampal neuronal 

network. In this pie chart, 70% of nodes in the neuronal network are not involved in feedback loops. 

Of the remaining 30%, 19% are involved in both positive and negative feedback loops, while 7% and 

4% are involved in positive and negative feedback loops only, respectively. In this case, the feedback 

loops counted are only those that start and end with node i (node of interest). Feedback loops were 

counted using the path length analysis of Section 4.2.2.  
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(+)	
  loops (-­‐)	
  loops
BAX AMPAR AA I1 RAS
BID ASK1 ABL IP3 RASGRP
CAMKI CYTOCHROMEC AC1 IP3R RCS
CAPRI DOK AC2 IRS1 RET
CASPASE9 GABA AC5 LTYPECA RIM
CDC42 GABABR APAF1 MAPK RTYPECA
CGMP GAT1 BAD MEK1 RYR
CJUN ILK BCLXL MGLUR7 SHC
COOL INHIBITOR2 BETA2AR MUNC13 SHP1
CREB MEK3 bRAF NAIP SNAP25
GALPHA11 P38 CALCINEURIN NMR SNAPIN
GALPHAQ PROFILIN CALCIUM NTYPECA SORCIN
GBETAGAMMA RASGAP CALMODULIN P1433 SOS
GELSOLIN RASGRF CAMKII PDE1A SPINOPHILIN
IQGAP RHO CAMKIV PDE1B STEP
LCK ROCK CAMKK PDE1C SV2A
MGLUR1 SODIUM CAMP PDE2A SYNAPSIN
NCK SRCASM CAMPGEFII PDE3A SYNAPTOTAGMIN
NO SYNGAP CASPASE3 PDE3B SYNTAXIN
NOS TIAM1 CASPASE8 PDE4D VAV
PAK GSK3 cGMP PDE5A
pGC D1R PDK1
PIP5K D2R PI3K
PKG DAG PIP2
PTPA DAPK PIP3
RAC DARPP32 PKA
RAL DGK PKB
RALBP1 DOC2 PKC
RALGDS EGFR PLA2
RAP1 EPAC PLCBETA
RASGRP3 FAK PLCGAMMA
RIN1 FYN PMCA
RSK GAB1 PP1
SYK GALPHAI PP2A
TAMALIN GALPHAS PQCaCh

GALPHAZ PTEN
GRB2 RABPHILIN
HIPPOCALCIN RAF1

(+/-­‐)	
  loops
Feedback Loops

 

Table 4.1: List of nodes involved in feedback loops (positive, negative, and positive/negative) in a 
CA1 hippocampal signaling network.  
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4.3.3 Kinetic Model of Receptor Trans-activation and Feedback in a Small 

Hippocampal Network 

 
Because cellular processes are ultimately dynamic, we ideally would want to 

model Aβ interactions with this CA1 hippocampal neuronal network system with 

kinetics. However, given the number of parameters and equations that would be 

required to model this system with even the most basic kinetic schema (mass action 

kinetics) and the unavailability of these parameters, we chose a similar system 

representing a subnetwork within the hippocampal neuronal signaling network. Yang 

and coworkers[5] performed a study on hippocampal neurons in order to deduce the 

pathways involved with cortisteroid-induced signaling. In this network, two of the 

salient network motifs that we identified in the last section are represented: receptor-

transactivation (shown here by a GPCR-mediated pathway induced activation of the 

NMDA receptor-mediated pathway) and feedback (shown here by positive feedback 

between the tyrosine phosphate protein 2 (PYK2) and sarcoma (SRC)) (see Figure 

4.14). Therefore, we were able to demonstrate with simple kinetics how the presence 

of these types of motifs can lead to either non-linear behavior in some of the nodes. 

 

In Figures 4.9-4.13, we have graphs of predicted time-course profiles of 

proteins from a small hippocampal network[5]. For these simulations, we first 

calculated concentration versus time profiles for each protein in the network. Then, 

we calculated the sign change of the slope of the concentration vs. time curves. We 
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did this in order to identify which proteins exhibited non-linear dynamics under 

specific initial conditions. There are two ligands, corticosterone and Aβ. The 

corticosterone is the ligand associated with the network in[5], while we added the Aβ 

as a ligand for the NMDAR (shown in Figure 4.14 as NR2B/NR1) in order to test the 

effect of the NMDAR pathway on the rest of the network. To test the effect of 

corticosterone-induced signaling through a GPCR and Aβ-induced signaling through 

NMDAR, each ligand was given the initial conditions specified in Appendix 4D. In 

Figures 4.9-4.13, each protein and its associated activated component (designated by 

the asterisk) represents examples of proteins which exhibited non-linear dynamics 

under a specific set of initial conditions designated by the colored oval. This colored 

oval has the same designation in Figure 4.14, which shows the network with each 

protein encircled by an oval that exhibits non-linear behavior under specified initial 

conditions. When simulations were run at baseline initial conditions (all 

concentrations at 1nM), the G-protein (Gi/o/Gi/o*), phospholipase C (PLC/PLC*), 

sarcoma (SRC/SRC*), GTPases (Rho/Rho*), proto-oncogene, non-receptor tyrosine 

kinase (Abl/Abl*), and post-synaptic density 95 (PSD-95), all exhibited non-linear 

behavior; while protein kinase C (PKC/PKC*), protein kinase B (PKB/PKB*), and 

tyrosine phosphate protein 2 (Pyk2/Pyk2*) all exhibited non-linear dynamics when 

either corticosterone or Aβ concentration was 10nM. When both Aβ and 

corticosterone concentrations were initiated at 10nM, then the GPCR/GPCR*, 

NMDAR/NMDAR*, and Pyk2/Pyk2* exhibited non-linear behavior. What is seen 

here in this kinetic model is that when evaluating the effects of receptor trans-

activation versus feedback on the dynamic behavior of individual nodes in the 
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pathways, we observe that feedback has more dynamic impact on the proteins not 

only involved in the feedback loop itself (Pyk2 <-> SRC) but also on the adjacent 

proteins (Rho, Abl and PSD-95). On the other hand, the proteins in the NMDAR 

pathway (calcium/calmodulin dependent protein kinase II (CaMKII), serine/threonine 

specific protein kinase (Raf), mitogen-activated protein kinase (MEK), extracellular 

regulated kinase (ERK)) do not display any non-linear dynamics due to either 

receptor trans-activation nor feedback under any initial conditions tested.   
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 Figure 4.9: Time-course profiles of PLC and PLC* in hippocampal 

network from[5]. Protein concentrations (nM) in these profiles are for: 

PLC, PLC*, where the * represents the activated form of the protein. The 

simulated time is 100s. Legend shows initial concentrations of ligands and 

for other proteins in the network for this particular simulation. 
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 Figure 4.10: Time-course profiles of PKC and PKC* in hippocampal 

network from[5][. Protein concentrations (nM) in these profiles are for: 

PKC, PKC*, where the * represents the activated form of the protein. The 

simulated time is 100s. Legend shows initial concentrations of ligands and 

for other proteins in the network for this particular simulation.  
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 Figure 4.11: Time-course profiles of RHO and RHO* in hippocampal 

network from[5]. Protein concentrations (nM) in these profiles are for: 

RHO, RHO*, where the * represents the activated form of the protein. The 

simulated time is 100s. Legend shows initial concentrations of ligands and 

for other proteins in the network for this particular simulation. 
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 Figure 4.12: Time-course profiles of ERK and ERK* in hippocampal 

network from[5]. Protein concentrations (nM) in these profiles are for: 

ERK, ERK*,where the * represents the activated form of the protein. The 

simulated time is 100s. Legend shows initial concentrations of ligands and 

for other proteins in the network for this particular simulation. 
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Figure 4.13: Time-course profiles of SRC and SRC* in hippocampal 

network from[5]. Protein concentrations (nM) in these profiles are for: 

SRC, and SRC*, where the * represents the activated form of the protein. 

The simulated time is 100s. Legend shows initial concentrations of ligands 

and for other proteins in the network for this particular simulation. 
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[CORT]0 =1nM 
All other initial 
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Figure 4.14: Proteins in Small Kinetic Model with sign change in derivative. The Small Kinetic 

Model was solved in Matlab for concentration versus time profiles. The sign change in the derivative 

of the ordinary differential equations used to solve for concentration over time was calculated using 

the sgn function in Matlab at each time point. Those proteins whose derivatives had a sign change at 

any point in time (from positive to negative or vice versa) are represented by the colored ovals in the 

figure. The green oval signifies that those proteins had a sign change in their derivative when all of 

the initial concentrations for all proteins were the baseline (1nM). The blue oval signifies proteins 

that had a sign change in the derivative when either Aβ or corticosterone initial concentrations were 

increased to10nM. The red oval signifies proteins whose derivative had a sign change when both Aβ 

and corticosterone ligand initial concentrations were 10nM. Network drawing adapted from[5]. 
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4.3.4 Experimental Rubric Based on Identified Feedback Loop in CA1 

Hippocampal Network 

 
As was mentioned in Section 4.3.2, 30% of the nodes in this network are 

involved in feedback mechanisms originating and ending with the same node. Most 

of these nodes are involved in what would be called “central signaling” and are likely 

targets for experimental design. Therefore, a guide for generating hypotheses and 

designing experiments should be recommended per what we know about a particular 

node’s involvement in specific network motifs. Ideally, such a guide would give an 

experimental design with the minimum set of nodes to measure along with the 

number of time points to do the measurements in order to perform discriminatory 

experiments. However, given that computational algorithms to analyze the topology 

of complex network graphs are computationally intractable for certain types of 

analysis (give some examples), we will present a simple rubric based on the path 

length analysis done to identify feedback loops on a per node basis in the network. 

The rubric in Figure 4.15 shows four groups into which every node in this network 

can be categorized. Again, Table 4.1 and Appendix 4E have a list where each node is 

separated into each category represented in this rubric. The idea of the rubric is to 

guide the experimentalist in the expected behavior of the node’s activity based on the 

category of feedback mechanisms in which it participates; such as no feedback, 

positive feedback only, negative feedback only and both positive and negative 

feedback. The first case would be nodes that participate in no feedback mechanisms. 

In this case, it would be expected that the activity of the node would either be on or 

off, and so a measurement at a single time point would be sufficient in an 
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experimental design. The next case is positive feedback, where the expected behavior 

would be that the activity of the node would be always increasing; at least until some 

other regulatory event takes place. In the case of negative feedback, the behavior 

would be similar to positive feedback but in the opposite direction. For these three 

cases, a single time point measurement may be sufficient to capture differences 

between the control and Aβ treatment. Even with positive and negative feedback 

loops, although the magnitude of the response may be time dependent, the overall 

trend would be predicted to either increase or decrease, respectively, thereby making 

comparisons across experimental conditions still possible. The fourth case involves 

those nodes where depending on the path length (k), the node might participate in 

either a positive or a negative feedback loop. With these nodes, it would be necessary 

to take measurements at more than one time point since its behavior (or activity) may 

change directions depending on what kind of loop it is involved in at that time. For 

example, at k = 5, PKC is involved in 5 positive feedback loops, whereas at k = 7 it is 

involved in 5 negative feedback loops. Further kinetic studies of such a network 

would be needed to elucidate the time scale associated with these path lengths. 

Nevertheless, this rubric does provide a very preliminary step toward experimental 

design based on an analysis of the system properties of an intracellular network in 

order to elucidate Aβ’s effects on neurons by categorizing the nodes based on their 

predicted time-course behavior due to feedback. 
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Figure 4.15: Experimental rubric based on feedback in CA1 hippocampal 

neuronal network. Given the path length analysis performed on this network, all 

of the nodes can be subdivided into these four rubric areas: nodes that are not 

involved in feedback at all which would represent an ON/OFF response (yellow), 

nodes involved in negative feedback only which would have a response that is 

always decreasing (green), nodes involved in positive feedback only which would 

have a response that is always increasing (blue) and nodes that involved in both 

positive and negative feedback loops whose response would be time-dependent 

(red). This rubric could act as general guidelines for how to measure any particular 

node with respect to time based on its involvement in feedback loops.  
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4.3.5 Network properties of Nodes from Literature-Derived Experimental 

Data of In Vitro Experiments with Aβ 

 
 

We collected data from a literature survey of in vitro experiments done by 

exposing hippocampal or cortical primary culture neurons to Aβ exogenously for a 

period of no longer than 60 minutes. In Table 4.2, the nodes (or protein activity 

levels) that were measured in the experiments are listed along with the number of 

feedback loops per path length from the CA1 hippocampal neuronal network. The 

path lengths calculated were paths of length 3 to 10. Negative values indicate the 

number of negative feedback loops. Those rows that are highlighted in grey are nodes 

that do not participate at all in any feedback. Again, here the only feedback loops that 

are enumerated are those that originate and end with the same node. In general, as the 

path length increases, so does the number of feedback loops. Many of the nodes tend 

to go back and forth in their involvement in negative versus positive feedback loops. 

As was discussed in the last section on the experimental rubric, these types of nodes 

would likely need to be measured over time as their behavior will be time-dependent. 

This might be an indication of why the literature data lack consensus. Since there is 

no standard time when each experimental laboratory measures Aβ-induced signaling, 

for these nodes that are involved in both negative and positive feedback loops, the 

data could be inconsistent. 
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In Table 4.3, is the same list of measured nodes, but listed along with the 

number of in-, out- and total degrees. In-degrees are the incoming edges, whereas out-

degrees are the outgoing edges into and out of a particular node. The total degree 

would then be the sum of the in- and out-degrees. This table is ranked by the in-

degrees because in-degree is most likely indicative of number of pathways that the 

node is part of. The cAMP response element-binding (CREB) has the most incoming 

edges at 14, while brain neurotrophic factor (BDNF), calpain, and Fas ligand (FASL) 

has no incoming edges. The large number of incoming edges that CREB has would 

indicate that CREB is involved in many pathways and may be modulated by a variety 

of inputs. Therefore, the Linear Pathway Hypothesis would not be adequate enough to 

describe CREB’s activity under experimental conditions. Alterations in any number 

of pathways could give rise to an increase or decrease in CREB activity. As is evident 

from Tables 4.1-4.3, most of the nodes in these experiments are not involved in a 

simple linear pathway from some receptor and thus such an assumption could lead to 

poor interpretation of experimental results, poor experimental reproducibility, or the 

inability to discriminate between experimental results (non-consensus). 
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Measured nodes in experiments k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
AA 1 0 0 2 -2 11 -7 -19

BDNF 0 0 0 0 0 0 0 0
BETACATENIN 0 0 0 0 0 0 0 0

CALCIUM -1 -1 6 -7 0 -25 5 73
CALPAIN 0 0 0 0 0 0 0 0

CASPASE3 2 1 1 4 5 20 28 -12
CASPASE7 0 0 0 0 0 0 0 0

CJUN 1 0 0 1 0 0 1 0
CREB 1 0 0 1 0 0 1 0
FASL 0 0 0 0 0 0 0 0
FYN 0 0 0 1 3 2 1 -11

GSK3 0 0 -1 -2 0 -8 -13 -39
JNK 0 0 0 0 0 0 0 0

MAPK 0 0 0 1 -2 6 0 -8
P53 0 0 0 0 0 0 0 0
PAK 2 2 0 4 8 4 7 29
PIP2 1 2 2 3 13 20 36 -10
PKB 0 -1 0 -3 0 2 -18 -16
PKC 1 -2 5 -7 -5 10 -43 14
PKR 0 0 0 0 0 0 0 0
RAC 1 1 0 2 4 2 3 11
STEP 0 0 0 0 -2 2 2 7
TAU 0 0 0 0 0 0 0 0

TRKA 0 0 0 0 0 0 0 0

Number of Feedback Loops of Path Length k

 

Table 4.2: Number of feedback loops per path length of nodes measured in literature-derived 

experiments. In this table, these nodes were measured in the experiments listed in the references. For 

each node, the number of feedback loops of path length k of which it is involved in the network is 

listed. Negative signs represent the number of negative feedback loops because this network is 

signed. The nodes highlighted in grey are those that are not involved in feedback loops at all. The 

number of path lengths (k) shown here are 10. Path analysis was performed according to Section 

4.2.2 and simulated in Matlab.  
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Measured nodes in experiments In-degree Out-degree Total
CREB 14 5 19
TAU 10 0 9

CALCIUM 8 19 27
BETACATENIN 7 2 9

PKB 7 6 13
FYN 6 6 12
PKC 6 36 42

CASPASE3 5 14 19
CJUN 5 2 7
GSK3 5 9 14
JNK 5 4 9

MAPK 5 15 20
CASPASE7 4 3 7

P53 4 0 4
PIP2 4 15 19
PAK 3 6 9
RAC 2 8 10
AA 1 1 2

PKR 1 3 4
STEP 1 2 3
TRKA 1 7 8
BDNF 0 1 1

CALPAIN 0 6 6
FASL 0 1 1  

 

 

 

 

 

 

 

 

Table 4.3: Number of in-, out-, and total degrees for nodes measured in literature-

derived experiments. In this table, the number of incoming edges (in-degree), outgoing 

edges (out-degree) and total degree is listed per node measured in literature-derived 

experiments. This list is ranked from most incoming edges to least with the cAMP response 

binding factor (CREB) having the greatest number of incoming edges (14) and brain-

derived neurotrophic factor (BDNF), CALPAIN and Fas ligand (FASL) having the least (0). 

In-, out- and total degree were counted in Cytoscape[4]. 
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4.4 Conclusions 

 
In our present work, we present a variety of reasons to begin formulating new 

hypotheses for Aβ’s interactions with neurons based on the complex, interconnected, 

non-linear behavior of a real intracellular network. Based on our study, we 

demonstrated using network topological measures and features, as well as network 

motifs, that a CA1 hippocampal neuronal signaling network is not comprised of a 

series of non-interacting pathways, but rather comprised of hub proteins, receptor 

trans-activated or inhibited pathways, cross-talk and many feedback mechanisms, 

among other types of signal motifs. We also demonstrated that nodes that participate 

and are adjacent to feedback mechanisms can exhibit non-linear dynamic behavior, 

whereas nodes in a direct pathway from a receptor trans-activated pathway do not 

necessarily display non-linear behavior. From this conclusion, we recommend an 

experimental rubric based on feedback mechanisms and show that over half of the 

nodes measured in current literature-derived data (Table 4.2) participate in a 

feedback loop of some type; and that this may provide some indication as to 

inconsistencies in experimental results coming from different laboratories. By taking 

into account the context of interactions in which a particular node of interest 

participates, experiments can be designed that are more consistent with the underlying 

behavior of the system.  
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4.5 Future Work 

 
In this work, we were able to identify the behavior of network motifs that are 

not consistent with a Linear Pathway Hypothesis. After testing some of the dynamic 

properties of two types of motifs that are abundant in this CA1 hippocampal neuronal 

network, we found that feedback mechanisms have a greater impact on the non-linear 

dynamic behavior of individual proteins over receptor trans-activation. From this 

analysis, we proposed an experimental rubric based on feedback mechanisms that 

would allow the experimentalist to determine how to make measurements on a 

particular protein based on what type of feedback mechanism in which it participates. 

For future work, we propose another method for experimental design based on hub 

proteins. According to Barabasi and Oltvat[7], real networks are very robust to 

random removal of nodes; however, when only a few hub nodes are removed, the 

network breaks down into isolated small clusters. This suggests that hub proteins are 

integral to network function (structure => function paradigm of biology) and that 

their high interconnectedness suggests that they are most often responding to 

extracellular cues. Thus, another experimental design could involve measuring input-

hub response trends, which would consist of monitoring the behavior over time of 

hub proteins given a certain cue, under normal conditions and in the presence of Aβ. 

 

A hub protein could be defined as a highly connected protein in the network. 

Referring back to Figure 4.1, where we are given a power law distribution of the 

interactions in this network, a hub protein would be one of the proteins represented in 

the tail of the distribution. The hub proteins for this network were listed in Section 
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4.3.1. Using our Signal Flow Method, we show some input-hub response behavior in 

Figures 4.16-4.23. The most highly connected hub protein in the network, PKA (47 

total interactions), is shown in Figure 4.16. Four different inputs are activated and 

signal propagation through PKA is observed. The Aβ-LTYPECA (Ca2+ pathway) 

input propagates a signal through PKA at the earliest step (discrete step 2) in 

comparison to the other inputs. Aβ-MGLUR7 (GPCR pathway) propagates a signal to 

PKA at discrete step 4, while Aβ-EGFR (Receptor tyrosine kinase pathway) and Aβ-

Integrin (Integrin pathway) receive the signal after discrete step 5 and then the signal 

appears to enter into a feedback mechanism. What is demonstrated here is that even 

utilizing the Signal Flow Method to analyze the movement of a signal through this 

network, it is evident that monitoring an input-hub response could yield potentially 

discriminating trends depending upon the input.	
  	
  

	
  

In order to further demonstrate this idea, we used the Signal Flow Method 

with the same inputs as was used for PKA on other hub proteins: PKC, Gβγ, 

Calmodulin, NMDAR/NMR, SRC, and CREB (Figures 4.16-4.23). We chose these 

particular hubs because they have been measured previously in in vitro experiments 

with Aβ[48]. Again, there are clear differences in the trends of signal propagation 

through a particular hub node based on the input. In almost all of the cases, the Aβ-

LTYPECA has the earliest propagation of the initial signal (usually before step 4). All 

of the other inputs tend to vary in how early the signal is propagated to the hub node. 

By the end of the simulation, all of the hub nodes shown in Figures 4.16-4.23 begin 

to enter into feedback mechanisms. This is relevant to the experimental rubric 
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proposed in Figure 4.15 in that at longer time scale it may be that these two 

experimental designs could be combined such that the input-hub response is 

measured according to what type of feedback mechanisms in which it is expected to 

participate (none, positive, negative, positive/negative). 



 

 217 
 

 

 Figure 4.16: Signal through hub protein, Protein kinase A (PKA) given different inputs.  The 

Signal Flow Method (section 4.2.1) was used to follow signal propagation through PKA starting 

from different inputs (AB-LTYPECA, AB-Integrin, AB-EGFR, and AB-MGLUR7).	
  Aβ was the 

initial node and a signal of 1 is passed through this node at the first discrete step. The curve in 

each graph represents the signal at each discrete step taken through the network. Ten discrete steps 

were simulated. Simulations were run and graphs were produced in Matlab. 

Aβ-LTYPECA Aβ-INTEGRIN 

Aβ-EGFR Aβ-MGLUR7 
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Figure 4.17: Signal through hub protein, Protein kinase C (PKC) given different inputs.  

The Signal Flow Method (section 4.2.1) was used to follow signal propagation through PKC 

starting from different inputs (AB-LTYPECA, AB-Integrin, AB-EGFR, and AB-MGLUR7).	
  

Aβ was the initial node and a signal of 1 is passed through this node at the first discrete step. 

The curve in each graph represents the signal at each discrete step taken through the network. 

Ten discrete steps were simulated. Simulations were run and graphs were produced in Matlab. 

Aβ-LTYPECA Aβ-INTEGRIN 

Aβ-EGFR Aβ-MGLUR7 
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Figure 4.18: Signal through hub protein, G protein βγ (Gβγ) given different inputs.  The 

Signal Flow Method (section 4.2.1) was used to follow signal propagation through Gβγ starting 

from different inputs (AB-LTYPECA, AB-Integrin, AB-EGFR, and AB-MGLUR7). Aβ was 

the initial node and a signal of 1 is passed through this node at the first discrete step. The curve 

in each graph represents the signal at each discrete step taken through the network. Ten discrete 

steps were simulated. Simulations were run and graphs were produced in Matlab. 

Aβ-LTYPECA Aβ-INTEGRIN 

Aβ-EGFR Aβ-MGLUR7 
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Figure 4.19: Signal through hub protein, Calmodulin, given different inputs.  The 

Signal Flow Method (section 4.2.1) was used to follow signal propagation through 

Calmodulin starting from different inputs (AB-LTYPECA, AB-Integrin, AB-EGFR, and 

AB-MGLUR7). Aβ was the initial node and a signal of 1 is passed through this node at the 

first discrete step. The curve in each graph represents the signal at each discrete step taken 

through the network. Ten discrete steps were simulated. Simulations were run and graphs 

were produced in Matlab. 

Aβ-LTYPECA Aβ-INTEGRIN 

Aβ-EGFR Aβ-MGLUR7 
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Figure 4.20: Signal through hub protein, N-methyl-D-aspartate receptor (NMDAR), given 

different inputs.  The Signal Flow Method (section 4.2.1) was used to follow signal propagation 

through NMDAR starting from different inputs (AB-LTYPECA, AB-Integrin, AB-EGFR, and 

AB-MGLUR7). Aβ was the initial node and a signal of 1 is passed through this node at the first 

discrete step. The curve in each graph represents the signal at each discrete step taken through the 

network. Ten discrete steps were simulated. Simulations were run and graphs were produced in 

Matlab. 

Aβ-LTYPECA 
Aβ-INTEGRIN 

Aβ-EGFR 
Aβ-MGLUR7 
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Figure 4.21: Signal through hub protein, proto-oncogene tyrosine-protein kinase (SRC) 

given different inputs.  The Signal Flow Method (section 4.2.1) was used to follow signal 

propagation through SRC starting from different inputs (AB-LTYPECA, AB-Integrin, AB-

EGFR, and AB-MGLUR7). Aβ was the initial node and a signal of 1 is passed through this 

node at the first discrete step. The curve in each graph represents the signal at each discrete 

step taken through the network. Ten discrete steps were simulated. Simulations were run and 

graphs were produced in Matlab. 

Aβ-LTYPECA 
Aβ-INTEGRIN 

Aβ-EGFR 
Aβ-MGLUR7 
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Figure 4.22: Signal through hub protein, cyclic adenosine monophosphate response element-

binding (CREB) protein, given different inputs.  The Signal Flow Method (section 4.2.1) was 

used to follow signal propagation through CREB starting from different inputs (AB-LTYPECA, 

AB-Integrin, AB-EGFR, and AB-MGLUR7). Aβ was the initial node and a signal of 1 is passed 

through this node at the first discrete step. The curve in each graph represents the signal at each 

discrete step taken through the network. Ten discrete steps were simulated. Simulations were run 

and graphs were produced in Matlab. 

Aβ-LTYPECA Aβ-INTEGRIN 

Aβ-EGFR Aβ-MGLUR7 
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Appendix 4A Reaction List 

From Figure 8 in Yang et al, Non-receptor-tyrosine Kinases Integrate Fast 
Glucocorticoid Signaling in Hipppocampal Neurons, J. Biol. Chem., 2013 
 Equations Reaction constants 

1 CORT + GPCR ßà GPCR* k1, k-1 
2 GPCR* + Gi/o ßà Gi/o* + GPCR k2, k-2 
3 Gi/o* + PKA ßà PKA* + Gi/o k3, k-3 
4 Gi/o* + PI3K ßà PI3K * + Gi/o k4, k-4 
5 Gi/o* + PLC ßà PLC* + Gi/o k5, k-5 
6 PKA* + PYK2* ßà PYK2 + PKA k6, k-6 
7 PI3K* + PKB ßà PI3K + PKB* k7, k-7 
8 PLC* + PKC ßà PKC* + PLC k8, k-8 
9 PLC* + InsPR ßà InsPR* + PLC k9, k-9 
10 InsPR* -> Ca2+ k10 
11 Ca2+ + CaM ßà CaM* k11, k-11 
12 CaM* + PKC ßà PKC* + CaM k12, k-12 
13 PKB* + PYK2* ßà PYK2 + PKB k13, k-13 
14 PKA* + PYK2* ßà PYK2 + PKA k14, k-14 
15 PYK2* + Rho ßà Rho* + PYK2 k15, k-15 
16 Rho* à Actin k16 
17 PYK2* + Src ßà PYK2 + Src* k17, k-17 
18 Src* + 2PYK2 ßà Src + 2PYK2* k18, k-18 
19 Src* + Abl ßà Src + Abl* k19, k-19 
20 Abl à Actin k20 
21 Src + PSD95 ßà Src_PSD95 k21,k-21 
22 Abl + PSD95 ßà Abl_PSD95 k22, k-22 
23 Src* + NMDAR ßà Src + NMDAR* k23, k-23 
24 NMDAR* + CaMKII ßà NMDAR + 

CaMKII* 
k24, k-24 

25 CaMKII* + Raf ßà CaMKII + Raf* k25, k-25 
26 Raf* + MEK ßà Raf + MEK* k26, k-26 
27 MEK* + ERK ßà ERK* + MEK k27, k-27 
28 ERK* à mRNA k28 
29 AB + NMDAR ßà NMDAR* k29, k-29 
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Appendix 4B List of Compounds 

 List of compounds 
1 CORT 
2 GPCR 
3 GPCR* 
4 Gi/o 
5 Gi/o* 
6 PKA 
7 PKA* 
8 PI3K 
9 PI3K* 
10 PLC 
11 PLC* 
12 PYK2 
13 PYK2* 
14 PKB 
15 PKB* 
16 InsPR 
17 InsPR* 
18 Ca2+ 
19 CaM 
20 CaM* 
21 PKC 
22 PKC* 
23 Rho 
24 Rho* 
25 Actin 
26 Src 
27 Src* 
28 Abl 
29 Abl* 
30 Abl_PSD95 
31 Src_PSD95 
32 NMDAR 
33 NMDAR* 
34 CaMKII 
35 CaMKII* 
36 Raf 
37 Raf* 
38 MEK 
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39 MEK* 
40 ERK 
41 ERK* 
42 mRNA 
43 AB 
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Appendix 4C Reaction Equations 
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Appendix 4D Initial Conditions 

Aβ (nM) Cortisterone (nM) 
1 1 
10 1 
1 10 
10 10 

 
All other compounds were initiated at 1nM. 
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Appendix 4E Nodes in CA1 Hippocampal Neuron Not Involved in 

Feedback Loops 
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Chapter 5:  Conclusions and Future Work 
 

 

5.1 Conclusions 

 

“Grace builds on nature.” ~St. Thomas Aquinas 

 

Alzheimer’s disease, being as complex as it is, certainly does not require that 

Aβ be the sole and primary cause of disease progression. However, it is clear that Aβ 

does play an important role in AD, and may well act as a trigger for processes leading 

to cognitive decline[1]. Therefore, understanding the mechanisms of Aβ’s early 

action on neurons would be beneficial toward creating treatments that might cure or 

attenuate disease progression.  In the work presented in the chapters of this 

dissertation, we worked to shed light on how to use computational modeling to 

discriminate between hypotheses and improve experimental design toward Aβ-neuron 

interaction discovery.  

  

Starting with the hypotheses drawn from data produced by current 

experimental designs (see Figure 5.1); we sought in Chapters 2 and 3 to develop 

tools for hypothesis discrimination (Figure 5.2A). With respect to hypothesis 

discrimination in Chapter 2, we developed a computational model neuron where 

were a priori hypotheses could be tested with experimentally testable results under 

three experimental conditions (Figure 5.2B). In the chapter, we tested two hypotheses 



 

 244 
 

and generated results thereof: the block of the fast-inactivating potassium channel and 

the membrane conductance increase by Aβ. From our simulations, we were able to 

observe distinct behavior of the model outputs for each mechanism. This would 

therefore allow for distinguishing between these mechanisms under experimentally 

testable conditions. In this way, we provide information on the types of 

electrophysiology experiments that might further distinguish these two mechanisms. 

Importantly, this methodology can be readily extended to other amyloid-neuron 

interactions that involve an ion channel, ion-conducting receptor or membrane 

mechanism. This type of comparative modeling had not been done previously in the 

field with respect to generating hypotheses of Aβ-neuron interactions. 
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Figure 5.1: Flow chart of general experimental design. Given a set a prior knowledge in the field 

about the experimental system (white box), a hypothesis is formed. Experiments are designed based 

on this hypothesis in which the hypothesis of the experiment is proven either correct or incorrect. If 

proven correct by the particular set of experiments, the results of the experiments can be used to draw 

new conclusions about the system. If proven incorrect, then the hypothesis is revised, and experiment 

performed again. This loop continues until a hypothesis is proven correct.  
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In Chapter 3, our goal, as in Chapter 2, was to discriminate between 

hypotheses of Aβ-neuron interactions. In this case, we wanted to integrate literature-

derived data and identify Aβ-neuron interactions through hypothesis discrimination 

(Figure 5.3). The premise behind our work was that intracellular signaling is 

complex, involving multiple intersecting pathways; therefore, a model that can 

discriminate between hypotheses of Aβ-induced signaling must include this complex. 

By starting with such a complex signaling model, we would be able to infer the 

correct set of Aβ-neuron interactions by comparing available literature data against 

model predictions and assessing the goodness-of-fit to the data. We made use of a 

reverse engineering algorithm, CellNOptR[2], which had never been used on a 

signaling network of the size and complexity as the one that we used[3]. The results 

of simulations were such that we were unable to identify a set of Aβ-neuron 

interactions that produce signals through the network that explains the data. From our 

investigation of the algorithm’s results, we concluded that the dataset collected from 

the literature is not self-consistent. Here we will discuss a possible rationale for this 

lack of self-consistency in the data. 

 

A typical experimental program usually includes a formulation of the 

hypothesis, testing the hypothesis via experimentation, and then interpretation of 

whether or not the hypothesis is correct. If it is incorrect, the hypothesis may be 

revised in light of new knowledge gained from the experiment (Figure 5.1). 

However, hypotheses come from a body of prior knowledge about the system. If 

revising this prior knowledge is not a part of the experimental feedback loop, then it 
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is possible that even revising the hypothesis will not give more consistent results 

(Figure 5.2A). This is a likely possibility for the lack of consensus on the 

mechanisms of Aβ-neuron interactions in current experimental literature. In Chapter 

3, we explored, computationally, integration of a more complex network 

representation of intracellular signaling with literature-derived experimental data 

(Figure 5.3). By testing various hypotheses proposed in the literature for Aβ-neuron 

interactions, we attempted to discriminate between multiple hypotheses, a posteriori. 

However, by using the ‘pseudo-control’ of scrambled datasets and observing that 

CellNOptR consistently found better solutions on scrambled datasets than with the 

real dataset meant that the data that had been collected in the literature was not self-

consistent. We propose that this is because the ‘experimental prior knowledge’ of the 

system used to formulate these hypotheses is limited and that the ‘experimental prior 

knowledge’ ought to be revised to reflect the complexity of the signaling network. 

We discussed this further in Chapter 4.  
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Figure 5.2: Flow charts of experimental design using the general approach and with a 

discriminatory step (Chapter 2). (A) Here, a linear pathway assumption (white box) is taken for prior 

knowledge of Aβ-neuron interactions and their subsequent effects on neuronal signaling. From this 

assumption, any number of hypotheses can be formed that correspond with a linear pathway 

assumption for Aβ-induced signaling. Next, each hypothesis is tested via experimentation according to 

the steps of the general experimental design approach described in Figure 5.1. If the results of each 

experiment, or even some experiments, are proven correct for that experimental preparation, then there 

exists a series of experimental results that are “correct”, but may not shed new light on the system, nor 

provide a consensus result. And in the same way as in Figure 5.1, when hypotheses are proven 

incorrect, they are revised, but not necessarily taking into account the results of the other experiments. 

The question is: which hypothesis do we accept? (B) Here, we have a similar schematic as in A, but 

with a discriminatory step (grey box). This step, in this case, consists of the neuronal electrophysiology 

model from Chapter 2.  Using this neuronal electrophysiology model as a discriminatory step allows 

for testing multiple hypotheses and determining which one, under experimentally testable conditions, 

best explains the experimental data. If no hypothesis fits, then a feedback to the prior knowledge 

(linear pathway assumption) might indicate a need to adjust the basic assumptions about the system.  

 

In Chapter 4, we provided a rationale for rejecting a linear pathway 

hypothesis for investigating Aβ-neuron interactions in favor of a more complex 

network representation (Figure 5.4). By performing network analysis on the CA1 

hippocampal network, we were able to determine that this network is not comprised 

of a series of non-interacting pathways, but instead comprised of hub proteins, 

receptor trans-activated or inhibited pathways, cross-talk and feedback mechanisms. 

The ‘one disease/one pathway’ paradigm[4] produces an oversimplified 

‘experimental prior knowledge’, which does not allow for adequate probing of the 

complex, underlying system. From our network analysis and kinetic modeling, we 
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identified motifs in which many of the proteins in the CA1 hippocampal neuron 

participate and examined their dynamic behavior. Based on this examination of 

dynamic behavior, we observed that feedback mechanisms exhibit non-linear 

dynamic behavior for both nodes participating in the feedback loop and those 

adjacent to the loop. We made recommendations for experiments based on a rubric 

for feedback mechanisms in the network. We also showed that over half of the 

proteins measured in our literature-derived dataset participate in a feedback 

mechanism. We believe this may be an explanation for the lack of self-consistency of 

the dataset, which was observed in Chapter 3. In order to use a Boolean modeling 

approach to represent a complex network with multiple feedback and feedforward 

control mechanisms, the data used to discriminate behavior must be selected outside 

of these loops. Alternatively, dynamic modeling approaches would have to be used; 

however, given the size of the network and the paucity of experimental parameters 

that adequately describe the kinetics of the signaling reactions, the ability to construct 

accurate dynamic models of the entire neuronal signaling network is impossible at 

this time.  
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Figure 5.3: Flow chart of discriminatory step for discriminating between various hypotheses of Aβ-

neuron interactions using a signaling network model (Chapter 3). In this flow chart, literature-derived 

experimental data and hypotheses for Aβ-neuron interactions are taken as inputs into a signaling network 

model. This is done according to the methods prescribed in Chapter 3 of this dissertation. By using a 

signaling network model on signaling data, given hypothesis of Aβ-neuron interaction, the hypothesis that 

produces the best fit to the data would, ideally, be determined. In this way, this type of model acts as a 

discriminatory step.  
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In conclusion, the search for a cure or a disease-ameliorating treatment for AD 

presses on. From the formulation of the Amyloid Cascade Hypothesis in 1992[5], 

there have been numerous experiments performed in order to understand Aβ’s action 

on neurons and its role in AD progression. From this hypothesis, multiple 

therapeutics have been designed to target Aβ and prevent the accumulation of fibrils 

and plaques; yet, these therapeutics have failed clinical trials[1, 4]. At last, after 

nearly thirty years of research, there is no consensus on the mechanisms underlying 

Aβ’s role in AD progression, or its mechanisms of neurotoxicity. Many researchers 

are now proposing that the Amyloid Cascade Hypothesis be abandoned because of 

the failure of clinical trials and the failure to demonstrate the link between Aβ plaque 

burden and cognitive decline[1, 6-9]. Though their arguments are compelling, the 

burden is still on these researchers to come up with another viable hypothesis, which 

can still explain Aβ’s neurotoxicity and the dependence of other features of AD, such 

as the hyper-phosphorylation of tau, on the presence of Aβ[10]. We suggest, instead, 

a two-fold computational approach to aid in the design of experiments. First, we have 

developed two computational tools, an electrophysiological neuronal model and an 

intracellular signaling model for discriminating between hypotheses for Aβ-neuron 

interactions, under experimentally testable conditions or utilizing existing 

experimental data. Second, by using network analysis to characterize and define 

network motifs present in a CA1 hippocampal network in terms of individual nodes, 

and in comparison to literature-derived data, we propose that experimental design 

move away from a linear pathway hypothesis (Figure 5.2)  to a more complex 
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intracellular network, and to take this as a new ‘experimental prior knowledge’ 

(Figure 5.4). In this way, experimental hypotheses will take into account the actual 

underlying system; the measured component can be measured in a way consistent 

with its cellular context, and there can be greater control over experimental variables. 

Along with this, standardizations in experimental preparations, such as the use of the 

same Aβ species and aggregation states, measurement time point, and concentration, 

would also aid in bring consensus to a long-standing problem in AD research, which 

has hindered progress toward an adequate treatment for this disease.  
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Figure 5.4: Flow chart of integrated methodology for experimentation and hypothesis 

discrimination. In Chapter 4, we justify a departure from a linear pathway assumption (Figure 5.2B) to 

a signaling network as prior knowledge (white box) for experimental design. Experiments are designed 

taking into account the cellular context of each protein to be part of the experiment. The signaling 

network model (Figure 5.3) is used as a discriminatory step (grey box) where experimental results are 

compared against N hypotheses for Aβ-neuron interactions. Again, as in Figure 5.3, ideally the 

hypothesis with the best fit to the data would be identified. If not, then the prior knowledge about the 

system could be revised.  



 

 255 
 

5.2 Future Work 

 
 

Much of what has been stated about the future work for this dissertation has 

been stated in the chapters, and so the details will not be reiterated here. Instead, we 

will present an outline of possible future work and the rationale behind this work. It is 

worthwhile to keep moving on toward understanding Aβ’s mechanism of action on 

neurons from an intracellular signaling perspective. In this way, once pathways are 

known, more experimentation to identify the kinetics of the system (and especially 

the parameters) can be done so that a kinetic model of the system can be developed. 

Then, the electrophysiological model in Chapter 2 could be combined with such a 

kinetic model of Aβ-induced signaling in order to integrate the dynamics at the cell 

surface with the dynamics of changes in intracellular signaling.  

 

 In order to improve on the work toward inferring Aβ-neuron interactions from 

intracellular signaling data (pending that data is self-consistent), we also need to 

know what is the minimum dataset required to identify a network topology using a 

reverse-engineering algorithm such as CellNOptR. In Chapter 3, we described some 

preliminary work done in collaboration with the Erill lab in UMBC Biological 

Science Department to create a Bayesian algorithm to estimate the probability of 

finding a hypothetical network that is consistent with the experimental data given a 

partial dataset. Debugging and testing of this algorithm on a real experimental dataset 

and the CA1 hippocampal network would be needed in order to continue this work.  
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In Chapter 4, we proposed an experimental rubric based on feedback 

mechanisms that exist in the CA1 hippocampal network. By utilizing this rubric, an 

experimentalist, desiring to observe the effects of Aβ on a particular protein in a 

particular pathway would have more contextual knowledge of network motifs that 

might affect the dynamic behavior of the protein, such as feedback. However, there 

are other experimental designs that could be modeled using network analysis, and in 

particular the Signal Flow Method, of Chapter 4. One such design suggested was an 

input-hub protein response. Because these hub proteins are structurally highly 

connected in networks, it is likely that their response most often correspond to the 

dynamics of input signaling. Thus, monitoring these input-hub response trends could 

provide another experimental design with which the experimentalist can infer Aβ-

neuron interactions. Using our Signal Flow Method, we can simulate trends for input-

hub protein responses that the experimentalist might expect when monitoring these 

responses. In order to continue this work, it would be necessary to define all of the 

hub proteins in the network, and then simulate all input-hub response trends, similar 

to those shown in Figures 4.12-4.18 in Chapter 4.  
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Appendix 
 

Location on computer for files related to each chapters in this dissertation 

Computer located in Castellanos’s lab (Room 335A) 

Dell Precision T5500; Product key: BF4GB-93XGW-CQGQB-28GD4-W27QR 

Username: NatashaWilson 

Password: w@ashington 

Chapter 1 

C:\Users\Natasha Workstation\Desktop\Prophetic Project\It is time to 

graduate Natasha\Papers\Chapter 1 

Chapter 2 

Literature  and journal article preparations 

C:\Users\Natasha Workstation\Desktop\Papers and Writing 

Computational model 

C:\Users\Natasha Workstation\Desktop\Oral Qualifiers Fall 2011\Neuron 

model 

Chapter 3 

C:\Users\Natasha Workstation\Desktop\Prophetic Project\Computational 
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Chapter 4 

Signal Flow Method 

C:\Users\Natasha Workstation\Desktop\Prophetic 

Project\Computational\Paper 1 

Small Kinetic Model 

C:\Users\Natasha Workstation\Desktop\Prophetic 

Project\Computational\Paper 1\Small kinetic model 

Chapter 5 

C:\Users\Natasha Workstation\Desktop\Prophetic Project\It is time to 

graduate Natasha\Papers\Chapter 5 

 

Other information: 

Proposal 

 C:\Users\Natasha Workstation\Desktop\Prophetic Project\Proposal 

Experimental protocol 

 Calcium fluorescence and viability assays 

C:\Users\Natasha Workstation\Desktop\Oral Qualifiers Fall 

2011\Experiments 

 PKC fluorescence probe 

  C:\Users\Natasha Workstation\Desktop\Prophetic Project\Experiments 

 

Undergraduate student work 
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C:\Users\Natasha Workstation\Desktop\Prophetic Project\Undergraduate 

Projects 

 

John Hopkins Cancer project 

C:\Users\Natasha Workstation\Desktop\Prophetic Project\Cancer Project 

 



 

  

 




