
APPROVAL SHEET

Title of Thesis: Parallel Performance of Numerical Simulations
for Applied Partial Differential Equation Models
on the Intel Xeon Phi Knights Landing Processor

Name of Candidate: Jonathan S. Graf
Doctor of Philosophy, 2017

Thesis and Abstract Approved:
Dr. Matthias K. Gobbert
Professor
Department of Mathematics and Statistics

Date Approved:

ABSTRACT

Title of Thesis: Parallel Performance of Numerical Simulations
for Applied Partial Differential Equation Models
on the Intel Xeon Phi Knights Landing Processor

Jonathan S. Graf, Doctor of Philosophy, 2017

Thesis directed by: Dr. Matthias K. Gobbert, Professor
Department of Mathematics and Statistics
University of Maryland, Baltimore County

Current high-performance computing clusters feature CPUs with 8 to 16 cores.

The many-integrated-core (MIC) Intel Xeon Phi processors feature 60 or more cores

on a single chip, with lower power consumption per core than CPUs. The Intel Xeon

Phi Knights Landing (KNL) is the second-generation Xeon Phi processor released

in 2016. It represents a significant improvement over the first-generation Knights

Corner (KNC), since the KNL can serve as a standalone processor and has a 2D

mesh interconnect on the chip to connect the cores to the 16 GB of high-performance

memory on the chip. This architecture is very accessible to researchers who need only

add a compiler flag to their code as a result of the x86 compatibility of each Xeon Phi

core. But the different configurations available for the KNL add a layer of decisions

for researchers on how to run their code. We use the Stampede cluster at the Texas

Advanced Computing Center (TACC) for all hardware choices, since it is accessible

to many researchers via an Extreme Science and Engineering Discovery Environment

(XSEDE) allocation.

This work is inspired by the calcium induced calcium release (CICR) model of

calcium dynamics in a three-dimensional heart cell. This application problem is mod-

eled by a system of coupled, non-linear, time-dependent advection-diffusion-reaction

partial differential equations. The model now includes eight species and connections

between the electrical excitation, calcium signaling, and mechanical contraction sys-

tems. Parameter studies on modern CPUs examine the feedback strength from the

calcium signaling to the electrical excitation system and motivate the need for pa-

rameter studies on meshes that fit in the memory of a KNL.

The elliptic Poisson equation in two dimensions serves as a prototypical test prob-

lem, since the linear system solution by the conjugate gradient method mimics the

computational kernels in many applications that use Krylov subspace methods. Our

tests assess the configurations possible with the KNL and demonstrate the distinct

advantage of the 16 GB of on-chip memory over the main memory of the node. For

this problem, with localized communication and carefully managed memory efficiency,

the performance of the main configuration choices are equivalent. We include a com-

parison to the first-generation KNC and modern CPU nodes currently available in

Stampede and note the performance improvement.

Finally, we study the performance of the KNL when used for the CICR code.

The CICR code requires more demanding and significant communication and is more

computationally intensive than the Poisson problem. We demonstrate performance

and scalability on a single KNL node with MPI only and hybrid MPI+OpenMP code.

We also test scalability using multiple KNL and carefully consider the number and

placement of OpenMP threads relative to the number of MPI processes used with

hybrid MPI+OpenMP code. The scalability for multiple KNL nodes is good for both

MPI and MPI+OpenMP code. The balance of OpenMP threads to MPI processes

influences performance for this problem. Overall, the KNL demonstrates significant

performance benefit when used appropriately on various application problems.

PARALLEL PERFORMANCE OF NUMERICAL SIMULATIONS

FOR APPLIED PARTIAL DIFFERENTIAL EQUATION MODELS

ON THE INTEL XEON PHI KNIGHTS LANDING PROCESSOR

by

Jonathan S. Graf

Thesis submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2017

c© Copyright Jonathan S. Graf 2017

To my wife

ii

ACKNOWLEDGMENTS

Many thanks to my advisor, Dr. Matthias K. Gobbert, for his consistent support,

attention to detail, organization, and planning. I have learned many lessons from the

intentional way in which Dr. Gobbert operates. Thanks to Dr. Bradford E. Peercy for

his guidance and contributions on the calcium work throughout the course of my time

at UMBC and for his insight in this work. Thanks to Dr. Marc Olano for his insight

in hardware performance and careful review of this work. Also thanks to Dr. Meilin

Yu and Dr. Bedřich Soused́ık who have consistently offered their support and advice.

Special thanks also to my other collaborators and friends. I would especially like to

thank, Dr. Zana Coulibaly for his extension of the CICR model and his contributions

to this work, Dr. Samuel Khuvis for his introduction of the KNL and his willingness

to answer questions and provide guidance especially with the calcium code, OpenMP,

and profiling with TAU, and Dr. Xuan Huang for introduction to the calcium code

and insight with GPU coding. Also thanks to Team 5 of the REU in 2016, Kallista

Angeloff, Carlos Barajas, Alexander D. Middleton, and Uchenna Osia, for their work

with the calcium code, and to all of the other REU students and clients with whom I

have worked. Finally, thanks to my family for all of the encouragement and support,

especially, my wife for her deep understanding and commitment to the journey, my

parents who are the rocks on which I stand, my brother who inspires me, and my

sisters for their unwavering love.

I acknowledge financial support as Research Assistant for the High Performance

Computing Facility (HPCF) at UMBC.

The hardware used in some of the computational studies is part of the UMBC

High Performance Computing Facility (HPCF). The facility is supported by the U.S.

National Science Foundation through the MRI program (grant nos. CNS–0821258 and

CNS–1228778) and the SCREMS program (grant no. DMS–0821311), with additional

iii

substantial support from the University of Maryland, Baltimore County (UMBC). See

hpcf.umbc.edu for more information on HPCF and the projects using its resources.

This work also used the Extreme Science and Engineering Discovery Environment

(XSEDE), which is supported by National Science Foundation grant number ACI–

1053575. We acknowledge the Texas Advanced Computing Center (TACC) at The

University of Texas at Austin for providing HPC resources that have contributed to

the research results reported within this thesis.

We would also like to thank the Performance Research Laboratory, University

of Oregon for access to the Grover KNL hardware through Dr. Samuel Khuvis and

ParaTools, Inc..

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . xiii

CHAPTER

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Intel Xeon Phi Knights Landing (KNL) 4

1.3 Overview and Outline . 8

2 CALCIUM DYNAMICS IN A CARDIOMYOCYTE 9

2.1 Introduction . 9

2.2 Background . 13

2.3 Model . 17

2.3.1 Calcium signaling . 18

2.3.2 Electrical excitation . 22

2.3.3 Pseudo-mechanical contraction 24

2.4 Numerical Method . 28

2.5 Results . 29

2.5.1 Electrical Excitation to Calcium Signaling: One-Way Coupling 32

2.5.2 Electrical Excitation and Calcium Signaling: Two-Way Coupling 40

2.6 Conclusions . 53

3 USAGE STRATEGIES FOR THE INTEL XEON PHI 55

v

3.1 Introduction . 55

3.2 Test Problem . 58

3.3 Hardware . 61

3.3.1 Intel Xeon Phi Knights Landing (KNL) 63

3.3.2 Baseline Stampede Hardware 67

3.4 Results . 69

3.4.1 Cache Quadrant Configuration 72

3.4.2 Flat Quadrant Configuration 79

3.4.3 Flat All-to-All Configuration 82

3.4.4 Baseline Results . 90

3.5 Flat All-to-All Configuration on Grover KNL 99

3.6 Conclusions and Outlook . 102

4 CICR SIMULATION ON THE KNL . 107

4.1 Introduction . 107

4.2 Numerical Method . 109

4.3 MPI Only: Code Version 1 . 111

4.4 Hybrid MPI+OpenMP: Code Version 2 115

4.5 Hybrid MPI+OpenMP: Code Version 3 119

4.6 Multiple KNLs . 125

4.7 Conclusions . 133

5 CONCLUSIONS . 137

BIBLIOGRAPHY . 141

vi

LIST OF TABLES

TABLE Page

2.3.1 Variables and parameters for calcium signaling: PDEs. 19

2.3.2 Variables and parameters for electrical excitation: gating functions and

membrane potential. 25

2.3.3 Variables and parameters for mechanical contraction: new cytosol species

reactions. 27

2.4.1 Sizing study with ns = 6 species using double precision arithmetic,

listing the mesh resolution Nx×Ny×Nz, the number of control volumes

N = (Nx + 1) (Ny + 1) (Nz + 1), the number of degrees of freedom

(DOF) neq = nsN , the number of time steps taken by the ODE

solver, and the predicted and observed memory usage in GB for a one-

process run. 28

2.5.1 Selected parameter sets for our three base behavior test cases from

studies in [1]. Common parameters across the three cases are Kprobs =

550 µM, Vpump = 2 µM/ms, and SR diffusion Ds = 0.78 µm2/ms. . . . 30

3.2.1 Convergence study for the test problem (3.1.1) with iteration count

and memory prediction. 62

3.4.1 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Cache Quadrant Configuration, MC-

DRAM as cache with DDR4, with two settings of KMP AFFINITY. . . . 75

3.4.2 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using only 256 threads in Cache Quadrant Configuration, MC-

DRAM as cache with DDR4, with two settings of KMP AFFINITY. . . . 76

vii

3.4.3 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using only 1,2,3 and 4 threads per core in Cache Quadrant Config-

uration, MCDRAM as cache with DDR4, with KMP AFFINITY=scatter. 77

3.4.4 Observed total memory usage in units of GB on 1 KNL on Stampede

using all 272 threads in Cache Quadrant Configuration, MCDRAM as

cache with DDR4, and KMP AFFINITY=compact. 79

3.4.5 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Flat Quadrant Configuration, using MC-

DRAM only, with two settings of KMP AFFINITY. 83

3.4.6 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Flat Quadrant Configuration, using MC-

DRAM and DDR4, with two settings of KMP AFFINITY. ET indicates

excessive time. 84

3.4.7 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Flat Quadrant Configuration, using DDR4

only, with two settings of KMP AFFINITY. ET indicates excessive time. . 85

3.4.8 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using only 256 threads in Flat Quadrant Configuration, using

MCDRAM only, with two settings of KMP AFFINITY. 86

3.4.9 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using only 256 threads in Flat Quadrant Configuration, using

MCDRAM and DDR4, with two settings of KMP AFFINITY. ET indi-

cates excessive time. 87

viii

3.4.10 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using only 256 threads in Flat Quadrant Configuration, using

DDR4 only, with two settings of KMP AFFINITY. ET indicates excessive

time. 88

3.4.11 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Flat All-to-All Configuration, using MC-

DRAM only, with two settings of KMP AFFINITY. 91

3.4.12 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Flat All-to-All Configuration, using MC-

DRAM and DDR4, with two settings of KMP AFFINITY. ET indicates

excessive time. 92

3.4.13 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stam-

pede using all 272 threads in Flat All-to-All Configuration, using DDR4

only, with two settings of KMP AFFINITY. ET indicates excessive time. . 93

3.4.14 Observed wall clock times in units of MM:SS on 1 KNC on Stampede

using only 240 threads in native mode, GDDR5 on Phi, with two set-

tings of KMP AFFINITY. 96

3.4.15 Observed wall clock times in units of MM:SS on 1 KNC, 2 CPU in a

single node on Stampede using only 240 threads in symmetric mode,

GDDR5 on Phi, DDR3 on host, with two settings of KMP AFFINITY.

ET indicates excessive run time. 97

3.4.16 Observed wall clock times in units of HH:MM:SS on one CPU node

with two 8-core CPUs on Stampede using 16 threads, DDR3 memory

on the node, with two settings of KMP AFFINITY. ET indicates excessive

run time. 99

ix

3.5.1 Observed total memory usage in units of GB on the Grover KNL using

all 272 threads in Flat All to All configuration, using MCDRAM only,

and KMP AFFINITY=scatter. 100

3.5.2 Observed wall clock times in units of MM:SS on the Grover KNL using

all 272 threads in Flat All-to-All mode, MCDRAM or DDR4, with two

settings of KMP AFFINITY. ET indicates excessive time. 101

4.2.1 Sizing study for CICR on a KNL with ns = 6 species using double

precision arithmetic, listing the mesh resolution Nx × Ny × Nz, the

number of control volumes N = (Nx+ 1) (Ny + 1) (Nz + 1), the number

of degrees of freedom (DOF) neq = nsN , the number of time steps

taken by the ODE solver, and the predicted memory usage in GB for

a one-process run. 111

4.3.1 Observed total memory usage for CICR in units of GB on 1 KNL in

Stampede using 256 threads in Cache Quadrant configuration for code

version 1, MPI only. 112

4.3.2 CICR strong scalability study of MPI processes. Observed wall clock

times in units of HH:MM:SS on 1 KNL in Cache Quadrant Configura-

tion, using MPI parallelism only. For up to 64 processes one processes

per core is used, then 2 processes per core (64 cores) for 128 processes,

and 4 processes per core (64 cores) for 256 processes. ET indicates

excessive time. 114

4.4.1 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 2 on 1 KNL on Stampede using 256 threads in Flat

Quadrant Configuration, using MCDRAM only, with two settings of

KMP AFFINITY. ET indicates excessive time. 117

x

4.4.2 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 2 on 1 KNL on Stampede using 68 cores with 1, 2,

3 and 4 threads per core in Flat Quadrant Configuration, using MC-

DRAM only. 118

4.5.1 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 3 on 1 KNL on Stampede using 256 threads in Flat

Quadrant Configuration, using MCDRAM only, with two settings of

KMP AFFINITY. ET indicates excessive time. 120

4.5.2 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 3 on 1 KNL on Stampede using 68 cores with 1, 2,

3 and 4 threads per core in Flat Quadrant Configuration, using MC-

DRAM only. 122

4.5.3 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 3 on 1 KNL on Stampede using 64 cores with 1, 2,

3 and 4 threads per core in Flat Quadrant Configuration, using MC-

DRAM only. 123

4.5.4 CICR strong scalability study of OpenMP threads. Observed wall clock

times in units of HH:MM:SS on 1 KNL node in Flat Quadrant Con-

figuration. For up to 64 threads one thread per core is used, then 2

threads per core (64 cores) for 128 threads, and 4 threads per core (64

cores) for 256 threads with and KMP AFFINITY=scatter in all cases.

ET indicates excessive time. 124

4.6.1 CICR strong scalability study of MPI processes. Observed wall clock

times in units of HH:MM:SS on multiple KNL node in Flat Quadrant

Configuration. Different number of MPI processes per node are used

in each subtable. 127

xi

4.6.2 CICR strong scalability study of multiple KNL nodes with hybrid

MPI+OpenMP code version 3. Observed wall clock times in units of

HH:MM:SS on multiple KNL nodes in Flat Quadrant Configuration.

For each KNL 64 cores are used with 2 threads per core for a total of

128 threads and KMP AFFINITY=scatter in all cases. 129

4.6.3 CICR strong scalability study of multiple KNL nodes with hybrid

MPI+OpenMP code version 3. Observed wall clock times in units of

HH:MM:SS on multiple KNL nodes in Flat Quadrant Configuration.

For each KNL 68 cores are used with 2 threads per core for a total of

136 threads and KMP AFFINITY=scatter in all cases. 132

xii

LIST OF FIGURES

FIGURE Page

1.2.1 Schematic of a dual socket CPU node with two 8-core CPUs on the

maya cluster. Source: hpcf.umbc.edu. 4

1.2.2 Schematic of a NVIDIA K20 GPU co-processor to a CPU on the maya

cluster. Source: hpcf.umbc.edu. 5

1.2.3 Intel schematic of a KNC with 60 cores connected by a bi-directional

ring bus and 8GB on-chip memory. Source: hpcf.umbc.edu. 6

1.2.4 Schematic of a KNL with 2 cores per tile, connected in a 2D mesh

structure. 7

2.1.1 The calcium-mediated contractile rhythm of a given cardiomyocyte is

a function of three coupled dynamics: electrical excitation, calcium

signaling, and mechanical contraction. Their links are labeled 1© to 4©

for reference throughout the text. 10

2.1.2 The CRU lattice with spacings ∆xs, ∆ys, ∆zs throughout the three-

dimensional domain. 12

2.2.1 Heart Cell Structure [2]. (a) A conglomerate of cardiac cells. The

muscle fibers of each heart cell contract in response to the change in

shape of contractile proteins, in turn mediated by calcium levels in the

cytosol. The thin striations mark the ends of each contractile unit, a

sarcomere, within a cell. Darker striations are intercalated disks that

join individual cardiac cells into muscle fibers. (b) An individual rabbit

cardiomyocyte illuminated by a fluorescent dye. Experiment conducted

by Dr. Kenneth Spitzer (University of Utah, personal communication

with Dr. Bradford Peercy, June 2010). 14

xiii

2.2.2 Interior of Cell Behavior Schematics. (a) The T-tubules enfold the L-

type calcium channels (LCC) in the cell’s plasma membrane. Periodic

membrane depolarizations allow calcium to pass into the cytosol. (b)

Calcium released from the calcium release units (CRUs) on the SR and

begin the cascading calcium release that starts calcium wave propaga-

tion. [2] . 15

2.5.1 CRU plots for sparking case with ω = 0 and other parameters from

Case A of Table 2.5.1. 34

2.5.2 Isosurface plots for sparking case with ω = 0 and other parameters

from Case A of Table 2.5.1. 35

2.5.3 Line scan and voltage plot for sparking case with ω = 0 and other

parameters from Case A of Table 2.5.1. 36

2.5.4 CRU plots for wave case with ω = 0 and other parameters from Case

B of Table 2.5.1. 37

2.5.5 Isosurface plots for wave case with ω = 0 and other parameters from

Case B of Table 2.5.1. 38

2.5.6 Line scan and voltage plot for the wave case with ω = 0 and other

parameters from Case B of Table 2.5.1. 39

2.5.7 CRU plots and isosurface plots for blowup case with ω = 0 and other

parameters from Case C of Table 2.5.1. 41

2.5.8 Line scan, voltage plot, and SR plot for the blowup case with ω = 0

and other parameters from Case C of Table 2.5.1. 42

2.5.9 Line Scans, Voltage Plots, and SR Plots for a spark for ω = 10 and 30

with other parameters from Case A of Table 2.5.1. 44

2.5.10 Line Scans, Voltage Plots, and SR Plots for a spark for ω = 50 and 100

with other parameters from Case A of Table 2.5.1. 45

xiv

2.5.11 CRU plots for sparking case with ω = 30 with other parameters from

Case A of Table 2.5.1. 46

2.5.12 Isosurface plots for sparking case with ω = 30 with other parameters

from Case A of Table 2.5.1. 47

2.5.13 Line Scans, Voltage Plots, and SR Plots for a wave for ω = 10 and 30

with other parameters from Case B of Table 2.5.1. 49

2.5.14 Line Scans, Voltage Plots, and SR Plots for a wave for ω = 50 and 100

with other parameters from Case B of Table 2.5.1. 50

2.5.15 Line Scans, Voltage Plots, and SR Plots for blowup for ω = 10 and 30

with other parameters from Case C of Table 2.5.1. 51

2.5.16 Line Scans, Voltage Plots, and SR Plots for blowup for ω = 50 and 100

with other parameters from Case C of Table 2.5.1. 52

4.3.1 Speedup (a) and Efficiency (b) plots for code version 1, MPI only, on

one KNL using p MPI processes. 115

4.5.1 Speedup (a) and Efficiency (b) plots for code version 3, MPI+OpenMP,

on one KNL using p OpenMP threads. 125

4.6.1 Performance comparison of MPI only code versus hybrid MPI+OpenMP

code version 3 using 64 KNL cores in the 128×128×512 case. (a) Wall

clock times in seconds for MPI only code and hybrid MPI+OpenMP

code version 3 with different choices of MPI processes versus OpenMP

threads. (b) Speedup of hybrid code over MPI only code 130

4.6.2 Performance comparison of MPI only code versus hybrid MPI+OpenMP

code version 3 using 68 KNL cores in the 128×128×512 case. (a) Wall

clock times in seconds for MPI only code and hybrid MPI+OpenMP

code version 3 with different choices of MPI processes versus OpenMP

threads. (b) Speedup of hybrid code over MPI only code 134

xv

CHAPTER 1

INTRODUCTION

1.1 Motivation

Heart disease is currently the leading cause of death in the United States, according

to the Centers for Disease Control and Prevention [7]. Recent studies have shown that

cardiac arrhythmias result from the disruption of the very tight coupling between

the electrical, calcium, and mechanical properties of the heart [52]. Though devices

like pacemakers have been shown to help reduce the death rate due to arrhythmia,

they do not prevent onset arrhythmia. A more in-depth understanding of the calcium

dynamics may yield new methods in the realm of drug therapy. To date, no medication

has been developed that has been proven to be effective in more than isolated cases [45,

54]. It has been shown that the dysregulation of the interaction between the electrical,

calcium, and mechanical systems is a precursor to cardiac arrhythmias [13, 41]. In

particular, the disruption of the bi-directional coupling between calcium and electrical

system can result in alternans (unwanted modulation of oscillation in the cell’s calcium

and electrical activity) [11, 52]. These alternans often precede arrhythmias.

Before we can better study the heart, we model the calcium induced calcium release

(CICR) in an individual heart cell using the three components associated with the

dynamics: electrical excitation, calcium signaling, and mechanical contraction. We

represent the fully coupled electrical excitation, calcium signaling, and mechanical

contraction components of the calcium and electrical dynamics by a system of eight

time-dependent coupled partial differential equations (PDEs). The PDEs of the model

are coupled, non-linear, advection-diffusion-reaction equations of the form

u
(i)
t −∇ ·

(
D(i)∇u(i)

)
+ β(i) ·

(
∇u(i)

)
+ a(i) u(i) = q(i), i = 1, . . . , ns, (1.1.1)

1

2

with functions u(i) = u(i)(x, t), i = 1, . . . , ns, of space x ∈ Ω ⊂ R3 and time 0 ≤ t ≤ tfin

representing the concentrations of the ns species. The solution of this PDE requires

sophisticated numerical methods [6, 14, 18, 33, 46]. For reasonable simulation times,

we take advantage of the power of parallel computing. For the numerical method we

use a method of lines technique for which the spatial discretization results in a stiff

system of ordinary differential equations (ODEs) that must be solved at each time

step. We use the finite volume method as the spatial discretization so that advection

and diffusion can both be present in (1.1.1) [22,46]. We use both MPI and OpenMP

parallelism in the implementation of this special purpose code [6].

Recent developments in parallel computing architectures includes the use of graph-

ics processing units (GPUs) as a massively parallel accelerator in general purpose com-

puting and many-integrated-core (MIC) architectures like the Intel Xeon Phi. Besides

the larger number of computational cores in each, the key difference to a CPU is their

significant on-chip memory, on the order of several GB. The architectures of GPU

and Phi differ significantly from each other, and the use of GPUs requires significant

code modifications. The x86 compatibility of each Xeon Phi core makes porting of

code to this architecture as simple as the addition of a compiler flag, thus making it

an excellent starting point. The recent emergence of the second-generation Intel Xeon

Phi, codenamed Knights Landing (KNL), represents a significant improvement over

the first-generation. The KNL was announced in June 2014 [24] and began shipping

in July 2016. The KNL itself is like a ‘massively parallel’ supercomputer from the

early 2000s with dozens of nodes connected by a Cartesian network, all in a single

chip now with a theoretical peak performance of over 3 TFLOP/s of double-precision

floating-point performance [49]. Already the first-generation Phi, codenamed Knights

Corner (KNC), had an impact since its appearance in 2012, as exhibited by many of

the highest-ranked clusters on the Top 500 list (www.top500.org) since then that use

3

the Phi, but the KNL has significant improvement in on-chip memory over the KNC.

Two clusters using pre-production or early-production KNL chips achieved ranks #5

and #6 on the November 2016 Top 500 list. Entry #5 is the Cori cluster at NERSC

(www.nersc.gov) in the USA with Cray XC40, Intel Xeon Phi 7250 68C 1.4GHz,

and Aries interconnect. Entry #6 is the Oakforest-PACS cluster at the Joint Center

for Advanced High Performance Computing in Japan with PRIMERGY CX1640 M1,

Intel Xeon Phi 7250 68C 1.4GHz, and Intel Omni-Path network. The same KNL

model as in these machines is used in this work.

At each time step in the solution of the PDE system for the CICR application,

a linear system with a large, very sparse, highly structured system matrix must be

solved. Methods from the family of Krylov subspace methods are standard for this

purpose, since they permit a matrix-free implementation. That is, all matrix-vector

products needed in the Krylov subspace method are provided directly without storing

the matrix, allowing significant memory savings and the more efficient solution of

larger problems. We use a stationary classical elliptic scalar test problem, the Poisson

equation

−∆u = f (1.1.2)

in the domain Ω = (0, 1) × (0, 1) ⊂ R2, that requires the same type linear system

to mimic the computational kernel in the CICR model and many other simulations.

Before running the full CICR application code on the KNL, we study performance on

the KNL in detail using (1.1.2). In particular we assess performance advantages to

the different memory and cluster mode configurations available on the KNL as well

as the distribution of MPI processes and OpenMP threads over the architecture.

4

Figure 1.2.1 Schematic of a dual socket CPU node with two 8-core CPUs on the

maya cluster. Source: hpcf.umbc.edu.

1.2 Intel Xeon Phi Knights Landing (KNL)

The size and structure of modern computing processors has developed significantly

in recent years. As the rapid processing speed increases of a single chip stalled in the

presence of the physical issues of heat and power consumption, a shift to multi-core

architectures occurred. Today, CPUs in consumer devices are dual- or quad-core.

The iPhone 7 features a quad-core processor, as do most mainstream laptops. State-

of-the-art distributed-memory clusters contain multi-core CPUs with 8 to 16 cores.

Figure 1.2.1 shows a schematic of a dual-socket CPU node with two 8-core CPUs on

maya cluster in the High Performance Computing Facility (HPCF) at UMBC.

This trend also includes the emergence of general-purpose graphics processing

units (GPGPUs). In this case, graphics processing units (GPUs), which originally

were designed to handle computer graphics computations, are used for computations

in applications that were handled by the CPU previously. The GPUs are set up as

5

Figure 1.2.2 Schematic of a NVIDIA K20 GPU co-processor to a CPU on the maya

cluster. Source: hpcf.umbc.edu.

a co-processor to a CPU and include a very large number of cores. One example

is the NVIDIA K20 GPU, which has 5 GB of on-chip memory and features 2,496

computational cores that are distributed over 13 streaming multiprocessors (SMs)

for a total of 196 cores on each SM. A significant challenge to GPGPU computing

is the need to modify the existing code to run on the GPU. This requires a GPU

programming language like Open Computing Language (OpenCL) or a framework

like Compute Unified Device Architecture (CUDA). Figure 1.2.2 shows a schematic

of a NVIDIA K20 GPU as a co-processor to the CPU on a hybrid node on maya

cluster in the High Performance Computing Facility (HPCF) at UMBC.

Unlike GPUs, each Intel Xeon Phi core is an x86 compatible architecture which

allows the user to run the same code on the Phi as they run on the CPU. This

represents a very significant advantage to the programmer, as their code can be quickly

run on the Phi with only the addition of a compiler flag. The Intel many-integra-

ted-core (MIC) Xeon Phi processors feature more more than 60 cores. The cores

in the Phi are slower than the cores in a modern CPU, for example, 1.4 GHz KNL

6

Figure 1.2.3 Intel schematic of a KNC with 60 cores connected by a bi-directional

ring bus and 8GB on-chip memory. Source: hpcf.umbc.edu.

cores versus 2.7 GHz CPU cores. But Phi chips also include on-chip memory, like the

GPU, while CPUs have essentially no on-chip memory. The first-generation of the

Phi, codenamed Knights Corner (KNC), must be configured as a co-processor to a

CPU, like a GPU is a co-processor to a CPU. The KNC includes, for example, 8 GB

of GDDR on-chip memory connected with the cores through a bidirectional ring bus

as shown in Figure 1.2.3.

The second-generation of the Phi, codenamed Knights Landing (KNL), represents

a very different design from the KNC. The KNL can serve as a standalone proces-

sor, without a CPU host. Figure 1.2.4 shows a schematic of a KNL. The crucial

improvements of the KNL are the 2D mesh interconnect providing high-bandwidth

connections on the chip and to the high-performance 16 GB Multi-Channel DRAM

(MCDRAM) memory on board the chip. The KNL can have up to 72 cores, with 2

7

Figure 1.2.4 Schematic of a KNL with 2 cores per tile, connected in a 2D mesh

structure.

cores on each of the tiles in the 2D mesh interconnect. The Phi can also access the

DDR4 memory of the node, but MCDRAM is directly in the chip and is nominally

5x faster than the DDR4 memory [49]. The configuration of the KNL is versatile,

but requires a choice at boot time on the configuration of the MCDRAM memory

relative to the DDR memory of the node and choice of clustering mode for low level

memory access localization. The Intel Developer Zone includes a tutorial on the High

Bandwidth Memory on the KNL [28] and notes explicitly that “with the different

memory modes by which the system can be booted, it becomes very challenging from

a software perspective to understand the best mode suitable for an application.” We

focus our attention on the different KNL configurations and show performance results.

For a complete description of the KNL, see Section 3.3.

8

1.3 Overview and Outline

The remaining chapters of this thesis detail a study of the CICR application, the

performance of the KNL for the Poisson problem (1.1.2), and performance of the KNL

for the parabolic CICR model (1.1.1) under the various possible configurations of the

hardware.

Chapter 2 presents the expansion of the CICR model from a model with only

calcium signaling and electrical excitation components to a complete 8-species model

with electrical excitation, calcium signaling, and mechanical contraction components.

We start to obtain an insight into the delicate electro-chemical balance at the scale of

a cardiomyocyte with parameter studies of the feedback-feedforward linking between

the calcium and electrical systems.

Chapter 3 studies the performance of the elliptic test problem (1.1.2) on the KNL.

The details of the KNL hardware are presented with clear descriptions of the choices

available for KNL configurations and the impact each choice may have on perfor-

mance. Detailed performance comparisons are presented for the KNL configurations

with clear run time instructions. Also, we explore the distribution of MPI processes

and OpenMP threads.

Chapter 4 uses the developments and understanding of the KNL from Chapter 3 on

the current CICR model from Chapter 2 to outline optimal simulation capabilities on

the KNL. We study the performance of the application code on the KNL. This includes

strong scalability studies and careful consideration of the number and placement of

threads relative to the number of MPI processes used. In particular, we identify the

ideal way to use the KNL for the application code, including using multiple KNL

nodes.

Chapter 5 summarizes our conclusions and motivates future work on the KNL and

with the calcium induced calcium release application problem.

CHAPTER 2

CALCIUM DYNAMICS IN A CARDIOMYOCYTE

This chapter studies the calcium induced calcium release (CICR) model of calcium

dynamics in a cardiomyocyte. The content of this chapter is based on [2].

2.1 Introduction

Heart disease is currently the leading cause of death in the United States, according

to the Centers for Disease Control and Prevention [7]. Recent studies have shown that

cardiac arrhythmias result from the disruption of the very tight coupling between the

electrical, calcium, and mechanical properties of the heart [52]. The current treatment

for cardiac arrhythmia, mild or otherwise, is surgical implantation of a pacemaker

to artificially stimulate the electrical patterns which would be otherwise naturally

produced levels in a healthy heart. To date, no medication has been developed that

been proven to be effective in more than a handful of cases [45, 54].

Though devices like pacemakers have shown to help reduce the death rate due to

arrhythmia, they do not prevent onset arrhythmia. A more in-depth understanding

of the calcium dynamics may yield new methods in the realm of drug therapy. In

order to better study the heart, we examine individual cells and three components

associated with the dynamics: electrical excitation, calcium signaling, and mechanical

contraction. These three systems are coupled together as outlined in Figure 2.1.1 with

calcium signaling being the central dynamic component between the electrical exci-

tation and mechanical contraction. It has been shown that the dysregulation of the

interaction between these three systems is a precursor to cardiac arrhythmias [13,41].

In particular, the disruption of the bi-directional coupling between calcium and elec-

trical system can result in alternans (unwanted modulation of oscillation in the cell’s

9

10

Figure 2.1.1 The calcium-mediated contractile rhythm of a given cardiomyocyte is

a function of three coupled dynamics: electrical excitation, calcium signaling, and

mechanical contraction. Their links are labeled 1© to 4© for reference throughout the

text.

calcium and electrical activity) [11,52]. These alternans often precede an arrhythmia.

Our goal is to obtain an insight into the delicate electro-chemical balance at the scale

of a cardiomyocyte by expanding upon a model of calcium induced calcium release to

include the feedback-feedforward between calcium and electrical system.

The links shown in Figure 2.1.1 each represent a physiological component of the

potential for calcium induced calcium release (CICR) inside the cardiac cell. The

solid line for link 1© refers to a link from the electrical to the calcium system, whose

behavior was the focus of the simulations in [1], while the dotted line for link 2© is the

link from the calcium to the electrical system, whose effect is the focus of the present

simulations. The dashed lines labeled 3© and 4© are the links between the calcium

and the mechanical system, whose model is introduced here and in [1].

In normal conditions, the periodic nonarrhythmic contraction and relaxation of a

cardiac myocyte is governed by periodic action potentials (cell’s membrane depolariza-

tion and repolarization). In a regular functioning cardiac myocyte, the depolarization

(increase in voltage) of the cell’s membrane is due to an influx of sodium ions. The

depolarization of the cell’s membrane causes L-type calcium channels (LCC) to open

11

thus causing an influx of calcium ions (Ca2+) into the cell. The influx of calcium ions

inside the cell causes a localized increase in calcium concentration. Inside the heart

cell, calcium ions are primarily stored in the sarcoplasmic reticulum (SR). The SR

has calcium sensitive sites called calcium release units (CRUs - groups of individual

calcium-sensitive ryanodine receptors) which, when the concentration of calcium is

high enough, open to release calcium into the cytosol from the SR of the cell. The

depolarization of the cell membrane also occurs when calcium ions are pumped out

of the cell and sodium ions are pumped into the cell through the sodium-calcium

exchanger. While these system processes are interacting, calcium is also binding and

unbinding to immobile contractile proteins inside of the cytosol. Within a sarcom-

ere (a contractile unit) calcium binds to troponin uncovering myosin muscle heads.

Released Myosin binds to anchored actin filaments generating contraction. Repolar-

ization of the membrane (decrease of the membrane voltage) occurs afterwards due

to the activity of the potassium channels. The cell relaxation occurs when most of

the calcium ions are pumped back into the SR through SR pumps. A closer analysis

of these interactions is presented inside Section 2.2.

We represent the fully coupled electrical excitation, calcium signaling, and me-

chanical contraction components of the calcium and electrical dynamics by a system

of eight time-dependent coupled partial differential equations (PDEs). The calcium

signaling is described by five PDEs modeling concentrations of calcium ions and buffer

species in the cytosol and SR. The electrical excitation, connected to the calcium sys-

tem by links 1© and 2©, is represented by two PDEs: one representing voltage and one

gating variable that modulated conductance through the K+ channel. The mechani-

cal contraction, connected to the calcium system by links 3© and 4©, is described by

a final PDE representing the concentration of actively linked contractile proteins in

the cytosol. A full description of the mathematical model is presented in Section 2.3.

12

Figure 2.1.2 The CRU lattice with spacings ∆xs, ∆ys, ∆zs throughout the three-

dimensional domain.

We use numerical methods to perform simulations of this system of time-dependent,

coupled, parabolic partial differential equations The long time simulations required

demand sophisticated numerical methods. We use a method of lines (MOL) approach

and use the finite volume method (FVM) for the spatial discretization and the numer-

ical differentiation formulas (NDFk) for time stepping. A memory efficient parallel

implementation of this is done in C using MPI (Message Passing Interface, the most

popular parallel communications library [40]) commands for parallel computing. A

more detailed overview of the numerical methods be found in Section 2.4.

In Section 2.5, we present simulations of our model that examine back and forth

interaction between the electrical excitation and calcium signaling systems. The sim-

ulations use as domain an elongated three-dimensional hexahedron that captures the

key feature of a heart cell. Figure 2.1.2 shows the distances of the z-planes of CRUs

being ∆zs apart, and the location of CRUs on each z-plane on a rectangular lattice

with distances ∆xs and ∆ys. In Section 2.5.1, we show behavior with only the feed-

13

forward connection in which the electrical excitation impacts the calcium signaling,

link 1© in Figure 2.1.1. In Section 2.5.2 we analyze the impact of introducing the

feedback connection enabling the calcium signaling to impact the electrical excitation

in our model, that is, both link 1© and link 2© in Figure 2.1.1 are turned on. To do

this, we modify the parameter that turns on and off the feedback connection, ω, and

study the influence of different strengths of this feedback. This study examines the

impact of this change on concentration of calcium in both the cytosol and SR We

also show figures with the open CRUs at various time values and figures with the

concentration of calcium in the cytosol at various time values.

Finally, Section 2.6 summarizes this work and presents opportunities for future

work. Simulations indicate that the feedback and feedforward between electrical ex-

citation and calcium signaling can influence the voltage in a physiologically realistic

way. That is, the simulated action potential is qualitatively similar to an experimental

range and duration. The interplay between the strengths of the feedback and feedfor-

ward links of electrical excitation and calcium signaling and impact of the mechanical

contraction components can now be studied.

2.2 Background

The general structure of cardiomyocytes on the heart can be seen in Figure

2.2.1(a). The general shape of the cardiac cell is rectangular with several T-tubules

along the side of the cell. The light pink areas of Figure 2.2.1(a) represent the cellular

membrane of the cardiomyocyte. The muscle fibers run parallel to the contractile pro-

teins of the cardiac cell. The dark splotches are the cell nuclei associated with their

respective cell. Inside the cardiomyocyte is the sarcoplasmic reticulum (SR), a type of

container that contains among other molecules, both calcium ions and calsequestrin

(CSQ). The release of calcium from the SR into the cytosol occurs via calcium release

14

(a) Cardiac cell structure (b) Calcium filled cardiomyocyte

Figure 2.2.1 Heart Cell Structure [2]. (a) A conglomerate of cardiac cells. The mus-

cle fibers of each heart cell contract in response to the change in shape of contractile

proteins, in turn mediated by calcium levels in the cytosol. The thin striations mark

the ends of each contractile unit, a sarcomere, within a cell. Darker striations are

intercalated disks that join individual cardiac cells into muscle fibers. (b) An individ-

ual rabbit cardiomyocyte illuminated by a fluorescent dye. Experiment conducted by

Dr. Kenneth Spitzer (University of Utah, personal communication with Dr. Bradford

Peercy, June 2010).

15

1© Action Potential

2©

SR
3©
re
le
as
e

contractile proteins4© uptak
e

5©

intracellular space

extracellular space

T
-T

u
b
u
le

Ca2+
CRU

LCC

ATPase

N
C
X

di
ffu
si
on

N
aV KV

sarcolemma

Spark
CRU

Ca2+

pr
op
ag
at
io
n

pr
op
ag
at
io
n

SR

(a) Cellular space (b) Calcium wave triggering

Figure 2.2.2 Interior of Cell Behavior Schematics. (a) The T-tubules enfold the

L-type calcium channels (LCC) in the cell’s plasma membrane. Periodic membrane

depolarizations allow calcium to pass into the cytosol. (b) Calcium released from the

calcium release units (CRUs) on the SR and begin the cascading calcium release that

starts calcium wave propagation. [2]

units (CRUs) on the SR. Once the concentration is high enough, the CRUs will begin

to open; this process is called sparking. Sparks are a few ryanodine receptors within

the CRU opening and do not usually propagate to neighboring CRUs [8]. The fluo-

rescent dye is mixed in the cytosol and used to make the calcium more visible during

lab experiments; the dye diffuses through the cytosol interacting with and binding to

calcium in the cytosol.

How these components combine to affect small strands of muscle fiber and cause

cell pulsation is shown in Figure 2.2.2(a). The sodium-calcium electrical exchanger,

labeled as NCX near the top of Figure 2.2.2(a), pushes a calcium ion out of the

cell while bringing three sodium ions into cell. Calcium leaving the cell is part of a

feedback mechanism, designated as link 2© in Figure 2.1.1, by which the electrical

properties of the heart are influenced by calcium concentration in the cytosol. When

the concentration begins to change, it leads to a phenomenon in which regular de-

16

polarizations of the cell plasma membrane happen; the depolarization induces action

potential, causing the L-type Calcium Channels (LCC) to open. This feedforward

mechanism, represented by link 1© in Figure 2.1.1, is another one-way coupling which

allows for the electrical aspect of the cardiac cell to have an influence on the calcium

concentration of the cytosol. These two methods result in a two-way coupling between

the electrical excitation system and calcium signaling in the cell.

As the CRUs release more calcium into the cytosol, the spike in concentration

can trigger neighboring CRUs to open as well possibly leading to the cascading ef-

fect depicted in Figure 2.2.2(b). This wave can propagate until the the end of the

cell. When calcium begins to pour into the cytosol, the concentration begins to rise,

triggering a wave event within the cell: calcium release [12]. This behavior is known

as calcium induced calcium release (CICR). As calcium diffuses through the cytosol,

it reacts with other chemical species; among them, in this model, are the fluorescent

dye fluoro-4 and tropomyosin contractile proteins.

The contraction and expansion of the cell’s shape is a result of the actin and myosin

contractile proteins and the troponin complex, made up of tropomyosin and troponin.

These are depicted in the bottom right-hand corner of Figure 2.2.2(a) and attach to a

sarcomere. When calcium binds to the troponin complex, the myosin heads are free to

converge to the actin bridge; when the myosin heads come in contact with the bridge

the striated muscle, the sarcomere, which is parallel to the tropomyosin, contracts.

This myosin contraction is the physical process through which the cell expands and

contracts; when these contractions are performed in unison with other cardiac cells,

that section of the heart contracts. This process of calcium causing heart contractions

presents the first coupling between the calcium and the contractile nature of a heart

cell; these chemical interactions are a feedforward process and represented by link

3© in Figure 2.1.1. Once calcium is bound to the complex, the bridge-like structure

17

deforms, causing the rate at which calcium unbinds to decrease. Conceptually the

change in the troponin complex causes the bridge to hang onto the calcium for longer.

When the calcium is relinquished from the bridge, this increases the concentration of

calcium in the cytosol as a feedback process, which is represented by link 4© in Figure

2.1.1.

2.3 Model

In this section, we present the equations of the complete model along with param-

eter tables and descriptions of how the equations represent the physiological compo-

nents. The PDEs of the model are (2.3.1), (2.3.2) with nsc = 3, (2.3.3), (2.3.4) with

nss = 1, (2.3.12), and (2.3.13) yielding a total number of ns = 4 + nsc + nss = 8

PDEs. The eight species of the model are: calcium in the cytosol c(x, t), a florescent

dye b
(c)
1 (x, t), a contractile mechanism protein (troponin) b

(c)
2 (x, t), a contractile actin-

myosin cross-bridges buffer b
(c)
3 (x, t), calcium in the SR s(x, t), calsequestrin in the

SR b
(s)
1 (x, t), voltage V (x, t), and a gating variable for the potassium channel n(x, t).

We treat this problem as a bi-domain problem where at any point x, both the cytosol

and SR exist, while in reality they occupy separate domains.

Section 2.3.1 describes the calcium signaling portion of the model without the pres-

ence of electrical excitation or mechanical contraction that was originally introduced

in [32,34], extended in [33], and its numerics discussed with nsc = 2 in [14,18,46,47].

Section 2.3.2 introduces the electrical excitation that is connected to the calcium sig-

naling in both the feedforward and feedback directions represented by link 1© and

link 2© in Figure 2.1.1. Link 1© from electrical system to the calcium dynamics was

first established in [1]. Finally, Section 2.3.3 completes the links with the calcium

signaling in the model by the addition of the mechanical contraction component that

is also connected to the calcium signaling in both the feedback and feedforward di-

18

rections represented by links 3© and 4© in Figure 2.1.1. The effects of cell contraction

are implemented via a pseudo-mechanical model which describes force in terms of the

proportion of actively connected contractile proteins.

2.3.1 Calcium signaling

We start with a system of reaction diffusion PDEs

∂c

∂t
= ∇ · (Dc∇c) +

nsc∑
i=1

R
(c)
i + (JCRU + Jleak − Jpump) (2.3.1)

+ κJLCC + Jmleak
− Jmpump ,

∂b
(c)
i

∂t
= ∇ · (D

b
(c)
i
∇b(c)

i) +R
(c)
i , i = 1, . . . , nsc, (2.3.2)

∂s

∂t
= ∇ · (Ds∇s) +

nss∑
j=1

R
(s)
j − γ(JCRU + Jleak − Jpump), (2.3.3)

∂b
(s)
j

∂t
= ∇ · (D

b
(s)
j
∇b(s)

j) +R
(s)
j , j = 1, . . . , nss, (2.3.4)

where c(x, t) and s(x, t) represent the concentrations of calcium in the cytosol and

SR, respectively. b
(c)
i (x, t) and b

(s)
j (x, t) represent the concentration of each buffer

species in the cytosol and SR, respectively. Table 2.3.1 collects the variables with

their units as well as the values of parameters in the PDEs of the calcium system.

Dc, Ds, Db
(c)
i

, and D
b
(s)
j

are diffusion matrices for Ca2+ in the cytosol, Ca2+ in the SR,

and each buffer species in the cytosol and SR, respectively. While each buffer species

programmatically possesses a diffusion matrix (following the template of (2.3.2) and

(2.3.4)), not all species are mobile; hence the diffusion matrices for some species are

zero matrices in Table 2.3.1.

The reaction terms R
(c)
i and R

(s)
j in (2.3.5) and (2.3.6) describe the reactions

between calcium and the buffer species. They are the connections between (2.3.1)

and (2.3.2), and between (2.3.3) and (2.3.4). More precisely,

R
(c)
i = − k+

b
(c)
i

c b
(c)
i + k−

b
(c)
i

(
b

(c)
i,total − b

(c)
i

)
, i = 1, . . . , nsc − 1, (2.3.5)

19

Table 2.3.1 Variables and parameters for calcium signaling: PDEs.

Variable Definition Values/Units

x spatial position variable (x, y, z) µm

t time variable seconds

c(x, t) cytosol calcium concentration µM

s(x, t) SR calcium concentration µM

nsc number of cytosol Ca2+ buffer species 2

nss number of SR Ca2+ buffer species 1

b
(c)
1 total

total amount of b
(c)
1 (x, t), dye, in cytosol 50 µM

b
(c)
2 total

total amount of b
(c)
2 (x, t), troponin, in cytosol 123 µM

b
(s)
1 total

total amount of b
(s)
1 (x, t), calsequestrin, in SR 6000 µM

Dc cytosolic calcium diffusion coefficient matrix diag(0.15, 0.15, 0.3)

Ds SR calcium diffusion coefficient matrix diag(0.78, 0.78, 0.78) µm2/ms

D
b
(c)
1

cytosol buffer diffusion coefficient matrix (i = 1, dye) diag(0.01, 0.01, 0.02) µm2/ms

D
b
(c)
2

cytosol buffer diffusion coefficient matrix (i = 2, troponin) diag(0.00, 0.00, 0.00) µm2/ms

D
b
(s)
1

SR buffer diffusion coefficient matrix (i = 1, calsequestrin) diag(0.00, 0.00, 0.00) µm2/ms

R
(c)
i , R

(s)
j reactions of cytosol, SR Ca2+ with buffers µM/ms

k+

b
(c)
1

forward reaction coefficient for b
(c)
1 , dye 80× 10−3 µM/ms

k+

b
(c)
2

forward reaction coefficient for b
(c)
2 , troponin 100× 10−3 µM/ms

k+

b
(s)
1

forward reaction coefficient for b
(c)
1 , calsequestrin 39× 10−3 µM/ms

k−
b
(c)
1

reverse reaction coefficient for b
(c)
1 , dye 90× 10−3 ms−1

k−
b
(c)
2

reverse reaction coefficient for b
(c)
2 , troponin 100× 10−3 ms−1

k−
b
(s)
1

reverse reaction coefficient for b
(s)
1 , calsequestrin 78 ms−1

γ ratio of volume of cytosol to SR 14

c0 basal cytosol calcium concentration 0.1 µM

Jpump calcium transfer from cytosol to SR µM/ms

Jleak calcium leak from SR µM/ms

Vpump maximum pump rate 2 to 6 µM/ms

Kpump pump sensitivity to Ca2+ 0.184 µM

npump Hill coefficient for pump function 4.0

s0 initial SR calcium concentration 1,000 to 10,000 µM

JCRU calcium flux from SR to cytosol via CRUs µM/ms

O gating function for JCRU 1

Jprob probability of CRU opening 0 to 1

x three-dimensional vector for CRU location µm

σ̂ maximum rate of release 100 to 200 µMµm3/ms

urand uniformly distributed random variable 0 to 1

nprob Hill coefficient for probability function 1.6

Pmax maximum probability for release 0.3

Kprobc sensitivity of CRU to cytosol calcium 5 to 15 µM

Kprobs sensitivity of CRU to SR calcium 200 to 550 µM

20

model the reactions between cytosolic Ca2+ and each cytosolic buffer species, and

R
(s)
j = − k+

b
(s)
j

s b
(s)
j + k−

b
(s)
j

(
b

(s)
j,total − b

(s)
j

)
, j = 1, . . . , nss, (2.3.6)

model the reactions between SR Ca2+ and each SR buffer species. The amounts of

“free” calcium ions, c(x, t) and s(x, t) in (2.3.1) and (2.3.3), respectively, and of “free”

buffer species in (2.3.2) and (2.3.4), respectively, are determined by these reactions:

whatever has not been bound by a reaction is the concentration remaining. In the

cytosol, two buffer species are considered: a fluorescent dye, b
(c)
1 (x, t), and a contractile

protein troponin, b
(c)
2 (x, t). We will revisit the subject of troponin in our extension

of this model to include the pseudo-mechanical dynamics of the cell. In the SR, a

single buffer species is considered: calsequestrin, b
(s)
1 (x, t), a calcium-binding protein

which helps maintain the SR calcium reserves at a much higher concentration than

the cytosol.

The flux terms JCRU , Jleak, and Jpump in (2.3.1) describe the calcium induced

release of Ca2+ into the cytosol from the SR, the continuous leak of Ca2+ into the

cytosol from the SR, and the pumping of Ca2+ back into the SR from the cytosol.

The terms JLCC , Jmleak
, and Jmpump describe the fluxes of calcium into and out of the

cell via the plasma membrane. The coupling between (2.3.1) and (2.3.3) is achieved

by the three flux terms shared by both equations.

More precisely, JLCC , Jmleak
, and Jmpump in (2.3.1) describe the fluxes of calcium

into and out of the cell via the plasma membrane. Jpump replenishes the calcium

stores in the SR; it increases SR calcium concentration by decreasing cytosol calcium

concentration. Jleak is a continuous leakage of those SR calcium stores into the cytosol;

it increases cytosol concentration by decreasing SR calcium concentration. The pump

term

Jpump(c) = Vpump

(
cnpump

K
npump
pump + cnpump

)
(2.3.7)

21

is thus a function of cytosol calcium c(x, t). The leak term Jleak is a constant defined

by

Jleak = Jpump(c0), (2.3.8)

which balances Jpump(c) at basal level c0 = 0.1 µM of cytosol calcium. The pump term

Jpump, a function of cytosolic calcium c(x, t), consists of the maximum pump velocity

Vpump multiplied against the relationship between c(x, t) and the pump sensitivity

Kpump; the exponent npump refers to the Hill coefficient (quantifying the degree of co-

operative binding) for the pump function. This has the practical effect of multiplying

the maximum possible pump velocity against a number between 0 and 1, exclusive.

Jleak, which continuously leaks calcium into the cytosol from the SR, is simply Jpump

evaluated at the basal cytosolic calcium concentration c0 = 0.1µM . As noted, Jpump

balances Jleak in the absence of sparking. It can also balance JCRU under conditions

of active calcium release.

The term JCRU in (2.3.1) is the Ca2+ flux into the cytosol from the SR via each

individual point source at which a CRU has been assigned. The effect of all CRUs is

modeled as a superposition such that

JCRU(c, s,x, t) =
∑
x̂∈Ωs

σ̂ s−c
s0−c0 O(c, s) δ(x− x̂) (2.3.9)

with

O(c, s) =

 1 if urand ≤ Jprob,

0 if urand > Jprob,
(2.3.10)

where

Jprob(c, s) =Pmax

(cnprob

K
nprob

probc
+ cnprob

)(snprob

K
nprob

probs
+ snprob

)
. (2.3.11)

Here, the effect of each CRU is modeled as a product of three terms: (i) Similarly to

how in Jpump the maximum pump rate is scaled against the concentration of available

22

cytosol calcium, the maximum rate of Ca2+ release σ̂ is scaled here against the ratios of

the difference of calcium concentrations in the cytosol and in the SR. (ii) Following the

same pattern a maximum value multiplied against some scaling proportion between

0 and 1 the gating function O has the practical effect of “budgeting” the calcium

SR stores such that when the stores are low, the given CRU becomes much less

likely to open; each CRU is assigned a uniformly distributed random value, which

is compared to the single value returned by the CRU opening probability Jprob to

determine whether or not the given CRU will open. (iii) The Dirac delta distribution

δ(x− x̂) models each CRU as a point source for calcium release.

2.3.2 Electrical excitation

The membrane potential of the cell depends on both the cytosol calcium ion

concentration and also on the fraction of open K+ channels. [4,38]. While a complete

description of the relationship between electrolytes and membrane potential is beyond

the scope of this chapter, note the ω term in (2.3.12), an addition to our model which

introduces a dependency on c to complete the coupling between the electrical and

chemical systems. Table 2.3.2 collects the variables and parameters for electrical

excitation.

The Ca2+ gating dynamics are much faster than the K+ gating dynamics, so the

calcium conductance can be approximated as m∞ or instantaneously steady-state at

all times; the potassium conductance requires a separate description in (2.3.13)

∂V

∂t
= τ

1

C

(
Iapp − gL(V − VL)− gCam∞(V) (V − VCa) (2.3.12)

− gK n (V − VK) + ω (Jmpump − Jmleak
)
)
,

∂n

∂t
= τ λn(V) [n∞(V)− n]. (2.3.13)

The connection between (2.3.1) and (2.3.12), link 1© in Figure 2.1.1, the link from the

electrical system to the calcium system, comes through JLCC , the only calcium flux

23

term to involve voltage. Note the parameter κ, which is an external scaling factor for

JLCC , if the value of κ is set to 0, the connection, link 1© in Figure 2.1.1, is effectively

switched off and the calcium dynamics are then modeled as though voltage were not

involved

JLCC =
S gCam∞ (V − VCa)

2F
. (2.3.14)

The surface area, S, of the cell is included in light of the fact that JLCC describes the

influx of calcium through L-type calcium channels (LCCs), which are present in the

enclosing plasma membrane of the cell: the surface area of the cell is the surface area

of the membrane.

To incorporate the feed-forward link between the calcium and electrical systems

we consider a simplified approach. A significant component in electrical handling with

high cytosolic calcium is the sodium-calcium exchanger current (NCX) that generates

an inward depolarizing current affecting the action potential while removing calcium

from the cell. Since the pump mechanism is already available in the model, we tie

the calcium efflux as (Jmpump − Jmleak
) to a depolarizing current. This enables us to

capture the net effect of depolarization from the NCX via a simple approach. A new

term appears in (2.3.12) with ω (Jmpump−Jmleak
) where ω > 0 represents the feedback

strength of the effect. Modification of this approach to include the NCX directly or

modifying JLCC inactivation to be dependent on the calcium in the cell are future

work.

The individual components of the calcium efflux term have the same form as the

earlier Jpump and Jleak functions in (2.3.7) and (2.3.8), respectively. As Jpump described

the removal of calcium from the cytosol and its transfer into SR stores,

Jmpump(c) = Vmpump

(cmnpump

K
mnpump
mpump + cmnpump

)
(2.3.15)

describes the removal of calcium from the cytosol and its transfer to outside the cell

24

across the plasma-membrane. The leak term Jleak described a passive leak of calcium

into the cytosol from the SR, while JCRU described an abrupt, high-concentration

(high relative to the leak) release of calcium into the cytosol from the SR. Similarly,

Jmleak
= Jmpump(c0) (2.3.16)

describes a passive leak of calcium into the cytosol from outside the cell across the

plasma membrane, while JLCC describes a voltage-dependent influx of calcium release

into the cytosol via the LCCs.

The model now connects the chemical system to the electrical system, link 2© in

Figure 2.1.1, via the inclusion of the current generated by calcium leaving the cell via

Jmpump and Jmleak
, which directly affects the voltage. We collect and incorporate these

as a single term, the calcium efflux (Jmpump − Jmleak
), and introduce ω as a parameter

for feedback strength in link 2© in Figure 2.1.1, which is a scaling factor with the

same essential function as κ in link 1© in Figure 2.1.1 from (2.3.1): if it is set to 0,

the only terms of (2.3.12) which depend on the cytosolic calcium concentration drop

out, and the connection from calcium signaling to electrical excitation is severed.

2.3.3 Pseudo-mechanical contraction

We complete the proposed links of the model, 3© and 4© in Figure 2.1.1, by

introducing feedback and feedforward terms for the contractile dynamics. We describe

this as “pseudo-mechanical” because the domain itself is unchanged; in our model,

the physical dimensions of the cell and the locations of the CRUs do not alter. We

instead model the contraction via the proportion of contractile proteins which have

bound to calcium and changed shape as a result, which generates the force required

for cell contraction. The main effect of this in this model is on the ability for calcium

to release from troponin during contraction. Table 2.3.3 collects the variables and

parameters for pseudo-mechanical contraction.

25

Table 2.3.2 Variables and parameters for electrical excitation: gating functions and

membrane potential.

Variable Definition Values/Units

V (x, t) membrane potential (voltage) mV

τ scaling factor to fit action potential duration 0.1 µM µm3/ms

VL equilibrium potential for leak conductance −50 mV

VCa equilibrium potential for Ca2+ conductance 100 mV

VK equilibrium potential for K+ conductance −70 mV

C membrane capacitance 20 µF/cm2

Iapp applied current 10 µA/cm2

gL maximum/instantaneous conductance for leak 2 mmho/cm2

gCa max./instantaneous conductance for Ca2+ 4 mmho/cm2

gK max./instantaneous conductance for K+ 8 mmho/cm2

m∞ fraction of open calcium channels at steady state 0 to 1

n(x, t) fraction of open potassium channels 0 to 1

n∞ fraction of open potassium channels at steady state 1

λn(V) rate constant for opening of K+ channels s−1

JLCC influx of calcium into cell via L-type calcium channels µM/ms

S surface area of the cell 3604.48 µm

F Faraday constant 95484.56 C/mol

κ scaling factor of JLCC 0.01

ω feedback strength (scaling factor) for Ca2+ efflux µA ms/µM cm2

Jmpump
pump of calcium out from cell via L-type calcium channels µM/ms

Jmleak
leak of calcium out from cell via L-type calcium channels µM/ms

Vmpump
maximum pump rate 1 µM/ms

mnpump membrane pump Hill coefficient 2

Kmpump
membrane pump sensitivity 0.18

26

The contractile proteins in question, though considered as a single species, are the

combination of actin and myosin when linked via cross-bridges. This linkage is made

possible by Ca2+ binding to troponin, the cytosol buffer species b
(c)
2 (x, t): it is this

binding that allows the actin-myosin cross-bridges to form. We therefore introduce

a new cytosol species, b
(c)
3 (x, t), to describe these actin-myosin cross-bridges, and

construct a third cytosol reaction term:

R
(c)
b3

= − k+

b
(c)
3

(
b

(c)
2,total − b

(c)
2

b
(c)
2,total

)2

b
(c)
3 + k−

b
(c)
3

(b
(c)
3,total − b

(c)
3). (2.3.17)

Notice that this is not the same as the generic pattern for buffer species reaction terms

from the initial model. There is no immediately clear dependence on cytosolic calcium

c(x, t). However, while c(x, t) is not explicitly included, it is present in the proportion

involving troponin, b
(c)
2 (x, t), which itself depends explicitly on cytosol calcium levels;

R
(c)
b3

, like the other two reaction equations, does in fact depend on cytosol calcium

concentration.

We modify the reaction equation for troponin as well. When troponin binds to

Ca2+, the protein as a whole, as noted, changes shape: not only does this allow

actin-myosin cross-bridges to form, but it also traps the calcium in its connection to

the troponin so that the disassociation rate decreases dramatically. To account for

this, we add a shortening factor ε to describe how the separation of troponin and

calcium has been physically, not chemically, impaired. Note, again, that R
(c)
b2

remains

a function of cytosol calcium concentration c(x, t):

R
(c)
b2

= − k+

b
(c)
2

c b
(c)
2 + k−

b
(c)
2

(
b

(c)
2,total − b

(c)
2

) 1

ε
(2.3.18)

with

ε = exp

(
Fmax ks

(
b

(c)
3,total − b

(c)
3 − [XB]0

b
(c)
3,total − [XB]0

))
. (2.3.19)

27

Table 2.3.3 Variables and parameters for mechanical contraction: new cytosol species

reactions.

Variable Definition Values/Units

b
(c)
3 (x, t) inactive actin-myosin cross-bridges [X] µM

[XB] active (linked) actin-myosin cross-bridges µM

[XB]0 initial concentration of active cross-bridges µM

k+
b
(c)
3

forward reaction coefficient for b
(c)
3 (x, t), actin-myosin cross-bridges 0.04 ms−1

k−
b
(c)
3

reverse reaction coefficient for b
(c)
3 (x, t), actin-myosin cross-bridges 0.01 ms−1

ε shortening factor 0 to 1

ks stiffness of actin filament 0.025 N/m

Fmax maximum force generated by actin-myosin crossbridges 120 µN

This shortening factor ε links 3© and 4© in Figure 2.1.1. It refers back to the concen-

tration of b
(c)
3 (x, t), the actin-myosin cross-bridges, and to the force that their linkage

generates. It is scaled by the maximum possible contractile force Fmax, the actin

stiffness ks, and the proportion of active to inactive actin-myosin cross-bridges. Like

ω and κ, ε is our point of control over the linkage between systems: if the exponent

is 0, the overall value simply turns to 1, and R
(c)
b2

reverts to its earlier form (2.3.5).

The addition of these two reaction terms connects the last two components of our

model. The calcium signaling is linked to the pseudo-mechanical contraction through

the cross-bridge term, and the pseudo-mechanical contraction is in turn connected

to the calcium signaling through the inclusion of the cytosol calcium concentration

in the modified reaction equation for troponin. Thus all links 1©, 2©, 3©, and 4©

in Figure 2.1.1 are established, and thus the electrical excitation and mechanical

contraction systems have complete links to the calcium signaling. While it would

be possible to consider linking the mechanical contraction to the electrical excitation

mechanisms through stretch activated channels we ignore those currently and consider

their addition possible future work.

28

Table 2.4.1 Sizing study with ns = 6 species using double precision arithmetic, listing

the mesh resolution Nx×Ny×Nz, the number of control volumes N = (Nx+1) (Ny+

1) (Nz + 1), the number of degrees of freedom (DOF) neq = nsN , the number of

time steps taken by the ODE solver, and the predicted and observed memory usage

in GB for a one-process run.

Resolution N DOF neq number of memory usage (GB)

time steps predicted observed

16× 16× 64 18,785 112,710 32,047 0.01 0.25

32× 32× 128 140,481 842,886 43,473 0.11 0.64

64× 64× 256 1,085,825 6,514,950 64,843 0.83 2.17

128× 128× 512 8,536,833 51,220,998 160,798 6.49 8.44

2.4 Numerical Method

In order to do calculations for the CICR model, we need to solve a system of time-

dependent parabolic partial differential equations (PDEs). These PDEs are coupled

by several non-linear reaction and source terms. For the simulations in Section 2.5,

we need six species, thus we have ns = 6 coupled PDEs. The domain in our model is a

hexahedron with isotropic CRU distribution as seen in Figure 2.1.2. Taking a method

of lines (MOL) approach to spatially discretize this model, we use the finite volume

method (FVM) as the spatial discretization, with N = (Nx + 1) (Ny + 1) (Nz + 1)

control volumes. Applying this to the case of the ns PDEs results in a large system of

ordinary differential equations (ODEs). A MOL discretization of a diffusion-reaction

equations with second-order spatial derivatives results in a stiff ODE system. The

time step size restrictions, due to the CFL condition, are considered too severe to

allow for explicit time-stepping methods. This necessitates the use of a sophisticated

ODE solver such as the family of numerical differentiation formulas (NDFk). Our

stiff ODEs, which needs to use an implicit ODE method, require the solution of a

non-linear system. We use Newton’s Method as the non-linear solver, and at each

29

Newton step we use the biconjugate gradient stabilized method (BiCGSTAB) as the

linear solver. Complete details of the numerical method can be found in [22,46].

The implementation of this model is done in C using MPI to parallelize compu-

tations. Parallelization is accomplished through block-distribution all large arrays to

all MPI processes. We split of the mesh in the z-direction with one subdomain on

each of the parallel processes. MPI commands such as MPI_Isend and MPI_Irecv,

which are non-blocking point-to-point communication commands, send messages be-

tween neighboring processes. The collective command MPI_Allreduce is used for the

computation of scalar products and norms.

The spatial discretization of the application problem using the total number of

species, ns = 6, and the finite volume method with N control volumes results in a

system of non-linear ordinary differential equations (ODEs) with neq = nsN degrees

of freedom (DOF). Table 2.4.1 shows the number of degrees of freedom for different

mesh sizes for this problem. Simulation times depend heavily on the number of time

steps taken. For each of the mesh sizes, the total number of time steps is listed.

Note that the number of time steps increases for finer meshes, but the increase in not

as large at the increase in DOF. We are using a matrix-free method that minimizes

memory usage by not storing any system matrix; the code with the NDFk method of

orders 1 ≤ k ≤ 5 requires then, including all auxiliary method vectors, the storage of

only 17 arrays of significant size neq. Table 2.4.1 also shows predicted memory usage

for the 6 species simulation on each mesh as well as observed total memory used. The

predicted memory is a realistic underestimate of the total memory observation.

2.5 Results

In this work, we focus on the electrical excitation and calcium signaling link im-

pacts, that is, the simulations presented here do not include the mechanical con-

30

Table 2.5.1 Selected parameter sets for our three base behavior test cases from

studies in [1]. Common parameters across the three cases are Kprobs = 550 µM,

Vpump = 2 µM/ms, and SR diffusion Ds = 0.78 µm2/ms.

Case Kprobc SR load (s0) σ̂

Case A: Sparking case 15 µM 2000 µM µm3/ms 200 µM

Case B: Wave case 10 µM 5000 µM µm3/ms 150 µM

Case C: Blowup case 5 µM 10000 µM µm3/ms 200 µM

traction components of the model described above. Simulations necessary for this

rely on six species: calcium in the cytosol c(x, t), a florescent dye b
(c)
1 (x, t), troponin

b
(c)
2 (x, t), calcium in the SR s(x, t), voltage V (x, t), and the fraction of open K+ chan-

nels n(x, t). Thus, the ns = 6 PDEs of the model are (2.3.1), (2.3.2) with nsc = 2,

(2.3.3), (2.3.12), and (2.3.13) as described in Section 2.3. We consider for this the

domain Ω = (−6.4, 6.4)× (−6.4, 6.4)× (−32.0, 32.0) in Figure 2.1.2 that captures the

key feature of the elongated shape of a heart cell. With the physiological constants

∆xs = 0.8, ∆ys = 0.8, and ∆zs = 2.0 for the CRU spacings, we have therefore a CRU

lattice of 15× 15× 31 = 6,975 CRUs throughout the interior of the cell.

When examining the calcium behavior in the cytosol this model has demonstrated

three main behaviors: sparking, wave, and blowup. Sparking is the behavior in which

only small, localized release of calcium occurs. That is, there is no propagation or

build up of calcium in the cell, only sparks. For certain parameter values several

sparks may organize and initiate a wave of calcium release. So called blowup occurs

when the cell becomes flooded with calcium and does not recover to basal levels

through the final time.

Studies in [1] established which of the calcium behaviors result under different

parameter sets in relation to electrical excitation. We start by selecting a set of

31

parameters that resulted in each of the three primary behaviors, Table 2.5.1. Recall

here that κ in (2.3.1) turns on the link 1© in Figure 2.1.1 from the electrical excitation

to the calcium signaling system.

To visualize the solutions, we present five different types of plots: CRU plots,

isosurface plots, line scans, voltage plots and SR plots. Each of these plots displays

different information in relation to the calcium dynamics within the system. CRU

plots show the open calcium release units, which are represented by blue dots in the

domain. Isosurface plots show the concentration of Ca2+ in the cytosol. The color

blue represents locations at which the Ca2+ concentration is at least 65 µM, indicating

the presence of more than trace amounts of calcium. Higher concentrations on the

boundary are indicated by a yellow–red color palatte. Line-scans are produced by

tracking the concentration of the cytosolic Ca2+ concentration along the center of the

axis in the longitudinal direction of the cell at each millisecond. The concentrations of

Ca2+ are plotted on a two-dimensional domain versus time, and then overlayed upon

each other producing the final image. Higher concentrations of Ca2+ are indicated by

red, while lower concentrations are indicated by blue. Voltage plots track the voltage

at the center of the cell domain, and then is plotted versus time. SR plots show the

concentration of Ca2+ in the SR as it relates to the right, center, and left of the cell.

In Section 2.5.1, we present results of one-way coupling between electrical exci-

tation and calcium signaling with an enabled membrane pump. One-way coupling

is achieved by only considering the forward connection between the electrical and

calcium systems, link 1© in Figure 2.1.1, via non-zero κ. In Section 2.5.2, we present

results of a two-way coupling between the calcium and electrical systems, link 1©

and link 2©. In the two-way coupling, we add in the feedback connection between

the electrical and calcium systems. As described in Section 2.3, two-way coupling is

mathematically achieved through the inclusion of a calcium efflux term, scaled by the

32

factor ω, referred to as a feedback strength coefficient. We present a parameter study

of ω in which we examine how varying the value of ω impacts the behavior of our

solutions.

2.5.1 Electrical Excitation to Calcium Signaling: One-Way Coupling

The first set of simulations run with the parameters set as in Table 2.5.1 use only

the coupling from electrical excitation to calcium signaling. That is, κ = 0.01 and

ω = 0, so that the feedback from calcium signaling to electrical excitation is off.

The change here from [1] is the value of Vmpump in (2.3.15). The pump of calcium

leaving the cell was disabled by setting Vmpump = 0 µM/ms in [1], but we introduce

the effect of turning on this pump by Vmpump = 1 µM/ms . The resulting behaviors, as

observed, are not exactly of the basic three types. These observed behaviors become

the base test for our parameter study in ω for the effect of turning on the feedback

from calcium signaling to electrical excitation.

The sparking case presents the sparking behavior as before, with more responsive-

ness to the voltage. In the wave case as shown in Figure 4.1(a) of [1] the linescans show

‘V’ patterns as calcium propagates through the cytosol over time. With Vmpump = 1

we see no such action as too much calcium is pumped out of the cell for propagation

from calcium induced calcium release to occur. Instead, we see only a high con-

centration of calcium sparking around two instances in time, presented in the wave

case.The behavior in the blowup case is characterized as blowup, but the nature of

the blowup is different with Vmpump = 1. Blowup cases were those in which the cell

became flooded with calcium and maintained that high concentration of calcium until

the final time. In our blowup case we observe the cell floods with calcium, which then

leaks out of the cell and another flooding of calcium into the cytosol occurs. This

pattern continues a few times over before the SR calcium store is so depleted that no

33

significant amount of calcium is released into the cell when a CRU opens.

Case A: Sparking Case (ω = 0)

The first behavior we present is sparking under the parameters in Case A of Ta-

ble 2.5.1. Figures 2.5.1 and 2.5.2 show CRU plots and isosurface plots at a sampling

of times over the course of this simulation. At the specific time the CRU plot indicates

each open CRU with a single blue dot. The isosurface plot shows the concentration

of calcium in the cytosol. In this plot all of the observed concentrations of calcium

are very low,

Figure 2.5.3 shows the line scan for this sparking behavior. The scale of this line

scan is very sensitive to any release of calcium so that the sparking behavior can be

observed, 0−5µM . The scale will be much less sensitive to low calcium concentrations

in the blowup case, 0−100µM , so that only high levels of calcium are observed. Note

there are two places in which more sparking occurs. The voltage plot shows that the

spikes in the voltage correspond to these highest times of calcium release, which is a

physiologically realistic behavior.

In Figure 2.5.1, the number of CRUs opening increases from 100 ms to 400 ms

where at 500 ms the number of open CRUs decreases considerably. This corresponds

direction with Figure 2.5.2 where the cytosolic calcium concentration is also at its

greatest point in the same timeframe. However the calcium does not “buildup” as

is seen at 500 ms by a much lower number open CRUs and a lower concentration of

Ca2+. The accompanying linescan in Figure 2.5.3 supports these observations as the

cyan color, indicative of heavy sparking, can be seen in the 400 ms region but not in

the 500 ms region. The concentration behavior repeats itself from 600 ms to 900 ms

in Figure 2.5.1 (CRU) and Figure 2.5.2 (ISO). This repetition can also be seen in the

linescan in Figure 2.5.3 during those timeframes.

34

CRU plots

Figure 2.5.1 CRU plots for sparking case with ω = 0 and other parameters from

Case A of Table 2.5.1.

35

Isosurface plots

Figure 2.5.2 Isosurface plots for sparking case with ω = 0 and other parameters from

Case A of Table 2.5.1.

36

Figure 2.5.3 Line scan and voltage plot for sparking case with ω = 0 and other

parameters from Case A of Table 2.5.1.

Case B: Wave Case (ω = 0)

The second behavior observed is extremely heavy sparking, rather than a calcium

induced propagation of a wave through the cell under the parameters from Case B of

Table 2.5.1. In fact, we observe what could be considered a very light wave of calcium

in the line scan of Figure 2.5.6.

In Figures 2.5.4 and 2.5.5, we see similar behavior as in Figures 2.5.1 and 2.5.2,

but with higher numbers of open CRUs and higher concentrations of calcium at the

corresponding times. We do not see any very high concentrations of calcium, but we

readily observe the high number of CRUs open around 400 ms and 900 ms and the

higher concentrations of calcium at those times when compared to the sparking case.

When looking at the linescan in Figure 2.5.6, it can be shown that the dark red regions

correspond to the heavy sparking times that can be observed in Figures 2.5.4 and 2.5.5

with the ISO and the CRU plots. The scale of this line scan is the same as in the

sparking case, very sensitive to any release of calcium so that the behavior can be

observed, 0 − 5µM . These clearly correspond with the spikes in voltage from the

electrical excitation demonstrating a good connection between the systems.

37

CRU plots

Figure 2.5.4 CRU plots for wave case with ω = 0 and other parameters from Case

B of Table 2.5.1.

38

Isosurface plots

Figure 2.5.5 Isosurface plots for wave case with ω = 0 and other parameters from

Case B of Table 2.5.1.

39

Line Scan Voltage Plot

Figure 2.5.6 Line scan and voltage plot for the wave case with ω = 0 and other

parameters from Case B of Table 2.5.1.

Case C: Blowup Case (ω = 0)

The final case presented here is the blowup case under the parameters in Case C

of Table 2.5.1. To reiterate: a blowup case is where the concentration of cytosolic

calcium is high early on, at t = 50 ms causing many CRUs to open as seen in

Figure 2.5.7 at t = 125 ms. Then the behavior is repeated in the later images inside

Figure 2.5.7. We consider a high level of calcium to occur when the average cytosolic

calcium concentration at some point reaches above 5 µ M. The definition of a blowup

that was provided does not seem to fit the behavior of this current case. While the

concentration of cytosolic calcium is initially, and physiologically, too high it does not

however stay high the entire simulation due to the enabling of the membrane pump.

Instead the concentration is high for a few milliseconds but goes down to basal levels

and then repeats in a periodic fashion. This behavior can be readily seen in the

linescan in Figure 2.5.8, scaled from 0 to 100 µ M. It is even improper that, along with

high concentrations, the spike in calcium is not in line with a spike in voltage. This

is due to the spontaneous calcium release coupling with the 100 ms refactory period.

The voltage should be introducing additional calcium into the system which should

only increase the severity of the blowup but there does not appear to be any signs in

40

the linescan that this is happening. The explanation is that the concentration did not

stay high for the entire simulation because release of calcium through the membrane

with Vmpump turned on, was so severe that the SR was completely depleted of calcium

leaving none left to flow into the the cytosol.

2.5.2 Electrical Excitation and Calcium Signaling: Two-Way Coupling

Now that we have demonstrated behaviors in the presence of the one-way coupling

from electrical excitation to calcium signaling we consider cases in which two-way

coupling is present. We turn on the coupling from calcium signaling to electrical

excitation by setting ω > 0. For each of the parameter sets that generated the

behaviors in Section 2.5.1 we consider four cases of ω to test the feedback strength

from calcium signaling and electrical excitation: ω = 10, 30, 50, and 100. In this

study, we do not change the strength of the connection from electrical excitation to

calcium signaling. This is certainly something that would be of interest in future

study.

Case A: Sparking Case with ω > 0

Under the same parameters as the sparking case in Section 2.5.1 , we present simula-

tions with ω = 10, 30 in Figure 2.5.9 and ω = 50, 100 in Figure 2.5.10. We observed

that for ω < 10 the same general behavior as the case ω = 10 and that of ω = 0

from Figure 2.5.3. In the cases in which ω ≤ 10, we observe that the linescans and

voltage plots are synchronized, the two peaks in voltage match up with the heavy

concentration of sparking in the line scan around 400 ms and 900 ms. The SR plot of

the concentration of calcium ions in the SR also shows the synchronization with this

behavior as the SR calcium concentration dips at these times, appropriately, as the

release of calcium ions from the SR into the cytosol is exactly the higher concentration

41

CRU plots

Isosurface plots

Figure 2.5.7 CRU plots and isosurface plots for blowup case with ω = 0 and other

parameters from Case C of Table 2.5.1.

42

Line scan

Voltage plot SR plot

Figure 2.5.8 Line scan, voltage plot, and SR plot for the blowup case with ω = 0

and other parameters from Case C of Table 2.5.1.

43

of calcium ions in the cytosol we see in the line scan.

For ω = 30 we present CRU plots in Figure 2.5.11 and isosurface plots in Fig-

ure 2.5.12. This case is chosen as the voltage plot has a nicer attunement for the

changed periodicity in voltage and the linescans for each case look relatively the same

with nothing more than a light peppering of color to represent minor sparking.

As we make ω larger, we continue to observe differences in the behavior of the

average voltage. In particular, for ω = 50 we observe a third peak in the voltage,

which is not matched by a corresponding dip in the SR or by a higher concentration

of cytosol calcium sparking shown in the line scan. In this sparking case, we do not

see the same depletion over time of the calcium store in the SR as we did with the

wave and blowup cases. This indicates there is not a significant amount of calcium

ions that are leaving the cell. For that reason, the sparking case is promising as a

point of further study. Despite the clear differences in the voltage plots amongst all

the ω values, the linescans remain more or less unchanged. It should be observed that

ω = 50 having more peaks than ω = 10 would result in more calcium entering through

the excited LCC but this is not observed in the linescans present in Figure 2.5.9 and

Figure 2.5.10. We believe this can be that amount of calcium entering through the

LCC is negligible when compared to the amount removed through the ω term and

pumped into the cytosol by the SR and CRUs.

Case B: Wave Case with ω > 0

Similar to what happened in the wave case of Section 2.5.1, the wave case here is

also consistently heavy sparking when looking at all the values of ω. As expected

there are several drastic changes in voltage periodicity as ω begins to become much

larger. The baseline two peak seen when ω = 10, in Figure 2.5.13, becomes less

regular when ω = 100 in Figure 2.5.14. Unlike in the most recent sparking case,

44

ω = 10

Line scan

Voltage plot SR plot

ω = 30

Line scan

Voltage plot SR plot

Figure 2.5.9 Line Scans, Voltage Plots, and SR Plots for a spark for ω = 10 and 30

with other parameters from Case A of Table 2.5.1.

45

ω = 50

Line scan

Voltage plot SR plot

ω = 100

Line scan

Voltage plot SR plot

Figure 2.5.10 Line Scans, Voltage Plots, and SR Plots for a spark for ω = 50 and

100 with other parameters from Case A of Table 2.5.1.

46

CRU plots

Figure 2.5.11 CRU plots for sparking case with ω = 30 with other parameters from

Case A of Table 2.5.1.

47

Isosurface plots

Figure 2.5.12 Isosurface plots for sparking case with ω = 30 with other parameters

from Case A of Table 2.5.1.

48

ω has a clear impact on the linescans present in Figure 2.5.13, and Figure 2.5.14

particularly when comparing extreme values like ω = 10 and ω = 100. This factor

ten increase in ω causes heavy sparking to occur throughout the entire linescan of

ω = 100 whereas the linescan for ω = 10 remains more similar to the wave case

where ω = 0. For ω = 10, the concentration, though less frequent, is much greater

when it occurs when compared to linescan of ω = 100. The linescans in between

demonstrate this metamorphosis in spark activity, gradually becoming more frequent

but less concentrated.

Case C: Blowup Case with ω > 0

Under the same parameters as the blowup case in Section 2.5.1, we present simulations

with ω = 10, 30 in Figure 2.5.15 and ω = 50, 100 in Figure 2.5.16. While line scans

appear similar, there is a clear distinction. As in Section 2.5.1, we experience a

repeated blow up. As we increase ω, the repeated blowups continue for a longer

amount of time. If we examine the accompanying voltage plots, we observe that as ω

increases, so does the voltage entering the system. Beginning at ω = 50, we observe a

behavior known as early after-depolarization or EAD. EAD is a single depolarization

that occurs after a previous depolarization, but earlier that expected in the regular

frequency. An amalgamation of these behaviors in multiple cardiomyocytes could

result in cardiac arrhythmia. SR plots show the amount of Ca2+ in the SR decreases

significantly over the course of the simulation. We observe that as ω increases, the

amount of Ca2+ that is being removed (or pumped out) increases.

49

ω = 10

Line scan

Voltage plot SR plot

ω = 30

Line scan

Voltage plot SR plot

Figure 2.5.13 Line Scans, Voltage Plots, and SR Plots for a wave for ω = 10 and 30

with other parameters from Case B of Table 2.5.1.

50

ω = 50

Line scan

Voltage plot SR plot

ω = 100

Line scan

Voltage plot SR plot

Figure 2.5.14 Line Scans, Voltage Plots, and SR Plots for a wave for ω = 50 and 100

with other parameters from Case B of Table 2.5.1.

51

ω = 10

Line scan

Voltage plot SR plot

ω = 30

Line scan

Voltage plot SR plot

Figure 2.5.15 Line Scans, Voltage Plots, and SR Plots for blowup for ω = 10 and 30

with other parameters from Case C of Table 2.5.1.

52

ω = 50

Line scan

Voltage plot SR plot

ω = 100

Line scan

Voltage plot SR plot

Figure 2.5.16 Line Scans, Voltage Plots, and SR Plots for blowup for ω = 50 and

100 with other parameters from Case C of Table 2.5.1.

53

2.6 Conclusions

We formulated a complete model of the electrical excitation, calcium signaling,

and mechanical contraction systems. The calcium and mechanical systems are linked

via feedback and feedforward terms for the contractile dynamics model, using the

proportion of actin-myosin cross-bridges which are actively linked and therefore gen-

erating contractile force at any given time. We introduced a new cytosol species to

describe these actin-myosin cross-bridges and introduced a corresponding third cy-

tosol reaction term. We also modified the reaction equation for troponin to more

accurately describe the decreased calcium-troponin disassociation rate resulting from

the protein’s change in shape.

We introduced a calcium dependency into the voltage PDE, controlled by a scaling

factor of feedback strength ω. The calcium efflux term (Jmpump − Jmleak
) represents

the only coupling between cytosol calcium levels and voltage in the full set of PDEs,

which can be switched on or off by making the feedback strength parameter ω a

positive value or zeroing it out to sever the connection from the calcium dynamic to

the electrical dynamic. Our parameter study indicated that as the coupling strength

between the calcium system and the electrical system increases, the duration of the

action potential lengthens. The simulated action potential is qualitatively similar to

an experimental range and duration. The range of action potential stays between

−50 mV and +20 mV, while the duration of the action potential varies. Values for ω

below 10 are too low to produce notably altered results. However, as we continued to

scale ω up, we began to see a stronger and stronger influence of the current generated

by calcium efflux through the membrane upon the electrical potential of the membrane

itself. The formerly steady and unaffected periodicity of the voltage over time first

sped up, then deteriorated altogether, as we continued to increase the value. Over

strengthening the feedback connection from the current generated by calcium efflux

54

results in physiologically unrealistic behavior.

Future work should also consider continued development and refinement of the

model. This could include investigating other options for the implementation of the

feed-forward calcium to electrical system link. In particular, the addition of the

NCX itself, or modifying JLCC inactivation to be dependent on the calcium in the

cell. Additionally, considering the coupling of the mechanical and electrical systems.

One option would be to pursue the stretch activated channels that would couple

contraction and voltage.

The formulation of the current model also opens many opportunities for further

study. Simulations with 7 species that add the actin-myosin cross-bridges as a third

cytosol buffer species thus enabling the feedback and feedforward links from calcium

signaling to mechanical contraction. The addition of calsequestrin as a buffer species

in the SR is also interesting. Since calsequestrin binds to calcium ions in the SR,

it would have impacts across all three systems as less calcium ions would leave the

SR. Examining the impact of calsequestrin on all three systems would require the use

of 8 species. Less species could be used to examine calsequestrin as it impacts the

electrical excitation effects without mechanical effects using 7 species or the calse-

questrin impact with mechanical without electrical using only 6 species. We also

suggest further study of the membrane pump term is important so that the addition

of this term may not have such a significant impact on behaviors. Our introduction

of ω has enabled a more direct representation of the relationship between cytosol

calcium concentration and membrane potential. Thus we are also now able to study

the interplay between the strengths of the feedback and feedforward links of electrical

excitation and calcium signaling with κ and ω.

CHAPTER 3

USAGE STRATEGIES FOR THE INTEL XEON PHI

This chapter studies the performance of the KNL in different configuration modes

on a classical elliptic test problem. The content of this chapter is contained in [15,35].

3.1 Introduction

The Intel Xeon Phi Knights Landing (KNL) is a recently released second-generation

many-integrated-core (MIC) Xeon Phi processor with a theoretical peak performance

of over 3 TFLOP/s of double precision floating-point performance [49]. The KNL was

announced in June 2014 [24] and began shipping in July 2016. The Xeon Phi fam-

ily is Intel’s contributions to the use of many-core processors in parallel computing.

The KNL itself is like a ‘massively parallel’ supercomputer from the early 2000s with

dozens of nodes connected by a Cartesian network, all in a single chip now! Already

the first-generation Phi Knights Corner (KNC) had an impact since its appearance

in 2012, as exhibited by many of the highest-ranked clusters on the Top 500 list

(www.top500.org) since then that use the Phi. Two clusters using pre-production

or early-production KNL chips achieved ranks #5 and #6 on the November 2016

list. Entry #5 is the Cori cluster at NERSC (www.nersc.gov) in the USA with Cray

XC40, Intel Xeon Phi 7250 68C 1.4GHz, and Aries interconnect. Entry #6 is the

Oakforest-PACS cluster at the Joint Center for Advanced High Performance Com-

puting in Japan with PRIMERGY CX1640 M1, Intel Xeon Phi 7250 68C 1.4GHz, and

Intel Omni-Path network. The same KNL model as in these machines is installed on

Stampede which is part of the Texas Advanced Computing Center (TACC) at the Uni-

versity of Texas at Austin (www.tacc.utexas.edu) [51]. The Stampede-KNL cluster

at TACC at the time of this writing has 504 available KNL nodes, but announced on

55

56

December 13, 2016 from XSEDE User News that the upcoming Stampede 2 will reach

a total size of 5,940 nodes after significant development planned for summer and fall

of 2017. We concretely refer to Stampede in this work, since many researchers, e.g.,

U.S. based faculty, can apply for allocations through XSEDE (www.xsede.org).

The paper [49] by the chief designers of the KNL introduces the key features of the

KNL. The most fundamental change with the second-generation Phi is its ability to

serve as stand-alone processor, i.e., as a CPU. Since source code can in a first pass be

ported to the Phi without change, but by simply compiling with an additional compile

flag, there is potential for immediate impact on research as well as production codes.

The crucial improvements for performance of the second-generation KNL Phi are the

2D mesh interconnect that provides high-bandwidth connections on the chip and the

high-performance 16 GB MCDRAM memory on board the chip. The Phi can also

access the DDR4 memory of the node, but MCDRAM is directly in the chip and is

nominally 5x faster than DDR4 [49].

The KNL can be configured in one of three memory modes and one of three

cluster modes. The three possible memory modes are Cache, Flat, and Hybrid

mode. Each mode sets up the access of the MCDRAM and DDR4 differently, which

can have significant impact on performance, especially for certain problem sizes. The

user must make an appropriate choice for their simulation in order to achieve opti-

mal performance. The three possible cluster modes are All-to-All, Quadrant, and

Sub-NUMA 4 (SNC-4) mode. Each cluster mode handles cache level memory ac-

cess differently. We also compare the distribution of MPI processes versus OpenMP

threads and different thread to core control using different KMP_AFFINITY settings.

The Intel Developer Zone includes a tutorial on the High Bandwidth Memory on

the KNL [28] and notes explicitly that “with the different memory modes by which

the system can be booted, it becomes very challenging from a software perspective

57

to understand the best mode suitable for an application.” We focus our attention

on the different KNL configurations and show performance results. TACC provides

documentation in the form of a user guide on their webpage [37] to instruct users

on how to interact with the system. This documentation includes descriptions of

the KNL memory modes, cluster modes, and the queues for each available KNL

configuration. The Stampede technical report [43] provides specific recommendations

for running on the Stampede KNL cluster. We believe, it is helpful to users to see

the recommendations demonstrated with performance numbers explicitly. This work

tests these recommendations and demonstrates performance results. We hope that

this helps researchers choose the most suitable configuration for their needs with clear

compile and run instructions for the Stampede KNL cluster.

We analyze the performance using a classical test problem, the Poisson equation

with homogeneous Dirichlet boundary conditions

−∆u = f in Ω,

u = 0 on ∂Ω,
(3.1.1)

on the domain Ω = (0, 1) × (0, 1) ⊂ R2. The equation is discretized by the finite

difference method on a N ×N mesh and the resulting system of N2 linear equations

solved by the conjugate gradient method. The numerical method is parallelized in C

using hybrid MPI+OpenMP code. Section 3.2 provides more implementation details.

We use a short self-written special-purpose code as test code, but since (3.1.1) is a

very well-known standard example (e.g., [9, Section 6.3], [17, Subsection 9.1.1], [31,

Chapter 12], and [53, Section 8.1]), researchers should be easily able to recreate the

results.

The KNL has only recently begun to be available to the general public, and only

few performance comparisons are available. One paper is [44] that approaches the

question by running established benchmark codes (Mantevo suite [19], NAS Paral-

58

lel Benchmarks [3, 39, 55]) and sophisticated established research codes (WRF [48],

LBS3D [42]) as test cases on the KNL. Another performance result of a formal bench-

mark is contained in the brief announcement [30] by Intel of results of the HPCG

Benchmark that characterizes speedup of KNL over two 18-core CPUs (Intel E5-

2697v4) as approximately 2x. The HPCG Benchmark [20] is essentially a more

sophisticated implementation of a discretization of the 3-D version of (3.1.1) and

designed to provide a modern reference for performance [10].

The remainder of the chapter is organized as follows. Section 3.2 describes the

test problem and hybrid MPI+OpenMP code implementation. Section 3.3 describes

the hardware used in our studies and details the differences in the KNL configuration

options. Section 3.4 presents performance results for the different KNL configuration

modes and includes baseline results for comparison to First-Generation Phi and CPU

results. Finally, Section 3.6 summarizes our conclusions and suggests opportunities

for future studies that would further explore features of the KNL.

3.2 Test Problem

We consider the classical elliptic test problem of the Poisson equation with homoge-

neous Dirichlet boundary conditions in (3.1.1), as used in many Numerical Linear Al-

gebra textbooks as standard example, e.g., [9, Section 6.3], [17, Subsection 9.1.1], [31,

Chapter 12], and [53, Section 8.1], and researchers should be easily able to recreate

the results. Using N + 2 mesh points in each dimension, we construct a mesh with

uniform mesh spacing h = 1/(N + 1). Then approximate the second-order deriva-

tives in the Laplace operator at the N2 interior mesh points by centered difference

approximations. Using these approximations together with the homogeneous bound-

ary conditions (3.1.1) as determining conditions for the approximations uk1,k2 gives

a system of N2 linear equations for the finite difference approximations uk1,k2 at the

59

N2 interior mesh points ki = 1, . . . , N , i = 1, 2.

For simplicity of coding, for reproducibility by others, and to provide a challenging

benchmark for the hardware to be tested, we collect the N2 unknown approximations

uk1,k2 in a vector u ∈ RN2
using the natural ordering of the mesh points with k =

k1+N(k2−1) for ki = 1, . . . , N , i = 1, 2. We can state the problem as a system of linear

equations in standard form Au = b with a system matrix A ∈ RN2×N2
and a right-

hand side vector b ∈ RN2
. The components of the right-hand side vector b are given by

the product of h2 multiplied by right-hand side function evaluations f(xk1 , xk2) at the

interior mesh points using the same ordering as the one used for uk1,k2 . The system

matrix A ∈ RN2×N2
can be defined recursively as block tri-diagonal matrix with N×N

blocks of size N ×N each. Concretely, we have A = block-tridiag(T, S, T) ∈ RN2×N2

with the tri-diagonal matrix S = tridiag(−1, 4,−1) ∈ RN×N for the diagonal blocks of

A and with T = −I ∈ RN×N denoting a negative identity matrix for the off-diagonal

blocks of A; see, for instance, [36] for complete detail.

For fine meshes with large N , iterative methods such as the conjugate gradient

method are appropriate for solving this linear system and guaranteed to converge,

since the system matrix A is known to be symmetric positive definite [17]. We use a

tolerance of 10−6 on the relative residual and run all reported cases to convergence.

In a careful implementation, the conjugate gradient method requires in each iteration

exactly two inner products between vectors, three vector updates, and one matrix-

vector product involving the system matrix A. In fact, this matrix-vector product is

the only way, in which A enters into the algorithm. Therefore, a so-called matrix-free

implementation of the conjugate gradient method is possible that avoids setting up

any matrix, if one provides a function that computes as its output the product vector

v = Au component-wise directly from the components of the input vector u by using

the explicit knowledge of the values and positions of the non-zero components of A,

60

but without assembling A as a matrix.

Thus, without storing A, a careful, efficient, matrix-free implementation of the

(unpreconditioned) conjugate gradient method only requires the storage of four vec-

tors (commonly denoted as the solution vector x, the residual r, the search direction

p, and an auxiliary vector q). In a parallel implementation of the conjugate gra-

dient method, we split the domain in the last dimension for each parallel process.

Each vector is split into as many blocks as parallel processes are available and one

block is distributed to each process. each vector is split into as many blocks as

parallel processes are available and one block distributed to each process. That is,

each parallel process possesses its own block of each vector, and no vector is ever

assembled in full on any process. By contrast, the vector updates in each iteration

can be executed simultaneously on all processes on their local blocks, because they

do not require any parallel communications. The MPI function MPI_Allreduce is

necessary to compute the inner product and vector norm required in the algorithm.

The matrix-vector product v = Au also computes only the block of the vector v

that is local to each process. But since the matrix A has non-zero off-diagonal ele-

ments, each local block needs values of u that are local to the two processes that hold

the neighboring blocks of u. The commands MPI_Isend and MPI_Irecv are used as

non-blocking communication commands between neighboring processes and to inter-

leave calculations and communications in the matrix-vector product. In the hybrid

MPI+OpenMP implementation, all expensive for loops with large trip counts are

parallelized with OpenMP. This includes the loops in the computation of the matrix

vector product, axpby operations, and computation of dot products. These for loops

are parallelized with the OpenMP pragma #pragma omp parallel for, instructing

each MPI process to divide the iterations of the loop between available threads and

execute in parallel.

61

Table 3.2.1 presents a convergence study for the test problem (3.1.1). We use

right-hand side function

f(x1, x2) = (−2π2)
(

cos(2πx1) sin2(πx2) + sin2(πx1) cos(2πx2)
)
, (3.2.1)

for which the true analytical solution u(x1, x2) = sin2(πx1) sin2(πx2) is known. Ta-

ble 3.2.1 lists the mesh resolution N × N , the number of degrees of freedom N2

(DOF; i.e., the dimension of the linear system), the norm of the finite difference er-

ror ‖u− uh‖ ≡ ‖u− uh‖L∞(Ω)
, the ratio of consecutive errors ‖u− u2h‖/‖u− uh‖ ,

the number of conjugate gradient iterations #iter, and the predicted memory usage

in GB. The norm of the finite difference error is calculated against the known true

solution. Each of the progressively finer meshes is the result of doubling the mesh

resolution N .

We observe that the norms of the errors in Table 3.2.1 decrease by a factor of

approximately 4 as the mesh is refined by a factor 2. This confirms the second-order

convergence of the finite difference method used, e.g., [5,31]. The optimal convergence

order confirms that the linear solver tolerance is tight enough for a sufficiently accurate

solution of the linear system. The number of iterations gives an estimate on the

computational demand of the method. The memory usage predicted for the code

with 4 vectors shows that cases up to 16,384 × 16,384 can fit in the memory of a

KNL (but not in that of a KNC). We also note that the 65,536× 65,536 problem size

is estimated at 128 GB, larger than all available memory on the KNL node so it is

omitted from this work.

3.3 Hardware

The second generation Intel Xeon Phi (x200 series) is codenamed Knights Landing

(KNL). It was announced in June 2014 and began delivery in mid 2016. The most

fundamental change with the second-generation Phi is its ability to serve as stand-

62

Table 3.2.1 Convergence study for the test problem (3.1.1) with iteration count and

memory prediction.

N ×N DOF ‖u− uh‖ Ratio #iter predicted

memory (GB)

1,024× 1,024 1,048,576 3.1266e–06 — 1,581 < 0.100
2,048× 2,048 4,194,304 7.8019e–07 4.01 3,192 0.125
4,096× 4,096 16,777,216 1.9366e–07 4.03 6,452 0.500
8,192× 8,192 67,108,864 4.7401e–08 4.09 13,033 2.000

16,384× 16,384 268,435,456 1.1701e–08 4.05 26,316 8.000
32,768× 32,768 1,073,741,824 3.0867e–09 3.79 53,141 32.000

alone processor, i.e., without a CPU as host in a node. The KNL also runs a full

Linux-based OS. While the KNL can also function as a co-processor, similar to a KNC

or GPU, we restrict our attention to the set up as a stand-alone processor. Also, for

Stampede, the KNL as co-processor is not available at present.

The second-generation KNL Phi introduces a 2D mesh interconnect that provides

high-bandwidth connections between tiles and controllers on the chip. Figure 1.2.4

shows a schematic of a KNL. The 16 GB MCDRAM memory on board the chip

(Multi-Channel DRAM) is a new form of HMC (Hybrid Memory Cube) or stacked

memory. The Phi can also access the DDR4 memory of the node, but MCDRAM

is directly in the chip and is nominally 5x faster than DDR4 [49]. The MCDRAM

is also nearly 50% faster than GDDR5 memory, which is the memory on board the

first-generation Phi (KNC). The KNL node DDR4 memory is connected though 6

channels and has a total of 96 GB, with larger capacity also possible. The KNL on-

chip memory is connected by a 2D mesh structure that allows for significantly more

bandwidth than the first-generation Phi bi-directional ring bus. The KNL model we

focus on has 68 cores, but up to 72 cores are possible.

It is also important to note that the KNL has double the number of Vector Pro-

cessing Units (VPUs) from the first-generation model. The KNC had one VPU per

63

core while the KNL has two VPUs per core. Since each VPU is 512 bits wide, 8

double precision operations per cycle can be executed. Thus, on each KNL core 16

double precision operations can occur at the same time [50]. Section 3.3.1 discusses

the KNL model used in more detail.

As baseline reference, we tested KNL performance against current Stampede clus-

ter hardware. A majority of the compute nodes in the Stampede cluster are hybrid

CPU/Phi nodes with one Phi KNC and two 8-core CPUs. That is, a first-generation

Phi (KNC) as a co-processor in a compute node with two 8-core CPUs. Most of the

compute nodes in that cluster have one Phi KNC, but some are configured with two

Phi KNCs, alongside the two 8-core CPUs. More detail on this baseline hardware is

given in Section 3.3.2.

3.3.1 Intel Xeon Phi Knights Landing (KNL)

We focus on the Intel Xeon Phi 7250 KNL compute nodes in the 508 node

Stampede-KNL cluster. Each KNL runs CentOS 7 as a self-hosted node. This model

has 68 cores with 4 hardware threads per core across 34 tiles with two cores each and

L2 cache is shared by the two cores on each tile [27]. Each core has a clock rate of

1.4 GHz. Each of the KNL nodes includes 16 GB of MCDRAM and 96 GB of DDR4

for a total of 112 GB of memory. For a schematic diagram and a die photo of the

KNL respectively see [49, Figure 1 (a) and Figure 2]. Memory is controlled by 2 DDR

controllers on opposite sides of the chip, and 8 controllers for MCDRAM with two in

each quadrant. The 2D mesh structure connects the tiles, and the controllers on the

chip.

The KNL provides flexibility to the user in how to set up the different types of

memory and localization of low level cache actions. This flexibility presents users

with choices of what configuration of the KNL to use. The configuration of the KNL

64

is set at boot time so proper choice based on the application in advance of running

tests is important. Stampede uses different queues for access to differently configured

KNLs. The configuration of the KNL depends on two mode choices, the memory

mode and the cluster mode. The memory mode determines how the MCDRAM and

DDR4 RAM are set up. The cluster mode determines how the core level L1 cache

and tile level L2 cache data transfers are localized on the chip.

KNL Memory Modes

The KNL has three possible memory modes: Cache, Flat, and Hybrid. Information

on Stampede treatment of these modes comes from [37].

Cache memory mode: The 16 GB of high-performance MCDRAM is configured

as a L3 cache and the 96 GB of DDR4 is set as RAM. The normal and devel-

opment queues on the Stampede-KNL cluster are set up in Cache mode.

Flat memory mode: Separates the MCDRAM and DDR4 into distinct NUMA

nodes. That is, the full 112 GB of RAM are available, but split into two parts.

The default behavior is for memory allocations to use the DDR4, but the user

may explicitly control the type of memory used. The Flat-Quadrant and Flat-

All2All queues on the Stampede-KNL cluster are set up in Flat mode.

Hybrid memory mode: A mix of Cache and Flat mode in which either half or a

quarter of the MCDRAM is set as a L3 cache as in Cache mode while the rest of

the MCDRAM is set as a NUMA node alongside the DDR4 NUMA node as in

flat mode. The cached MCDRAM in this mode serves all of the DDR4. Hybrid

mode is not currently supported on any Stampede-KNL queue.

In Cache memory mode no software modifications are required, but there is higher

latency for DDR access and L3 cache misses are limited by the DDR bandwidth. All

65

memory must go through the hierarchy, it is first transferred as DDR, then MCDRAM,

then L2 cache, then to the KNL cores. There is also less total addressable memory

in this mode, limited by the 96 GB size of the DDR4.

In Flat memory mode, the MCDRAM and DDR4 are separate addressable memory

spaces, so the entire 112 GB is available. Using only the MCDRAM capitalized on

the maximum bandwidth with lower latency than in Cache mode since the memory

hierarchy does not include a L3 cache, but is limited to 16 GB. Using only the DDR4

fails to capitalize on the higher bandwidth of the MCDRAM and is limited to the

96 GB size of the DDR4. The numactl utility can be used to easily run Flat memory

mode using either the DDR4 or the MCDRAM with run time flags that specify the

type of memory to use. It is also possible using the numactl utility to specify the

preferred option, indicating to use the MCDRAM if available, then the DDR4. This

preferred option gives the user access to the full 112 GB and attempts to make use

of both memory types appropriately. If the user wants to see maximum benefit in

Flat memory mode software modifications are necessary and require decisions on

what data should go where. In particular, careful management of the MCDRAM and

tracking of its usage is important and can add significant complexity to the code.

With this explicit control in Flat memory mode, the user can access all of the 112 GB

of memory, exactly in the way they desire, within the size constraints. The memkind

library (memkind.github.io/memkind/) is one option for users to manage memory in

the code and control explicitly which parts of the code use which type of memory. The

paper [49] includes discussion on their Flat MCDRAM software architecture including

their HBW_malloc library in memkind to allocate critical memory in MCDRAM. For

the reason that implementing the memkind library would require the user to modify

the code, we focus on control using the numactl utility.

66

For a user very aware of the memory demands of their code a customized Hybrid

mode setup, made from carefully choosing the amount of MCDRAM to use a L3 cache

and managing access to the DDR4 and MCDRAM NUMA nodes, could be compli-

cated, but beneficial. Since Hybrid mode is a combination of Cache and Flat memory

modes and is not currently supported on Stampede, we omit further consideration at

this time. We expect that the full treatment of Cache and Flat memory modes may

help guide the sophisticated user in their Hybrid mode configuration choices.

KNL Cluster Modes

The KNL has three possible cluster modes: Quadrant, All-to-All, and SNC-4. The

idea of the cluster mode is to lower latency and increase bandwidth by shortening

the distance of protocol flows at the low level cache [49]. Information on Stampede

treatment of these modes comes from [37].

All-to-All cluster mode: This mode distributes memory addresses uniformly. The

Flat-All2All queue on the Stampede-KNL cluster uses All-to-All cluster mode.

Quadrant cluster mode: Tiles are grouped into four virtual quadrants and each

tile manages MCDRAM addresses only in its quadrant. Thus communications

are somewhat localized without explicit control by the programmer. This is

Intel’s recommended default [37]. The normal and development queues on the

Stampede-KNL cluster use Quadrant cluster mode.

Sub-NUMA 4 (SNC-4) cluster mode: Splits the chip into four NUMA domain

that function like a four socket processor. The communication is then restricted

to a single NUMA domain, when possible. This requires explicit manual man-

agement by the programmer to get better performance. The Flat-SNC-4 queue

on the Stampede-KNL cluster uses SNC-4 cluster mode.

67

Quadrant mode has a hemisphere variant in which the tiles are grouped into 2

virtual hemispheres rather than the four quadrants. Similarly, SNC-4 has a SNC-2

variant in which the chip is divided into 2 NUMA nodes rather than 4.

For a simple understanding of the differences, consider that All-to-All mode has

no communication localized, Quadrant mode has some communication localized, and

SNC-4 has all communication localized. To be precise, each cluster mode differs in

the localization relationship between the tile, the distributed tag directory, and the

memory [49]. All-to-All cluster mode has no localized relationship between the tile,

the directory, and the memory. In Quadrant cluster mode, the four virtual quadrants

provide localization between directory and memory. That is, a directory will only

access memory in its own quadrant but a request from any tile can land on any

directory. Sub-NUMA cluster mode further localizes the tile with directory and the

memory. In SNC cluster mode, a request from a tile will access directory in its local

cluster and the directory will access memory controllers also in that cluster [49]. As

a result, All-to-All mode cache actions can have a higher latency than other mode.

Quadrant mode can have better latency than All-to-All, but SNC cluster mode should

have the lowest latency among the three cluster modes.

3.3.2 Baseline Stampede Hardware

One hybrid compute node contains, two 8-core Xeon E5 processors and 1 61-core

Xeon Phi KNC (first-generation) co-processor. Each node has 32 GB per node of

distributed memory and 8 GB memory on the KNC. Nodes are interconnected by

InfiniBand with Mellanox network cards with FDR. Physically, the node is contained

in a Dell C8220z double-wide sled in a 4 rack-unit chassis with 3 other sleds. Each node

runs CentOS 6.3 with the 2.6.32 x86_64 Linux kernel. The section Intel Xeon Phi

Knights Corner (KNC) provides more detail on the KNC and section CPU Hardware

68

briefly describes the CPU specifications.

Intel Xeon Phi Knights Corner (KNC)

The first generation Intel Xeon Phi (x100 series) is codenamed Knights Corner (KNC).

It was announced in June 2011 and began delivery in the fourth quarter of 2012. While

the second generation Phi is a standalone processor, the KNC is not. The KNC only

has a Linux micro-OS and can only be run as a co-processor, thus the need for a host

CPU paired with a Phi in a hybrid node. The KNC can have up to 61 total cores [23]

distributed in a bi-directional ring bus structure with 8 GB of GDDR5 memory on the

chip. The PCIe bus connects the KNC to the DDR3 memory of the node. As in the

second generation model, each core can support up to 4 threads for a possible total

of 244 threads on the KNC. The KNC on Stampede is a special production model,

Xeon Phi SE10P, that has 61 cores each with a 1.1 GHz clock speed.

As each KNC is paired with a host CPU there are different run modes to handle

the interaction of the processors. Formally, the configuration of the co-processor is

fixed, but three different run modes are possible: native mode, symmetric mode, and

offload mode. In offload mode, portions of the computation may be offloaded from

the host CPU to the Phi. That is, the host CPU controls all of the MPI ranks. In

native mode, outside of setup, everything is run on the Phi. No computational use

of the host CPU and all MPI ranks exist only on the Phi. In symmetric mode, both

the host CPU and Phi do computations and MPI ranks exist on both the CPU and

the Phi. For a detailed study of the KNC for the test problem used here see [36].

CPU Hardware

For CPU only baseline performance we use a compute node on Stampede that contains

two 8-core 2.7 GHz Intel E5-2680 Sandy Bridge CPUs for a total of 16 computational

69

cores per node. Each node includes 32 GB of DDR3 memory with 4-channel integrated

controllers and a 64 KB L1 Cache per core.

3.4 Results

This section reports performance studies for the solution of the test problem using

hybrid CPU+OpenMP code on a single Intel Xeon Phi KNL and on one CPU/KNC

node on Stampede (using both the KNC and the CPUs only) as a baseline comparison.

For the KNL, the hybrid MPI+OpenMP code in C was compiled for the KNL on the

login node using the Intel compiler version 17.0.0 with flag for the KNL -xMIC-AVX512

and the other flags -O3 -std=c99 -Wall -mkl -qopenmp (with OpenMP version 4.5)

and Intel MPI version 17.0.0. Compiling the executable is independent of the con-

figuration mode in which the executable is run. In the available configuration modes

that require no code modifications by the user we examine the choice of using all 272

available threads, or using only 256 threads, and the distribution of MPI process to

OpenMP threads. We compare these to the strategy of using only 1, 2, or 3 threads

per core of the KNL.

We also study different process and thread affinity types. Intel provides some

context and description for this in relation to the Phi architecture in [29]. The

more general description of the thread affinity interface can be found in [25]. The

KMP_AFFINITY environment variable is an Intel OpenMP runtime extension that pins

OpenMP threads to hardware threads (“thread pinning”). The KMP_AFFINITY can

take a number of different types. For compact, threads are packed close to each

other, for scatter a round-robin threads to cores distribution is used, for explicit

the proclist modifier is used to pin threads, for none, threads are not pinned, and

for balanced, as in scatter a round-robin threads to cores distribution is used but

OpenMP thread ids are kept consecutive. We restrict our attention in this work

70

to the common choices of compact and scatter for the KNL. To be specific, for

KMP_AFFINITY=compact the current OpenMP thread is placed as close as possible to

where the previous thread was placed. In the case of KMP_AFFINITY=scatter, we have

the opposite behavior, threads are distributed as evenly as possible across the entire

system. Comparing these two opposite actions will provide sufficient insight into the

impact of the KMP_AFFINITY choice on the KNL. It is also possible to specify explicitly

which hardware threads using KMP_AFFINITY=proclist=[<id_list>],explicit.

For Intel OpenMP it is also possible to use the runtime extension KMP_HW_SUBSETS

to control the allocation of resources [26]. For example, KMP_HW_SUBSETS=68c,4t

specifies using 68 cores and 4 threads per core. For more explicit control the user

may use both environment variables, KMP_HW_SUBSETS=2t KMP_AFFINITY=scatter.

On Stampede, KMP_HW_SUBSETS is the recommended choice in place of the deprecated

KMP_PLACE_THREADS.

We are confident in the differences in the behavior of KMP_AFFINITY=compact

and KMP_AFFINITY=scatter in our runs based on logs for each OpenMP thread that

record their cpu id, MPI process id, and the node number. The behaviors are inde-

pendent of the KNL configuration used. By running the lstopo command on one of

the KNL nodes we can identify that core 0 of the KNL contains hardware threads

000, 068, 136, and 204, and is on the same tile with core 1, containing threads 001,

069, 137, and 205. For a concrete example of the differences in behavior, consider

the case with 17 MPI processes and 16 threads per process (272 threads total with

4 threads per core). In the KMP_AFFINITY=compact case, the first four threads are

placed on cpu ids 000, 068, 136, 204. The next four threads are placed on cpu ids 001,

069, 137, 205, continuing with 002, 070, 138, 206, and with 003, 071, 139, 207. In

the KMP_AFFINITY=scatter case, the first four threads are placed on consecutive cpu

id numbers, 000, 001, 002, 003. The next four are placed on cpu ids 068, 069, 070,

71

071, continuing with 136–139, then 204–207. After the first 16 threads are placed,

we see the pattern repeat for the threads of the second MPI process, 004–007, 072–

075, 140–143, 208–211. This confirms that KMP_AFFINITY=compact packs the threads

close together and that scatter is spreading out the threads in a round-robin fashion.

We use the same logs to assess the assignment of threads to cores in the case of

256 threads. In the case of 272 threads, each hardware thread on the KNL is used.

In the 256 threads cases, we observe that the 16 threads not used are distributed

across all cores of the KNL. The distribution of the unassigned threads is different for

KMP_AFFINITY=compact versus KMP_AFFINITY=scatter and depends on the number

of MPI processes used, but is essentially an even distribution across the hardware.

Notably, in both cases, no single core is left unused and each of the unassigned threads

is taken from a different hardware core and tile. Notice that this test does not directly

assesses the recommendation to leave entire cores idle. We also test using only 1, 2,

or 3 threads per core.

Section 3.4.1 shows results with the KNL configured in Cache memory mode with

Quadrant cluster mode, which we refer to as the Cache Quadrant configuration. Sec-

tion 3.4.2 shows results with the KNL configured in Flat memory mode with Quadrant

cluster mode, which we refer to as Flat Quadrant configuration. Section 3.4.3 shows

results with the KNL configured in Flat memory mode with All-to-All cluster mode,

which we refer to as Flat All-to-All configuration. Finally, as baseline comparison,

Section 3.4.4 compares KNL performance against the first-generation Phi (KNC) as

well as CPU hardware that is currently available on Stampede; however, this equip-

ment is in the phasing out stages of the Stampede cluster. We use one hybrid compute

node with two 8-core CPUs and one Intel Xeon Phi KNC. Results using the KNC

run in native and symmetric modes are in Section 3.4.4 and CPU only results are in

Section 3.4.4.

72

3.4.1 Cache Quadrant Configuration

In this section, we present results in Cache memory mode using Quadrant cluster

mode. This is the default on Stampede, used in both the develop and normal queues.

In the develop queue there is a max of 4 total nodes in the queue and a one job

maximum per user. The max runtime for a job in this queue is 2 hours. In the

normal queue there is a maximum of 80 nodes per job allocated for this queue and

each user is restricted to a maximum of a 10 jobs in the queue. The max runtime

for a job in this queue is 48 hours. In addition to standard options in our slurm

script, we specify the number of nodes (1) using #SBATCH -N 1 and the number of

MPI tasks using #SBATCH -n <num_MPIproc>. We use export KMP_AFFINITY and

export OMP_NUM_THREADS and run simply with ibrun <executable>.

Table 3.4.1 shows the results in the Cache Quadrant configuration using all 272

available threads on the KNL. Table 3.4.2 shows the results in this mode using only

256 threads. Table 3.4.3 contains the study of using only 1, 2, or 3 threads per core

of the KNL.

In Table 3.4.1 (a), KMP_AFFINITY=compact is used, while in Table 3.4.1 (b),

KMP_AFFINITY=scatter is used. Analogously, in Table 3.4.2 (a) and Table 3.4.2 (b)

we utilize KMP_AFFINITY=compact and KMP_AFFINITY=scatter, respectively. The

choice of KMP_AFFINITY=compact or KMP_AFFINITY=scatter shows essentially no

impact on the run times. In some cases in both Table 3.4.1 and Table 3.4.2 we

see scatter performing slightly better than compact. But there are also cases where

compact performs better than scatter.

Comparing across each row of Table 3.4.1 we observe no significant difference in

run time for particular combinations of MPI process and OpenMP threads. In fact,

for the 16,384 case in both Table 3.4.1 (a) and Table 3.4.1 (b) we observe the best run

time using 272 MPI processes with only 1 OpenMP thread per process. In particular,

73

we do not observe any disadvantage in terms of run time to using as many as 272

MPI processes. The same behavior is exhibited in Table 3.4.2 using up to 256 MPI

processes. In this case however, the 256 MPI process runs are not the best, but are still

competitive times, below the average run time across the row in both Table 3.4.2 (a)

and Table 3.4.2 (b). It is also interesting to note that the multi-threading only case

with only 1 MPI process was not consistently performing worse than using more MPI

processes. The 1 MPI process case performed better compared to other entries in

the row in the case of 272 threads rather than 256 threads. In the 32,768 case using

multi-threading only, the run times of 15:17:07 and 15:09:12 in Table 3.4.1 are better

than the run times of 15:41:13 and 16:01:08. The difference is significant in that large

mesh size case, but for the smaller mesh sizes no significant difference in run times is

present.

Examining the case of using all 272 threads in Table 3.4.1 compared to using only

256 threads in Table 3.4.2 we do not observe a very significant advantage to using only

256 threads. However, upon close inspection there does appear to be a slight benefit

to using only 256 threads for up to the 16,384 case. We see this in, for example,

the 16,384 × 16,384 case. Comparing the average run time across each row for 272

threads using compact is 00:43:20 with best time 00:39:11, and 272 threads using

scatter is 00:40:50 with best time 00:39:02. Comparing the average run time across

each row for 256 threads using compact is 00:39:48 with best time 00:38:15, and 256

threads using scatter is 00:39:42 with best time 00:38:14. This suggests that using

only 256 threads performed better than using all 272 threads. The best run time in

the 32,768 × 32,768 case in Table 3.4.2 using 256 threads was 14:58:33, better than

the best 272 threads run, 15:09:12, in Table 3.4.1. However, In the 32,768 × 32,768

the average run time using all 272 threads is around 15.5 hours, but using only 256

threads was 15.75 hours. So, for the largest problem size, there are cases in which

74

using all 272 threads performs better that only 256 threads.

We also consider the explicit use of all 68 KNL cores, with 1, 2, 3, or all 4 threads

on each core. To achieve this, we use KMP_AFFINITY=scatter with 68, 136, 204,

and 272 total threads, respectively. It is not necessary, with these choices, to also use

KMP_HW_SUBSETS to allocate the desired number of threads per core explicitly. In each

case we test different distributions of the MPI processes and threads across the KNL.

Recall that the first core of the KNL contains cpu ids 000, 068, 136, and 204, the

second core with 001, 069, 137, 205 and so on for the rest of the KNL cores. With 68

threads, KMP_AFFINITY=scatter uses cpu ids 000–067, thus one thread per core. For

136 threads, KMP_AFFINITY=scatter uses cpu ids 000–135, thus using two threads

per core. The grouping of the cpu ids to the MPI processes of course depends on the

number of MPI processes. For one concrete example consider using 4 MPI processes,

with 34 threads per process, for a total of 136 threads. We observe that the first MPI

processes has cpu ids 000–016 and 068–084, which is the first and second thread on

the first 17 cores. The second MPI process has cpu ids 017–033 and 85–101, the first

and second threads on the second 17 cores. Then the third and fourth MPI processes

fill out the first and second threads on the remaining 34 cores accordingly.

The results from testing this behavior are shown in Table 3.4.3, with Table 3.4.3 (a)

using 1 thread per core, Table 3.4.3 (b) using 2 threads per core, and Table 3.4.3 (c)

using 3 threads per core. Note that Table 3.4.3 (d) which uses 4 threads per core, re-

peats the threads structure in Table 3.4.1 (b). In Table 3.4.3 we restrict our attention

to numbers of MPI processes that divide 68, the number of KNL cores, that is, 1, 2,

4, 17, 34, 68, which are fewer than the cases listed in Table 3.4.1. Then for the cases

with more than 68 threads, we maintain our number of MPI processes and simply

increase the number of treads per process. We leave off the largest problem size due

to the long run times. In the 2048 case, we observe that using less than 4 threads per

75

Table 3.4.1 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Cache Quadrant Configuration, MCDRAM as cache with

DDR4, with two settings of KMP AFFINITY.

(a
)

K
N

L
–

C
a
ch

e
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
C

o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
4

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

8
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

1
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

0
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

5
0
0
:0

0
:4

8
8
1
9
2
×

8
1
9
2

0
0
:0

5
:1

2
0
0
:0

5
:1

2
0
0
:0

5
:0

6
0
0
:0

5
:0

6
0
0
:0

5
:0

6
0
0
:0

5
:0

9
0
0
:0

5
:0

5
0
0
:0

5
:1

1
0
0
:0

5
:0

9
0
0
:0

5
:0

4
1
6
3
8
4
×

1
6
3
8
4

0
0
:4

2
:4

8
0
0
:4

2
:4

7
0
0
:4

1
:4

7
0
0
:3

9
:3

2
0
0
:4

6
:2

1
0
0
:4

2
:2

9
0
0
:4

4
:2

9
0
0
:4

9
:3

7
0
0
:4

4
:1

8
0
0
:3

9
:1

1
3
2
7
6
8
×

3
2
7
6
8

1
5
:1

7
:0

7
1
5
:1

1
:4

2
1
5
:4

2
:4

4
1
5
:3

8
:1

1
1
5
:3

5
:3

5
1
5
:5

9
:0

1
1
5
:4

3
:4

6
1
5
:4

6
:3

2
1
5
:5

9
:3

6
1
6
:2

1
:5

7

(b
)

K
N

L
–

C
a
ch

e
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
S

ca
tt

er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

4
2
0
4
8
×

2
0
4
8

0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

4
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

2
0
0
:0

0
:4

1
0
0
:0

0
:4

2
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

5
0
0
:0

1
:1

0
8
1
9
2
×

8
1
9
2

0
0
:0

5
:0

4
0
0
:0

5
:0

8
0
0
:0

5
:0

6
0
0
:0

5
:0

7
0
0
:0

5
:0

8
0
0
:0

5
:0

3
0
0
:0

5
:1

1
0
0
:0

5
:0

6
0
0
:0

5
:0

4
0
0
:0

5
:0

4
1
6
3
8
4
×

1
6
3
8
4

0
0
:3

9
:4

9
0
0
:3

9
:0

7
0
0
:3

9
:1

4
0
0
:3

9
:1

3
0
0
:3

9
:2

3
0
0
:4

4
:3

0
0
0
:3

9
:5

8
0
0
:4

5
:3

6
0
0
:4

2
:2

5
0
0
:3

9
:0

2
3
2
7
6
8
×

3
2
7
6
8

1
5
:0

9
:1

2
1
5
:2

7
:0

0
1
5
:1

1
:3

0
1
5
:3

5
:5

5
1
5
:4

6
:2

4
1
5
:1

7
:1

5
1
5
:3

9
:5

0
1
5
:4

2
:5

8
1
6
:0

6
:0

5
1
6
:2

4
:0

7

76

Table 3.4.2 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using only 256 threads in Cache Quadrant Configuration, MCDRAM as cache with

DDR4, with two settings of KMP AFFINITY.

(a
)

K
N

L
–

C
a
ch

e
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
C

o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

9
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

1
0
0
:0

0
:4

5
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:4

0
8
1
9
2
×

8
1
9
2

0
0
:0

5
:2

0
0
0
:0

5
:1

1
0
0
:0

5
:0

3
0
0
:0

5
:2

6
0
0
:0

5
:0

4
0
0
:0

5
:0

3
0
0
:0

4
:5

6
0
0
:0

4
:5

4
0
0
:0

5
:0

1
1
6
3
8
4
×

1
6
3
8
4

0
0
:4

0
:2

6
0
0
:3

9
:0

2
0
0
:3

9
:0

3
0
0
:3

9
:1

9
0
0
:4

2
:0

7
0
0
:3

8
:1

5
0
0
:4

1
:5

3
0
0
:3

9
:0

2
0
0
:3

9
:0

8
3
2
7
6
8
×

3
2
7
6
8

1
5
:4

1
:1

3
1
5
:3

9
:0

7
1
5
:3

0
:3

1
1
5
:3

9
:2

0
1
5
:4

0
:4

8
1
5
:3

3
:4

1
1
5
:4

6
:5

9
1
6
:0

1
:3

5
1
6
:0

3
:4

8

(b
)

K
N

L
–

C
a
ch

e
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
S

ca
tt

er

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

1
0
0
:0

0
:3

9
0
0
:0

0
:3

8
0
0
:0

0
:3

8
0
0
:0

0
:3

8
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

9
8
1
9
2
×

8
1
9
2

0
0
:0

5
:2

7
0
0
:0

5
:1

6
0
0
:0

5
:1

8
0
0
:0

5
:0

8
0
0
:0

5
:0

9
0
0
:0

5
:1

3
0
0
:0

5
:0

4
0
0
:0

4
:5

0
0
0
:0

5
:0

1
1
6
3
8
4
×

1
6
3
8
4

0
0
:4

0
:2

4
0
0
:3

9
:3

4
0
0
:3

9
:5

2
0
0
:4

0
:1

0
0
0
:4

2
:3

0
0
0
:3

8
:4

3
0
0
:3

8
:3

2
0
0
:3

8
:1

4
0
0
:3

9
:1

6
3
2
7
6
8
×

3
2
7
6
8

1
6
:0

1
:0

8
1
5
:2

0
:3

8
1
5
:4

0
:1

5
1
5
:5

3
:0

3
1
5
:1

8
:3

3
1
4
:5

8
:3

3
1
5
:5

2
:0

0
1
5
:3

6
:3

1
1
5
:5

1
:5

3

77

Table 3.4.3 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using only 1,2,3 and 4 threads per core in Cache Quadrant Configuration, MCDRAM

as cache with DDR4, with KMP AFFINITY=scatter.

(a) KNL – Cache Quadrant Configuration – Scatter – 1 Thread per core

MPI proc 1 2 4 17 34 68

Threads/proc 68 34 17 4 2 1

1024× 1024 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048× 2048 00:00:05 00:00:05 00:00:05 00:00:05 00:00:05 00:00:05
4096× 4096 00:00:37 00:00:37 00:00:37 00:00:43 00:00:35 00:00:36
8192× 8192 00:07:01 00:06:54 00:07:01 00:06:40 00:06:22 00:06:15

16384× 16384 00:38:58 00:40:38 00:39:51 00:38:32 00:38:41 00:39:08

(b) KNL – Cache Quadrant Configuration – Scatter – 2 Threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 136 68 34 8 4 2

1024× 1024 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048× 2048 00:00:05 00:00:05 00:00:05 00:00:05 00:00:05 00:00:05
4096× 4096 00:00:35 00:00:35 00:00:35 00:00:35 00:00:34 00:00:34
8192× 8192 00:04:47 00:04:45 00:04:41 00:04:40 00:04:46 00:04:46

16384× 16384 00:38:11 00:38:05 00:38:12 00:38:16 00:39:32 00:39:06

(c) KNL – Cache Quadrant Configuration – Scatter – 3 Threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 204 102 51 12 6 3

1024× 1024 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048× 2048 00:00:05 00:00:05 00:00:05 00:00:05 00:00:05 00:00:05
4096× 4096 00:00:36 00:00:35 00:00:35 00:00:35 00:00:35 00:00:36
8192× 8192 00:05:01 00:05:01 00:04:58 00:04:48 00:04:45 00:04:43

16384× 16384 00:37:44 00:38:04 00:37:37 00:40:58 00:38:55 00:37:29

(d) KNL – Cache Quadrant Configuration – Scatter – 4 Threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 272 136 68 16 8 4

1024× 1024 00:00:02 00:00:02 00:00:02 00:00:02 00:00:01 00:00:02
2048× 2048 00:00:10 00:00:10 00:00:10 00:00:10 00:00:10 00:00:10
4096× 4096 00:00:43 00:00:42 00:00:37 00:00:41 00:00:40 00:00:42
8192× 8192 00:05:11 00:05:08 00:05:05 00:05:05 00:04:53 00:04:49

16384× 16384 00:46:33 00:43:54 00:39:02 00:39:18 00:38:18 00:38:37

core was a factor of 2 better that using all 4 threads per core for this test code. More

generally, It is clear from this comparison that using 2 or 3 threads per core performs

better than using 1 thread per core and slightly better than 4 threads per core. Still,

using all of the threads available on the hardware was not a significant disadvantage

so for this work we continue with testing all of the hardware.

Before we consider the use of Flat memory mode configurations, it is important

to make more precise memory observations so that runs fit in the chosen memory re-

source, most importantly the 16 GB of MCDRAM. In Table 3.4.4 we present the total

78

memory used for combinations of MPI process and OpenMP threads in Cache Quad-

rant mode runs. The memory usage is observed in the code by checking the VmRSS

field in the the special file /proc/self/status. The first column of Table 3.4.4 (c)

repeats the memory predictions from Table 3.2.1. The close agreement with the ob-

served memory usage in the next column confirms that the implementation of the

code, with the current MPI implementation, does not have any unexpected memory

usage in the 1 MPI process case. In Table 3.4.4 (a) we show the memory impact of

using multi-threading parallelism only for our two smallest problem sizes. We clearly

see that using more OpenMP threads does not increase significantly to the overall

memory usage. In Table 3.4.4 (b) we show the memory impact of using MPI paral-

lelism only for our two smallest problem sizes. The increase in MPI processes comes

at significant cost in terms of memory in the current MPI implementation. In both

problem sizes, for less than 17 MPI processes the increase in memory for the addi-

tional MPI processes has only a small effect. But, when the number of MPI processes

is doubled from 17 to 34, from 34 to 68, from 68 to 134, and from 134 to 272, the total

memory required doubles as well. In both cases, code runs with 16 MPI processes

use less than 1 GB, but using 272 MPI processes requires 14 GB. The Intel MPI

implementation version 17.0.0, the default on the Stampede KNL cluster is used, and

this amount of overhead for MPI processes seems very unreasonable.

Table 3.4.4 (c) is structured with combinations of MPI processes and OpenMP

threads totaling 272, as in our performance tables like Table 3.4.1. The key obser-

vation in this table is the 16,384 × 16,384 case in which the just over 8 GB memory

usage for small numbers of MPI processes significantly exceeds the 16 GB of MC-

DRAM when 272 MPI processes are used. In Cache memory mode, exceeding the

16 GB of MCDRAM is not a problem, as the DDR4 memory is used as needed. But,

when this case in run in Flat memory mode using only MCDRAM, it is not possible

79

Table 3.4.4 Observed total memory usage in units of GB on 1 KNL on Stampede

using all 272 threads in Cache Quadrant Configuration, MCDRAM as cache with

DDR4, and KMP AFFINITY=compact.

KNL – Cache Quadrant Configuration – Compact

(a) Multi-threading only, up to 272 OpenMP threads

MPI proc Predicted 1 1 1 1 1 1 1 1 1 1

Threads/proc (GB) 272 134 68 34 17 16 8 4 2 1

1024× 1024 < 0.100 0.076 0.078 0.076 0.080 0.082 0.084 0.084 0.087 0.100 0.098
2048× 2048 0.125 0.169 0.171 0.171 0.170 0.174 0.178 0.178 0.183 0.198 0.203

(b) MPI only, up to 272 MPI processes

MPI proc Predicted 1 2 4 8 16 17 34 68 136 272

Threads/proc (GB) 1 1 1 1 1 1 1 1 1 1

1024× 1024 < 0.100 0.077 0.111 0.191 0.352 0.682 0.722 1.408 2.805 6.263 13.964
2048× 2048 0.125 0.171 0.207 0.283 0.446 0.772 0.809 1.505 2.909 6.332 14.058

(c) Combinations of MPI processes and OpenMP threads

MPI proc Predicted 1 2 4 8 16 17 34 68 136 272

Threads/proc (GB) 272 134 68 34 17 16 8 4 2 1

1024× 1024 < 0.100 0.10 0.15 0.25 0.41 0.73 0.78 1.44 2.82 6.27 13.97
2048× 2048 0.125 0.20 0.25 0.34 0.51 0.83 0.88 1.55 2.92 6.37 14.08
4096× 4096 0.500 0.57 0.62 0.72 0.91 1.24 1.28 1.95 3.31 6.74 14.50
8192× 8192 2.000 2.08 2.12 2.22 2.43 2.76 2.82 3.51 4.96 8.52 16.52

16384× 16384 8.000 8.08 8.12 8.23 8.44 8.82 8.85 9.51 10.95 14.55 22.55
32768× 32768 32.000 32.07 32.14 32.25 32.47 32.84 32.89 33.53 34.99 38.64 46.78

to run with 272 or 256 MPI processes. It can also be noted that the 16 GB MCDRAM

size is less than the 8,192× 8,192 total observed memory of 16.52 GB, but this case

can be run in the 16 GB of MCDRAM as the memory required at any particular

time during the run is less than 16 GB. For this reason, significant memory overhead

for many MPI processes, we understand the recommendation in [43] to use 64 MPI

processes or fewer. Still, as we observed in Table 3.4.1 and Table 3.4.2, there is no

significant difference in run time using 272 or 256 MPI processes. We continue to

include the 272 and 256 threads runs, when sensible, in the performance tables that

include Flat memory mode.

3.4.2 Flat Quadrant Configuration

In this section we present results in Flat memory mode using Quadrant cluster

mode. On the Stampede-KNL cluster this configuration is the Flat-Quadrant queue.

There is a maximum of 40 nodes per job allocated for this queue and each user is

80

restricted to a maximum of 5 jobs in the queue at any one time. The max run-

time for a job in this queue is 48 hours. Again, in addition to standard options

in our slurm script, we specify the number of nodes (1) and the number of MPI

tasks. We use export KMP_AFFINITY and export OMP_NUM_THREADS and run with

ibrun numactl --<numactlflag> <executable>. The numactl command is used

to control the type of memory used in Flat memory mode. Its flag --membind=1

forces the code to use the MCDRAM memory, while the flag --membind=0 keeps ev-

erything in the the DDR4 memory. The user may also use the flag --preferred=1 so

that the MCDRAM is used when available, then the DDR4 if necessary. It is also pos-

sible to control memory more explicitly in the code using the memkind library. These

results do not show performance with a memkind implementation, as this requires

additional modifications to the code by the programmer.

Tables 3.4.5–3.4.7 show the results in Flat Quadrant mode using all 272 available

threads on the KNL. Table 3.4.8–3.4.10 show the results in Flat Quadrant mode

using only 256 threads. In each table, two subtables are presented, subtable (a) for

KMP_AFFINITY=compact and subtable (b) for KMP_AFFINITY=scatter. In Tables 3.4.5

and 3.4.8 only the MCDRAM is used. In Tables 3.4.6 and 3.4.9 the MCDRAM is used

when possible, then the DDR4 is used. In Tables 3.4.7 and 3.4.10 only the DDR4 is

used.

In the 16,384× 16,384 case using MCDRAM only with 272 or 256 MPI processes,

the overhead for all of the MPI process is so significant that the runs expected to

require close to 8 GB of memory use more than the 16 GB available in MCDRAM.

The memory observations can be found in Table 3.4.4 for the Cache Quadrant KNL

configuration. We use (*) in Tables 3.4.5–3.4.7 and Tables 3.4.8–3.4.10 to indicate

that the job failed due to this memory issue. The 32,768 × 32,768 case will not

fit in the 16 GB of MCDRAM, but we can run it in the DDR4 memory only in

81

Tables 3.4.7 and 3.4.10, and with the preferred option using both MCDRAM and

DDR4 in Tables 3.4.6 and 3.4.9. In both cases, the run time is significant, approaching

and in excess of 24 hours. We elect not to run all combinations of MPI process and

OpenMP threads in this case. Instead we run only the 1 MPI process case and the

case using 68 MPI processes (or 64 in the 256 threads case). We choose this case

based on the 68 cores of the KNL.

The main observation in Table 3.4.1 and Table 3.4.2 is the significantly longer run

times when using the DDR4 memory rather than the MCDRAM. MCDRAM only

cases, Table 3.4.1 (a), (b) and Table 3.4.2 (a), (b) average around 39 minutes, while

DDR4 only cases in Table 3.4.1 (e), (f) and Table 3.4.2 (e), (f) average around 3

hours and 12 minutes. Using those values, the MCDRAM is 4.92 times faster than

the DDR4, nearly the 5x faster estimated in [49]. Since the --preferred=1 option

uses the MCDRAM when able, the run times are very comparable to the MCDRAM

only cases.

The most interesting cases with the --preferred=1 option are the cases not possi-

ble here using only the MCDRAM, the 16,384×16,384 run using 272 (or 256) threads,

and the 32,768×32,768 runs. In the 32,768×32,768 we can compare against the MC-

DRAM in Cache memory mode in Tables 3.4.1 and 3.4.2 which average around 15.5

hours for 272 threads and 15.75 hours 256 threads. Using only the DDR4 is signifi-

cantly slower, close to 26 hours, but using MCDRAM when available with DDR4 in

the Flat Quadrant configuration was faster than using only DDR4, but considerably

more inconsistent. Run times ranged from 19.5 hours to 24 hours in the 272 and 256

threads cases. In the 16,384× 16,384 run using the --preferred=1 option with 272

threads we observe run times of 01:58:05 and 01:45:28, which are significantly longer

than the 256 threads case 01:18:16 and 01:21:50. All of these are faster than the over

3 hour run times using DDR4 only, but not very close to the 38 minute run times

82

using MCDRAM only.

We can also make comparisons to the Cache Quadrant configuration results in

Table 3.4.1 and Table 3.4.2. In Table 3.4.1 (a) in which the Cache Quadrant configu-

ration is used the average run time across the row in the 16,384 case is 43:20, slightly

worse than the corresponding average in Table 3.4.5 (a) of 42:04, and Table 3.4.6 (a)

of 39:44, in which the Flat Quadrant configuration using MCDRAM only and with

the --preferred=1 option, respectively, are used. We also observe in some cases

Cache Quadrant performed slightly better than Flat Quadrant, like the cases using

1 MPI process. Although from these timings the Flat Quadrant configuration using

MCDRAM appears slightly faster than the Cache Quadrant configuration when the

problem fits entirely in the 16 GB of MCDRAM, we would need more testing to

determine if this difference is in fact significant.

The choice of KMP_AFFINITY=scatter or compact in Flat Quadrant configuration

shows little impact on the run times. In each Table 3.4.5–3.4.7 and Table 3.4.8–3.4.10,

subtables (a) in each uses KMP_AFFINITY=compact, while subtables (b) in each uses

KMP_AFFINITY=scatter. In some cases, compact outperforms scatter, for example,

the 16,384 case with 256 threads, using DDR4 only, in Table 3.4.10. The average run

time across the 16,384 case in Table 3.4.10 (a), using compact, is 03:10:47, but in

Table 3.4.10 (b), using scatter is 03:12:08. But in other cases, scatter outperforms

compact, for example, the 16,384 case with 256 threads, using MCDRAM only, in

Table 3.4.5.

3.4.3 Flat All-to-All Configuration

In this section, we present results in Flat memory mode, using All-to-All cluster

mode. The Flat-All2All queue on Stampede uses this configuration. In this queue

there is a maximum of 2 nodes allocated per job and each user is restricted to a

83

Table 3.4.5 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Flat Quadrant Configuration, using MCDRAM only, with two

settings of KMP AFFINITY.

(a
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
M

C
D

R
A

M
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:1

3
0
0
:0

0
:1

2
0
0
:0

0
:0

9
0
0
:0

0
:0

8
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

1
:0

6
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

1
0
0
:0

0
:4

3
0
0
:0

0
:4

7
8
1
9
2
×

8
1
9
2

0
0
:0

6
:1

1
0
0
:0

4
:5

3
0
0
:0

4
:5

0
0
0
:0

4
:4

9
0
0
:0

4
:4

9
0
0
:0

4
:4

7
0
0
:0

4
:4

6
0
0
:0

4
:4

8
0
0
:0

4
:5

1
0
0
:0

4
:5

6

1
6
3
8
4
×

1
6
3
8
4

0
0
:4

3
:2

2
0
0
:4

1
:2

6
0
0
:4

3
:0

5
0
0
:3

8
:0

9
0
0
:4

3
:2

5
0
0
:4

2
:3

1
0
0
:4

2
:5

2
0
0
:4

2
:3

4
0
0
:4

1
:1

3
(*

)

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

M
C

D
R

A
M

ca
p

a
ci

ty
—

–

(b
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
M

C
D

R
A

M
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:3

9
0
0
:0

0
:4

1
0
0
:0

0
:4

3
0
0
:0

0
:4

7
8
1
9
2
×

8
1
9
2

0
0
:0

4
:5

3
0
0
:0

4
:5

1
0
0
:0

4
:5

0
0
0
:0

4
:4

9
0
0
:0

4
:4

7
0
0
:0

4
:4

7
0
0
:0

4
:4

4
0
0
:0

4
:4

7
0
0
:0

4
:5

1
0
0
:0

4
:5

8

1
6
3
8
4
×

1
6
3
8
4

0
0
:3

8
:1

5
0
0
:3

8
:1

8
0
0
:3

8
:0

2
0
0
:3

7
:5

8
0
0
:3

8
:0

3
0
0
:3

7
:5

2
0
0
:4

2
:2

7
0
0
:3

7
:1

0
0
0
:3

6
:5

4
(*

)

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

M
C

D
R

A
M

ca
p

a
ci

ty
—

–

84

Table 3.4.6 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Flat Quadrant Configuration, using MCDRAM and DDR4,

with two settings of KMP AFFINITY. ET indicates excessive time.

(a
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
P

re
fe

rr
ed

–
C

o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

6
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:0

6
0
0
:0

0
:0

7
0
0
:0

0
:0

8
0
0
:0

0
:1

0
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

3
0
0
:0

0
:4

5
8
1
9
2
×

8
1
9
2

0
0
:0

4
:5

6
0
0
:0

4
:5

3
0
0
:0

4
:5

2
0
0
:0

4
:5

0
0
0
:0

4
:4

9
0
0
:0

4
:4

6
0
0
:0

4
:4

6
0
0
:0

4
:4

8
0
0
:0

4
:4

8
0
0
:0

4
:5

7
1
6
3
8
4
×

1
6
3
8
4

0
0
:4

4
:1

7
0
0
:3

8
:1

8
0
0
:3

8
:0

3
0
0
:3

7
:5

9
0
0
:3

7
:5

4
0
0
:4

2
:5

6
0
0
:3

7
:5

2
0
0
:3

7
:3

5
0
0
:4

2
:3

5
0
1
:5

8
:0

5

3
2
7
6
8
×

3
2
7
6
8

1
9
:2

5
:0

2
E

T
E

T
E

T
E

T
E

T
E

T
2
3
:0

1
:4

5
E

T
E

T

(b
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
P

re
fe

rr
ed

–
S

ca
tt

er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:0

9
0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

4
4
0
9
6
×

4
0
9
6

0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:4

0
0
0
:0

0
:3

9
0
0
:0

0
:3

9
0
0
:0

0
:5

1
0
0
:0

0
:4

3
0
0
:0

1
:0

9
8
1
9
2
×

8
1
9
2

0
0
:0

4
:5

4
0
0
:0

4
:5

2
0
0
:0

4
:5

0
0
0
:0

4
:5

1
0
0
:0

4
:4

6
0
0
:0

4
:4

6
0
0
:0

4
:4

9
0
0
:0

4
:4

8
0
0
:0

4
:4

5
0
0
:0

4
:5

7
1
6
3
8
4
×

1
6
3
8
4

0
0
:3

8
:2

4
0
0
:4

3
:1

6
0
0
:3

8
:0

7
0
0
:4

0
:3

3
0
0
:3

8
:0

4
0
0
:3

7
:5

2
0
0
:3

7
:4

9
0
0
:3

7
:5

0
0
0
:3

7
:4

2
0
1
:4

5
:2

8

3
2
7
6
8
×

3
2
7
6
8

2
0
:4

2
:5

1
E

T
E

T
E

T
E

T
E

T
E

T
2
3
:4

8
:5

2
E

T
E

T

85

Table 3.4.7 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Flat Quadrant Configuration, using DDR4 only, with two

settings of KMP AFFINITY. ET indicates excessive time.

(a
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
D

D
R

4
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

5
0
0
:0

0
:0

4
0
0
:0

0
:0

5
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:3

4
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:3

5
0
0
:0

0
:2

8
0
0
:0

0
:3

2
4
0
9
6
×

4
0
9
6

0
0
:0

2
:5

7
0
0
:0

2
:5

5
0
0
:0

2
:5

4
0
0
:0

3
:2

5
0
0
:0

2
:5

4
0
0
:0

2
:5

4
0
0
:0

2
:5

5
0
0
:0

2
:5

7
0
0
:0

3
:0

3
0
0
:0

3
:1

1
8
1
9
2
×

8
1
9
2

0
0
:2

9
:0

7
0
0
:2

3
:5

4
0
0
:2

3
:4

7
0
0
:2

4
:0

3
0
0
:2

4
:0

0
0
0
:2

3
:4

4
0
0
:2

3
:5

2
0
0
:2

3
:5

5
0
0
:2

5
:3

7
0
0
:2

4
:4

8
1
6
3
8
4
×

1
6
3
8
4

0
3
:1

6
:2

8
0
3
:1

2
:2

0
0
3
:1

1
:2

0
0
3
:1

0
:5

9
0
3
:1

1
:1

0
0
3
:1

1
:2

0
0
3
:1

2
:0

9
0
3
:1

2
:5

3
0
3
:1

4
:1

7
0
3
:1

7
:0

7

3
2
7
6
8
×

3
2
7
6
8

2
5
:5

5
:1

6
E

T
E

T
E

T
E

T
E

T
E

T
2
5
:5

6
:3

9
E

T
E

T

(b
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
D

D
R

4
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

4
0
0
:0

0
:0

4
0
0
:0

0
:0

4
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

4
0
0
:0

0
:0

5
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

5
0
0
:0

0
:2

1
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

4
0
0
:0

0
:2

5
0
0
:0

0
:2

5
0
0
:0

0
:2

8
0
0
:0

0
:3

3
4
0
9
6
×

4
0
9
6

0
0
:0

2
:5

7
0
0
:0

2
:5

6
0
0
:0

2
:5

4
0
0
:0

2
:5

3
0
0
:0

2
:5

4
0
0
:0

2
:5

3
0
0
:0

2
:5

3
0
0
:0

2
:5

7
0
0
:0

3
:0

3
0
0
:0

3
:1

3
8
1
9
2
×

8
1
9
2

0
0
:2

4
:0

2
0
0
:2

3
:5

6
0
0
:2

3
:4

6
0
0
:2

3
:4

4
0
0
:2

3
:4

4
0
0
:2

4
:0

4
0
0
:2

3
:4

9
0
0
:2

4
:1

7
0
0
:2

4
:1

2
0
0
:2

6
:3

1
1
6
3
8
4
×

1
6
3
8
4

0
3
:1

2
:5

8
0
3
:1

2
:1

3
0
3
:1

1
:5

4
0
3
:1

1
:5

4
0
3
:1

1
:5

2
0
3
:1

2
:0

1
0
3
:1

2
:3

3
0
3
:1

3
:3

2
0
3
:1

4
:2

4
0
3
:1

8
:0

4

3
2
7
6
8
×

3
2
7
6
8

2
5
:5

9
:5

9
E

T
E

T
E

T
E

T
E

T
E

T
2
5
:5

2
:5

7
E

T
E

T

86

Table 3.4.8 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using only 256 threads in Flat Quadrant Configuration, using MCDRAM only, with

two settings of KMP AFFINITY.

(a
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
M

C
D

R
A

M
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

0
0
0
:0

0
:3

8
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

6
0
0
:0

0
:3

6
0
0
:0

0
:3

6
0
0
:0

0
:3

9
8
1
9
2
×

8
1
9
2

0
0
:0

4
:5

8
0
0
:0

4
:5

3
0
0
:0

4
:5

1
0
0
:0

4
:5

4
0
0
:0

4
:5

4
0
0
:0

4
:4

5
0
0
:0

4
:4

4
0
0
:0

4
:4

5
0
0
:0

4
:5

6

1
6
3
8
4
×

1
6
3
8
4

0
0
:3

7
:4

6
0
0
:3

7
:5

4
0
0
:3

8
:0

6
0
0
:3

8
:1

3
0
0
:3

8
:5

1
0
0
:3

7
:4

0
0
0
:3

7
:3

1
0
0
:3

7
:0

9
(*

)

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

M
C

D
R

A
M

ca
p

a
ci

ty
—

–

(b
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
M

C
D

R
A

M
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:0

6
0
0
:0

0
:0

6
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

6
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

1
0
0
:0

0
:3

9
0
0
:0

0
:3

8
0
0
:0

0
:3

7
0
0
:0

0
:3

6
0
0
:0

0
:3

6
0
0
:0

0
:3

6
0
0
:0

0
:3

7
0
0
:0

0
:3

9
8
1
9
2
×

8
1
9
2

0
0
:0

5
:0

4
0
0
:0

4
:5

5
0
0
:0

4
:5

6
0
0
:0

4
:5

3
0
0
:0

4
:5

6
0
0
:0

4
:4

7
0
0
:0

4
:4

3
0
0
:0

4
:4

3
0
0
:0

4
:5

6

1
6
3
8
4
×

1
6
3
8
4

0
0
:3

8
:4

3
0
0
:3

8
:3

4
0
0
:3

8
:3

7
0
0
:3

8
:0

8
0
0
:3

8
:3

1
0
0
:3

7
:4

3
0
0
:3

7
:2

6
0
0
:3

7
:3

4
(*

)

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

M
C

D
R

A
M

ca
p

a
ci

ty
—

–

87

Table 3.4.9 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using only 256 threads in Flat Quadrant Configuration, using MCDRAM and DDR4,

with two settings of KMP AFFINITY. ET indicates excessive time.

(a
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
P

re
fe

rr
ed

–
C

o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:0

6
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

0
0
0
:0

0
:3

9
0
0
:0

0
:3

6
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

5
0
0
:0

0
:3

6
0
0
:0

0
:3

7
0
0
:0

0
:3

8
8
1
9
2
×

8
1
9
2

0
0
:0

4
:5

6
0
0
:0

4
:5

6
0
0
:0

4
:4

9
0
0
:0

4
:4

8
0
0
:0

4
:5

5
0
0
:0

4
:4

3
0
0
:0

4
:4

1
0
0
:0

4
:4

4
0
0
:0

4
:5

3
1
6
3
8
4
×

1
6
3
8
4

0
0
:3

8
:1

8
0
0
:3

7
:2

8
0
0
:3

7
:4

2
0
0
:3

8
:0

9
0
0
:3

8
:3

8
0
0
:3

7
:0

6
0
0
:3

7
:1

3
0
0
:3

7
:3

9
0
1
:1

8
:1

6

3
2
7
6
8
×

3
2
7
6
8

2
0
:3

8
:1

2
E

T
E

T
E

T
E

T
E

T
2
2
:0

4
:4

3
E

T
E

T

(b
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
P

re
fe

rr
ed

–
S

ca
tt

er

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

7
0
0
:0

0
:0

6
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

0
0
0
:0

0
:3

9
0
0
:0

0
:3

8
0
0
:0

0
:3

7
0
0
:0

0
:3

7
0
0
:0

0
:3

5
0
0
:0

0
:3

6
0
0
:0

0
:3

7
0
0
:0

0
:3

8
8
1
9
2
×

8
1
9
2

0
0
:0

5
:0

4
0
0
:0

4
:5

6
0
0
:0

4
:5

4
0
0
:0

4
:5

5
0
0
:0

4
:5

4
0
0
:0

4
:4

3
0
0
:0

4
:4

1
0
0
:0

4
:4

4
0
0
:0

4
:5

3
1
6
3
8
4
×

1
6
3
8
4

0
0
:3

8
:3

7
0
0
:3

8
:2

1
0
0
:3

8
:0

7
0
0
:3

8
:1

6
0
0
:3

8
:3

4
0
0
:3

7
:1

4
0
0
:3

7
:1

6
0
0
:3

7
:3

8
0
1
:2

1
:5

0

3
2
7
6
8
×

3
2
7
6
8

1
9
:4

8
:1

2
E

T
E

T
E

T
E

T
E

T
2
1
:2

4
:5

1
E

T
E

T

88

Table 3.4.10 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using only 256 threads in Flat Quadrant Configuration, using DDR4 only, with two

settings of KMP AFFINITY. ET indicates excessive time.

(a
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
D

D
R

4
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

3
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

1
0
0
:0

0
:2

1
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

1
0
0
:0

0
:2

2
0
0
:0

0
:2

4
4
0
9
6
×

4
0
9
6

0
0
:0

2
:5

1
0
0
:0

2
:4

9
0
0
:0

2
:4

9
0
0
:0

2
:4

8
0
0
:0

2
:4

9
0
0
:0

2
:5

0
0
0
:0

2
:5

2
0
0
:0

2
:5

6
0
0
:0

3
:0

6
8
1
9
2
×

8
1
9
2

0
0
:2

3
:2

7
0
0
:2

3
:2

5
0
0
:2

3
:1

9
0
0
:2

3
:1

9
0
0
:2

3
:2

0
0
0
:2

3
:2

9
0
0
:2

3
:3

6
0
0
:2

3
:5

0
0
0
:2

4
:1

1
1
6
3
8
4
×

1
6
3
8
4

0
3
:1

0
:0

3
0
3
:0

9
:5

5
0
3
:0

9
:2

4
0
3
:0

9
:3

4
0
3
:0

9
:3

4
0
3
:1

0
:0

9
0
3
:1

1
:0

3
0
3
:1

2
:0

3
0
3
:1

4
:5

8

3
2
7
6
8
×

3
2
7
6
8

2
5
:3

8
:3

7
E

T
E

T
E

T
E

T
E

T
2
5
:4

3
:2

4
E

T
E

T

(b
)

K
N

L
–

F
la

t
Q

u
a
d

ra
n
t

C
o
n

fi
g
u

ra
ti

o
n

–
D

D
R

4
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
6

3
2

6
4

1
2
8

2
5
6

T
h

re
a
d

s/
p

ro
c

2
5
6

1
2
8

6
4

3
2

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

3
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

1
0
0
:0

0
:2

1
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

0
0
0
:0

0
:2

1
0
0
:0

0
:2

2
0
0
:0

0
:2

4
4
0
9
6
×

4
0
9
6

0
0
:0

2
:5

1
0
0
:0

2
:5

1
0
0
:0

2
:4

8
0
0
:0

2
:4

8
0
0
:0

2
:4

9
0
0
:0

2
:5

0
0
0
:0

2
:5

2
0
0
:0

2
:5

6
0
0
:0

3
:0

3
8
1
9
2
×

8
1
9
2

0
0
:2

3
:3

3
0
0
:2

3
:3

0
0
0
:2

3
:2

2
0
0
:2

3
:1

6
0
0
:2

3
:2

1
0
0
:2

3
:3

2
0
0
:2

3
:3

6
0
0
:2

3
:4

6
0
0
:2

4
:0

9
1
6
3
8
4
×

1
6
3
8
4

0
3
:1

0
:1

1
0
3
:1

0
:1

0
0
3
:1

0
:0

8
0
3
:0

9
:4

7
0
3
:0

9
:5

3
0
3
:1

0
:0

1
0
3
:1

0
:5

9
0
3
:1

1
:2

8
0
3
:1

4
:2

8

3
2
7
6
8
×

3
2
7
6
8

2
5
:4

3
:2

3
E

T
E

T
E

T
E

T
E

T
2
5
:4

1
:3

3
E

T
E

T

89

maximum of a single job in the queue. We omit results using 256 threads in this case

due to this 1 job per user maximum that makes completing a full performance study

time consuming. The max runtime for a job in this queue is 12 hours, thus none of

the 32,768× 32,768 can be run in this case.

We run in the same manner as with Flat Quadrant configuration, except in a

different queue. Thus the slurm scripts reflect only the difference of the Flat-All2All

queue. Tables 3.4.11–3.4.13 show the results in this mode using 272 threads.

We can compare the Quadrant and All-to-All cluster modes using the Flat mem-

ory mode. Tables 3.4.5–3.4.7 use Quadrant cluster mode, while Tables 3.4.11–3.4.13

use All-to-All cluster mode. It is clear that when using the MCDRAM only in Ta-

bles 3.4.11 and 3.4.5, that Quadrant cluster mode performed slightly better than

All-to-All. This behavior could be expected as the memory addresses are distributed

evenly in the All-to-All cluster mode, and are somewhat localized in the Quadrant

cluster mode. In Tables 3.4.12 and 3.4.13 and Tables 3.4.6 and 3.4.7 in which the

preferred option, and the DDR4 only are used respectively, we do not observe the

same run time advantage of Quadrant cluster mode. That is, the average run times

across the rows of Table 3.4.6 and 3.4.7 are comparable to those of Tables 3.4.12 and

3.4.13. From this we cannot directly conclude that Quadrant cluster mode performs

better that All-to-All cluster mode.

Overall the performance results in the Flat All-to-All configuration reflect those

in the Flat Quadrant configuration. In particular, the choice of KMP_AFFINITY as

scatter or compact has no observable impact on the run times. We again observe

that using MCDRAM only is almost 5x faster than using DDR4 only. Using MC-

DRAM only, in the cases we can run, again showed the possibility for slightly better

performance when configured with Flat memory mode rather than as L3 cache in

Cache memory mode. The preferred=1 option performed like using the MCDRAM

90

only when the case fit in the MCDRAM. For the 32,768 × 32,768 case we readily

observe the benefit to using the MCDRAM with the DDR4 in Flat memory mode

from the run times more than 10% faster than using DDR4 only.

3.4.4 Baseline Results

As a baseline comparison, we use the other hardware that is presently still available

on Stampede. Specifically, we use a typical CPU/KNC hybrid node on Stampede,

which has two 8-core CPUs and one KNC co-processor; there are also a limited number

of nodes with two KNC on Stampede, see [36] for more results. We focus on a node

with one KNC, since there are more of them and they motivate comparison of one

KNC to one KNL. We again note that this hardware is currently in the phasing out

stages. In Section 3.4.4, we present results using the first-generation KNC in both

native and symmetric mode, and in Section 3.4.4 the results using the CPUs.

KNC Studies

Unlike the standalone KNL, the KNC is only a co-processor thus needs to be used in

a hybrid node that also contains a CPU as host. Stampede uses a typical CPU/KNC

hybrid node arrangement with two CPUs and one KNC in the node. In this arrange-

ment, the KNC may be used by itself in native mode, with the CPU in symmetric

mode, or in offload mode. In native mode, only a executable for the Phi is required

as only the resources on the Phi are used. In symmetric mode, the Phi and CPU

resources on the node are used simultaneously. To run in this mode requires a CPU

executable and a Phi executable. In offload mode, the CPUs serve only as facilitators

to MPI communication to other units so that all calculations take place on the Phi.

Offload mode was demonstrated to be inefficient for this test problem in [36] based

on the restriction to multi-threading only, not MPI parallelism, in offload regions on

91

Table 3.4.11 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Flat All-to-All Configuration, using MCDRAM only, with two

settings of KMP AFFINITY.

(a
)

K
N

L
–

F
la

t
A

ll
-t

o
-A

ll
C

o
n

fi
g
u

ra
ti

o
n

–
M

C
D

R
A

M
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

3
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:3

7
0
0
:0

0
:3

8
0
0
:0

0
:3

8
0
0
:0

0
:3

8
0
0
:0

0
:3

8
8
1
9
2
×

8
1
9
2

0
0
:0

5
:1

8
0
0
:0

5
:2

1
0
0
:0

5
:1

2
0
0
:0

5
:1

1
0
0
:0

5
:0

9
0
0
:0

5
:0

6
0
0
:0

5
:1

0
0
0
:0

5
:0

5
0
0
:0

5
:0

6
0
0
:0

6
:0

5

1
6
3
8
4
×

1
6
3
8
4

0
0
:4

1
:2

3
0
0
:4

1
:0

7
0
0
:4

0
:5

1
0
0
:4

0
:4

6
0
0
:4

5
:5

1
0
0
:4

0
:5

9
0
0
:4

2
:5

9
0
0
:4

0
:4

8
0
0
:4

0
:5

0
(*

)

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

M
C

D
R

A
M

ca
p

a
ci

ty
—

–

(b
)

K
N

L
–

F
la

t
A

ll
-t

o
-A

ll
C

o
n

fi
g
u

ra
ti

o
n

–
M

C
D

R
A

M
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
2
0
4
8
×

2
0
4
8

0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:0

9
0
0
:0

0
:0

5
0
0
:0

0
:0

5
0
0
:0

0
:1

0
0
0
:0

0
:0

6
0
0
:0

0
:0

6
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

3
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

4
0
0
:0

0
:4

0
8
1
9
2
×

8
1
9
2

0
0
:0

5
:1

5
0
0
:0

5
:1

7
0
0
:0

5
:1

4
0
0
:0

5
:1

2
0
0
:0

5
:1

0
0
0
:0

5
:0

9
0
0
:0

5
:0

5
0
0
:0

5
:0

6
0
0
:0

5
:0

6
0
0
:0

5
:1

7

1
6
3
8
4
×

1
6
3
8
4

0
0
:4

1
:2

7
0
0
:4

1
:1

0
0
0
:4

0
:5

3
0
0
:4

1
:0

1
0
0
:4

0
:4

7
0
0
:4

5
:1

1
0
0
:4

3
:5

0
0
0
:4

0
:5

1
0
0
:4

4
:5

4
(*

)

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

M
C

D
R

A
M

ca
p

a
ci

ty
—

–

92

Table 3.4.12 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Flat All-to-All Configuration, using MCDRAM and DDR4,

with two settings of KMP AFFINITY. ET indicates excessive time.

(a
)

K
N

L
–

F
la

t
A

ll
-t

o
-A

ll
C

o
n

fi
g
u

ra
ti

o
n

–
P

re
fe

rr
ed

–
C

o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:0

9
0
0
:0

0
:1

0
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

3
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

1
0
0
:0

0
:4

1
0
0
:0

0
:4

5
0
0
:0

0
:4

8
8
1
9
2
×

8
1
9
2

0
0
:0

5
:1

7
0
0
:0

5
:1

5
0
0
:0

5
:1

2
0
0
:0

5
:1

1
0
0
:0

5
:0

9
0
0
:0

5
:1

0
0
0
:0

5
:0

8
0
0
:0

5
:0

9
0
0
:0

5
:1

1
0
0
:0

5
:1

8
1
6
3
8
4
×

1
6
3
8
4

0
0
:4

1
:3

5
0
0
:4

1
:2

2
0
0
:4

0
:5

1
0
0
:4

0
:4

1
0
0
:4

0
:4

5
0
0
:4

0
:5

0
0
0
:4

0
:5

0
0
0
:4

5
:1

8
0
0
:4

0
:5

4
0
1
:2

7
:3

7

3
2
7
6
8
×

3
2
7
6
8

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

(b
)

K
N

L
–

F
la

t
A

ll
-t

o
-A

ll
C

o
n

fi
g
u

ra
ti

o
n

–
P

re
fe

rr
ed

–
S

ca
tt

er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

1
0
0
:0

0
:0

1
0
0
:0

0
:0

2
0
0
:0

0
:0

2
2
0
4
8
×

2
0
4
8

0
0
:0

0
:0

8
0
0
:0

0
:0

8
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

0
0
0
:0

0
:1

1
0
0
:0

0
:1

1
4
0
9
6
×

4
0
9
6

0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

0
0
0
:0

0
:4

2
0
0
:0

0
:4

2
0
0
:0

0
:4

3
0
0
:0

0
:4

5
0
0
:0

0
:4

9
8
1
9
2
×

8
1
9
2

0
0
:0

5
:1

8
0
0
:0

5
:1

6
0
0
:0

5
:1

3
0
0
:0

5
:1

1
0
0
:0

5
:1

0
0
0
:0

5
:1

0
0
0
:0

5
:1

0
0
0
:0

5
:1

0
0
0
:0

5
:1

2
0
0
:0

5
:1

8
1
6
3
8
4
×

1
6
3
8
4

0
0
:4

2
:0

7
0
0
:4

1
:0

1
0
0
:4

5
:4

6
0
0
:4

5
:1

5
0
0
:4

5
:3

7
0
0
:4

5
:2

0
0
0
:4

0
:5

0
0
0
:4

5
:2

8
0
0
:4

0
:5

0
0
1
:2

4
:0

8

3
2
7
6
8
×

3
2
7
6
8

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

93

Table 3.4.13 Observed wall clock times in units of HH:MM:SS on 1 KNL on Stampede

using all 272 threads in Flat All-to-All Configuration, using DDR4 only, with two

settings of KMP AFFINITY. ET indicates excessive time.

(a
)

K
N

L
–

F
la

t
A

ll
-t

o
-A

ll
C

o
n

fi
g
u

ra
ti

o
n

–
D

D
R

4
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

4
0
0
:0

0
:0

4
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

4
0
0
:0

0
:0

7
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

2
0
0
:0

0
:2

2
0
0
:0

0
:2

2
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

5
0
0
:0

0
:3

5
0
0
:0

0
:2

5
0
0
:0

0
:2

8
0
0
:0

0
:3

3
4
0
9
6
×

4
0
9
6

0
0
:0

2
:5

5
0
0
:0

2
:5

6
0
0
:0

2
:5

3
0
0
:0

2
:5

3
0
0
:0

2
:5

4
0
0
:0

2
:5

4
0
0
:0

2
:5

5
0
0
:0

2
:5

7
0
0
:0

3
:0

3
0
0
:0

3
:5

7
8
1
9
2
×

8
1
9
2

0
0
:2

4
:5

2
0
0
:2

5
:3

0
0
0
:2

3
:4

7
0
0
:2

3
:4

7
0
0
:2

3
:4

8
0
0
:2

3
:4

9
0
0
:2

3
:4

9
0
0
:2

5
:1

0
0
0
:2

4
:1

5
0
0
:2

4
:5

0
1
6
3
8
4
×

1
6
3
8
4

0
3
:1

3
:2

1
0
3
:1

2
:2

8
0
3
:1

1
:5

2
0
3
:1

1
:5

7
0
3
:1

1
:1

5
0
3
:1

1
:5

1
0
3
:1

1
:5

9
0
3
:1

3
:0

1
0
3
:1

5
:3

4
0
3
:1

8
:1

1

3
2
7
6
8
×

3
2
7
6
8

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

(b
)

K
N

L
–

F
la

t
A

ll
-t

o
-A

ll
C

o
n

fi
g
u

ra
ti

o
n

–
D

D
R

4
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
6

1
7

3
4

6
8

1
3
6

2
7
2

T
h

re
a
d

s/
p

ro
c

2
7
2

1
3
6

6
8

3
4

1
7

1
6

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

4
0
0
:0

0
:0

4
0
0
:0

0
:0

4
0
0
:0

0
:0

4
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

4
0
0
:0

0
:0

6
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

5
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

4
0
0
:0

0
:2

5
0
0
:0

0
:2

6
0
0
:0

0
:2

8
0
0
:0

0
:3

3
4
0
9
6
×

4
0
9
6

0
0
:0

2
:5

7
0
0
:0

2
:5

6
0
0
:0

2
:5

4
0
0
:0

2
:5

4
0
0
:0

2
:5

4
0
0
:0

2
:5

3
0
0
:0

2
:5

5
0
0
:0

2
:5

7
0
0
:0

3
:0

2
0
0
:0

3
:5

3
8
1
9
2
×

8
1
9
2

0
0
:2

4
:0

2
0
0
:2

6
:0

1
0
0
:2

3
:4

8
0
0
:2

3
:4

8
0
0
:2

5
:2

6
0
0
:2

3
:4

4
0
0
:2

5
:2

4
0
0
:2

3
:5

7
0
0
:2

4
:1

5
0
0
:2

6
:0

3
1
6
3
8
4
×

1
6
3
8
4

0
3
:1

4
:4

2
0
3
:1

2
:4

4
0
3
:1

2
:2

3
0
3
:1

1
:4

3
0
3
:1

1
:2

8
0
3
:1

2
:0

1
0
3
:1

2
:5

6
0
3
:1

4
:0

1
0
3
:1

5
:4

7
0
3
:1

9
:0

2

3
2
7
6
8
×

3
2
7
6
8

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

E
T

94

the Phi. As a result the performance in offload mode is roughly consistent with the

result for 1 MPI process and 240 threads per process in Table 3.4.14. We restrict

our attention in this work to KNC in native and symmetric mode as a comparison to

KNL results. In Table 3.4.14 we present results for native mode. In Table 3.4.15 we

present results for symmetric mode.

The hybrid MPI+OpenMP code in C was compiled for the KNC on Stampede

using the Intel compiler version 15.0.2 with flags -c99 -Wall -O3 -openmp -mmic

(with OpenMP version 4.0) and Intel MPI version 5.0.2. We use default settings

in the run script except we use the normal-mic partition, MIC_PPN for the number

of MPI processes, and MIC_OMP_NUM_THREADS for the number of OpenMP threads.

The run command used for native mode is ibrun.symm -m <mic_executable>. The

run command ibrun.symm -c <cpu_executable> -m <mic_executable> is used for

symmetric mode. For symmetric mode we additionally specify KMP_AFFINITY and

OMP_NUM_THREADS for the CPU.

We also note our use of KMP_STACKSIZE to control the maximum thread stacksize.

In our case this is done with the line in the slurm script export KMP_STACKSIZE=32m

which sets the maximum stacksize of each thread to 32 MB.

In these studies, we tested hybrid MPI+OpenMP code in native mode on 60 of the

61 KNC cores, leaving one core for the operating system. To do this, with a maximum

of 4 threads per core, we set MPI processes times OpenMP threads always equal to

240. Our choice is based on studies in [36] that demonstrate strong scalability when

using increasing numbers of cores on the KNC, leading to the conclusion that one

should use all or nearly all available hardware on the KNC.

In Table 3.4.14 we show results for different KMP AFFINITY in native mode on the

KNC. In native mode, we are restricted to the 8 GB of GDDR5 memory on board

the KNC. Examining the largest possible case, 8,192 × 8,192, the best run time is

95

21:28. Behavior for the different KMP_MIC_AFFINITY settings is most consistent in the

KMP_MIC_AFFINITY=compact case.

In Table 3.4.15 we show results for different KMP AFFINITY in symmetric mode on

the KNC. We use CPU KMP_AFFINITY set to compact with KMP_MIC_AFFINITY set to

compact or scatter. We run with a total of 16 MPI process and OpenMP threads on

the CPU and a total of 240 on the KNC coprocessor. In doing this we maintain the

number of MPI processes on the CPU and MIC. The KMP_MIC_AFFINITY setting does

not show observable impact on the run time. In the 8,192× 8,192, as in native mode,

compact shows a bit more consistent results. Using the 8,192× 8,192 case we observe

that the best run time in native mode is 1.4 times slower than symmetric mode, 21:28

to 15:21. More importantly, larger problem sizes can be solved with symmetric mode.

The 32,768× 32,768 case is omitted due to excessively long run times.

When we compare the best results of the KNC against the best results of the KNL

we observe that the KNL is significantly faster when the MCDRAM is used. In the

8,192 × 8,192 case the KNL run times under 5 minutes were 4.5 times faster than

the KNC in native mode, and 3.3 times faster than the KNC in symmetric mode.

But, without using the MCDRAM on the KNL run times were 23 minutes, longer

than the KNC in native and symmetric modes. In the 16,384× 16,384 case the KNL

run times near 37 minutes were almost 3 times faster than the KNC symmetric mode

result. Again without using the MCDRAM, the KNL was 1.8 times slower than the

KNC in symmetric mode. This provides again a compelling case for making code

memory-efficient, so that it fit into the MCDRAM of the KNL.

CPU Studies

This section presents results using only the CPUs on the node. The hybrid

MPI+OpenMP code in C was compiled for CPUs on Stampede using the Intel com-

96

Table 3.4.14 Observed wall clock times in units of MM:SS on 1 KNC on Stam-

pede using only 240 threads in native mode, GDDR5 on Phi, with two settings of

KMP AFFINITY.

(a
)

K
N

C
–

S
ta

m
p

ed
e

–
N

a
ti

v
e

M
o
d

e
–

C
o
m

p
a
ct

M
P

I
p

ro
c

1
2

4
8

1
5

1
6

3
0

6
0

1
2
0

2
4
0

T
h

re
a
d

s/
p

ro
c

2
4
0

1
2
0

6
0

3
0

1
6

1
5

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

4
0
0
:0

0
:0

3
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

3
0
0
:0

0
:0

2
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

6
0
0
:0

0
:2

0
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

0
0
0
:0

0
:1

6
0
0
:0

0
:1

5
0
0
:0

0
:1

4
0
0
:0

0
:2

2
0
0
:0

0
:1

5
0
0
:0

0
:2

2
0
0
:0

0
:2

2
0
0
:0

0
:2

7
0
0
:0

0
:5

5
4
0
9
6
×

4
0
9
6

0
0
:0

2
:1

0
0
0
:0

1
:4

6
0
0
:0

1
:4

2
0
0
:0

1
:4

1
0
0
:0

2
:3

1
0
0
:0

1
:4

1
0
0
:0

2
:5

2
0
0
:0

2
:3

1
0
0
:0

2
:4

2
0
0
:0

3
:4

0
8
1
9
2
×

8
1
9
2

0
0
:2

8
:4

5
0
0
:2

8
:4

1
0
0
:2

9
:3

1
0
0
:2

6
:3

3
0
0
:2

1
:2

8
0
0
:2

6
:2

6
0
0
:2

4
:2

0
0
0
:2

3
:1

0
0
0
:2

3
:0

4
0
0
:2

9
:2

9

1
6
3
8
4
×

1
6
3
8
4

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

K
N

C
o
n

ch
ip

ca
p

a
ci

ty
—

–

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

K
N

C
o
n

ch
ip

ca
p

a
ci

ty
—

–

(b
)

K
N

C
–

S
ta

m
p

ed
e

–
N

a
ti

v
e

M
o
d

e
–

S
ca

tt
er

M
P

I
p

ro
c

1
2

4
8

1
5

1
6

3
0

6
0

1
2
0

2
4
0

T
h

re
a
d

s/
p

ro
c

2
4
0

1
2
0

6
0

3
0

1
6

1
5

8
4

2
1

1
0
2
4
×

1
0
2
4

0
0
:0

0
:0

4
0
0
:0

0
:0

3
0
0
:0

0
:0

2
0
0
:0

0
:0

2
0
0
:0

0
:0

3
0
0
:0

0
:0

2
0
0
:0

0
:0

3
0
0
:0

0
:0

3
0
0
:0

0
:0

6
0
0
:0

0
:2

0
2
0
4
8
×

2
0
4
8

0
0
:0

0
:2

0
0
0
:0

0
:1

6
0
0
:0

0
:1

5
0
0
:0

0
:1

4
0
0
:0

0
:2

2
0
0
:0

0
:1

5
0
0
:0

0
:2

2
0
0
:0

0
:2

2
0
0
:0

0
:2

7
0
0
:0

0
:5

6
4
0
9
6
×

4
0
9
6

0
0
:0

2
:0

8
0
0
:0

1
:4

7
0
0
:0

1
:4

2
0
0
:0

1
:4

1
0
0
:0

3
:0

8
0
0
:0

1
:4

2
0
0
:0

2
:3

1
0
0
:0

2
:3

2
0
0
:0

2
:4

2
0
0
:0

3
:4

4
8
1
9
2
×

8
1
9
2

0
0
:3

1
:1

8
0
0
:2

9
:5

3
0
0
:2

9
:2

0
0
0
:2

6
:4

1
0
0
:2

1
:3

3
0
0
:2

6
:3

4
0
0
:2

2
:5

8
0
0
:3

5
:1

9
0
0
:2

2
:4

9
0
0
:2

9
:1

9

1
6
3
8
4
×

1
6
3
8
4

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

K
N

C
o
n

ch
ip

ca
p

a
ci

ty
—

–

3
2
7
6
8
×

3
2
7
6
8

—
–

M
em

o
ry

re
q
u

ir
em

en
t

ex
ce

ed
s

K
N

C
o
n

ch
ip

ca
p

a
ci

ty
—

–

97

Table 3.4.15 Observed wall clock times in units of MM:SS on 1 KNC, 2 CPU in a

single node on Stampede using only 240 threads in symmetric mode, GDDR5 on Phi,

DDR3 on host, with two settings of KMP AFFINITY. ET indicates excessive run time.

(a) KNC – Stampede – Symmetric Mode – Compact

MPI proc 1 2 4 8 16

Threads/proc on CPU 16 8 4 2 1

Threads/proc on MIC 240 120 60 30 15

1024× 1024 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048× 2048 00:00:09 00:00:09 00:00:09 00:00:09 00:00:09
4096× 4096 00:01:22 00:01:23 00:01:22 00:01:22 00:01:22
8192× 8192 00:16:39 00:16:25 00:16:28 00:15:37 00:15:27

16384× 16384 01:55:48 02:01:18 02:06:42 01:48:33 01:48:35

32768× 32768 ET ET ET ET ET

(b) KNC – Stampede – Symmetric Mode – Scatter

MPI proc 1 2 4 8 16

Threads/proc on CPU 16 8 4 2 1

Threads/proc on MIC 240 120 60 30 15

1024× 1024 00:00:02 00:00:02 00:00:01 00:00:01 00:00:01
2048× 2048 00:00:09 00:00:09 00:00:09 00:00:09 00:00:09
4096× 4096 00:01:23 00:01:23 00:01:22 00:01:22 00:01:22
8192× 8192 00:17:11 00:16:57 00:16:21 00:15:35 00:15:21

16384× 16384 02:12:35 02:12:11 02:06:10 01:48:52 01:48:29

32768× 32768 ET ET ET ET ET

piler version 15.0.2 with flags -c99 -Wall -O3 -openmp (with OpenMP version 4.0)

and Intel MPI version 5.0.2. We use default settings in the run script and use the

standard run command ibrun.

Table 3.4.16 reports the baseline performance results using only the two 8-core

CPUs in one node presently available on Stampede, for comparison with the Intel

Xeon Phi studies. In the studies using 1 CPU node, we tested hybrid MPI+OpenMP

code such that we utilized all 16 cores on Stampede. These studies use the DDR3

RAM available on Stampede.

Results here show undesired treatment of the MPI process and threads distri-

bution despite our explicit control of thread placement with KMP_AFFINITY. Using

KMP_AFFINITY=compact we observe in the logs the correct distribution of threads

and run times that match for up to the 8,192 case, and we observe approximately the

same run time for all combinations of processes and threads. However in the 16,384

98

case we see improper placement for the 2 MPI processes, 8 threads per process in

which all of the threads are places on the first two cores, leaving the other 14 cores

idle. Similar behavior is also observed with 4 MPI processes and 4 threads per process

in that case. Using KMP_AFFINITY=scatter thread placements are again flawed, with

the best run time results occurring for MPI only parallelism. In both cases, the best

run times occur using MPI parallelism only, so we use only these results to compare

against KNC and KNL runs.

We compare back to Table 3.4.14 and observe that for most combinations of MPI

processes and threads, the KNC run times using GDDR5 are comparable to the CPU

run times using DDR3 on Stampede in Table 3.4.16. The KNL best times are only

slightly faster, 21.5 minutes compared with 21.75 minutes. Making full use of the

hybrid node with 1 KNL and two 8-core CPUs with the KNL in symmetric mode we

are able to beat the CPU only again, but by a larger margin, 15.5 minutes compared

to 21.75 minutes.

Now comparing back to the KNL, using MCDRAM in the 8,192 case with run

times of 4.75 minutes, is more than 4.5x faster than the CPU only runs. In the

16,384 case using MCDRAM on the KNL run times were at best 37 minutes, which is

more than 4.7x faster than the CPU only runs. Notably, when using only the DDR4

memory of the KNL node, with the 8,192 case run times of 23 minutes the CPU run

times of less than 22 minutes were better. The same was true in the 16,384 case run

times were over 3 hours, but the CPU only run times were less than 3 hours in the

best cases. This emphasizes the obvious need to take advantage of the MCDRAM in

KNL chip.

99

Table 3.4.16 Observed wall clock times in units of HH:MM:SS on one CPU node

with two 8-core CPUs on Stampede using 16 threads, DDR3 memory on the node,

with two settings of KMP AFFINITY. ET indicates excessive run time.

(a) CPU only – DDR3 – Stampede – Compact

MPI proc 1 2 4 8 16

Threads/proc 16 8 4 2 1

1024× 1024 00:00:01 00:00:01 00:00:01 00:00:01 00:00:01
2048× 2048 00:00:20 00:00:20 00:00:20 00:00:19 00:00:20
4096× 4096 00:02:43 00:02:43 00:02:42 00:02:42 00:02:42
8192× 8192 00:21:56 00:21:55 00:21:46 00:21:51 00:21:47

16384× 16384 02:57:04 08:04:49 05:54:44 02:55:21 02:55:05

32768× 32768 ET ET ET ET ET

(b) CPU only – DDR3 – Stampede – Scatter

MPI proc 1 2 4 8 16

Threads/proc 16 8 4 2 1

1024× 1024 00:00:12 00:00:06 00:00:04 00:00:03 00:00:01
2048× 2048 00:01:53 00:00:58 00:00:41 00:00:41 00:00:20
4096× 4096 00:16:01 00:07:27 00:05:31 00:05:25 00:02:43
8192× 8192 00:22:32 01:00:16 00:44:48 00:43:37 00:21:49

16384× 16384 02:56:45 08:01:16 05:56:53 05:51:16 02:55:07

32768× 32768 ET ET ET ET ET

3.5 Flat All-to-All Configuration on Grover KNL

For our testing we had access to Grover, a KNL testing server, at the University

of Oregon. Grover is a single node server with a Intel Xeon Phi 7250 pre-production

model running as a standalone processor. The Grover KNL is the same model number

as the Stampede-KNL cluster models.

The Grover KNL is configured in Flat All-to-All mode. The hybrid MPI+OpenMP

code in C was compiled for the KNL on Grover using the Intel compiler version 16.0.4

with the flags -xMIC-AVX512 -O3 -std=c99 -Wall -mkl -qopenmp (with OpenMP

version 4.0) and Intel MPI version 5.0.3. The code is run on Grover using the numactl

command. As on Stampede, the flag --membind=1 forces the code to use the MC-

DRAM memory, while the flag --membind=0 has it use the DDR4 memory.

Table 3.5.1 shows memory observations for different combinations of MPI processes

and OpenMP threads on Grover. The behavior is significantly better than that of

Stampede in terms of the amount of overhead per MPI processes.

100

Table 3.5.2 shows the performance results on the Grover KNL. These results show

essentially the same behavior of those on Stampede. For full discussion of the Grover

results see [35].

Table 3.5.1 Observed total memory usage in units of GB on the Grover KNL

using all 272 threads in Flat All to All configuration, using MCDRAM only, and

KMP AFFINITY=scatter.

Grover – KNL – (Flat All to All Configuration)

Combinations of MPI processes and OpenMP threads

MPI proc Predicted 1 2 4 8 16 17 34 68 136 272

Threads/proc memory (GB) 272 134 68 34 17 16 8 4 2 1

1024× 1024 < 0.100 0.09 0.10 0.12 0.16 0.28 0.28 0.51 1.01 2.14 4.38
2048× 2048 0.125 0.18 0.19 0.22 0.28 0.37 0.38 0.62 1.09 2.26 4.47
4096× 4096 0.500 0.56 0.57 0.59 0.66 0.77 0.77 1.00 1.48 2.64 4.86
8192× 8192 2.000 2.06 2.07 2.10 2.17 2.30 2.31 2.60 3.13 4.40 6.88

16384× 16384 8.000 8.06 8.07 8.10 8.17 8.31 8.31 8.59 9.16 10.47 12.97

101

Table 3.5.2 Observed wall clock times in units of MM:SS on the Grover KNL using

all 272 threads in Flat All-to-All mode, MCDRAM or DDR4, with two settings of

KMP AFFINITY. ET indicates excessive time.

(a) KNL – Flat All-to-All Configuration – MCDRAM – Compact

MPI proc 1 2 4 8 16 17 34 68 136 272

Threads/proc 272 136 68 34 17 16 8 4 2 1

1024× 1024 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:02
2048× 2048 00:06 00:06 00:06 00:06 00:06 00:06 00:06 00:08 00:07 00:08
4096× 4096 00:41 00:41 00:41 00:41 00:41 00:41 00:41 00:40 00:42 00:46
8192× 8192 05:15 05:14 05:13 05:13 05:12 05:11 05:13 05:13 05:18 05:30

16384× 16384 43:46 41:14 41:09 41:11 40:55 40:59 40:55 40:52 41:32 41:38

(b) KNL – Flat All-to-All Configuration – MCDRAM – Scatter

MPI proc 1 2 4 8 16 17 34 68 136 272

Threads/proc 272 136 68 34 17 16 8 4 2 1

1024× 1024 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:01 00:02
2048× 2048 00:06 00:06 00:06 00:06 00:07 00:06 00:06 00:07 00:07 00:08
4096× 4096 00:41 00:41 00:41 00:40 00:41 00:41 00:40 00:40 00:42 00:46
8192× 8192 05:15 05:16 05:15 05:14 05:12 05:11 05:12 05:14 05:17 05:30

16384× 16384 41:33 41:15 41:37 41:50 40:58 40:59 40:51 41:09 41:01 41:43

(c) KNL – Flat All-to-All Configuration – DDR4 – Scatter

MPI proc 1 2 4 8 16 17 34 68 136 272

Threads/proc 272 136 68 34 17 16 8 4 2 1

1024× 1024 00:02 00:02 00:02 00:02 00:02 00:02 00:02 00:02 00:03 00:04
2048× 2048 00:22 00:21 00:21 00:21 00:21 00:21 00:22 00:23 00:23 00:25
4096× 4096 02:58 02:57 02:57 02:56 02:56 02:53 02:56 02:58 03:02 03:12
8192× 8192 24:09 24:08 24:00 24:02 24:02 23:58 24:02 24:09 24:27 25:09

16384× 16384 194:37 ET ET ET ET ET ET 193:43 ET ET

(d) KNL – Flat All-to-All Configuration – DDR4 – Compact

MPI proc 1 2 4 8 16 17 34 68 136 272

Threads/proc 272 136 68 34 17 16 8 4 2 1

1024× 1024 00:02 00:02 00:02 00:02 00:02 00:01 00:02 00:02 00:02 00:04
2048× 2048 00:22 00:21 00:22 00:21 00:22 00:21 00:21 00:22 00:24 00:26
4096× 4096 02:57 02:57 02:56 02:56 02:57 02:55 02:55 02:58 03:03 03:11
8192× 8192 24:09 24:07 24:00 24:00 23:59 23:58 24:00 24:08 24:29 25:11

16384× 16384 193:52 ET ET ET ET ET ET 193:58 ET ET

102

3.6 Conclusions and Outlook

The second-generation Intel Xeon Phi Knights Landing is a very promising new

many-core processor, in particular because it can be used as standalone CPU, which

can be useful for computationally intensive uses in individual research laboratories and

not just supercomputing centers. However, the different memory and cluster modes

available and the flexibility of their configuration options add layers of decision making

for researchers running their code. In fact, most of these configurations needs to be

chosen at boot time, so an individual researchers need to pick how to set up a KNL

in their labs. We use a classical test problem that uses memory-bound code as a first

test on how to run on the KNL, and in particular, what KNL configuration modes to

use. While memory-bound, the communication needs among the MPI processes and

OpenMP threads in the hybrid code are relatively light and highly structured. The

next step will be to test a code with more complex communication requirements. Each

of the available configurations of the KNL on the Stampede cluster are examined, with

the exception of the SNC cluster modes that require code modifications by the user.

We solve an assortment of different problem sizes including the largest possible mesh,

a 32,768× 32,768 mesh requiring 8 GB of memory, to provide stress on the memory

access.

Hybrid code, with both MPI and OpenMP parallelism, is important to capturing

the full potential of the KNL, even using a single KNL node, since neither MPI-only

nor OpenMP-only runs were the best in most studies.

Using a single KNL node we did not see any consistent benefit to using only 256

threads (16 threads left free) versus all 272 threads (68 cores with 4 threads per cores)

for this code. We observed that in some cases using 256 threads performed better than

272 threads, but this was not consistent across the board. It is recommended in [43]

that only 1 or 2 threads per core be used, so we ran a small study for our code and

103

observed that 1 thread per core was not the best, and 2 and 3 threads per core were

slightly better than 4 threads per core. Still, there was not a significant disadvantage,

so we continued to test using all (272 threads) or almost all (256 threads) of the

hardware in the KNL node in this work. In this sense, the demonstrations here

are intended to stress the whole chip and put pressure on its 2D mesh structure for

memory access.

Also suggested in [43] was using a maximum of one MPI task per core or even

fewer. We demonstrate with memory monitoring that at least the current MPI im-

plementation used on Stampede has a very significant memory overhead with each

process. This may be the underlying reason for the suggestion in [43].

The differences in the cluster modes tested, Quadrant cluster mode and All-to-All

cluster mode, were not very significant for this test code, but the better performance

of Quadrant cluster mode could be observed in some cases.

Configuring the KNL in Cache memory mode, in which the high-performance

MCDRAM is set as a L3 cache, gives the user excellent performance, without changes

to their code. This is good performance from runs that require less than the 16 GB

available of MCDRAM, and showed the best performance in our cases for the problems

larger than 16 GB. We observed slightly better performance in Flat memory mode

configurations of the KNL compares to Cache memory mode in the cases that required

less than the 16 GB available of MCDRAM.

The on-chip high bandwidth memory MCDRAM performs almost 5x better that

the DDR4 on the KNL. Examples of this are the configurations of the KNL with Flat

memory mode: Using MCDRAM, the run time is about 40 minutes in the 16,384

case, but with DDR4 over 3 hours of run time is needed. This matches the estimated

performance improvement of 5x based on the bandwidth difference [49].

104

We used the --preferred=1 option of the numactl command to take advantage of

both memory types in Flat memory mode. Performance that was significantly better

than using DDR4 only confirms to us that the user could, with careful control, take

full advantage of both memory types in a Flat memory mode configuration and see

significant performance improvements. We would expect that the performance could

be better than or at least competitive with that of Cache memory mode configurations,

if executed efficiently. Since Cache memory mode does not require the user to manage

the memory used explicitly in the code it is certainly easier. Recall that in Cache

memory mode there is only 96 GB total memory available, whereas in Flat mode all

112 GB are available.

In Flat mode, using the MCDRAM if available and DDR4 otherwise (preferred=1

setting with numactl) enables the use of all memory available. But, comparing to

Cache mode results when more than 16 GB of memory are required we observed that

19.5 hour run time was not competitive with the 15.5 hour run time in Cache mode.

This suggests that Cache mode is clearly preferred in cases in which the user wants

to use all available 112 GB of memory on the KNL.

Based on these tests, Stampede users should be inclined to run using the most

prominent KNL configuration on the Stampede system, the Cache Quadrant config-

uration. This matches the recommendation to use the Cache Quadrant configuration

as default in [43]. The associated queues are the develop and the normal queues of

the Stampede-KNL cluster. The normal queue is the largest on the cluster with the

most accommodating limits per job of any of the queues, an 80 node maximum per

job and 10 job maximum per user. The develop queue offers a nice alternative for

short jobs less than 2 hours and code testing purposes in this desired KNL configura-

tion. The combination of Cache memory mode and Quadrant cluster mode takes full

advantage of the high-performance MCDRAM with the least amount of work from

105

the standpoint of the user.

If a specific code requires less than 16 GB of memory, the Flat_Quadrant queue is

a good alternative and showed the ability perform with the Cache memory mode, when

using explicitly the MCDRAM through numactl. That queue allows a 40 node maxi-

mum per job with a 5 job maximum per user. Our results do not demonstrate any sig-

nificant advantage to the choice of KMP_AFFINITY=compact or KMP_AFFINITY=scatter.

We used KMP_AFFINITY=scatter and the choice of number of threads as a way to

restrict to particular number of threads per processes. This code does not require

significant or very demanding communication in its implementation. Communication

only takes place at the MPI level between ‘neighboring’ MPI processes. This could

explain that lack of impact on the run time by the choice of KMP_AFFINITY.

In this work we restricted our attention to a single KNL, and more demands for

communication and the network between nodes can be tested using more than one

KNL. In some initial testing, preliminary observations indicate excellence performance

using multiple KNL nodes, without performance drawbacks to using large numbers

of MPI processes. In using more than one node, the recommendation in [43] to leave

some cores free could be revisited.

We are in the process of running tests using more sophisticated real-world ap-

plication code, in particular a system of coupled, non-linear, time-dependent PDEs

that simulate the calcium ion dynamics within a heart cell [14, 22, 46]. This code re-

quires more demanding and significant communication and is more computationally

intensive than the test problem used here. This application code will put additional

burden on the MPI communication and the balance with OpenMP threads.

An additional opportunity to tune the code for the KNL specifically could test

the improvement from first-generation Phi to second-generation Phi in terms of the

number of Vector Processing Units. Each core of the KNL has 2 VPUs as described in

106

Section 3.3.1 which doubled the number VPUs per code from the first-generation Phi.

Results in [36, Table 1.6.2] show that for the KNC, with only 1 VPU per code, manual

loop unrolling to match the VPU structure improved the performance by a factor of

2 for the three-dimensional version of our test problem. We are also in the process of

investigating the effect of manual loop unrolling to improve the vectorization of the

code for the KNL. Initial results show the potential for performance in the presence of

manual loop unrolling to improve the vectorization of the code for the KNLs 2 VPUs

per core. This work focused, by comparison, on the performance opportunities of the

KNL that are achievable without changes in the code.

Testing against the baseline hardware of the current Stampede cluster, even though

this equipment is being phased out, we confirmed the significant performance improve-

ments of the KNL. For problems using less than 16 GB, in which the high-performance

MCDRAM is used, the KNL was more than 4.5 times faster than the two 8-core CPUs

on a Stampede node, 4.5 times faster than one KNC in native mode, and 3.3 times

faster than one KNC in symmetric mode with the two 8-core CPUs. Notably, runs

on the KNL that did not take advantage of the MCDRAM performed worse that the

KNC and CPU results across the board. This further emphasizes the obvious need

to take advantage of the MCDRAM memory on the KNL chip.

CHAPTER 4

CICR SIMULATION ON THE KNL

This chapter studies the performance of single and multiple KNL for the calcium

application code. The content of this chapter is intended for [16].

4.1 Introduction

In this chapter, we study the performance of the calcium induced calcium reduce

(CICR) application from Chapter 2 on the KNL. We use the results of Chapter 3 to

guide our initial choice of configuration. We demonstrate the feasibility of porting and

tuning special purpose application code to a single KNL and demonstrate the perfor-

mance of multiple KNL. We demonstrate the need for implementing multi-threading

in all time consuming portions of the code by showing results also for an interme-

diate version of OpenMP parallelization. Concretely, this chapter demonstrates the

scalability of the MPI and OpenMP implementations, investigate the balance of MPI

processes versus OpenMP threads, and the choice of number of threads per core to

use on the KNL. Finally, we show the scalability of the code using more than one

KNL.

Based on our findings in Chapter 3, we make initial decisions for our CICR runs

on the KNL. Given the significantly better performance using the high-performance

on-chip MCDRAM, we focus our attention to problem sizes that fit in the 16 GB

of MCDRAM. Since we focus on runs that fit in the MCDRAM, we use the Flat

Quadrant KNL configuration using the MCDRAM only. We do not explore the

Flat All-to-All configuration in this chapter, as it did not perform better than Flat

Quadrant in Chapter 3 and has the very restrictive queue limitation on Stampede of

one job in the queue per user at any time.

107

108

By restricting our attention to mesh sizes for CICR that fit entirely into the on-

chip memory of the KNL, we can accommodate two mesh refinements more than the

32 × 32 × 128 mesh used in the studies of Chapter 2. The trade-off for the use of

the finer meshes is the long run times for each simulation. For this reason, and the

limitations of our XSEDE allocation, we run the performance studies in this chapter

to a final time of 10 ms, rather than the full simulation time from Chapter 2 of

1000 ms. To capture our recently studied model components we choose parameter

sets from Case C: Blowup Case with ω = 10 in Section 2.5.2 for the performance

studies in this chapter. In the CPU runs that produced the results in Chapter 3 we

did not observe very significant difference in run time using different values for ω.

We concretely refer to Stampede in the Texas Advanced Computing Center (TACC)

at the University of Texas at Austin (www.tacc.utexas.edu). in this work, since

many researchers, e.g., U.S. based faculty, can apply for allocations through XSEDE

(www.xsede.org) [51]. At the time of this writing, the Stampede-KNL cluster at

TACC has 504 available KNL nodes, but the upcoming Stampede 2 cluster is in

development and expected to be released in Fall 2017 will include almost 6,000 nodes.

The MPI code in C was compiled for the KNL on the Stampede-KNL cluster login

node using the Intel compiler version 17.0.0 with flag for the KNL -xMIC-AVX512 and

the other flags -O3 -std=c99 -Wall and Intel MPI version 17.0.0. For the the hybrid

MPI+OpenMP code we add the flag -qopenmp and note again the Intel compiler

version 17.0.0, with OpenMP version 4.5, and Intel MPI version 17.0.0.

In this chapter, the notation (**) in results tables indicates that for the given case

the level of parallelization required is too large for the given mesh. In particular,

if there are more MPI processes than possible slices in the z-direction of the mesh,

which constrains the parallelism in the implementation, the case is impossible. Then,

for the mesh 16× 16× 64, no more than 64 MPI processes can be used. Similarly, for

109

the 32× 32× 128 mesh, 128 MPI processes is the maximum possible.

This chapter is organized as follows. Section 4.2 describes the numerical method

implemented for the CICR application problem. Section 4.3 begins the study on a

single KNL with testing the MPI only code for scalability and reporting memory usage

observations. Section 4.4 introduces an initial MPI+OpenMP implementation that

uses multi-threading for the most time consuming portion of the code and includes

our first MPI versus OpenMP tests. Section 4.5 presents a second MPI+OpenMP

implementation that performs significantly better than the first MPI+OpenMP im-

plementation as a result of additional multi-threading around the reaction term com-

putations in the code. We assess the balance of MPI process to OpenMP threads,

the number of threads per core using all 68 or only 64 cores, and OpenMP multi-

threading strong scalability on a single KNL. Section 4.6 demonstrates the scalability

and potential benefit of using more than one KNL with optimal run options in place.

Section 4.7 summarizes our conclusions on the performance of the CICR application

code on the KNL and discusses opportunities for future work.

4.2 Numerical Method

In the CICR model, we solve a system of time-dependent parabolic partial dif-

ferential equations (PDEs) of the form (1.1.1). These PDEs are coupled by several

non-linear reaction and source terms in q(i)(u(1), . . . , u(ns),x, t). Taking a method of

lines (MOL) approach, we use the finite volume method (FVM) as the spatial dis-

cretization, with N = (Nx + 1) (Ny + 1) (Nz + 1) control volumes. Applying the FVM

to the ns species PDEs results in a large system of ordinary differential equations

(ODEs) with neq = nsN degrees of freedom (DOF). The resulting ODE system is

stiff thus requires the use of implicit ODE methods. We make use of sophisticated

time-stepping methods, in particular, the family of numerical differentiation formulas

110

(NDFk) that is both variable order and adaptive in time step size. Implicit ODE

methods require the solution of the system of the neq non-linear equations. We use

Newton’s method as the non-linear solver, and at each Newton step we use the bi-

conjugate gradient stabilized (BiCGSTAB) method as the linear solver. Complete

details of the numerical method can be found in [22,46].

In Table 4.2.1 we recall the sizing study for the application problem as in Ta-

ble 2.4.1 which gives us memory predictions for different mesh sizes for the CICR

problem. Table 4.2.1 and Table 2.4.1 both show shows the number of degrees of free-

dom for different mesh sizes for this problem and give the memory predictions for

the 6 species CICR simulations. We are using a matrix-free method that minimizes

memory usage by not storing any system matrix; the code with the NDFk method of

orders 1 ≤ k ≤ 5 requires then, including all auxiliary method vectors, the storage of

only 17 arrays of significant size neq. For the simulations in Table 4.2.1, we observe

that four of the mesh sizes presented, the finest being 128 × 128 × 512, fit into the

16 GB of MCDRAM on the KNL. From Table 4.2.1 we note that the 256×256×1024

mesh requires more than 50 GB and does not fit in the 16 GB of MCDRAM on the

KNL, but can easily be accommodated on a single KNL node.

The 32×32×128 mesh resolution was used in the studies in Chapter 2 and previous

studies with the CICR model. Still, there could be cases in which the finer mesh like

128× 128× 512 is advantageous to observe smaller scale physiological behavior. For

this study of the KNL hardware, we prefer to solve the largest problems possible that

fit in the MCDRAM of the KNL. Given the simulations fit in the MCDRAM of the

KNL, we focus our attention to the Flat Quadrant KNL configuration where we can

elect to run using only the MCDRAM.

In Table 4.2.1 and Table 2.4.1 the number of time steps are different. This reflects

the 10 ms simulation time in the simulations of this chapter in contrast to Chapter 2

111

Table 4.2.1 Sizing study for CICR on a KNL with ns = 6 species using double

precision arithmetic, listing the mesh resolution Nx × Ny × Nz, the number of con-

trol volumes N = (Nx + 1) (Ny + 1) (Nz + 1), the number of degrees of freedom

(DOF) neq = nsN , the number of time steps taken by the ODE solver, and the

predicted memory usage in GB for a one-process run.

Resolution N DOF neq number of memory usage

time steps predicted (GB)

16× 16× 64 18,785 112,710 273 0.01

32× 32× 128 140,481 842,886 497 0.11

64× 64× 256 1,085,825 6,514,950 841 0.83

128× 128× 512 8,536,833 51,220,998 1,469 6.49

256× 256× 1024 67,700,225 406,201,350 N/A 54.45

which used a 1000 ms simulation time. The 1000 ms run times require approximately

100 times more time steps than the 10 ms runs, so we expect the run times to be

approximately 100 times shorter with a 10 ms simulation time.

4.3 MPI Only: Code Version 1

We start with our existing MPI only code that was use on Chapter 2 and refer to

it as code version 1 in this work. To assess the existing code performance on a single

KNL we present a strong scalability study of MPI processes in Table 4.3.2. As was

done in Chapter 3, we present the memory observations for the code using different

numbers of MPI processes. Recall for the Poisson problem in Chapter 3 we used the

same Intel compiler and MPI implementation used here, since they are default on

the Stampede-KNL cluster. The memory observations in Table 4.3.1 seek to verify

that even with large number of MPI processes on a single KNL, runs fit in the high-

performance memory resource, the 16 GB of MCDRAM. Though we expect from

Table 4.2.1 that none of the four selected mesh sizes will require more than 16 GB

of memory total, the significant memory overhead associated with MPI processes in

112

Table 4.3.1 Observed total memory usage for CICR in units of GB on 1 KNL in

Stampede using 256 threads in Cache Quadrant configuration for code version 1,

MPI only.

MPI proc Predicted p = 1 2 4 8 16 32 64 128 256

Threads/proc (GB) 1 1 1 1 1 1 1 1 1

16× 16× 64 0.01 0.06 0.09 0.16 0.30 0.58 1.15 2.27 (**) (**)

32× 32× 128 0.11 0.17 0.20 0.27 0.41 0.68 1.25 2.40 5.24 (**)
64× 64× 256 0.83 0.97 1.00 1.07 1.21 1.50 2.07 3.20 6.10 12.59

128× 128× 512 6.49 7.30 7.32 7.40 7.54 7.85 8.45 9.67 12.67 19.42

Chapter 3 make the observation worthwhile. The memory usage is observed in the

code by checking the VmRSS field in the the special file /proc/self/status.

The second column of Table 4.3.1 repeats the memory predictions from Table 4.2.1.

From the second to the third column of Table 4.3.1 we observe that the predicted mem-

ory usage is a reasonable underestimate of the total memory usage with the current

MPI implementation, in the 1 MPI process case. As in Table 3.4.4 we observe the

large overhead associated with the use of many MPI processes. The key observation

is that in the 128× 128× 512 mesh size case, in which the total memory observed is

more than the 16 GB of MCDRAM. For this reason, we run the MPI strong scalability

study in Table 4.3.2 on a single KNL in Cache Quadrant configuration rather than the

Flat Quadrant configuration where we restrict our memory usage to the MCDRAM.

This choice of Cache Quadrant configuration ensures that the code will execute, even

if it requires more than 16 GB, on the high-performance on-chip memory.

Table 4.3.2 presents a strong scalability study by number of MPI processes p. Each

row lists the results for one problem size. Each column corresponds to the number

of parallel processes p used in the run. Strong scalability is one key motivation

for parallel computing: the run times for a problem of a given, fixed size can be

potentially dramatically reduced by spreading the work across a group of parallel

processes. More precisely, the ideal behavior of code for a fixed problem size using p

113

parallel processes is that it be p times as fast. If Tp(N) denotes the wall clock time

for a problem of a fixed size parametrized by N using p processes, then the quantity

Sp = T1(N)/Tp(N) measures the speedup of the code from 1 to p processes, whose

optimal value is Sp = p. The efficiency Ep = Sp/p characterizes in relative terms

how close a run with p parallel processes is to this optimal value, for which Ep = 1.

Table 4.3.2 (b) shows the observed speedup Sp. Table 4.3.2 (c) shows the observed

efficiency Ep.

In Table 4.3.2 we observe that the code scales well, with near optimal halving

of run time with the doubling of MPI processes from 2 to 4 in each mesh size. For

example, with the 32×32×128 mesh, using 2 MPI process the run time is 10:05, but

with 4 MPI processes, the run time is nearly halved, 05:11. But, this good scaling

slows down quickly. In the 16× 16× 64 mesh case from 8 to 16 MPI process is only a

00:15 to 00:11 reduction in run time. Then there is no observed benefit from doubling

the MPI processes again to 32, as the run time remains at 00:11 and there is a loss in

performance in using 64 MPI processes. In the 32× 32× 128 and 64× 64× 256 mesh

cases the 8 to 16 MPI processes jump still shows good scalability, but again more MPI

processes on the single KNL loses its benefit after a point. For the 128×128×512 case,

since the run times with only a few processes are excessive, we start the study using

16 processes with confidence that the code scales well with less process already from

the coarser meshes. For the speedup and efficiency calculations for the 128×128×512

mesh we use the 16 process run as the base case. Overall, we focus on the finer meshes

ans conclude that the code scales well for up to 64 processes.

Figure 4.3.1 (a) and (b) presents the customary graphical representations of speedup

and efficiency, respectively, for code version 1 (MPI only) on a single KNL. Fig-

ure 4.3.1 (a) shows the speedup pattern in Table 4.3.2 (b) a bit more intuitively. The

efficiency plotted in Figure 4.3.1 (b) is directly derived from the speedup, but the

114

Table 4.3.2 CICR strong scalability study of MPI processes. Observed wall clock

times in units of HH:MM:SS on 1 KNL in Cache Quadrant Configuration, using

MPI parallelism only. For up to 64 processes one processes per core is used, then 2

processes per core (64 cores) for 128 processes, and 4 processes per core (64 cores) for

256 processes. ET indicates excessive time.

Code version 1, MPI only – 1 KNL – Cache Quadrant Configuration

(a) Wall clock time

MPI proc p 1 2 4 8 16 32 64 128 256

16× 16× 64 00:01:30 00:00:49 00:00:25 00:00:15 00:00:11 00:00:11 00:00:14 (**) (**)

32× 32× 128 00:18:59 00:10:05 00:05:11 00:02:44 00:01:32 00:01:01 00:00:50 00:01:11 (**)
64× 64× 256 05:17:38 02:47:19 01:26:31 00:43:02 00:22:40 00:12:16 00:07:32 00:07:41 00:09:35

128× 128× 512 ET ET ET ET 05:30:27 02:53:04 01:37:49 01:23:34 01:27:52

(b) Observed speedup Sp

MPI proc p 1 2 4 8 16 32 64 128 256

16× 16× 64 1.00 1.84 3.57 6.04 8.43 8.17 6.53 (**) (**)

32× 32× 128 1.00 1.88 3.66 6.97 12.41 18.69 22.88 16.02 (**)
64× 64× 256 1.00 1.90 3.67 7.38 14.01 25.90 42.13 41.36 33.12

128× 128× 512 — — — — 16.00 30.60 54.14 63.36 60.26

(c) Observed efficiency Ep

MPI proc p 1 2 4 8 16 32 64 128 256

16× 16× 64 1.00 0.92 0.89 0.75 0.53 0.26 0.10 (**) (**)

32× 32× 128 1.00 0.94 0.92 0.87 0.78 0.58 0.36 0.13 (**)
64× 64× 256 1.00 0.95 0.92 0.92 0.88 0.81 0.66 0.32 0.13

128× 128× 512 — — — — 1.00 0.96 0.85 0.50 0.24

plot is still useful because it details interesting features for small values of p that are

hard to discern in the speedup plot. Here, we notice the consistency of most results

for small numbers of MPI processes. We observe clearly that the finer mesh problem

sizes perform better in this study.

The fundamental reason for the speedup and efficiency to trail off is that too

little work is performed on each process. Due to the one-dimensional split in the

z-direction into as many sub domains as parallel processes p, eventually only one or

two x–y-planes of data are located on each process. This is not enough calculation

work to justify the cost of communicating between the processes. In the 8 through

32 MPI process range the code performs slightly better in terms of scalability than

the 3 species code on CPU nodes shown in [21]. This study can help recommend

how many processes to use for a certain mesh size and indicated that 8 to 32 MPI

processes seem to be a good initial choice on the KNL.

115

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.3.1 Speedup (a) and Efficiency (b) plots for code version 1, MPI only, on

one KNL using p MPI processes.

4.4 Hybrid MPI+OpenMP: Code Version 2

We now consider an initial implementation of MPI+OpenMP code, which we refer

to in this work as code version 2. This version represents an interim version in our

development of the hybrid code. Performance studies here will demonstrate the need

for a better OpenMP implementation. For the addition of OpenMP parallelism to

the existing MPI code we began with adding #pragma omp parallel for around

our sizable for loops in our utility routines. We intentionally added OpenMP loops

for initialization of the large vectors in the code so that data would be set up in the

way that it would be accessed in the multi-threaded loops. Additionally we added

multi-threading around the main for loops in the most time consuming portion of the

code, the matrix free matrix vector product.

We made use of profiling tools, specifically Intel’s VTune Amplifier and TAU

(Tuning and Analysis Utilities), to assess the performance of the implementations.

TAU is a joint project between the University of Oregon Performance Research Lab,

The LANL Advanced Computing 16 Laboratory, and The Research Center Jülich at

116

ZAM, Germany. More information about TAU is available at www.cs.uoregon.edu/

research/tau.

Table 4.4.1 presents a performance study using 256 threads of a KNL with different

combinations of MPI processes and OpenMP threads for the MPI+OpenMP code

version 2. In sub table (a) KMP_AFFINITY=compact is used, while in sub table (b)

KMP_AFFINITY=scatter is used.

In Table 4.4.1 we observe that for the MPI+OpenMP code version 2 using more

MPI processes compares to OpenMP threads results in significantly better perfor-

mance. The impact of the OpenMP parallelism is so muted that the timing from 1

to 2 to 4 MPI processes improve by almost a factor of 2 each time. This lead us to

believe that a much better OpenMP implementation was still possible. The best run

times for each mesh size though, do not use the maximum possible MPI process with

minimal multi-threading, but rather use a balance of MPI and OpenMP parallelism.

In the 32× 32× 128 case the best run time uses 32 MPI processes with 8 threads per

process, while in the 64× 64× 256 case the best run time uses 64 MPI processes with

4 threads per process. This shows us already the importance of hybrid code, that is

the use of both MPI and OpenMP parallelism on architectures like the KNL.

We also compare Table 4.4.1 (a) against Table 4.4.1 (b) to assess the perfor-

mance of KMP_AFFINITY=compact versus KMP_AFFINITY=scatter. We observe that

there is very little difference in performance, with a every so slight edge in favor of

KMP_AFFINITY=scatter. This matches the result from Chapter 3.

We also test another important choice for running hybrid MPI+OpenMP code

on the KNL in the distribution of threads to cores. Table 4.4.2 shows the wall clock

times for varying combinations of MPI processes and OpenMP threads for the 6-

species CICR code using all 68 KNL cores with 1, 2, 3 and 4 threads per core in

Flat Quadrant Configuration and KMP_AFFINITY=scatter. In each case we maintain

117

Table 4.4.1 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP code

version 2 on 1 KNL on Stampede using 256 threads in Flat Quadrant Configuration,

using MCDRAM only, with two settings of KMP AFFINITY. ET indicates excessive

time.

(a) KNL – Flat Quadrant Configuration – MCDRAM – Compact

MPI proc 1 2 4 8 16 32 64 128 256

Threads/proc 256 128 64 32 16 8 4 2 1

16× 16× 64 00:00:35 00:00:22 00:00:15 00:00:12 00:00:12 00:00:15 (**) (**) (**)

32× 32× 128 00:05:03 00:03:21 00:01:58 00:01:23 00:01:03 00:01:01 00:01:12 (**) (**)
64× 64× 256 00:44:28 00:27:48 00:18:39 00:14:17 00:11:30 00:09:58 00:09:48 00:10:39 00:12:24

(b) KNL – Flat Quadrant Configuration – MCDRAM – Scatter

MPI proc 1 2 4 8 16 32 64 128 256

Threads/proc 256 128 64 32 16 8 4 2 1

16× 16× 64 00:00:33 00:00:21 00:00:15 00:00:12 00:00:13 00:00:16 (**) (**) (**)

32× 32× 128 00:05:00 00:03:17 00:01:59 00:01:21 00:01:04 00:01:01 00:01:11 (**) (**)
64× 64× 256 00:45:05 00:28:00 00:18:35 00:13:57 00:11:20 00:09:46 00:09:36 00:10:38 00:12:28

the number of MPI processes and simply increase the number of threads per process

to use more threads per core. We use only multiples of 68 for the number of MPI

processes. We use all 68 cores and based on our results from Chapter 3. The choice

of KMP_AFFINITY=scatter is also suggested from the results in Chapter 3 as well as

the results in Table 4.4.1.

From Table 4.4.2 we observe that using only 1 or 2 threads per core performs

better than using 3 or 4 threads per core. This result tells us that using the full 272

threads (68 cores with 4 threads per core) of the KNL is not advantageous to leaving

significant amounts of the hardware free.

With this OpenMP implementation the best run times in Table 4.4.1 do not beat

the best run times from version 1 of the code in Table 4.3.2 (a). However, Table 4.4.2

sheds light as to why not. Without making optimal choices for number of threads

per core and the balance of MPI processes to OpenMP threads optimal performance

is not possible. We see from Table 4.4.2 that using 1 or 2 threads per core gives the

best performance. The optimal run times in Table 4.4.2 beat the best run times for

version 1 of the code.

118

Table 4.4.2 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 2 on 1 KNL on Stampede using 68 cores with 1, 2, 3 and 4 threads per

core in Flat Quadrant Configuration, using MCDRAM only.

(a) KNL – Flat Quadrant – 68 cores – 1 thread per core

MPI proc 1 2 4 17 34 68

Threads/proc 68 34 17 4 2 1

16× 16× 64 00:00:17 00:00:12 00:00:08 00:00:07 (**) (**)
32× 32× 128 00:03:18 00:01:52 00:01:09 00:00:42 00:00:41 00:00:58
64× 64× 256 00:40:45 00:24:08 00:15:10 00:08:45 00:07:33 00:07:56

(b) KNL – Flat Quadrant – 68 cores – 2 threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 136 68 34 8 4 2

16× 16× 64 00:00:23 00:00:14 00:00:10 00:00:10 (**) (**)

32× 32× 128 00:04:04 00:02:16 00:01:20 00:00:43 00:00:49 (**)
64× 64× 256 00:41:32 00:24:40 00:15:33 00:08:23 00:07:26 00:06:48

(c) KNL – Flat Quadrant – 68 cores – 3 threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 204 102 51 12 6 3

16× 16× 64 00:00:30 00:00:19 00:00:13 00:00:11 (**) (**)

32× 32× 128 00:04:37 00:02:55 00:01:44 00:00:54 00:00:53 (**)
64× 64× 256 00:44:53 00:27:52 00:18:29 00:11:02 00:08:27 00:08:28

(d) KNL – Flat Quadrant – 68 cores – 4 threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 272 136 68 16 8 4

16× 16× 64 00:00:36 00:00:24 00:00:18 00:00:16 (**) (**)

32× 32× 128 00:05:05 00:03:21 00:02:03 00:01:05 00:01:02 (**)
64× 64× 256 00:43:50 00:26:00 00:16:44 00:09:32 00:12:51 00:07:51

119

4.5 Hybrid MPI+OpenMP: Code Version 3

We now consider our final MPI+OpenMP hybrid code implementation, which we

refer to as code version 3 in this work. For this final version we add to code version 2

additional multi-threading as the most time consuming function of the code yet to use

multi-threading directly. This is the function that includes the non-linear reactions

in the CICR that couple the species of the model. It represents the final substantial

portion of the CICR code that may benefit from multi-threading. The results of

the performance tests in this section show that the OpenMP performance improves

significantly over code version 2. Again we made use of Intel’s VTune Amplifier and

TAU to assess the performance of the implementations.

This section is organized as follows. Table 4.5.1 presents a performance study

using 256 threads on a single KNL with different combinations of MPI processes and

OpenMP threads for the MPI+OpenMP hybrid code version 3. In Table 4.5.1 (a)

KMP_AFFINITY=compact is used, while in Table 4.5.1 (b) KMP_AFFINITY=scatter is

used. Next, Table 4.5.2 presents a performance study for different numbers of threads

per core study using all 68 cores on a single KNL. This is paired with a threads per

core study using 64 cores on a single KNL, that is leaving 4 cores free, in Table 4.5.3.

Finally, Table 4.5.4 presents an OpenMP multi-threading strong scalability study on

a single KNL.

In Table 4.5.1, we observe that neither MPI only nor OpenMP only parallelism

performs as well as using MPI+OpenMP together. This matches our observation

from Table 4.4.1 and again our conclusion from Chapter 3. We observe this from the

fact that the run times in the second column and right most column for each mesh are

significantly longer than the best run time across the row for each mesh. For example,

in Table 4.5.1 (a) with the 64×64×256 mesh using 256 MPI processes with 1 thread

per process runs for 13:28 and using 1 MPI process with 256 threads runs for 11:23,

120

Table 4.5.1 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP code

version 3 on 1 KNL on Stampede using 256 threads in Flat Quadrant Configuration,

using MCDRAM only, with two settings of KMP AFFINITY. ET indicates excessive

time.

(a) KNL – Flat Quadrant Configuration – MCDRAM – Compact

MPI proc 1 2 4 8 16 32 64 128 256

Threads/proc 256 128 64 32 16 8 4 2 1

16× 16× 64 00:00:10 00:00:09 00:00:09 00:00:09 00:00:10 00:00:14 (**) (**) (**)

32× 32× 128 00:00:56 00:00:45 00:00:41 00:00:40 00:00:42 00:00:50 00:01:38 (**) (**)
64× 64× 256 00:11:23 00:09:08 00:08:01 00:07:36 00:07:35 00:08:14 00:09:19 00:11:00 00:13:28

(b) KNL – Flat Quadrant Configuration – MCDRAM – Scatter

MPI proc 1 2 4 8 16 32 64 128 256

Threads/proc 256 128 64 32 16 8 4 2 1

16× 16× 64 00:00:10 00:00:09 00:00:09 00:00:09 00:00:11 00:00:14 (**) (**) (**)

32× 32× 128 00:00:55 00:00:46 00:00:41 00:00:41 00:00:44 00:00:51 00:01:07 (**) (**)
64× 64× 256 00:11:29 00:09:10 00:08:06 00:07:38 00:07:32 00:07:55 00:08:46 00:10:21 00:12:30

while the best run time is 07:35 from 16 MPI process with 16 OpenMP threads per

process. The use of 8 or 16 MPI processes and 32 or 16 threads per process performed

well for all problem sizes.

As was true with version 2 of the MPI+OpenMP code in Table 4.4.1, the perfor-

mance with KMP_AFFINITY=compact shown in Table 4.5.1 (a) is comparable to the

performance with KMP_AFFINITY=scatter shown in Table 4.5.1 (b). The only ob-

servable difference is for 32 or more MPI processes in the finer mesh, where scatter

outperforms compact. We continue to move forward with KMP_AFFINITY=scatter as

our default choice.

By comparing Table 4.4.1 to Table 4.5.1, we observe the difference in performance

between version 2 and version 3 of the MPI+OpenMP code. We observe that when

using only a few MPI processes with large numbers of OpenMP threads version 3

significantly outperforms version 2. We also observe that the best run times for code

version 3 are better than the best run times for code version 2. We also observe that

version 3 is the only version that beats the best MPI only run times and uses a mix

of MPI and OpenMP to do so. In the 32 × 32 × 128 case the best MPI run time is

50 seconds, the best version 2 run time is just over 1 minute, and the best version 3

121

run time is 41 seconds. In the 64× 64× 256 case the best MPI run time is 07:32, the

best version 2 run time is 09:36, and the best version 3 run time is 07:32.

Table 4.5.2 shows the wall clock times for varying combinations of MPI processes

and OpenMP threads for the 6-species CICR code using 68 KNL cores with 1, 2,

3 and 4 threads per core in Flat Quadrant Configuration and KMP_AFFINITY=scatter.

In each case we maintain the number of MPI processes and simply increase the number

of threads per process to use more threads per core. We use only multiples of 68 for

the number of MPI processes. We add the finest possible mesh that fits in the 16 GB

KNL on-chip memory 128 × 128 × 512, for this optimal code implementation. For

the coarsest two mesh sizes, using 1 or 2 threads per core is better than using 3 or

4 threads per core. But in the finer meshes, 64 × 64 × 256 and 128 × 128 × 512,

the best run times take advantage of 4 threads per core. The 17 MPI process, and

4 OpenMP thread runs perform better for the finer mesh, than for the two coarser

meshes. Overall, the coarser meshes benefit from more OpenMP threads while the

finer meshes benefit from more MPI processes for this code.

Table 4.5.3 presents the threads per core study using 64 cores on a single KNL, that

is leaving 4 cores free. The general observation that 1 or 2 threads per core is again

clear, perhaps with a slight favoring of 2 threads per core for its better performance

on the finer mesh. If we compare Table 4.5.2 with Table 4.5.3, we see that using all

68 cores appears to perform better than using only 64 cores on a single KNL. To see

this take for example, the 64 × 64 × 256 where the best run with 64 cores is 07:13,

but with 68 cores it is 06:03. It is not just the best run times that are better with 68

cores, nearly all of the comparable MPI and OpenMP combinations for each number

of threads per core are better with 68 cores rather than 64 on a single KNL. This

justifies our use of 68 cores for the threads per core study with version 2 of the code

in Table 4.4.2.

122

Table 4.5.2 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 3 on 1 KNL on Stampede using 68 cores with 1, 2, 3 and 4 threads per

core in Flat Quadrant Configuration, using MCDRAM only.

(a) KNL – Flat Quadrant – MCDRAM only – 1 thread per core

MPI proc 1 2 4 17 34 68

Threads/proc 68 34 17 4 2 1

16× 16× 64 00:00:05 00:00:05 00:00:05 00:00:07 (**) (**)

32× 32× 128 00:00:40 00:00:33 00:00:31 00:00:35 00:00:39 (**)
64× 64× 256 00:09:25 00:07:59 00:07:19 00:07:14 00:07:06 00:07:39

128× 128× 512 02:36:12 02:12:32 01:45:21 01:43:05 01:41:38 01:40:45

(b) KNL – Flat Quadrant – MCDRAM only – 2 threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 136 68 34 8 4 2

16× 16× 64 00:00:08 00:00:07 00:00:07 00:00:09 (**) (**)

32× 32× 128 00:00:44 00:00:31 00:00:28 00:00:30 00:00:41 (**)
64× 64× 256 00:09:09 00:07:13 00:06:17 00:06:03 00:06:23 00:06:26

128× 128× 512 02:11:12 01:57:17 01:41:50 01:24:39 01:26:17 01:23:29

(c) KNL – Flat Quadrant – MCDRAM only – 3 threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 204 102 51 12 6 3

16× 16× 64 00:00:09 00:00:08 00:00:08 00:00:10 (**) (**)

32× 32× 128 00:00:51 00:00:42 00:00:37 00:00:40 00:00:48 (**)
64× 64× 256 00:11:46 00:09:36 00:08:25 00:07:57 00:07:10 00:08:04

128× 128× 512 02:29:06 01:57:22 01:39:58 01:32:09 01:33:29 01:28:09

(d) KNL – Flat Quadrant – MCDRAM only – 4 threads per core

MPI proc 1 2 4 17 34 68

Threads/proc 272 136 68 16 8 4

16× 16× 64 00:00:14 00:00:13 00:00:09 00:00:14 (**) (**)

32× 32× 128 00:01:00 00:00:56 00:00:46 00:00:49 00:00:56 (**)
64× 64× 256 00:09:49 00:07:38 00:06:20 00:05:53 00:06:26 00:07:20

128× 128× 512 02:19:05 01:46:17 01:28:42 01:19:52 01:21:08 01:24:47

123

Table 4.5.3 Observed wall clock times in units of HH:MM:SS for MPI+OpenMP

code version 3 on 1 KNL on Stampede using 64 cores with 1, 2, 3 and 4 threads per

core in Flat Quadrant Configuration, using MCDRAM only.

(a) KNL – Flat Quadrant – MCDRAM only – 1 thread per core

MPI proc 1 2 4 8 16 32 64

Threads/proc 64 32 16 8 4 2 1

16× 16× 64 00:00:05 00:00:05 00:00:05 00:00:06 00:00:07 00:00:10 00:00:18
32× 32× 128 00:00:46 00:00:38 00:00:35 00:00:35 00:00:40 00:00:45 00:00:58
64× 64× 256 00:10:06 00:08:38 00:08:01 00:07:39 00:07:47 00:08:09 00:08:41

(b) KNL – Flat Quadrant – MCDRAM only – 2 threads per core

MPI proc 1 2 4 8 16 32 64

Threads/proc 128 64 32 16 8 4 2

16× 16× 64 00:00:08 00:00:07 00:00:06 00:00:07 00:00:09 00:00:11 (**)
32× 32× 128 00:00:45 00:00:37 00:00:34 00:00:37 00:00:40 00:00:42 00:00:57
64× 64× 256 00:09:38 00:07:54 00:07:07 00:07:56 00:07:58 00:07:13 00:07:55

(c) KNL – Flat Quadrant – MCDRAM only – 3 threads per core

MPI proc 1 2 4 8 16 32 64

Threads/proc 192 96 48 24 12 6 3

16× 16× 64 00:00:09 00:00:08 00:00:08 00:00:09 00:00:10 00:00:12 (**)
32× 32× 128 00:00:51 00:00:41 00:00:37 00:00:39 00:00:42 00:00:44 00:00:58
64× 64× 256 00:11:42 00:09:28 00:08:20 00:08:56 00:08:55 00:08:09 00:07:55

(d) KNL – Flat Quadrant – MCDRAM only – 4 threads per core

MPI proc 1 2 4 8 16 32 64

Threads/proc 256 128 64 32 16 8 4

16× 16× 64 00:00:10 00:00:09 00:00:09 00:00:09 00:00:11 00:00:14 (**)
32× 32× 128 00:00:56 00:00:46 00:00:41 00:00:40 00:00:43 00:00:51 00:01:05
64× 64× 256 00:11:34 00:09:13 00:08:03 00:07:36 00:07:30 00:07:55 00:08:44

124

Table 4.5.4 CICR strong scalability study of OpenMP threads. Observed wall

clock times in units of HH:MM:SS on 1 KNL node in Flat Quadrant Configura-

tion. For up to 64 threads one thread per core is used, then 2 threads per core (64

cores) for 128 threads, and 4 threads per core (64 cores) for 256 threads with and

KMP AFFINITY=scatter in all cases. ET indicates excessive time.

Code version 3, MPI+OpenMP – 1 KNL – Flat Quadrant Configuration – MCDRAM only

(a) Wall clock time

OpenMP threads p 1 2 4 8 16 32 64 128 256

16× 16× 64 00:01:29 00:00:47 00:00:27 00:00:15 00:00:09 00:00:07 00:00:06 (**) (**)

32× 32× 128 00:18:54 00:09:47 00:05:22 00:02:53 00:01:39 00:01:01 00:00:43 00:00:44 (**)
64× 64× 256 05:22:24 02:40:56 01:27:17 00:45:33 00:25:11 00:15:04 00:10:00 00:09:40 00:11:42

128× 128× 512 ET ET ET ET 06:14:07 03:39:06 02:23:12 02:12:31 02:31:02

(b) Observed speedup Sp

OpenMP threads p 1 2 4 8 16 32 64 128 256

16× 16× 64 1.00 1.88 3.32 5.73 9.47 13.32 15.99 13.80 9.10
32× 32× 128 1.00 1.93 3.52 6.55 11.40 18.59 26.44 25.51 19.83
64× 64× 256 1.00 2.00 3.69 7.08 12.80 21.41 32.26 33.35 27.57

128× 128× 512 — — — — 16.00 27.32 41.80 45.17 39.63

(c) Observed efficiency Ep

OpenMP threads p 1 2 4 8 16 32 64 128 256

16× 16× 64 1.00 0.94 0.83 0.72 0.59 0.42 0.25 0.11 0.04
32× 32× 128 1.00 0.97 0.88 0.82 0.71 0.58 0.41 0.20 0.08
64× 64× 256 1.00 1.00 0.92 0.88 0.80 0.67 0.50 0.26 0.11

128× 128× 512 — — — — 1.00 0.85 0.65 0.35 0.15

Table 4.5.4 presents a OpenMP threads strong scalability study using our code

version 3 OpenMP implementation with only 1 MPI process on a single KNL. For

small numbers of parallel processes p (in this case OpenMP threads) the run times are

approximately halved as p is doubled corresponding to near optimal scalability. We

readily observe that the scalability with OpenMP parallelism mirrors, almost exactly

the good MPI only scalability. In fact, for up the 8 processes or threads, the numbers

in Table 4.5.4 and Table 4.3.2 are nearly identical.

Figure 4.5.1 (a) and (b) presents the customary graphical representations of speedup

and efficiency, respectively, for code version 3 (MPI+OpenMP) on a single KNL. Fig-

ure 4.3.1 (a) shows the speedup pattern in Table 4.5.4 (b). The efficiency plotted in

Figure 4.5.1 (a) is directly derived from the speedup, and shows the behavior of small

values of p that are hard to discern in the speedup plot.

The scalability of version 1 of the code using MPI in Table 4.5.4 and Figure 4.5.1

is nearly identical to the scalability of version 3 of the code using OpenMP Table 4.3.2

125

(a) Observed speedup Sp (b) Observed efficiency Ep

Figure 4.5.1 Speedup (a) and Efficiency (b) plots for code version 3, MPI+OpenMP,

on one KNL using p OpenMP threads.

and Figure 4.3.1 for small numbers of parallel process. For larger numbers of parallel

process the MPI only code scales marginally better than the hybrid code using only

OpenMP. We conclude that the OpenMP parallelism in the code version 3 implemen-

tation scales nearly as well as our original code version 1 with MPI only.

4.6 Multiple KNLs

We are also interested in the scalability of the code on multiple KNLs. On the

Stampede-KNL cluster, as is typical currently, KNL nodes feature one KNL per node.

The interconnect between nodes is a 100 Gb/s Intel Omni-Path network and uses a

fat tree topology of eight core-switches and 320 leaf switches [37]. In our tests on

a single KNL, we observed that using 68 cores performed better than using only 64

cores. However, We leave some cores free as is recommended in [43] for the man-

agement of OMB-Path Architecture (OPA) traffic and improves scalability. It is also

recommended in [43] to use at least 2 MPI processes per KNL, which we do here.

126

Problems larger than 16 GB can be accommodated on a KNL node by making

use of the 96 GB of DDR4 node memory. But better performance may be obtained

by using more than one KNL to make use of more high-performance on-chip memory

than is available on each KNL. This study is especially important for fine meshes,

for which the run times on a single KNL are excessive. In this investigation we first

test the MPI only code version 1 for scalability to multiple nodes then assess the

MPI+OpenMP hybrid code version 3.

Table 4.6.1 shows the scalability of the original MPI only code on multiple KNLs.

We use different numbers of MPI processes per node to demonstrate that this choice

has an impact on run time and scalability. In Table 4.6.1 (a) we use only 8 MPI

processes per node so that even the coarsest mesh can be run on 8 KNL nodes. We

can thus assess the scalability across up to 8 KNLs for all four of our mesh sizes.

Recall that (**) indicates that the run is not possible, given that the number of MPI

process is greater than the number of slices in the z-mesh direction that constrains our

MPI parallelism in the code. If we focus our attention on the finer meshes, Table 4.3.2

shows the MPI code scales well up to 64 MPI processes on a single KNL. This leads

us to use 64 MPI processes per KNL in Table 4.6.1 (b).

Table 4.6.1 (a) uses 8 MPI processes per node to assess clearly the scalability of

the MPI only code. We observe very good scalability through 8 KNL for all but our

coarsest mesh, 16 × 16 × 64 and observe a run time benefit to using more KNLs for

all meshes. However, the absolute run times in Table 4.6.1 (a) with 8 MPI processes

per node are hardly comparable to Table 4.6.1 (b) with 64 MPI processes per node.

When using 8 MPI processes per node in Table 4.6.1 (a) it requires 8 KNL nodes to

perform better than a single KNL with 64 MPI processes in Table 4.6.1 (b). This

emphasizes the importance of choosing the optimal number of MPI processes on the

KNL. Concretely, in the 64 × 64 × 256 case, we observe a run time of 08:44 with

127

Table 4.6.1 CICR strong scalability study of MPI processes. Observed wall clock

times in units of HH:MM:SS on multiple KNL node in Flat Quadrant Configuration.

Different number of MPI processes per node are used in each subtable.

Code version 1, MPI only – Flat Quadrant, MCDRAM only

(a) Wall clock time – 8 MPI processes per node

Number of KNLs 1 2 4 8

16× 16× 64 00:00:16 00:00:11 00:00:08 00:00:07

32× 32× 128 00:02:54 00:01:38 00:00:56 00:00:35

64× 64× 256 00:43:43 00:22:32 00:12:06 00:07:17

128× 128× 512 11:00:53 05:39:04 02:51:11 01:31:58

(b) Wall clock time – 64 MPI processes per node

Number of KNLs 1 2 4 8

16× 16× 64 00:00:19 (**) (**) (**)

32× 32× 128 00:01:07 00:00:56 (**) (**)

64× 64× 256 00:08:44 00:05:47 00:03:56 (**)

128× 128× 512 01:49:33 01:00:34 00:36:14 00:27:55

1 KNL compared to 07:17 with 8 KNL, and 01:49:33 compared to 01:31:58 in the

128 × 128 × 512 case. The large number of parallel processes required to use 64

MPI processes per node limits the cases we can observe in terms of scalability. In

Table 4.6.1 (b) we observe that using 64 processes per KNL shows good scalability

from 1 to 4 KNL nodes in the 64 × 64 × 256 and 128 × 128 × 512 mesh cases. The

relative scalability is not quite as good as the 8 MPI processes per node case in

Table 4.6.1 (a), but as was noted, the performance is significantly better.

Table 4.6.2 presents a multiple KNL scalability study of code version 3 using

optimal choices for MPI processes and OpenMP threads from our studies on a single

KNL. In Table 4.6.2 (a), we use 8 MPI processes per node and 16 OpenMP threads

per process. In Table 4.6.2 (b), we use 16 MPI processes per node and 8 OpenMP

threads per process. In Table 4.6.2 (c), we use 32 MPI processes per node and 4

OpenMP threads per process. In each of the choices we use 2 threads per core on 64

cores for a total of 128 threads based on our observations in Table 4.5.3. Table 4.6.2

128

assesses the balance of MPI processes to OpenMP with the hybrid MPI+OpenMP

code, since the number of MPI processes was shown to have a very significant impact

in Table 4.6.1.

We observe that the relative scalability and performance are not very different

between these two choice of MPI process and OpenMP threads in Table 4.6.2 (a)

and Table 4.6.2 (b), especially in the 128 × 128 × 512 case. Table 4.6.2 (a) and Ta-

ble 4.6.2 (b) also match the less than optimal run time performance in Table 4.6.1 (b)

with MPI only parallelism. But, using 32 MPI processes with 4 OpenMP threads per

core absolute run times in Table 4.6.2 (c) are better than Table 4.6.1 (b) with MPI

only. This again demonstrates the need for hybrid code to achieve best performance.

Figure 4.6.1 presents a graphical representation of the hybrid MPI+OpenMP per-

formance for the 128 × 128 × 512 mesh in Table 4.6.2 against the best MPI only

performance from Table 4.6.1 (b). Figure 4.6.1 (a) shows the wall clock times in

seconds for the MPI only code and each of the MPI processes to OpenMP threads

choices in Tables 4.6.2 (a), (b), and (c). Figure 4.6.1 (b) presents the performance of

the MPI+OpenMP code as speedup over the MPI only code runs. We confirm that

the 8 and 16 MPI processes per node with 16 and 8 OpenMP threads, respectively,

performance is comparable to the MPI only case but 32 processes per node with 4

threads per process consistently performs better than MPI only runs.

Table 4.6.3 tests the performance of multiple KNL without leaving any cores free.

That is, we use all 68 cores on each KNL. We elected to test this based on our tests

in Table 4.5.3 and Table 4.5.2, that show using 68 cores performs better than using

only 64 cores. Table 4.5.2 also motivates our continued use of 2 threads per core on

each of the 68 cores of the KNLs. The performance in terms of absolute run times

using 68 cores is slightly better than all of the multi-KNL runs using 64 cores only in

Table 4.6.2.

129

Table 4.6.2 CICR strong scalability study of multiple KNL nodes with hybrid

MPI+OpenMP code version 3. Observed wall clock times in units of HH:MM:SS

on multiple KNL nodes in Flat Quadrant Configuration. For each KNL 64 cores are

used with 2 threads per core for a total of 128 threads and KMP AFFINITY=scatter

in all cases.

MPI+OpenMP – Flat Quadrant, MCDRAM only

(2 threads per core, 64 cores)

(a) 8 processes per node, 16 threads per process

Number of KNLs 1 2 4 8

16× 16× 64 00:00:08 00:00:08 00:00:07 (**)

32× 32× 128 00:00:38 00:00:33 00:00:33 00:00:26

64× 64× 256 00:07:58 00:04:41 00:03:57 00:04:25

128× 128× 512 01:53:01 00:58:18 00:33:01 00:27:59

(b) 16 processes per node, 8 threads per process

Number of KNLs 1 2 4 8

16× 16× 64 00:00:10 00:00:08 (**) (**)

32× 32× 128 00:00:46 00:00:43 00:00:29 (**)

64× 64× 256 00:08:34 00:05:12 00:04:55 00:03:23

128× 128× 512 01:51:58 00:58:18 00:33:48 00:28:49

(c) 32 processes per node, 4 threads per process

Number of KNLs 1 2 4 8

16× 16× 64 00:00:12 (**) (**) (**)

32× 32× 128 00:00:52 00:00:42 (**) (**)

64× 64× 256 00:07:13 00:05:03 00:03:23 (**)

128× 128× 512 01:29:50 00:52:18 00:33:42 00:22:15

130

(a) Wall clock times (b) Speedup

Figure 4.6.1 Performance comparison of MPI only code versus hybrid MPI+OpenMP

code version 3 using 64 KNL cores in the 128× 128× 512 case. (a) Wall clock times

in seconds for MPI only code and hybrid MPI+OpenMP code version 3 with different

choices of MPI processes versus OpenMP threads. (b) Speedup of hybrid code over

MPI only code

131

In the same manner as Table 4.6.2, Table 4.6.3 includes subtables with different

combinations of MPI processes with OpenMP threads. In Table 4.6.3 (a), we use 8

MPI processes per node and 17 OpenMP threads per process. In Table 4.6.3 (b), we

use 17 MPI processes per node and 8 OpenMP threads per process. In Table 4.6.3 (c),

we use 34 MPI processes per node and 4 OpenMP threads per process. We observe

that using 17 MPI processes with 8 threads per process performs better in terms of

absolute run time than using 8 MPI processes with 17 threads per process and 34

MPI processes with 4 threads per process. Continuing to observe the 128× 128× 512

case closely, the relative scalability from 1 to 2 and from 2 to 4 KNL is very good,

but trails off significantly from 4 to 8 KNL.

We compare the absolute run times in Table 4.6.2 and Table 4.6.3 to determine the

optimal choices for MPI processes and OpenMP threads when using multiple KNL.

The best run times are in Table 4.6.3 (b), the 17 MPI processes per node with 8

threads per process case. Both Table 4.6.3 (c) and Table 4.6.2 (c) with 34 and 32

MPI processes per node with 4 threads, respectively, have comparable run times to

Table 4.6.3 (b) that are not quite as good. Both Table 4.6.3 (a) and Table 4.6.2 (a) use

8 MPI processes per node with 16 and 17 threads, respectively, and do not perform

nearly as well as the best case. The performance in Table 4.6.2 (b) with 16 MPI

processes per node and 8 threads per process is comparable to Table 4.6.3 (a) and

Table 4.6.2 (a) and is not optimal.

Overall, we observe that using only 64 cores did not show any significant benefit

compared to using all 68 KNL cores for this code. In fact, the optimal combination of

MPI processes and threads with multiple KNL nodes was 17 MPI processes per node

with 8 OpenMP threads per process. In this case, all of the 68 cores of the KNL are

used, with 1 MPI process on every other tile on the KNL. The 8 OpenMP threads

per process use 2 threads on each of the 4 cores on the MPI process tile.

132

Table 4.6.3 CICR strong scalability study of multiple KNL nodes with hybrid

MPI+OpenMP code version 3. Observed wall clock times in units of HH:MM:SS

on multiple KNL nodes in Flat Quadrant Configuration. For each KNL 68 cores are

used with 2 threads per core for a total of 136 threads and KMP AFFINITY=scatter

in all cases.

MPI+OpenMP – Flat Quadrant, MCDRAM only

(2 threads per core, 68 cores)

(a) 8 processes per node, 17 threads per process

Number of KNLs 1 2 4 8

16× 16× 64 00:00:08 00:00:08 00:00:07 (**)

32× 32× 128 00:00:35 00:00:34 00:00:32 00:00:26

64× 64× 256 00:08:00 00:04:21 00:04:00 00:04:13

128× 128× 512 01:54:32 00:58:48 00:30:49 00:28:18

(b) 17 processes per node, 8 threads per process

Number of KNLs 1 2 4 8

16× 16× 64 00:00:09 (**) (**) (**)

32× 32× 128 00:00:31 00:00:30 (**) (**)

64× 64× 256 00:06:07 00:03:25 00:03:55 (**)

128× 128× 512 01:25:39 00:45:40 00:23:49 00:21:42

(c) 34 processes per node, 4 threads per process

Number of KNLs 1 2 4 8

16× 16× 64 (**) (**) (**) (**)

32× 32× 128 00:00:40 (**) (**) (**)

64× 64× 256 00:06:28 00:04:14 (**) (**)

128× 128× 512 01:27:04 00:48:01 00:27:48 (**)

133

Figure 4.6.2 presents a graphical representation of the hybrid MPI+OpenMP per-

formance in Table 4.6.3 against the best MPI only performance from Table 4.6.1 (b)

in the same manner as Figure 4.6.1. Figure 4.6.2 (a) shows the wall clock times in

seconds for the MPI only code and each of the MPI processes to OpenMP threads

choices in Tables 4.6.3 (a), (b), and (c). Figure 4.6.2 (b) presents the performance

of the MPI+OpenMP code as speedup over the MPI only code runs. We confirm

that the 8 processes per node with 16 OpenMP threads per process performance is

comparable to the MPI only case. Both 17 and 34 MPI processes with 8 and 4 threads

per processes, respectively, perform better than the MPI only case.

We can also compare Figures 4.6.1 and 4.6.2 to observe the speedup increase

using 68 cores rather than 64 cores. The best speedup over the best MPI only run in

Figure 4.6.1 (b) is just over 1.2, but in Figure 4.6.2 (b) we observe that both the 17

MPI processes with 8 OpenMP threads per process case and the 34 processes with 4

threads per process case have better than 1.2 speedup for all cases. We confirm that

the best performance results from 17 processes with 8 threads per process.

4.7 Conclusions

We have demonstrated the potential for performance of special purpose applica-

tion codes on the KNL using advantageous choices of the configurations modes based

on the applications size and code characteristics. We used the CICR problem from

Chapter 2 to show performance for a specific application code. We discussed the

addition of OpenMP parallelism to an existing MPI code and presented two differ-

ent implementations with performance differences. This showed the need for hybrid

MPI+OpenMP code implemented well for best performance. We also demonstrated

the feasibility and benefit to using multiple KNL nodes.

134

(a) Wall clock times (b) Speedup

Figure 4.6.2 Performance comparison of MPI only code versus hybrid MPI+OpenMP

code version 3 using 68 KNL cores in the 128× 128× 512 case. (a) Wall clock times

in seconds for MPI only code and hybrid MPI+OpenMP code version 3 with different

choices of MPI processes versus OpenMP threads. (b) Speedup of hybrid code over

MPI only code

135

The CICR code requires more demanding and significant communication and is

more computationally intensive than the Poisson problem from Chapter 3. This ap-

plication code put additional burden on the MPI communication and the balance with

OpenMP threads. We observed this effect with two different MPI+OpenMP imple-

mentations. Careful memory observations showed the difference in memory overhead

for MPI processes versus OpenMP threads as a benefit to OpenMP multi-threading

parallelism. Memory observations confirmed that the careful memory management

of this special purpose code enables us to study very fine meshes for physiological

studies, like 128× 128× 512, in the 16 GB of MCDRAM on the KNL. As a result, we

primarily use the Flat Quadrant configuration and make use of only the MCDRAM.

We tested the scalability of the MPI only code and the OpenMP scalability with hy-

brid MPI+OpenMP code on a single KNL and confirmed the benefit of using multiple

KNL nodes.

With two different hybrid MPI+OpenMP code implementations, we considered

the number and placement of OpenMP threads relative to the number of MPI pro-

cesses used and assessed the optimal number of OpenMP threads per core on the

KNL. The different implementations show different balances in performance with

OpenMP threads versus MPI processes. Our final OpenMP implementation that

implemented multi-threading in the function with the non-linear reaction coupling

terms demonstrated significantly better performance with fewer MPI process and

more multi-threading. We observed that optimal choices for OpenMP threads to

MPI processes and threads per core depended on the mesh resolution of the prob-

lem. For coarser meshes, more OpenMP threads to MPI processes performed better,

but for finer meshes, using more MPI processes relative to the number of threads

performed better. For multi-KNL runs, the optimal combination of MPI processes

and OpenMP threads per processes uses one MPI processes on every other tile and

136

2 threads per core across the tile, that is 17 MPI processes per node and 8 OpenMP

threads per process.

This work enables further study of the KNL performance using the full 8 species

of the model coupling both the mechanical contraction and electrical excitation sys-

tems to the calcium signaling system. Parameter studies with different physiological

parameter sets will be important with the studies of these additional components of

the model. With a firm understanding of the KNL performance with the CICR code,

we can run simulations to final times of 1000 ms or more, rather than the 10 ms

in the performance studies contained here. We can continue to optimize OpenMP

implementation choices and explicitly test the vectorization options of the Intel com-

piler. Additionally, the 256×256×1024 mesh case can be used to push a single KNL

past the 16 GB MCDRAM, and compare against using multiple KNLs in which the

memory demands distributed over 4 or more KNL would fit in the 16 GB MCDRAM

of each KNL.

CHAPTER 5

CONCLUSIONS

In this chapter, we summarize our conclusions for the numerical solution of real-

world application problems on the new second-generation Intel Xeon Phi Knights

Landing (KNL). We studied the calcium induced calcium release (CICR) model as an

application example. In order to run the CICR code faster, enabling more studies, we

considered the new and exciting KNL. Before working with the full CICR application

code on the KNL, we used the Poisson problem to perform a conscientious test of the

hardware. Finally, we used our understanding of the KNL to study the performance

of the CICR application code with hybrid MPI+OpenMP implementation on multiple

KNL nodes.

The existing advection-diffusion-reaction PDE CICR model with three-dimensional

cell domain was extended to a complete model with 8 species for the electrical excita-

tion, calcium signaling, and mechanical contraction systems. This includes feedback

and feedforward links with the calcium signaling from the electrical excitation and the

mechanical contraction systems. Simulations demonstrated the evacuation of calcium

from the cell via the membrane pump and the feedback strength parameter range that

did not demonstrate a significant effect on the system behavior. The simulations used

6 species of the model, without the actin-myosin cross-bridge species for mechanical

contraction and without calsequestrin buffer species that binds to calcium ions in

the SR. We demonstrated the need for parameter studies through an investigation of

the coupling strength between the calcium system and the electrical system and the

impact of the membrane pump. These studies required significant use of the CPU

hardware on maya, even with a relatively coarse mesh.

137

138

The Poisson problem on a two-dimensional unit square is our first test of the KNL

since the solution mimics the computational kernel of many simulations including

CICR. We provided timing results using the different KNL configurations for a sin-

gle KNL on the Stampede cluster at TACC. Our observations confirmed the need

for hybrid MPI+OpenMP code to achieve optimal performance. Our results did not

demonstrate any significant advantage to the choice of KMP_AFFINITY=compact or

KMP_AFFINITY=scatter for this code. We confirmed the importance of using MC-

DRAM, the new high-performance memory on board the KNL chip, which performed

almost 5x faster than using only the DDR4 memory of the node. We tested prob-

lem sizes as large as possible on a KNL node, thus exceeding the MCDRAM. This

confirms the usefulness of the Cache Quadrant configuration, with MCDRAM as L3

cache, in such cases. For problems that fit into the 16 GB of MCDRAM, the Flat

memory mode showed ability to perform as good as the Cache memory mode, but

further study would be necessary to determine if Flat memory mode performs better

than Cache memory mode. We found that using less than the 272 threads (68 cores

with 4 threads per core) available, either via 256 threads, or less than 4 threads per

core, could show improved run time, but was not very significant for our code. The

use of a large number of MPI processes was not optimal, due to the significant MPI

memory overhead required, despite comparable run times with a large number of MPI

processes. In these tests, the use of a single KNL, using the MCDRAM, was more

than 4x faster than the two 8-core CPUs on a Stampede node, 4x times faster than

one KNC in native mode, and 3x times faster than one KNC in symmetric mode with

the two 8-core CPUs.

We analyzed how to use the KNL for the CICR application code on Stampede.

The CICR code requires more demanding and significant communication and is more

computationally intensive than the Poisson problem. This application code put addi-

139

tional burden on the MPI communication and the balance with OpenMP threads and

we observed this effect with two different MPI+OpenMP implementations. From our

study of the Poisson problem, we focused on mesh sizes for CICR that fit inside the

16 GB of MCDRAM. As a result, we primarily use the Flat Quadrant configuration

and make use of only the MCDRAM. We demonstrated good scalability on a single

KNL using the baseline code with MPI parallelism only and compared against the

scalability with OpenMP parallelism. We confirmed that it is beneficial to use several

KNL and can scale well. With different hybrid MPI+OpenMP code implementations,

we considered the number and placement of OpenMP threads relative to the num-

ber of MPI processes used and assessed the optimal number of OpenMP threads per

core on the KNL. We observed that optimal choices for OpenMP threads to MPI

processes and threads per core depended on the mesh resolution of the problem. For

64 cores using 8 MPI process with 16 threads per process, for a total of 128 threads

or 2 threads per core, was a good general recommendation. For multiple KNL, using

68 cores showed some benefit over using only 64 and using 17 MPI processes with 8

OpenMP processes per thread was optimal.

We have demonstrated the potential for performance improvements of real-world

application codes on the second-generation Intel Xeon Phi Knights Landing. As

a result, there are many opportunities for further study. With the availability of

the KNL and the guidance provided here, more effective studies of the CICR phe-

nomenon can be performed. This can include parameter studies on the interplay

between the feedback and feedforward links of the electrical excitation and calcium

signaling components. The membrane pump and the presence of calsequestrin as a

buffer species in the SR should have interesting impacts in the presence of the new

couplings that should be studied. Also, we can run simulations with 8-species that

add the actin-myosin cross-bridges as a third cytosol buffer species thus enabling the

140

feedback and feedforward links from calcium signaling to mechanical contraction. Ad-

ditional opportunities for refining the model include modifications to the approach of

the feed-forward link from the calcium to electrical system through inclusion of the

sodium-calcium exchanger directly or modifying JLCC inactivation to be dependent

on the calcium in the cell. The introduction of a feedback link from the mechanical

contraction to the electrical excitation system through the addition of stretch acti-

vated channels is also possible. At the same time, immediate further considerations

for the KNL include finer mesh testing with multiple KNL nodes and more directed

investigation of vectorization of the code for the KNL.

BIBLIOGRAPHY

[1] Amanda M. Alexander, Erin K. DeNardo, Eric Frazier III, Michael McCauley,

Nicholas Rojina, Zana Coulibaly, Bradford E. Peercy, and Leighton T. Izu. Spon-

taneous calcium release in cardiac myocytes: Store overload and electrical dy-

namics. Spora: A Journal of Biomathematics, vol. 1, no. 1, 2015.

[2] Kallista Angeloff, Carlos Barajas, Alexander D. Middleton, Uchenna Osia,

Jonathan S. Graf, Matthias K. Gobbert, and Zana Coulibaly. Examining the

effect of introducing a link from electrical excitation to calcium dynamics in a

cardiomyocyte. Spora: A Journal of Biomathematics, vol. 2, 2016.

[3] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, D. Dagum,

R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks. Int.

J. Supercomputer Appl., vol. 5, no. 3, pp. 63–73, 1991.

[4] Tamas Banyasz, Balazs Horvath, Zhong Jian, Leighton T Izu, and Ye Chen-

Izu. Profile of L-type Ca 2+ current and Na+/Ca 2+ exchange current during

cardiac action potential in ventricular myocytes. Heart Rhythm, vol. 9, no. 1,

pp. 134–142, 2012.

[5] Dietrich Braess. Finite Elements. Cambridge University Press, third edition,

2007.

[6] Matthew W. Brewster, Jonathan S. Graf, Xuan Huang, Zana Coulibaly,

Matthias K. Gobbert, and Bradford E. Peercy. Calcium induced calcium release

with stochastic uniform flux density in a heart cell. In Saurabh Mittal, Il-Chul

Moon, and Eugene Syriani, editors, Summer Computer Simulation Conference

141

142

(SCSC 2015), vol. 47 of Simulation Series, pp. 488–493. Curran Associates, Inc.,

2015.

[7] Centers for Disease Control and Prevention, National Center for Health Statis-

tics. Number of deaths for leading causes, 2015. https://www.cdc.gov/nchs/

fastats/leading-causes-of-death.htm, page last updated October 7, 2016;

accessed December 22, 2016.

[8] H. Cheng, W. J. Lederer, and M. B. Cannell. Calcium sparks: elementary events

underlying excitation-contraction coupling in heart muscle. Science, vol. 262,

pp. 740–744, 1993.

[9] James W. Demmel. Applied Numerical Linear Algebra. SIAM, 1997.

[10] Jack Dongarra and Michael A. Heroux. Toward a new metric for ranking high

performance computing systems. Technical Report SAND2013–4744, Sandia

National Laboratories, June 2013. https://software.sandia.gov/hpcg/doc/

HPCG-Benchmark.pdf, accessed on March 23, 2017.

[11] Joshua N. Edwards and Lothar A. Blatter. Cardiac alternans and intracellular

calcium cycling. Clin. Exp. Pharmacol. P., vol. 41, no. 7, pp. 524–532, 2014.

[12] L. E. Ford and R. J. Podolsky. Regenerative calcium release within muscle cells.

Science, vol. 167, pp. 58–59, 1970.

[13] Stephen A. Gaeta, Trine Krogh-Madsen, and David J. Christini. Feedback-

control induced pattern formation in cardiac myocytes: a mathematical modeling

study. J. Theor. Biol., vol. 266, no. 3, pp. 408–418, 2010.

143

[14] Matthias K. Gobbert. Long-time simulations on high resolution meshes to model

calcium waves in a heart cell. SIAM J. Sci. Comput., vol. 30, no. 6, pp. 2922–

2947, 2008.

[15] Jonathan S. Graf and Matthias K. Gobbert. Effective usage strategies for the

configuration modes of the Intel Xeon Phi Knights Landing. Submitted (2017).

[16] Jonathan S. Graf, Matthias K. Gobbert, and Samuel Khuvis. Long-time simula-

tions with complex code using multiple nodes of Intel Xeon Phi Knights Landing.

In preparation (2017).

[17] Anne Greenbaum. Iterative Methods for Solving Linear Systems, vol. 17 of Fron-

tiers in Applied Mathematics. SIAM, 1997.

[18] Alexander L. Hanhart, Matthias K. Gobbert, and Leighton T. Izu. A memory-

efficient finite element method for systems of reaction-diffusion equations with

non-smooth forcing. J. Comput. Appl. Math., vol. 169, no. 2, pp. 431–458, 2004.

[19] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards,

A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich. Im-

proving performance via mini-applications. Technical Report SAND2009–5574,

Sandia National Laboratories, 2009.

[20] Michael A. Heroux, Jack Dongarra, and Piotr Luszczek. HPCG technical speci-

fication. Technical Report SAND2013–8752, Sandia National Laboratories, Oc-

tober 2013. https://software.sandia.gov/hpcg/doc/HPCG-Specification.

pdf, accessed on March 23, 2017.

[21] Xuan Huang and Matthias K. Gobbert. Parallel performance studies for a three-

species application problem on the cluster maya. Technical Report HPCF–2015–

144

8, UMBC High Performance Computing Facility, University of Maryland, Balti-

more County, 2015.

[22] Xuan Huang, Matthias K. Gobbert, Bradford E. Peercy, Stefan Kopecz, Philipp

Birken, and Andreas Meister. Order investigation of scalable memory-efficient

finite volume methods for parabolic advection-diffusion-reaction equations with

point sources. In preparation (2017).

[23] Intel Xeon Phi coprocessor block diagram. http://www.intel.com/content/

www/us/en/processors/xeon/xeon-phi-coprocessor-block-diagram.html,

2012. Accessed March 23, 2017.

[24] Intel re-architects the fundamental building block for high-performance

computing — Intel newsroom. https://newsroom.intel.com/news-

releases/intel-re-architects-the-fundamental-building-block-for-

high-performance-computing/, June 23 2014. Accessed March 23, 2017.

[25] Thread affinity interface. https://software.intel.com/en-us/node/522691#

AFFINITY_TYPES, 2015. Accessed March 23, 2017.

[26] Controlling thread allocation. https://software.intel.com/en-us/node/

694293, 2016. Accessed March 23, 2017.

[27] Intel Xeon Phi processor 7250 (16 GB, 1.40 GHz, 68 core) specifica-

tions. http://ark.intel.com/products/94035/Intel-Xeon-Phi-Processor-

7250-16GB-1_40-GHz-68-core, 2016. Accessed March 23, 2017.

[28] MCDRAM (high bandwidth memory) on Knights Landing — analysis methods

& tools. https://software.intel.com/en-us/articles/mcdram-high-

bandwidth-memory-on-knights-landing-analysis-methods-tools, 2016.

Accessed March 23, 2017.

145

[29] Process and thread affinity for Intel Xeon Phi processors. https:

//software.intel.com/en-us/articles/process-and-thread-affinity-

for-intel-xeon-phi-processors-x200, 2016. Accessed March 23, 2017.

[30] Intel Measured Results. High Performance Conjugate Gradients. www.umbc.edu/

~gobbert/papers/KNL_UMBC.PNG, April 2016.

[31] Arieh Iserles. A First Course in the Numerical Analysis of Differential Equations.

Cambridge Texts in Applied Mathematics. Cambridge University Press, second

edition, 2009.

[32] Leighton T. Izu, Joseph R. H. Mauban, C. William Balke, and W. Gil Wier.

Large currents generate cardiac Ca2+ sparks. Biophys. J., vol. 80, pp. 88–102,

2001.

[33] Leighton T. Izu, Shawn A. Means, John N. Shadid, Ye Chen-Izu, and C. William

Balke. Interplay of ryanodine receptor distribution and calcium dynamics. Bio-

phys. J., vol. 91, pp. 95–112, 2006.

[34] Leighton T. Izu, W. Gil Wier, and C. William Balke. Evolution of cardiac calcium

waves from stochastic calcium sparks. Biophys. J., vol. 80, pp. 103–120, 2001.

[35] Ishmail A. Jabbie, George Owen, Benjamin Whiteley, Jonathan S. Graf,

Matthias K. Gobbert, and Samuel Khuvis. Performance comparison of Intel

Xeon Phi Knights Landing. Submitted (2017).

[36] Samuel Khuvis. Porting and Tuning Numerical Kernels in Real-World Applica-

tions to Many-Core Intel Xeon Phi Accelerators. Ph.D. Thesis, Department of

Mathematics and Statistics, University of Maryland, Baltimore County, 2016.

146

[37] Stampede KNL cluster user guide. https://portal.tacc.utexas.edu/user-

guides/stampede#stampede-knl-clusterknl, 2016.

[38] Catherine Morris and Harold Lecar. Voltage oscillations in the barnacle giant

muscle fiber. Biophys. J., vol. 35, no. 1, p. 193, 1981.

[39] NASA Advanced Supercomputing Division. NAS parallel benchmarks, 2016.

http://www.nas.nasa.gov/publications/npb.html, accessed March 23, 2017.

[40] Peter S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, 1997.

[41] Zhilin Qu, Michael Nivala, and James N Weiss. Calcium alternans in cardiac

myocytes: Order from disorder. J. Mol. Cell. Cardiol., vol. 58, pp. 100–109,

2013.

[42] C. Rosales. Porting to the Intel Xeon Phi: Opportunities and challenges. In

Extreme Scaling Workshop (XSW 2013), pp. 1–7. IEEE, 2013.

[43] C. Rosales, D. James, A. Gómez-Iglesias, J. Cazes, L. Huang, H. Liu, S. Liu,

and W. Barth. KNL utilization guidelines. Technical Report TR–16–03, Texas

Advanced Computing Center, The University of Texas at Austin, 2016.

[44] Carlos Rosales, John Cazes, Kent Milfeld, Antonio Gómez-Iglesias, Lars

Koesterke, Lei Huang, and Jerome Vienne. A comparative study of applica-

tion performance and scalability on the Intel Knights Landing processor. In

Michela Taufer, Bernd Mohr, and Julian M. Kunkel, editors, High Performance

Computing: ISC High Performance 2016 International Workshops, ExaComm,

E-MuCoCoS, HPC-IODC, IXPUG, IWOPH, Pˆ3MA, VHPC, WOPSSS, Frank-

furt, Germany, June 19–23, 2016, Revised Selected Papers, vol. 9945 of Lecture

Notes in Computer Science, pp. 307–318. Springer-Verlag, 2016.

147

[45] J. Sanderson. The SWORD of Damocles. Lancet, vol. 348, no. 9019, pp. 2–3,

1996.

[46] Jonas Schäfer, Xuan Huang, Stefan Kopecz, Philipp Birken, Matthias K. Gob-

bert, and Andreas Meister. A memory-efficient finite volume method for

advection-diffusion-reaction systems with non-smooth sources. Numer. Methods

Partial Differential Equations, vol. 31, no. 1, pp. 143–167, 2015.

[47] Thomas I. Seidman, Matthias K. Gobbert, David W. Trott, and Martin Kruž́ık.

Finite element approximation for time-dependent diffusion with measure-valued

source. Numer. Math., vol. 122, no. 4, pp. 709–723, 2012.

[48] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, M. Barker, K. G. Duda,

X. Y. Huang, W. Wang, and J. G. Powers. A description of the advanced research

WRF version 3. Technical report, National Center for Atmospheric Research,

2008.

[49] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K. Vinod, S. Chinthamani, S. Hut-

sell, R. Agarwal, and Y. C. Liu. Knights Landing: Second-generation Intel Xeon

Phi product. IEEE Micro, vol. 32, no. 2, pp. 34–46, 2016.

[50] Avinash Sodani. Intel Xeon Phi processor “Knights Landing” architec-

tural overview. https://www.nersc.gov/assets/Uploads/KNL-ISC-2015-

Workshop-Keynote.pdf, 2015. Accessed March 23, 2017.

[51] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, An-

drew Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Pe-

terson, Ralph Roskies, J. Ray Scott, and Nancy Wilkins-Diehr. XSEDE: Accel-

erating scientific discovery. Comput. Sci. Eng., vol. 16, no. 5, pp. 62–74, 2014.

148

[52] Stefan Wagner, Lars S. Maier, and Donald M. Bers. Role of sodium and calcium

dysregulation in tachyarrhythmias in sudden cardiac death. Circ. Res., vol. 116,

no. 12, pp. 1956–1970, 2015.

[53] David S. Watkins. Fundamentals of Matrix Computations. Wiley, third edition,

2010.

[54] J. N. Weiss, A. Garfinkel, H. S. Karagueuzian, P. S. Chen, and Q. Zhilin. Early

afterdepolarizations and cardiac arrhythmias. Heart Rhythm, vol. 7, no. 12,

pp. 1891–1899, 2010.

[55] F. C. Wong, R. P. Martin, R. H. Arpaci-Dusseau, and D. E. Culler. Architectural

requirements and scalability of the NAS parallel benchmarks. In Proceedings of

the 1999 ACM/IEEE Conference on Supercomputing, pp. 41–41, 1999.

