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ABSTRACT

Title of dissertation: Statistical Modeling using Conditionally
Specified Joint Distributions with Applications

Nadeesri Wijekoon, Doctor of Philosophy, 2021

Dissertation directed by: Professor Nagaraj K. Neerchal
Department of Mathematics and Statistics

Often in practice, conditional distributions are easier to model and interpret

while the joint distribution itself is either intractable or not available in closed form.

When the observed response consists of both continuous and discrete components,

specifying conditionals is more convenient. There are many real-world applications

where the conditional specification approach is intuitively appealing, and knowing

the conditional distributions makes it easier to understand and visualize the joint

distribution. Furthermore, the researcher can obtain a better insight by investigating

and interpreting the conditional distributions. In this thesis, we propose a joint

distribution that can be specified using its respective conditionals and which can

handle both continuous data and discrete data together. In literature, such models

are referred to as conditionally specified models. We explored the theoretical aspects

of conditionally specified models, where conditionals are from the exponential family

of distributions, including parameter estimation, data generation, and uniqueness

of the joint distributions.

The Maximum Likelihood (ML) method, which is the preferred estimation



method of parametric models, turns out to be difficult to implement for estimating

the parameters of conditionally specified joint distributions because it contains an

awkward normalizing constant. Thus, Composite Likelihood (CL) was used as an

alternative method of estimation. We used numerical methods to obtain the esti-

mates of parameters since closed-form expressions for estimates using the proposed

density are not feasible. Simulation studies were conducted for different sample

sizes to investigate the properties of ML estimates and CL. It showed that the ML

method has less bias (and nearly zero in some cases) than the CL method, how-

ever CL method involves relatively less computational burden. In both methods,

the variances of the estimates decrease as the sample size increases. Further, joint

asymptotic relative efficiency (JARE) between the ML method and CL method were

calculated for different sample sizes using the Godambe Information matrix. In ad-

dition, we conducted a performance analysis utilizing the two methods. The results

showed that for a larger sample size, the computational advantage of the CL method

surpasses that of the ML method quickly. Thus, choosing the CL method over the

ML method is a trade-off between efficiency and computational cost. The proposed

normal-logistic joint density was applied to the stock prices (continuous data) and

expert recommendations (categorical data) for buying/selling specific stocks. Pa-

rameters of the model were estimated using both ML and CL methods.
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Chapter 1: Introduction

In many real-world applications, the data consists of both continuous and

discrete observations. Specifying joint distributions for such data presents some

challenges whereas the conditionals of the continuous part given the discrete and

vice versa are easily specified. Specifying the joint distribution in terms of condi-

tionals is also convenient in many other situations. In many cases, the conditionals

are commonly used distributions whereas the joint distribution may belong to an

intractable family.

In this dissertation, we focused on a joint distribution for data consisting of a

binary random variable and bivariate continuous measurements. More specifically,

the model postulates a joint distribution determined by Binomial (in fact by a

logistic regression model) conditional and a bivariate Normal conditional. This is a

special case of a well-known and well-developed literature on conditional specified

joint distributions. We provide a complete study of the important special case

which is bivariate normal and logistic conditionals. We also address problem of

compatibility and we present a real-world application and explore different methods

of estimation. In the next three sections, We present two real-world examples where

bivariate normal-logistic conditionals can be applied.

1



1.1 Example 1: Proxy data in aging studies

In aging studies, researchers are interested in identifying the mutable factors

related to the disease/disabilities of older adults. However, some of these factors

cannot be directly quantifiable. Therefore, researchers have developed various mea-

surement scales Shardell et al. (2010) and/or questionnaires to obtain the required

information. Yet, Some older adults may be unwilling or unable to provide neces-

sary information about the disease/disability due to reasons such as medical issues

or declining cognitive ability. As a solution, a proxy is asked to respond. A proxy is

someone who knows the older adult such as a relative or caregiver. There are advan-

tages and disadvantages of using a proxy. Given below in Table 1.1 is a schematic

representation of a longitudinal study Hosseini (2017). Typically, proxy data are

not collected if the subject is a self-report. Therefore, for each subject, either the

subject or proxy, respond Shardell et al. (2010). This data structure is shown in the

Table 1.2. Note that, either the self or proxy observation can be seen in each time

point.

As we further investigate the problem, we can posit that the probability dis-

tribution of subject responses is different from the probability distribution of the

proxy responses. On the other hand, whether or not the subject will require a proxy

or not is also dependent on the condition of the subject and hence the past and

present values of the response variable. Suppose for the ith subject, i = 1, 2, ..., n,

the response at the tth time point t = 1, 2, ..., T , Yit denotes the response and an

indicator Rit represents whether the response is truly coming from a proxy (Rit = 0)

2



Table 1.1: Self data and Proxy data in a longitudinal study [Hosseini. M.,2017].

S = “Self” and P= “Proxy”.

Subject ID
Time

1 2 · · · T

1 S S P P

2 S P P P

...
...

...
...

...

n S P S S

or from the subject themselves (Rit = 1). That is,

Rit =


1 if answered by subject

0 if answered by proxy

As shown in Table 1.2, for each time point we have two data points; one is the

response and the other is the indicator of whether the response is from a proxy or self.

Moreover, typically the response distribution is continuous while the proxy indicator

clearly follows a discrete distribution. Since Y depends on R and R depends on Y ,

we can also state the problem as follows.

Suppose We have the distribution of observed data vector of a single subject

(say Y ) given the self-proxy pattern (say R), fY |R(y|R = r) and the distribution of

3



Table 1.2: Self and Proxy data Structure

Subject ID
Time

1 2 · · · · · · · · · · · · T

1 (Y11, R11) (Y12, R12) · · · · · · · · · · · · (Y1T , R1T )

2 (Y21, R21) (Y22, R22) · · · · · · · · · · · · (Y2T , R2T )

...
...

...
...

...

n (Yn1, Rn1) (Yn2, Rn2) · · · · · · · · · · · · (YnT , RnT )

self proxy pattern given observed data vector of the subject, fR|Y (r|Y = y). Further,

R is a binary variable and Y is a continuous variable such that fY |R(y|R = 0) ∝ f0(y)

and fY |R(y|R = 1) ∝ f1(y). Further if we let,

fR|Y (r|Y = y) = g−1(y, α)r{1− g−1(y, α)}1−r

and

fY |R(y|R = r) = I(r = 0)f0(y) + I(r = 1)f1(y)

We will have that g(y, α) is a function of y parameterized by α. Detailed proof of the

above form can be found in Hosseini (2017). The current approach of analyzing this

type of data is either to treat the self and proxy data as interchangeable or simply

analyze self and proxy data separately (Shardell et al. (2010), Snow et al. (2005)).

The first approach leads to biased estimates and incorrect standard errors whereas

the latter results in two sets of estimates without an obvious way of combining them.

4



Thus, there is a need to develop a single framework to analyze both subject data

and proxy data. A single framework, in a sense, is a joint distribution of (Y,R).

1.2 Example 2: Synthetic data in survey sampling

Synthetic data are generated to fill specific observations that may be missing in

the original, real data. Synthetic data are also used in publishing survey data subject

to confidentiality requirement. Missing data is one of the places where synthetic data

are used. Missing data can occur due to non-response. In longitudinal studies, this

situation is very common and there are many ways such as partial imputation and

interpolation to replace these missing observations with imputed values. Similar to

in Example 1, we can define an indicator function Ri as follows.

Ri =


1 if original observation

0 if imputed observation

The data structure is given in Table 1.3.

Table 1.3: Toy data set with imputed values. (Bold observations represent the

imputed data.)

i 1 2 3 4 5

Yi 0.76 1.45 3.54 7.63 0.23

Ri 1 1 0 1 0

One can analyze these data assuming the data as interchangeable or simply analyze

5



original data and self data separately. The first approach leads to biased estimates

and incorrect standard errors whereas the latter results in two sets of estimates

without an obvious way of combining them. Thus, as in Example 1, there is a

need to develop a single framework to analyze both original data and imputed data,

so that the information contained in the label can be incorporated into the data

analysis.

1.3 Example 3: Stock market recommendations

Stock market analysts classify a stock as either a “buy”, “hold” or a “sell”

based on their research. This research includes the price history of the stock and

also the current status of the market. Analyst can decide that a particular stock is

a “buy”, “ sell”, or “hold” depending on their research (Grant (2020)). A “buy”

recommendation means that the analyst is expecting the stock price to go up and

a “sell” recommendation is given when the analyst is expecting the stock price to

go down. A “hold” recommendation is simply an indication that it is not the right

time to sell if you have the stock, and perhaps is also not the right time to acquire

more of this stock.

Assume we have a data of stock prices over t = 1, 2, ..., T for s = 1, 2, ..., S

stocks. Suppose Yst is the price of sth stock at time tth and the indicator function

Rst that specifies the recommendation by the analyst. That is,

6



Rst =



1 if stock is a “buy”,

2 if stock is a “hold”,

3 if stock is a “sell”.

Here, the distribution of the stock price on the “buy” days, the distribution of the

stock price on the “hold” days are clearly different from the price distribution on

“sell” days. Thus, our choice of the model parameters would differ if we knew that

the stock has been classified as a buy instead of as a sell. On the other hand, the

price history of the stock will influence the classification (buy, hold or sell) decision

of the analyst. Thus, even though it is cumbersome and inconvenient to think of a

joint distribution of the stock prices (continuous) and the analyst recommendations

(discrete), it is easier to think of the conditional distribution of the recommendations

given the price history and the conditional distribution of the stock price given its

buy, hold or sell status. Moreover, if we assume we only have “buy” status and

“sell” status, the Rst is further simplified to a binary indicator as

Rst =


1 if stock is a “buy”,

0 if stock is a “sell”.

Though stock prices are usually published every working day, if we use only Monday

and Friday stock prices the data structure boils down to more a simplified form as

shown in Table (1.4). Thus, the distribution of the observed data vector of a single

stock (say y) given the buy-sell pattern (say R) is denoted by fy|R(y|X = x) and

the distribution of the buy-sell pattern given the observed data vector of the stocks

7



Table 1.4: Data structure

Closing Prices

(Monday, Friday)

Recommendation

Stock 1 Week 1 (y
(1)
11 , y

(2)
11 ) r11

Week 2 (y
(1)
12 , y

(2)
12 ) r12

...
...

...

Week 40 (y
(1)
1,40, y

(2)
1,40) r1,40

Stock 2 Week 1 (y
(1)
21 , y

(2)
21 ) r21

Week 2 (y
(1)
22 , y

(2)
22 ) r22

...
...

...

Week 40 (y
(1)
2,40, y

(2)
2,40) r2,40

Stocki weekj (y
(1)
ij , y

(2)
ij ) rij

is denoted by fR|Y (R|Y = y). Further, suppose R is a binary variable and Y is a

continuous variable such that fY |R(y|R = 0) ∝ f0 and fY |R(y|R = 1) ∝ f1. Further

more, we may assume a linear function g(y, β), parameterized by β, to model the

success probability of r. Then, the conditional distribution of r given Y = y is given

8



by

fR|Y (r|Y = y) = g−1(y, β)r(1− g−1(y, β))1−r.

One can assume f0 follows a bivariate normal distribution with mean vector

∼
µ(0) = (µ

(0)
1 , µ

(0)
2 ) and variance covariance matrix as Σ(0) and f1 follows a bivariate

normal distribution with mean vector
∼
µ(1) = (µ

(1)
1 , µ

(1)
2 ) and variance covariance

matrix as Σ(1). We can then write

fY |R(y|R = r) ∼ N2(
∼
µ(r),Σ(r))

We discuss this example more extensively in chapter 5 accompanied by data

analysis.

1.4 Organization of the thesis

The rest of the thesis content arranged as follows. In chapter 2, Conditionally

Specified (CS) models will be introduced with an extensive literature survey. Some

important results in the literature of CS models will be also discussed with examples.

Further, important concepts like compatibility, uniqueness of a CS distribution are

also discussed in chapter 2. Step by step derivation of the Normal-binary logistic

joint model will be presented in chapter 3. Data generation using the new joint model

is also briefly discussed in the third chapter. In chapter 4, we present estimation

procedures that can be used to find estimates in our newly derived joint model.

Application of maximum likelihood estimation and composite likelihood estimation

will be discussed in this section with numerical comparisons among the two methods.

9



Chapter 5 contains a data analysis that involves stock price data example (Example

3) in chapter 1.
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Chapter 2: Conditionally Specified Models

A bivariate density is easy to understand/visualize in-terms of its conditional

densities. Therefore, one can earn better insight into the form of conditional distri-

butions of experimental variables rather than the joint distribution. For instance,

let us cite a classical example by Arnold et al. (2001). Suppose we want to visualize

the distribution of height given the weight in some populations. The distribution

will be unimodal with the mode varying monotonically with weight. Similarly, the

distribution of weight given the height in some populations. The distribution will

be unimodal with the mode varying monotonically with height. Yet, it is difficult

to visualize features of the appropriate joint distribution of weight and height. One

can blindly assume a distribution for this bivariate joint distribution. According to

Hauser (1993), Galton’s assertion that a unimodal bivariate distribution is one of

the picks for the joint distribution of height and weight that turned out to be ap-

propriate. That been said, there’s no guarantee that blindly choosing a distribution

for joint distribution will be appropriate all the time. Looking at the conditionals

instead might be much reasonable in that case. Joint distributions that can be

specified using conditional distributions to specified parametric families are called

conditionally specified joint models.

11



In the next section, we present the literature review on the general concept

of conditionally specified models in the exponential family of distributions with

some useful theorems. Further, we address the issues with these models such as

compatibility and uniqueness.

2.1 Conditionally Specified Models: Literature Review

A bivariate density is understandable in terms of its conditional densities

Arnold et al. (2001). For instance, instead of providing a model for (X, Y ), one

can propose families of conditional distributions of X given values of y, and of Y

given values x of X. Considerable research has been done on conditionally specified

models.

Besag (1974), applied the concept of the conditional specification to spatial

stochastic interactions. He examined the spatial interaction of random variables for

a finite system by the use of conditional probability models and concluded that the

conditional probability approach to the specification and analysis of spatial inter-

action is more useful than the joint probability approach. Castillo and Galambos

(1989), identified the class of all analytic bivariate densities f(x, y) defined on ℜ2

for which all conditional models are normally distributed. According to Castillo and

Galambos, this class includes the classical bivariate normal density and interesting

distributions with non-normal marginals and non-linear regression functions. Based

on Castillo and Galambos’s work, Arnold (1987), derived the class of all bivariate

densities on R+2 for which the conditionals are Pareto (α) densities. Further, Arnold

12



and Strauss (1991a), studied bivariate distributions with conditionals in exponential

families. In their paper, they developed a theorem that can be applied to obtain

joint densities using conditional distributions in any specified exponential families.

We will discuss this theorem in future sections. Moreover, Arnold and Strauss

proposed pseudo-likelihood method as an alternative to the maximum likelihood

method to estimate parameters. Arnold et al. (2001), showed that certain condi-

tionally specified densities can provide convenient flexible conjugate prior families

in certain multi-parameter Bayesian settings. Further, Arnold et al. (2001) intro-

duced multivariate extensions for conditionally specified concepts. In recent work,

Kuo and Wang (2018) and Kuo and Wang (2019), discussed how Gibbs sampling

can be used to generate data from conditionally specified models. Moreover, they

address the importance of compatibility of conditionals when using gibbs sampling

and proved a necessary and sufficient condition for gibbs sampling to simulate the

stationary joint probability density from conditionally specified models.

The compatibility of the conditional distributions and the Uniqueness of the

joint distribution is also widely discussed in the literature. Arnold et al. (1989),

Arnold and Gokhale (1994, 1998), Arnold et al. (2001, 2004, 1989) and Chen (2010)

have done some significant work in this area and proposed several approaches to

handle the compatibility issue. In more recent papers, Ghosh and Nadarajah (2016,

2017), studied the problem of determining whether a given set of constraints in-

volving marginal and conditional probabilities and expectations of functions are

compatible or most nearly compatible when both conditionals are discrete.
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2.2 Conditionally Specified Models in Exponential Families (CEF)

As mentioned in the previous section, Arnold and Strauss (1991b), studied

bivariate distributions with conditionals in exponential families by extending the

work done by Castillo and Galambos (1989) and Arnold (1987). In this section, we

use Arnold and Strauss (1991a) and Arnold et al. (2001) as our major references.

The section divides into two parts; the first part briefly explains the exponential

family of distributions with some classic examples and the second part is dedicated

to introducing Arnold et.al. theorem which we use throughout this dissertation.

2.2.1 Exponential Family

The Exponential family is a widely used family of distributions on finite di-

mensional Euclidean spaces parametrized by a finite dimensional parameter vector

Bickel and Doksum (2006) which are practically convenient. The exponential family

includes most of the standard discrete and continuous distributions such as normal,

poisson, binomial, gamma, multivariate normal and so on. This family is given a

special interest in the field of statistics due to its’ special properties such as algebraic

convenience, special structure and sufficiency properties. Therefore, in next section

we will briefly introduce the canonical form of exponential family of distributions

and its’ variation with some examples. For further information and clarifications

reader can use the following classic explanations such as Barndorff-Nielsen (1978),

Brown (1986), Casella and Lehmann (2006) and Bickel and Doksum (2006).
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Definition 2.1. Let X = (X1, X2, ..., Xd) be a d- dimensional random vector with

a distribution Pθ, θ ∈ Θ ⊆ ℜ.

1. Suppose X1, X2, ..., Xd are jointly continuous. The family of distributions

{Pθ, θ ∈ Θ} is said to belong to the one parameter Exponential family if the

density of X = (X1, X2, ..., Xd) may be represented in the form

f(x | θ) = eη(θ)T (x)−ψ(θ)h(x)

for some real valued functions T (x), ψ(θ) and h(x) ≥ 0

2. Suppose X1, X2, ..., Xd are jointly discrete. Then {Pθ, θ ∈ Θ} is said to belong

to the one parameter Exponential family if the joint pmf of p(x | θ) = Pθ(X1 =

x1, X2 = x2, ..., Xd = xd) may be written in the form

p(x/θ) = eη(θ)T (x)−ψ(θ)h(x)

for some real valued functions T (x), ψ(θ) and h(x) ≥ 0

Note that the functions η, T and h are not unique. For example, in the product

ηT , we can multiply T by some constant c and divide η by it. Similarly, we can

play with constants in the function h. Further, T (x) is called the natural sufficient

statistic for the family {Pθ}. Apart from the canonical representation, there are

other alternative representations which is equivalent to canonical form. We are

presenting the alternative representation used in Arnold and Strauss (1991a),
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Definition 2.2. (Exponential Family) : An l1-parameter family of densities {f1(x; θ) :

θ ∈ Θ}, with respect to dominating measure µ1 (frequently, Lebesgue measure or

counting measure) on D1 (some subset of Euclidean space of finite dimension), of

the form

f1(x; θ) = r1(x)β1(θ) exp

{ l1∑
i=1

θiq1i(x)

}
(2.1)

Similarly, we can define,

f2(y; τ) = r2(y)β2(τ) exp

{ l2∑
j=1

τjq2j(y)

}
(2.2)

Here Θ and T are the natural parameter spaces and q1i(x)’s and q2j(y)’s

are sufficient statistics that assumed to be linearly independent. Further, ψ(θ) =

− log β1(θ) and ψ(τ) = − log β2(τ).

Example 2.1. (Normal Distribution)

Normal distribution belongs to two parameter exponential family. Therefore, l1 = 2.

f(y;µ, σ) =
1√
2πσ2

exp

{
− (y − µ)2

2σ2

}
, where µ ∈ R and σ ∈ R+

Rewrite the distribution as exponential form using definition 2.2,

f(y;µ, σ) =
1√
2πσ2

exp

{−µ2

2σ2

}
exp

{(
µ
σ2 − 1

2σ2

) y

y2

}

where, θi =

(
µ
σ2 − 1

2σ2

)
, q1i(y) =

 y

y2

 , r1(y) = 1 and β1(θ) =
1√
2πσ2

exp
(

−µ2
2σ2

)

Example 2.2. (Bernoulli Distribution)

Bernoulli distrbution belongs to one parameter exponential family (l1 = 1). Proba-
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bility mass function of Bernoulli distribution is

P (R = r) = πr(1− π)1−r, r = 0, 1

Rewrite the distribution as exponential form using definition 2.2,

P (R = r) = (1− π) exp

{
log
( π

1− π

)
r

}
= (1− π) exp

{
θ1q11(r)

}

Where, θ1 = log
(

π
1−π

)
, q11(r) = r , r1(r) = 1 and β1(θ) = 1.

Our goal is to identify the class of bivariate densities f(x, y) w.r.t. µ1 × µ2

on D1 ×D2 for which conditional densities f(x/y) and f(y/x) are well defined and

belongs to the family of exponential for some θ which may depend on y and τ

which may depend on x respectively. In next section, we present the theorem which

describe the general class of bivariate distributions where their conditionals belong

to exponential family.

2.2.2 Arnold and Strauss Theorem

Following is the theorem by Arnold and Strauss (1991a).

Theorem 2.1. Let f(x, y) be a bivariate density whose conditional densities satisfy

f(x | y) = f1(x; θ(y))

f(y | x) = f2(y; τ(x))

17



for some function θ(y) and τ(x) where f1 and f2 are defined in 2.1 and 2.2. It

follows that f(x, y) is of the form

f(x, y) = r1(x)r2(y) exp

{
q(1)(x)

′
Mq(2)(y)

}
(2.3)

where

q(1)(x) = (q10(x), q11(x), q12(x), ..., q1l1(x)),

q(2)(y) = (q20(y), q21(y), q22(y), ..., q2l2(y))

where q10(x) = q20(y) = 1, q1i(x), q2j(x); i = 1, .., l1 and j = 1, ..., l2 are sufficient

statistics of f(x | y) and f(y | x) respectively and M is a matrix of constants param-

eters of appropriate dimensions (i.e., (l1 + 1)× (l2 + 1)) subject to the requirement

that ∫
D1

∫
D2

f(x, y)dµ1(x)dµ2(y) = 1

The matrix M is given as,

M =



m00 m01 ... m0l2

m10

... M

ml10


Note that when M ≡ 0, the two conditionals are independent. That is fX,Y (x, y) =

fX(x)fY (y). m00 represent the normalizing constant, which can be derived using the

fact that the joint distribution is a valid distribution so integrates to 1.
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Proof : Consider a joint density with conditionals in the given exponential families.

Denote the marginal distributions by g(x), x ∈ S(X) = {x : r1(x) > 0} and h(y), y ∈

S(Y ) = {y : r2(y) > 0} respectively.

The joint can be written as the product of marginal and a conditional in two

ways.

f(y|x)g(x) = f(x|y)h(y)

r2(y)β2(τ(x)) exp

{ l2∑
j=1

τjq2j(y)

}
g(x) = r1(x)β1(θ(y)) exp

{ l1∑
i=1

θiq1i(x)

}
h(y)

(2.4)

Define,

τ0(x) = log[g(x)β2(τ(x))/r1(x)]

θ0(y) = log[h(y)β1(θ(y))/r2(y)]

So equation 2.4 can be written as,

exp(τ0) exp

{ l2∑
j=1

τjq2j(y)

}
= exp(θ0) exp

{ l1∑
i=1

θiq1i(x)

}

and

exp

{ l2∑
j=0

τjq2j(y)

}
= exp

{ l1∑
i=0

θiq1i(x)

}
This follows that,

exp

{ l2∑
j=0

τjq2j(y)

}
= exp

{ l1∑
i=0

θiq1i(x)

}
= q(1)

′

(x)Mq(2)(y)

r1(x)r2(y) exp

{ l2∑
j=0

τjq2j(y)

}
= r1(x)r2(y) exp

{ l1∑
i=0

θiq1i(x)

}
So we can obtain equation (2.3).
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The normalizing constant most of time needs to be evaluated numerically.

Because of this awkward normalizing constant, the true likelihood becomes much

more complicated and often times intractable. As a result, standard estimation

methods such maximum likelihood techniques are difficult to implement. However,

there are other approaches have been suggested which we will discussed in chapter 4.

However, explicit knowledge about the normalizing constant is not required when

generating data from a joint density. Two simple example were given below to

understant the application of theorem 2.1

Example 2.3. (Normal Conditionals) : Here we are dealing with two parameter

(l1 = l2 = 2) exponential family. Assume unknown mean and variance. And we

have r1(t) = r2(t) = 1. Then we have,

q(1)(t) = q(2)(t) =


1

t

t2


From Theorem 2.1, We obtain,

f(x, y) = exp

{
q(1)(t)′Mq(2)(t)

}
= exp

{(
1 x x2

)
M


1

y

y2


}

M is a 3× 3 matrix,

M =


m00 m01 m02

m10 m11 m12

m20 m21 m22
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The choice m22 = m12 = m21 = 0 gives the classic bivariate normal provide that,

m20 < 0,m02 < 0,m2
11 < 4m02m20

correlations of both signs are possible. And non classical normal conditional models

are controlled by the following parametric constraints,

m22 < 0, 4m22m02 > m2
12, 4m22m20 > m2

21

Example 2.4. (Poisson - Gamma) : Random variable (X, Y ) such that,

X|Y = y ∼ poisson(y)

and assume

Y ∼ Γ(α, λ)

The resulting distribution X is compound poisson distribution.

f(x) =
Γ(x+ α)

Γ(α)x!

(
λ

λ+ 1

)α(
1

λ+ 1

)x
x = 0, 1, 2, ....

which will give us,

Y |X = x ∼ Γ(x+ α, λ+ 1)

Therefore, joint density belongs to CEF, where l1=1 and l2=2. So, M matrix is

2× 3. Further, r1(x) =
1
x!

and r2(y) =
1
y
. Joint can be rewritten as,

f(x, y) =
1

x!y
exp

{(
1 x

)
M


1

−y

ln(y)


}

x = 0, 1, ...; y > 0

where,

m01 > 0,m02 > 0,m11 ≥ 0,m12 ≥ 0
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Note that, when m11 = 0 and m12 = 1 the joint distribution becomes compound

Poisson distribution and X and Y becomes independent when m11 = m12 = 0.

2.3 Compatibility

Although using the above theorem we can derive the CS joint model, there

is no guarantee that there exists a joint distribution with the given families as its

conditionals. That is, when there are candidate families of conditional distributions

for X given Y and Y given X, there exist at least one joint distribution for (X, Y )

with given families if those candidates families are compatible. There are several

ways to check and identify the compatibility of conditionals. First we will consider

whenX, Y discrete and each have finite set of possible values. All the definitions and

theorems are borrowed from Arnold and Gokhale (1994) and Arnold et al. (2001).

2.3.1 Finite discrete case

Let us Consider X and Y to be discrete random variables with possible values

x1, x2, ..., xI and y1, y2, ..., yJ respectively. Generally, conditional model for the joint

distribution of (X, Y ) can be associated with two I×J matrices A and B with either

aij and bij separately. These aij’s and bij’s are assumed to be non negative.

Let

aij = P (X = xi|Y = yj) ∀i, j, (2.5)

bij = P (Y = yj|X = xi) ∀i, j, (2.6)

I∑
i=1

aij = 1 ∀j, (2.7)
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and
J∑
j=1

bij = 1 ∀i. (2.8)

One important requirement for compatibility is that A and B should have identical

incident sets.

Definition 2.3. (Incident set of a matrix (Arnold et.al. 2001))- Given a matrix A

the set {(i, j) : aij > 0} is called the incident set of A and is denoted by NA.

According to Arnold and Gokhale (1994), conditional probability matrices A

and B are compatible if NA = NB. If a bivariate random variable (X, Y ) exists with

conditionals (2.5) and (2.6) then its corresponding marginals are heavily constrained.

Suppose the marginals of X and Y are,

τi = P (X = xi) i = 1, 2, ..., I (2.9)

ηj = P (Y = yj) j = 1, 2, ..., J (2.10)

Since we can write the joint distribution using its conditionals and marginals in two

ways,

P (X = xi, Y = yj) = P (X = xi).P (Y = yj|X = xi) = P (Y = yj).P (X = xi|Y = yj)

Therefore, τ and η must satisfy,

τibij = ηjaij (2.11)

Theorem 2.2. (Arnold and Press (1989)) A and B, satisfying (1.3) and (1.4), are

compatible iff:
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1. NA = NB = N say; and

2. ∃ vector u and v of appropriate dimensions for which

cij = aij/bij = uivj ∀(i, j) ∈ N (2.12)

Proof. Suppose first that A and B are compatible, then from (2.11) we have

cij = τi/ηj so (8) holds, an appropriate choice for τ is provided by τi = ui/
∑I

i=1 ui

and an appropriate choice for η is provided by ηj = v−1
j′ /

∑J ′

j′=1 vj′ . A and B have

non negative elements.

We will start by introducing the definition for uniform marginal representation

followed by a theorem by Arnold and Gokhale (1994),

Definition 2.4. (Uniform marginal representation of matrix) (Mosteller (1968);

Arnold, Arnold et al. (1999))

Given an I×J matrix with non negative elements (with at least one positive element

in each row and column), we iteratively normalize rows and columns to have sums

1/I and 1/J , respectively, until the procedure converges. The limiting matrix is

called the uniform marginal representation (UMR) of the original matrix.

Thus, Arnold and Gokhale (1994) theorem is as follows.

Theorem 2.3. A and B, satisfying (1.3) and (1.4), are compatible iff:

1. A and B are compatible if and only if they have identical uniform marginal

representations (UMRs).

2. A and B are compatible if and only if all cross product ratios (Arnold et al.

(1999), Definitions 2.2 and 2.3) of A are identical to those of B.
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2.3.2 Continuous case

If we relax the condition of (X, Y ) being discrete random variables with finite

number of possible values, the only change in the theorem 2.3 is notation changes.

The only complicated problem is to propose appropriate summable or integrable

conditions instead of (2.7) and (2.8).

The joint, marginal and conditional densities defined using usual notation.

a(x, y) = fX|Y (x|y), x ∈ S(X), y ∈ S(Y ) (2.13)

b(x, y) = fY |X(y|x), x ∈ S(X), y ∈ S(Y ) (2.14)

NA = {(x, y) : a(x, y) > 0} (2.15)

NB = {(x, y) : b(x, y) > 0} (2.16)

Theorem 2.4. (Arnold et al. (1999, 2001) A joint density f(x, y), with a(x, y) and

b(x, y) as its conditional densities, will exist iff

1. NA=NB=N;

2. ∃ functions u and v such that ∀ x, y,∈ N ;

a(x, y)/b(x, y) = u(x)v(y) (2.17)

where, ∫
S(X)

u(x)dµ1(x) <∞.

Proof. In order for a(x, y) and b(x, y) to be compatible, suitable marginal densities

f(x) and g(y) must exist. Clearly 2.17 must hold with f(x) ∝ u(x) and g(y) ∝
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1/v(y). The condition
∫
u(x)dµ1(x) <∞ is equivalent to

∫
[1/v(y)]dµ2(y) <∞ and

only one needs to be check in practice. These integrability conditions reflect the

fact that the marginal densities must be integrable and indeed must integrate to 1.

We will now look into some examples of compatibility.

Example 2.5. (Example for continuous case:) Consider the following candidate

family of conditional densities with respective to Lebesgue measure.

fX|Y (x|y) = a(x, y) = (y + 2)e−(y+2)xI(x > 0)

fX|Y (x|y) = a(x, y) = (x+ 3)e−(x+3)yI(y > 0)

We can observe that S(X) = S(Y ) = (0,∞). By using the theorem,

a(x, y)

b(x, y)
=

(y + 2)e−(y+2)x

(x+ 3)e−(x+3)y
=

(
e−2x

x+ 3

)(
y + 2

e−3y

)
and (1.13) holds with u(x) = e−2x

(x+3)
and v(y) = (y + 2)e3y

Notice that ∫ ∞

0

u(x)dx <∞

And thus confirmed the compatibility of two models.

By assuming (X, Y ) random vector is absolutely continuous with respect to some

product measure µ1 × µ2 on S(X)× S(Y ) where S(X) and S(Y ) are support of X

and Y which can be finite, countable , or uncountable. This can allow one variable

to be discrete and the other continuous.

Example 2.6. (Example for continuous-discrete case): Consider the following can-

didate family of conditional densities.

fY |X(Y/X = x) = a(x, y) = Γ(x, λ)
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fX|Y (X/Y = y) = b(x, y) = poisson(y)

Observe that S(X)= [0,∞) (discrete) and S(Y) = (0,∞). So from the theorem (1.4),

a(x, y)

b(x, y)
=
λx(Γ(x))−1yx−1e−λy

yxe−y(x!)−1
= λxx× e−(λ−1)y

y
= u(x)v(y)

Where,
∞∑
x=0

λxx =
λ

(1− λ)2
<∞ λ = 2, ..,

Thus confirmed compatibility.

Example 2.7. (Logistic Regression) : Suppose X takes values in the set {x1, x2, ..., xk}.

and suppose all y ∈ R. For each x we have Y |X = x ∼ N(θx, σ
2
x).

and for each y we have,

P (X = x|Y = y) =
exp[−(ax + bxy)]
k∑
x=1

exp[−(ax + bxy)]

.

These two conditionals are compatible if for x = 1, 2, ..., k,

1. σ2
x = σ2 and

2. bx = θx/σ
2.

Note that ax’s are unconstrained.As a remark, When k = 2, we have binary X taking

values x1 = 1 or x2 = 2, say, and hence a binary logistic conditional. That is,

ax =


0 for x = 1

α0 for x = 2
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bx =


0 for x = 1

α1 for x = 2

Proof: Let,

a(x, y) = f(y|X = x) = N(θx, σ
2
x)

b(x, y) = f(x|Y = y) =
exp[−(ax + bxy)]
k∑
x=1

exp[−(ax + bxy)]

By applying Theorem (2.4) we have:

a(x, y)

b(x, y)
=

1√
2πσx

exp

{
− (y−θx)2

2σ2
x

}
k∑
x=1

exp

{
− (ax + bxy)

}
exp

{
− (ax + bxy)

}
=

1√
2πσx

exp

{
(ax + bxy)−

(y − θx)
2

2σ2
x

} k∑
i=1

exp

{
− (ai + biy)

}

=
1√

2πσx
exp

{
− 1

2σ2
x

[
y2 + θ2x − 2θxy − 2σ2

xax − 2σ2
xbxy

]} k∑
i=1

exp{−(ai + biy)}

=
1√

2πσx
exp

{
− 1

2σ2
x

[
y2 − 2(θx + σ2

xbx)y

]
+ ax −

θ2x
2σ2

x

} k∑
i=1

exp{−(ai + biy)}

=
1√

2πσx
exp

{
ax −

θ2x
2σ2

x

}
exp

{
− 1

2σ2
x

[
y2 − 2(θx + σ2

xbx)y

]} k∑
i=1

exp{−(ai + biy)}

If the two conditionals are compatible then the above expression should factored.

In order to be factored we need to have bx = − θx
σ2
x
and σ2

x = σ2 where ax’s are

unconstrained. Thus we substitute bx and σ2
x to the expression.

a(x, y)

b(x, y)
=

1√
2πσ

exp

{
ax +

θxbx
2

}
exp

{
− y2

2σ2

} k∑
i=1

exp{−(ai + biy)}

= exp

{
ax +

θxbx
2

}
︸ ︷︷ ︸

U(x)

1√
2πσ

exp

{
− y2

2σ2

} k∑
i=1

exp{−(ai + biy)}︸ ︷︷ ︸
V(y)

= U(x)V (y)
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Where,
∫
y∈R V (y)dy <∞ and

k∑
x=1

U(x) <∞

Therefore, the two distributions are compatible provided that bx = − θx
σ2
x
and σ2

x = σ2

where ax’s are unconstrained.

2.4 Uniqueness

After addressing the issue of existence of the CS model so that compatibility

of the conditional distributions is assured, question of uniqueness of the CS model

also should be addressed. Uniqueness in simple words is that there maybe many

different joint distributions consistent with given specification of conditionals. In

particular, whether or not the given solution form yield the same conditionals.

Amemiya (1981), Gourieroux et al. (1979) are two of the early references which

discussed the uniqueness issue. Arnold et al. (1989) presented the methods to check

for the uniqueness for finite discrete case, countable discrete case and absolutely

continuous case. Moreover, they extended their work to higher dimensions. Arnold

et al. (1999) and Arnold et al. (2001) summarized the existing theoretical methods

available to check uniqueness. Kuo and Wang (2017) and Kuo and Wang (2019),

presented new computational methods to check the uniqueness of a CS joint model.

In this section, we will present some of the major theorems related to the uniqueness

issue.

According to Arnold et al. (1999), the necessary and sufficient conditions for

uniqueness can be viewed as a Markov chain problem. Suppose (X, Y ) is absolutely
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continuous with respect to µ1 × µ2 with support S(X) and S(Y ). If a(x, y) and

b(x, y) defined as (2.13) and (2.14) are compatible; and τ(x) is the marginal density

of X. Consider the stochastic kernel ba, following the notation by Arnold et al.

(1999).

ba(x/z) =

∫
S(Y )

a(x, y)b(z, y)dµ2(y) (2.18)

Note that τ is a stationary distribution of a Markov chain with state space S(X)

and transition kernel ba. The distribution τ(x) is unique if and only if the chain is

indecomposible. Reader can refer to Arnold et al. (2001). Given below is a classic

example of determining uniqueness from Arnold et al. (2001) paper.

Example 2.8. Suppose a(x, y) and b(x, y) compatible but with a nonunique com-

patible density. We will define the sets

A1 = {(x, y) : −1 < x < 0,−1 < y < 0}

and

A2 = {(x, y) : 0 < x < 1, 0 < y < 1}

and set

a(x, y) = b(x, y) = I((x, y) ∈ A1 ∪ A2) (2.19)

Joint density can be obtained in the form of

f(x, y) =
λ

2
I((x, y) ∈ A1) +

(1− λ)

2
I((x, y) ∈ A2)

The joint is compatible with (2.19) when λ ∈ (0, 1). Arnold et al. (2001) states that

it is fairly easy to verify that the Markov chain with transition kernel ba defined using
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(2.19) is decomposable. The state space S(X) = [−1, 0] ∪ [0, 1] is a disjoint union

of two closed subsets of states, namely [−1, 0] and [0, 1]. Thus, non-uniqueness of

the above joint density has been proven.

Further, Arnold et al. (2001) states that the simplest sufficient condition for

indecomposibility of the Markov chain with kernel ba is a “positivity” condtion.

The assumption that Na = Nb = S(X)× S(Y ) is sufficient because the kernel ba in

(2.18) will be positive for every x and every z.
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Chapter 3: Logistic and Bivariate Conditionals

In this section, we present the derivation of a conditionally specified model

starting with the Logistic distribution and the Bivariate Normal distribution as

conditionals. We consider the stock price data as the motivating example. We

propose a logistic regression model for the conditional distribution of the binary

valued analyst recommendation given the stock prices from the first and last day

of the trading week and the conditional distribution of the stock prices given the

analyst recommendation as a Bivariate Normal. We first set up the problem in

the notations of Theorem 2.1 and then obtain the form of the joint. It turns out

that the normalizing constant can be obtained in a closed form using some results

on multivariate normal integrals. We discuss some properties of the resulting joint

distribution. We have created a shiny (by Chang et al. (2021)) application which

can be used to explore the structure of the joint distribution for various parameter

values.

3.1 Setting up the problem

Suppose we have the distribution of observed beginning and end price vector

(2× 1) of a single trading week (say y) given the analyst recommendation (say r),
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fY |R(y | R = r) and the distribution of analyst recommendation given observed data

vector of a week, fR|Y (r|Y = y) ∼ Ber[π(y, α)], where, π(y, α) is a function of y

parameterized by α. We assume a logistic link:

logit[π(y, α)] = log

(
π(y, α)

1− π(y, α)

)
= α0 + α1y1 + α2y2 (3.1)

Further we assume that, R is a binary variable and Y is a continuous variable such

that fY |R(y|R = r) ∼ N2(µ
(r),Σ(r)), where,

µ(r) =

µ
(r)
1

µ
(r)
2

 and Σ(r) =

 σ
(r)
1

2 ρ(r)σ
(r)
1 σ

(r)
2

ρ(r)σ
(r)
1 σ

(r)
2 σ

(r)
2

2

 , for r = 0, 1.

Under this model, the conditional distributions of the stock price given its buy/sell

status is assumed to be normal, with different set of parameter values depending

upon the classification. As we shall see in the next section, we will need to assume

that the variance-covariance matrices of the two conditionals must be the same (that

is, Σ(0) = Σ(1)) in order to ensure compatibility.

3.2 Compatibility of the conditionally specified model

Confirming the existence of the joint model given the two conditionals is es-

sential before the model can be fit to real data. In other words, the two conditionals

should be compatible. That is, in this problem, we will start by checking whether

the functional forms fR|Y (r | Y = y) and fY |R(y | R = r) satisfy the conditions of

Theorem 2.4 of Arnold et al. (1989). Following Arnold et al. (1989) notations, let

a(r, y) = (2π)−1|Σ(r)|−1/2exp[−1

2
(y − µ(r))TΣ(r)−1(y − µ(r))]
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and

b(r, y) = π(y)r[1− π(y)](1−r)

where the logistic link function is

π(y) =
exp(α0 + α1y1 + α2y2)

1 + exp(α0 + α1y1 + α2y2)
.

That is,

b(1, y) =
exp(α0 + α1y1 + α2y2)

1 + exp(α0 + α1y1 + α2y2)

and

b(0, y) = 1− π(y)

= 1− exp(α0 + α1y1 + α2y2)

1 + exp(α0 + α1y1 + α2y2)

1

1 + exp(α0 + α1y1 + α2y2)
.

Thus, if we let

ar =


0 for r = 0

α0 for r = 1

br =


0 for r = 0

α1 for r = 1

and

cr =


0 for r = 0

α2 for r = 1

we can write

π(y) =
exp(ar + bry1 + cry2)
1∑
i=0

exp(ai + biy1 + ciy2)

,
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and

a(r, y)

b(r, y)
=

(2π)−1|Σ(r)|−1/2exp

{
− 1

2
(y − µ(r))TΣ(r)−1(y − µ(r))

}
exp(ar + bry1 + cry2)

{ 1∑
i=0

exp(ai + biy1 + ciy2)

}−1

=

(2π)−1|Σ(r)|−1/2exp

{
− 1

2
(y − µ(r))TΣ(r)−1(y − µ(r))

}{ 1∑
i=0

exp(ai + biy1 + ciy2)

}
exp(ar + bry1 + cry2)

=

(2π)−1|Σ(r)|−1/2exp

{
− 1

2
(y − µ(r))TΣ(r)−1(y − µ(r))

}{ 1∑
i=0

exp(ai + (bi, ci)y)

}
exp

{
ar + (br, cr)y

}
= (2π)−1|Σ(r)|−1/2exp

{
− ar −BT

r y −
1

2
(y − µ(r))TΣ(r)−1(y − µ(r))

} 1∑
i=0

exp(ai +BT
i y)

= (2π)−1|Σ(r)|−1/2exp

{
− ar −BT

r y −
1

2
yTΣ(r)−1y + 2µ(r)TΣ(r)−1y − µ(r)TΣ(r)−1µ(r)

}
×

1∑
i=0

exp(ai +BT
i y)

where we have used Br to denote the column vector (br, cr)
T , expanded the quadratic

form in (
∼
y−µ(r)) in terms of y, and separated terms containing only y or only r and

those containing both y and r.

Now we note that, if we apply the condition Br = 2Σ(r)−1µ(r), and that Σ(r) = Σ,

we can write

a(r, y)

b(r, y)
= (2π)−1|Σ(r)|−1/2exp

{
− ar −

1

2
yTΣ(r)−1y − µ(r)TΣ(r)−1µ(r)

} 1∑
r=0

exp(ar +BT
r ∼
y)

= U(r).V (y),

where,

U(r) = (2π)−1|Σ(r)|−1/2exp

{
− ar − µ(r)TΣ(r)−1µ(r)

}
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V (y) = exp

{
1

2
yTΣ(r)−1y

} 1∑
r=0

exp(ar +BT
r ∼
y).

This verifies the conditions of theorem (2.4) of Arnold et al. (1989) and hence es-

tablishes the compatibility of bivariate Normal and binary logistic distributions as

conditionals.

Since

∫
y

V (y) < ∞, compatibility of the given family of conditional densities

is assured provided the integrability restriction is also satisfied. That is, the two

conditionals are compatible under common variance-covariance matrix Σ and under

the condition that exp[yTΣ−1y − α1y1 − α2y2] integrates to 1.

3.3 Deriving the conditionally specified model

Now that the compatibility condition is satisfied, we can apply Theorem 2.1 to

obtain the form of the joint distribution. Note that, in order to apply the theorem

2.1 checking the compatibility beforehand is not necessary. However, checking the

compatibility beforehand ensures the existence of the joint distribution obtained

from the theorem 2.1. Now, theorem 2.1 was used to obtain the joint distribution

of f(y, r). Recall that,

ln(f(y, r)) = (1, r)

m00 m01 m02 m03 m04 m05

m10 m11 m12 m13 m14 m15





1

y1

y2

y21

y1y2

y22



.
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For simplicity we write,

f(y, r) = exp(m00 + rm10).exp(Q(y, r)); r = 0, 1 and y ∈ R,

where, Q(y, r) = (m01 + rm11)y1 + (m02 + rm12)y2 + (m03 + rm13)y
2
1 + (m04 +

rm14)y1y2 + (m05 + rm15)y
2
2.

Obviously, the tiresome part of this derivation is expressing the mij in terms

of α’s, µ’s and Σ. We will now start by finding the solutions for all the mij values

except for m00 which is the normalizing constant. We will present a solution for

m00 at the end of this section. The usual way to find m values (except m00) is

comparing f(y|R = r) and f(r|Y = y) derived from the joint distribution with the

original f(y|R = r) and f(r|Y = y). To obtain fY (y):

fY (y) =
1∑
r=0

f(y, r)

= exp{m00 +m01y1 +m02y2 +m03y
2
1 +m04y1y2 +m05y

2
2}

+ exp{m00 +m10 + (m01 +m11)y1 + (m02 +m12)y2 + (m03 +m13)y
2
1

+ (m04 +m14)y1y2 + (m05 +m15)y
2
2}; y ∈ R.

Let

A = exp{m00 +m01y1 +m02y2 +m03y
2
1 +m04y1y2 +m05y

2
2} and

B = m10 +m11y1 +m12y2 +m13y
2
1 +m14y1y2 +m15y

2
2.

(3.2)

So f(Y = y) can be rewritten as,

f(Y = y) = A+ A.exp(B).

In a similar manner, we can rewrite f(y, r) density using A and B as follows,

f(Y = y,R = r) = A.exp(r.B).
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Now the conditional pdf of f(R | Y = y) is given by,

f(R = r | Y = y) =
f(Y = y,R = r)

f(Y = y)
=

exp(rB)

1 + exp(B)
.

Thus, by substituting equation (3.2) we obtain,

f(R = r | Y = y) =
exp(r[m10 +m11y1 +m12y2 +m13y

2
1 +m14y1y2 +m15y

2
2])

1 + exp(m10 +m11y1 +m12y2 +m13y21 +m14y1y2 +m15y22)
.

By comparing the true density and the density of the desired logistic regression

model, we can obtain the π(y, α) as

π(y, α) =
exp(m10 +m11y1 +m12y2 +m13y

2
1 +m14y1y2 +m15y

2
2)

1 + exp(m10 +m11y1 +m12y2 +m13y21 +m14y1y2 +m15y22)
. (3.3)

The π(y, α) in the problem that we are interested, is defined using only linear terms

as shown in equation (3.1). Thus, desired π(y, α) needs to be obtained by setting

the quadratic terms to zero. However, having quadratic terms in the general setting

reveals that the derived joint density represents a larger class of joint densities. The

particular problem that we are interested in is a special case where the logit link

is constructed with a linear function only. Thus, by comparing equation (3.3) and

(3.1) we get,

m10 = α0 (3.4)

m11 = α1 (3.5)

m12 = α2 (3.6)

m13 = m14 = m15 = 0 (3.7)
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Similarly, to obtain f(Y | R = r), we first derive f(R = r) using f(Y = y,R = r).

That is,

f(R = r) =

∫ ∞

y2=−∞

∫ ∞

y1=−∞
f(y, r)dy1dy2

=

∫ ∞

y2=−∞

∫ ∞

y1=−∞

f(y, r)

f(y|r) × f(y|r)dy1dy2

= exp(m00 + rm10)(2π)|Σ|1/2
∫ ∞

y1,y2=−∞
exp

{
1

2
(y − µ(r))TΣ−1(y − µ(r)) +Q(y, r)

}
f(y|r)dy.

In order to obtain a closed form expression for the normalizing constant, we will

need to finish the integration. It turns out that an old result involving multivariate

normal density function can be used to accomplish this. The complete result is given

below for the reader’s convenience.

Theorem 3.1. (Moment Generating Function (MGF) Theorem): Let X ∼

Nn(µ,Σ) and take qi = 2bix + x
′
Aix where bi is an n × 1 non-random vector and

Ai is an n× n non-random symmetric matrix (i=1,2,...,k). Take Γ to be any r × n

matrix such that Σ = Γ
′
Γ, where r = rank(Σ). The joint MGF of q1, ..., qk is given

by,

mq1,...,qk(t1, ..., tk) = |I − 2
k∑
i=1

tiΓAiΓ
′|−1/2.exp

{
2

[ k∑
i=1

ti(bi + Aiµ)

]′

Γ
′
[
I − 2

k∑
i=1

tiΓAiΓ
′
]−1

Γ

[ k∑
i=1

ti(bi + Aiµ)

]
+ µ

′
k∑
i=1

ti(2bi + Aiµ)

}

= |I − 2
k∑
i=1

tiΓAiΓ
′ |−1/2.exp

{
2

[ k∑
i=1

tibi

]′

Σ

[
I − 2

k∑
i=1

tiAiΣ

]−1[ k∑
i=1

tibi

]

+ µ
′
[
I − 2

k∑
i=1

tiAiΣ

]−1 k∑
i=1

ti(2bi + Aiµ)

}

39



where (|ti| < hi; i = 1, ..., k). for sufficiently small positive constants h1, ..., hk

Note that, the above theorem can be used to derive the MGF of linear or

quadratic form in a normal random vector x or, more generally, of a second degree

polynomial in x. Once the joint distribution becomes available, the marginals of Y

and R can be obtained from the joint distribution. Thus, f(R = r) can be written

as follows:

f(R = r) = exp(m00 + rm10)(2π)|Σ|1/2
∫ ∞

y1,y2=−∞
exp

{
2by + yTAy

}
f(y|r)dy

=
exp(m00 + rm10)(2π)|Σ|1/2

|I − 2AΣ|1/2 exp

{
2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

}

where,

b =

(
2ρσ1σ2µ

(r)
2 − 2σ2

2µ
(r)
1

4(1− ρ2)
+
m01 + rm11

2
,

2ρσ1σ2µ
(r)
1 − 2µ

(r)
2 σ2

1

4(1− ρ2)σ2
1σ

2
2

+
m02 + rm12

2

)T

and

A =


1

2(1− ρ2)σ2
1

+m03 + rm13 m04 + rm14

−ρ
(1− ρ2)σ1σ2

1

2(1− ρ2)σ2
2

+m05 + rm15

 .

Let us now obtain the conditional distribution f(Y |R = r):

f(Y |R = r) =
f(Y = y,R = r)

f(R = r)

=
|I − 2AΣr|1/2
(2π)|Σr|1/2

exp

{
Q(y, r)− 2bTΣr(I − 2AΣr)

−1b− µTr (I − 2AΣr)
−1(2b+ Aµr)

}
We will compare the conditional distribution f(Y |R = r) expressed in terms of

the mij values to the originally specified form of the same distribution (Y |R = r)

expressed in terms of the parameters
∼
µ(r)’s and Σ’s etc. to obtain the relationships

40



between the two sets of parameters. These relationships are captured in the following

equations:

m01 + rm11 =
µ
(r)
1 − ρr(σ11/σ22)µ

(r)
2

(1− ρ2)σ2
11

m02 + rm12 =
µ
(r)
2 (σ11/σ22)

2 − ρ(σ11/σ22)µ
(r)
1

(1− ρ2)σ2
11

m03 + rm13 =
−1

2(1− ρ2)σ2
11

m04 + rm14 =
ρ

(1− ρ2)σ11σ22

m05 + rm15 =
−1

2(1− ρ2)σ2
22

(3.8)

The above equations can be solved for mij values in terms of the µ
(r)
1 and µ

(r)
2 values

etc. Expressions for m01,m02,m03,m04 and m05 are as follows:

m01 =
µ
(r)
1 − ρ(σ11/σ22)µ

(r)
2

(1− ρ2)σ2
11

− rα1

m02 =
µ
(r)
2 (σ11/σ22)

2 − ρ(σ11/σ22)µ
(r)
1

(1− ρ2)σ2
11

− rα2

m03 =
−1

2(1− ρ2)σ2
11

m04 =
ρ

(1− ρ2)σ11σ22

m05 =
−1

2(1− ρ2)σ2
22

(3.9)

From equation (3.9), one can also obtain the original parameters µ
(r)
1 , µ

(r)
2 , ρr, σ

2
11

and σ2
22 in terms of mij’s. Thus, we have,

ρ =
m04

2
√
m03.m05

(3.10)

σ2
22 =

2m03

m2
04 − 4m03.m05

(3.11)

σ2
11 =

2m05

m2
04 − 4m03.m05

(3.12)
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According to equations (3.10),(3.11) and (3.12), it is clear that ρ,σ2
11 and σ

2
22 do not

depend on the value of R. This implies a common variance-covariance matrix for

the conditional distributions f(y|R = 0) and f(y|R = 1). Further,

µ
(r)
2 =

ρ× m01 + rα1

m03

+
m02 + rα2

m05

ρ2
√
m05

m03

− m05

m03

(3.13)

µ
(r)
1 = ρ

√
m05

m03

× µ
(r)
2 − m01 + rα1

m03

(3.14)

The above solutions are verified using simulation studies in chapter 4.

3.4 Deriving normalizing constant (m00)

In general, obtaining closed form solution to m00 is known to be difficult and

sometimes such a closed form may not even exist. For our problem however, we

were able to derive a closed form expression for m00. Since m00 should be such that∫∞
y=−∞ f(y, r) = 1, it follows that

m00 = −ln
[ 1∑
r=0

exp(rm10)

∫ ∞

y1=−∞

∫ ∞

y2=−∞
exp(Q(y, r))dy2dy1

]
.

By using the theorem (3.1), the double integral above can be written as,

∫ ∞

y1=−∞

∫ ∞

y2=−∞
exp(Q(y, r)) =

2πσ11σ22
√
1− ρ2

exp(C(r))
|I − 2AΣ|−1/2

exp

[
2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

]
,

where,

C(r) =
−(σ2

22µ
(r)2

1 − 2ρσ11σ22µ
(r)
1 µ

(r)
2 + σ2

11µ
(r)2

2 )

2(1− ρ2)σ2
11σ

2
22

,
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b =

(
2ρσ11σ22µ

(r)
2 − 2σ2

22µ
(r)
1

4(1− ρ2)
+
m01 + rm11

2
,

2ρσ11σ22µ
(r)
1 − 2µ

(r)
2 σ2

11

4(1− ρ2)σ2
11σ

2
22

+
m02 + rm12

2

)T

,

and

A =


1

2(1− ρ2)σ2
11

+m03 + rm13 m04 + rm14

−ρ
(1− ρ2)σ11σ22

1

2(1− ρ2)σ2
22

+m05 + rm15

 .

Therefore, m00 is given by,

m00 = −ln
[
2πσ11σ22

√
1− ρ2

1∑
r=0

|I − 2AΣ|−1/2.exp

(
rm10 − C(r) + 2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

)]
.

3.5 Data Generation

Although the proposed joint model has a closed form expression, it is very

complex and has a messy normalizing constant. Therefore, generating data directly

from the joint model is immensely difficult and may even not be feasible. However,

since the model is conditionally specified we can apply other numerical algorithms

such as Gibb’s Sampling. This underlines another important advantage of a condi-

tionally specified distribution.

3.5.1 Gibbs Sampling method

Gibbs sampling algorithm, named by Geman and Geman (1984), is a special

case of Metropolis-Hastings algorithm. This algorithm can be used to generate data
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from multivariate distributions when the univariate conditional densities are fully

specified. For more details the reader is referred to Rizzo (2019). For instance, let

us assume that we want to generate data from a bivariate density fX,Y (x, y) and

the conditional distributions of the model are fully specified. Let fX|Y (x | y) and

fY |X(y | x) be conditional densities of x given y and y given x respectively. Suppose

simulating data from the bivariate density is complicated, Gibbs sampling algorithm

is an effective method to generate data from the conditional densities despite having

information about the marginal distributions fX(x) and fY (y). Presented below is

the Gibbs sampling algorithm.

Algorithm 3.1

1. Let (X0, Y0) be initial values.

2. Suppose we already generated (X0, Y0), (X1, Y1), .., (Xt, Yt), Then to drawXt+1, Yt+1

we follow the below Gibbs cycle,

Gibbs Cycle :


Generate Xt+1 ∼ fX|Y (x | Yt)

Generate Yt+1 ∼ fY |X(y | Xt+1)

The cycle will ultimately generate a Markov chain which will represent the

target distribution. The transition kernel given by,

K((x0, y0), (x1, y1)) = fX|Y (x1 | y0)fY |X(y1 | x1)

It is recommended that instead of taking complete chain as the random sample,

skip several iteration in between or remove the first 1000 iterations to reduce

possible auto correlation among the sampled values.
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Presented below is the algorithm which can be used to generate data from the

proposed density.

Algorithm 3.2

1. Initial value : Set R(0) = 1. So, Y (0) ∼ f1(y).

2. Set µ(0),µ(1),Σ and the vector α.

3. Suppose we generated (Y (0), R(0)), (Y (1), R(1)), ..., (Y (t), R(t)).

(a) if R(t) = 0 Generate Y (t+1) ∼ f(y | R = 0) and R(t+1) ∼ f(r | Y = y(t+1))

(b) if R(t) = 1 Generate Y (t+1) ∼ f(y | R = 1) and R(t+1) ∼ f(r | Y = y(t+1))

Contour plots and surface plots for empirical density of the joint distribution

(3.1) for f(y,R = 0) and f(y,R = 1) suggest that the joint model is not a unimodal

distribution. We have built an interactive tool for exploring the shape of the joint dis-

tribution in Shiny. The reader may download this tool from https://github.com/nadeesriw/ShinyApp.git.

Further in Figure 3.2 and 3.3 shows how the shape of the density changes. Other pa-

rameters are set to (y|R = 0) ∼ N2


 0

0

 ,

 1.2 0.23

0.23 1.4


 and (y|R = 1) ∼ N2


 2

3

 ,

 10 3.3

3.3 2




1. ρ = 0
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Figure 3.1: Contour plots and Surface plots of the joint distribution. Top and

bottom left: f(Y,R = 0) and top and bottom right: f(Y,R = 1).

2. ρ = 0.5
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Figure 3.2: Surface plots of the joint distribution f(Y,R = 0)

ρ = 1
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Figure 3.3: Surface plots of the joint distribution f(Y,R = 1)

3.6 Bivariate Normal and Multinomial Distribution

Up to this point, we assumed that the discrete part of our data follows a

Bernoulli distribution. In practice, we may have more than two values for the

discrete part of the data, and maybe assumed to be distributed multinomially. Sup-

pose s1, s2, ..., sk denote the k different states. (In the case of Bernoulli, K = 2

and s1 = 0, s2 = 1) Then the new joint distribution derived using theorem (2.1)

based on conditional distributions fY |R(y | R = si) ∼ N2(µ
(si),Σ) and fR|Y (r |

y) ∼ Multinomial(π1(y, ∼α1), π2(y, ∼α2), ..., πk(y, ∼αk)) where i = 1, ..., k; will be differ-

ent from the joint distribution we derived previously using Bernoulli distribution

(fR|Y (r | y) ∼ Ber(π(y, α))). Thus, in this section, we briefly discuss the important

steps of deriving the joint distribution fY,R(y, r). We will start by introducing the

conditional distributions.

Suppose (Y | R = si) follows a bivariate normal distribution with mean vec-
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Figure 3.4: Surface plots of the joint distribution f(Y,R = 0)

tor µ(si) and common variance covariance matrix Σ. That is, fY |R(y | R = si) ∼

N2(µ
(si),Σ), i = 1, ..., k. Now consider, probabilities π0(y, ∼α0), π1(y, ∼α1), ..., πk−1(y, ∼αk−1),

are
k−1∑
i=0

πi(y, ∼αi) = 1. where, πi(y, ∼αi) is a function of y parameterized by αi. We

assume a logistic link, for probabilities:

logit[πi(y, ∼αi)] = log

(
πi(y, ∼αi)

1− πi(y, ∼αi)

)
= αi0 + αi1y1 + αi2y2.

If we let si denote the result in outcome number i, then

fR|Y (R = r | Y = y) ∼
k−1∏
i=0

πi(y, ∼αi)
Isi (r) (3.15)

where s1, s2, ..., sk, denote the different categories, and Isi(r), i = 0, .., k − 1 are

indicator functions given by:

Isi(r) =


1 if r = si

0 o.w.

Clearly, for k = 2, we end up with a Bernoulli distribution with logistic link function.

While we denote by ∼α’s, potentially distinct parameters for each category i, it is
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Figure 3.5: Surface plots of the joint distribution f(Y,R = 1)

important to note that normally they would be chosen to satisfy one of the standard

links such as cumulative logit or generalized logit or proportional odds model. The

above model (3.15) can be rewritten as follows:

fR|Y (R = r | Y = y) ∝ πk−1(y, ∼αk−1)
k−1∏
i=0

[
πi(y, ∼αi)

πk−1(y, ∼αk−1)

]Isi (r)
Since the multinomial distribution belongs to the exponential family of distributions,

once you write the canonical form of f(R = r | Y = y), you immediately see the

following expression. That is,

fR|Y (R = r | Y = y) = exp

[
log(πk−1(y, ∼αk−1)) +

k−1∑
i=0

Isi(r).log

(
πi(y, ∼αi)

πk−1(y, ∼αk−1)

)]

= exp

[(
1, Is1(r), ..., Isk−1

(r)

)(
logπ0(y, ∼α0), ..., log

πk−1(y, ∼αk−1)

πk(y, ∼αk)

)T]
.

Now we can easily write down the basic form of the joint distribution f(y, r) using

the sufficient statistics and M matrix by applying theorem 2.1. Thus, we can write

the joint distribution as,

ln(f(y, r)) = (1, Is1(r), Is2(r), ..., Isk−1
(r))M(1, y1, y2, y

2
1, y1y2, y

2
2)
T
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Figure 3.6: Surface plots of the joint distribution f(Y,R = 0)

where,

M =



m00 m01 m02 m03 m04 m05

m10 m11 m12 m13 m14 m15

m20 m21 m22 m23 m24 m25

...
...

...
...

...
...

m(k−1)0 m(k−1)1 m(k−1)2 m(k−1)3 m(k−1)4 m(k−1)5


k×6

.

51



Figure 3.7: Surface plots of the joint distribution f(Y,R = 1)

Multiplying out the above expression we get,

ln(f(y, r)) =

(
m00 +

k−1∑
i=1

Isi(r)mi0,m01 +
k−1∑
i=1

Isi(r)mi1, ...,m05 +
k−1∑
i=1

Isi(r)mi5

)



1

y1

y2

y21

y1y2

y22


= (m00 +

k−1∑
i=1

Isi(r)mi0) + (m01 +
k−1∑
i=1

Isi(r)mi1)y1 + (m02 +
k−1∑
i=1

Isi(r)mi2)y2+

(m03 +
k−1∑
i=1

Isi(r)mi3)y
2
1 + (m04 +

k−1∑
i=1

Isi(r)mi4)y1y2 + (m05 +
k−1∑
i=1

Isi(r)mi5)y
2
2.

Note that, for each r = si, i = 1, 2, ..., k we have

log(f(y, si)) = (m00 +mi0) + (m01 +mi1)y1 + ...+ (m05 +mi5)y
2
2

= (m00 +mi0) +Q(y, r)

where Q(y, r) = (m01 +mi1)y1 +(m02 +mi2)y2 +(m03 +mi3)y
2
1 +(m04 +mi4)y1y2 +
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(m05 +mi5)y
2
2

To derive elements ofM one can follow the same steps we used to derive the Bivariate

Normal Bernoulli distribution. We can start by finding the solutions for all the mij

values except for m00 which is the normalizing constant. To find m values (except

for m00) we have to compare f(Y |R = r) and f(R|Y = y) derived from the joint

distribution with the original f(Y |R = r) and f(R|Y = y). To find the normalizing

constant m00, we can use the theorem 3.1. However, finding a single expression for

m00 is not feasible as the the multinomial case has k categories. That is, for each of

the k − 1 categories i = 1, . . . , k we have to derive a unique m0i.
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Chapter 4: Estimation

In practice, Maximum Likelihood (ML) Estimation is the preferred and the

most popular estimation method for parametric models. The goal of ML estimation

is to find the values of the model parameters that maximize the likelihood func-

tion/log likelihood function over the parameter space. However, finding a closed

form analytical solutions cannot be guaranteed all the time. As a remedy, one can

use numerical optimization which can most of the time be computationally demand-

ing. These issues rise in conditionally specified models also. As stated in Arnold

et al. (2001); Arnold and Strauss (1991a) papers, standard estimation methods are

often difficult to implement when dealing with conditionally specified models. This

is mainly because of the awkward normalizing constant which is often intractable.

And, if an explicit expression is available for the constant, it is usually complicated.

Thus, differentiating the likelihood and obtaining estimates by solving the equation

is not a viable option. According to Arnold and Strauss (1991a), for exponential

family of conditionals ML estimation is a reasonably viable method but it comes

with a heavy computational burden. As a remedy, one can use an approach known

as Pseudolikelihood (PL) estimation (Besag (1974, 1975)). Pseudolikelihood esti-

mation is perhaps the precedent of composite likelihood (CL) (Lindsay (1988)).
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In this chapter, we will present the form of the score functions, fisher informa-

tion of both ML and PL estimates. We will compare ML and PL estimates in terms

of relative efficiency and computational cost.

4.1 Preliminaries

We will start by stating some definitions and theorems which are in the deriva-

tions in forthcoming sections. We will first present the definition of ML estimation

following the notation of Arnold and Strauss (1991a).

Definition 4.1. Suppose that we have n observations (X1, Y1), (X2, Y2), ..., (Xn, Yn)

from some bivariate conditionally specified density f(x, y;∼θ),∼θ ∈ Θ. The maximum

likelihood estimate of ∼θ, say ∼θ̂ is a value of ∼θ for which

n∏
i=1

f(Xi, Yi;∼θ̂) = argmax
∼θ∈Θ

n∏
i=1

f(Xi, Yi;∼θ).

In general, several numerical approaches are available for the computation of ML

estimates. While a direct search method might be the only way to ensure that the

obtained solution in a unique maxima, many other numerical methods are used to

obtain a solution which may be a local maxima. One such approach is to solve the

log likelihood equation, which are obtained by setting the first derivative of the log

likelihood function ( also knows as the score function) equal to zero.

Next we state a well known result on the derivation of the score function corre-

sponding to a reparameterization. The result is useful in our case because the joint

distribution function corresponding to the given conditionals are expressed simply

in terms of a complicated functions of the natural parameters of the conditionals.
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This result is commonly available in many basic Mathematical Statistics textbooks

and we use the statement given in page 126 of Casella and Lehmann (2006).

Theorem 4.1. Let X be distributed with density pθ, θ ∈ Ω , with respect to measure

µ where θ is vector-valued, say θ = (θ1, θ2, ..., θs)
T . Suppose that θi = hi(ξ1, ..., ξs), i =

1, 2, ..., s, is a reparameterization. Let D be the matrix of derivatives,

D =

((
∂θj
∂ξi

))
i = 1, 2, ..., s and j =, 1, 2, ..., s.

Let the information matrix for ξ = (ξ1, ξ2, ..., ξs)
T be denoted by I∗(ξ) =

((
I∗ij(ξ)

))
,

where,

I∗ij(ξ) = E

[
∂

∂ξi
log pθ(ξ)(X).

∂

∂ξj
log pθ(ξ)(X)

]
,

where θ(ξ) = (h1(ξ1), ..., hs(ξs))
′
.

Proof : It is seen from the chain rule for differentiating a function of several

variables that

I∗ij(ξ) =
s∑

k=1

s∑
l=1

Ikl(θ)
∂θk
∂ξi

∂θl
∂ξj

and hence

I∗(ξ) = DIDT (4.1)

where I ≡ I(θ) is the information matrix for the parameter vector ∼θ. By further

investigating the theorem (4.1), we can write I∗(ξ) = −S∗(ξ)S∗(ξ)T and I(θ) =

−S(θ)S(θ)T . Then, by equation (4.1) we have,

−S∗(ξ)S∗(ξ)T = D[−S(θ)S(θ)T ]DT

−S∗(ξ)S∗(ξ)T = −DS(θ)[DS(θ)]T .
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By comparing we get,

S∗(ξ) = DS(θ). (4.2)

We will be using the theorem 4.1 in section 4.2.

Statistical estimation methods are usually characterized by either minimiza-

tion or maximization of an objective function, Least Squares (LS) estimation and ML

estimation are being two famous examples. These are in contrast with the method

of moments (MOM) where estimators are defined as solution to certain equations

without an associated objective function to be optimized. In principle, one may

consider any reasonable objective function which is a function of the data and the

model assumptions to derive an estimator. Of course, the quality of the resulting

estimator would depend on how well does the objective function capture the stochas-

tics of the true model underlying the observed data. The ML method is widely used

and is reputed to lead to estimators who enjoy many optimality properties. How-

ever, in many models, the likelihood function is either difficult or sometimes even

impossible to derive. In such cases, one may consider objective functions which are

close to the likelihood function and easier to handle computationally. Such functions

are called pseudo likelihood (PL) functions or composite likelihood (CL) functions.

The idea is for the PL or CL function to capture the key features of the likelihood

function while dropping its’ computationally complex aspects. There is extensive

literature on PL and CL methods (see Lindsay (1988), Varin et al. (2011), Besag

(1975), Arnold and Strauss (1991a)). Clearly, using PL and CL will lead to loss

of efficiency. Varin et al. (2011) provides a very reader friendly account of the CL
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method including a frame work for evaluating the loss of efficiency in using CL (or

PL) relative to ML method. Here, we provide a brief review of their work which

will be used later to propose a CL method for the conditionally specified models

and evaluate its efficiency. We begin with the definition of CL estimator.

Definition 4.2. Consider an m-dimensional vector random variable Y , with prob-

ability density function f(y; θ) for some unknown p-dimensional parameter vector

θ ∈ Θ. Denote by {A1, ..., AK} a set of marginal or conditional events with asso-

ciated likelihoods Lk(θ; y) ∝ f(y ∈ Ak; θ). Composite likelihood can be written

as,

LCL(θ; y) =
K∏
k=1

Lk(θ; y)
ωk (4.3)

where, ωk are non-negative weights to be chosen

Example 1: The product of the marginal likelihood function is simplest ex-

ample of a composite marginal likelihood:

Lind(θ; y) =
m∏
r=1

f(yr, θ).

Because of the underlying independence assumption composite marginal likelihood

sometimes referred to as the independence likelihood. This composite likelihood

only permits inference on marginal parameters. The reader is referred to Varin

et al. (2011), Chandler and Bate (2007), Cox and Reid (2004) and Varin (2008) for

more information.

Example 2: In the context of longitudinal studies, Molenberghs and Verbeke (2006)

and in the context of bioinformatics, Mardia et al. (2008) construct composite like-
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lihoods by pooling pairwise conditional densities

L(θ; y) =
m∏
r=1

m∏
s=1

f(yr | ys; θ).

The maximum composite likelihood estimator θ̂CL locates the maximum of the com-

posite likelihood function, or equivalently of the composite log-likelihood function

ℓcl(θ; y) =
∑K

k=1 ℓk(θ; y)ωk, where ℓk(θ; y) = logLk(θ; y). In standard problems θ̂CL

may be found by solving the composite likelihood equations, obtained by setting the

composite score function Ucl(θ; y) = ∇θℓcl(θ; y), equal to zero. Note that, Ucl(θ; y) is

a linear combination of the scores associated with each log-likelihood term lk(θ; y).

Further, sensitivity matrix defined as,

H(θ) = Eθ{−∇θU(θ;Y )} =

∫
{−∇θU(θ; y)}f(y; θ)dy,

where U(θ;Y ) = ∇θℓcl(θ; y).

Note that the sensitivity matrix is the expected value of the Hessian of the composite

log likelihood equation with respect to the true probability distribution of the data.

Similarly, the variability matrix is defined as:

J(θ) = V ar{∇θU(θ;Y )},

where variance is computed with respect to the true probability distribution of the

observed data. It is important to note that the if we were to compute the sensitivity

matrix and variability matrix with true likelihood as the composite likelihood, they

will be equal to each other. And since we no longer are dealing with the full likelihood

the Fisher information needs to be substituted by Godambe information matrix
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(Godambe (1960)) which is also called the sandwich information matrix:

G(θ) = H(θ)J(θ)−1H(θ). (4.4)

Note that if we have the true log likelihood function then G = H = I, where

I ≡ I(θ) is the Fisher information matrix. Further, under regularity conditions on

the component log-densities we have a central limit theorem for the composite like-

lihood score statistic, leading to the result that the composite maximum likelihood

estimator, θCL is asymptotically normally distributed.

√
n(θ̂CL − θ)

d−→ Np[0, G
−1(θ)] (4.5)

where Np(µ,Σ) denoted the p-dimensional normal distribution with mean µ and

variance covariance matrix Σ.

As noted earlier, composite likelihood functions are constructed in cases where

full maximum likelihood functions are not computationally convenient. Although,

every effort is to be made to ensure that the composite likelihood capture all features

of the full likelihood, one would not expect it to be fully efficient. The asymptotic

properties of maximum likelihood estimator is well chronicled. Standard reference

include in Rao (1973) and DasGupta (2008). In particular, under certain regularity

conditions, the ML estimate θ̂ML is consistent and asymptotically normal:

√
n(θ̂ML − θ) → N(0, I−1(θ)).

Comparing the asymptotic distributional results for θ̂ML and θ̂CL, we note that both

are consistent and asymptotically normal with I−1(θ) and G−1(θ) as the respective

variance covariance matrices. Thus, the efficiency of θ̂CL with respect to θ̂ML can
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be measured using the concept of Joint Asymptotic relative efficiency (JARE), as

defined in Cramer (1999):

JARE(θ) =

∣∣∣G−1(θ)
∣∣∣∣∣∣I−1(θ)
∣∣∣ ,

where the symbol
∣∣A∣∣ denotes the determinant of a square matrix A. In literature,

one may find other definitions of efficiency. It may be noted that the determinant of

the variance covariance matrix corresponds to the volume of the confidence ellipsoid

obtained based on the asymptotic distribution. The determinant of variance covari-

ance matrix is also known as generalized variance (Wilks (1932), Sengupta (2004)).

JARE can then be interpreted as the ratio of generalized variances, and its value

indicates which of θ̂CL or θ̂ML provides tighter confidence regions.

As noted in chapter 2, most of these joint distributions obtained by specifica-

tion of conditionals either have a normalizing constant which makes the ML estima-

tion inconvenient. Without a closed form expression for the normalizing constant,

computation of ML estimates is not possible. Thus we will consider a composite

likelihood. In the context of conditionally specified distributions, product of the

conditionals offers itself as a ready option. Note that, under independence this will

reduce to the true joint distribution. Furthermore, it meaningfully incorporates the

joint parameters using the two marginals. Arnold and Strauss (1991a) refer to this

function as Pseudolikelihood (PL). They show that, under regularity conditions, the

resulting PL estimators are consistent and asymptotically normal. However, they

also note that, PL estimators have slightly reduced efficiency compared to ML esti-
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mators. Note that the PL is a special case of CL. Therefore, we will use the general

theory about CL presented earlier to obtain the Godambe information matrix, and

JARE of the PL with respect to ML estimators. To formally connect the definition

of CL presented here to the PL given in Arnold et al. (2001), we consider ob-

servations (X1, Y1), (X2, Y2), ..., (Xn, Yn) from some bivariate conditionally specified

density f(x, y; θ), θ ∈ Θ; and f(x|y; θ) and f(y|x; θ) are the compatible conditional

distributions. By following the definition (4.2), let f(x|y; θ) and f(y|x; θ) be the

associated likelihoods and let k = 1 and ωk = 1. Arnold et al. (2001) define the

pseudolikelihood estimates as follows.

Definition 4.3. Suppose that we have n observations (X1, Y1), (X2, Y2), ..., (Xn, Yn)

from some bivariate conditionally specified density f(x, y; θ), θ ∈ Θ. The maximum

pseudo likelihood estimate of θ, say θ̂, is a usually unique value of θ for which,

pl(θ̂) =
n∏
i=1

fX|Y (xi|yi; θ̂)fY |X(yi|xi; θ̂) = max
θ∈Θ

n∏
i=1

fX|Y (xi|yi; θ)fY |X(yi|xi; θ).

Thus, we note that PL defined above is a special case of CL of definition (4.2).

4.2 Maximum Likelihood Estimation for Bivariate Normal and Bernoulli

Conditionals

We will start by stating the likelihood function of the our joint distribution

derived in chapter 3. The likelihood function of the joint distribution is,

L(y, r;∼θ) =
n∏
i=1

exp(m00 + rm10).exp(Q(y, r)), r = 0, 1 and y ∈ R (4.6)
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where,

Q(y, r) = (m01+rm11)y1+(m02+rm12)y2+(m03+rm13)y
2
1+(m04+rm14)y1y2+(m05+rm15)y

2
2

We can also write (4.6) as,

L(f(y, r;∼θ̂)) =
n∏
i=1

exp(rm10 +Q(y, r))∑1
r=0 exp(rm10)

∫∞
y1=−∞

∫∞
y2=−∞ exp(Q(y, r))dy2dy1

(4.7)

Notice that,the normalizing constant m00 is present in the equation (4.6). The

expression for m00 can be found in chapter 3 which is

m00 = −ln
[
2πσ11σ22

√
1− ρ2

1∑
r=0

|I − 2AΣ|−1/2.exp

(
rm10 − C(r) + 2bTΣ(I − 2AΣ)−1b+ µ(r)T (I − 2AΣ)−1(2b+ Aµ(r))

)]
,

where

C(r) =
−(σ2

22µ
(r)2

1 − 2ρσ11σ22µ
(r)
1 µ

(r)
2 + σ2

11µ
(r)2

2 )

2(1− ρ2)σ2
11σ

2
22

b =

(
2ρσ11σ22µ

(r)
2 − 2σ2

22µ
(r)
1

4(1− ρ2)
+
m01 + rm11

2
,

2ρσ11σ22µ
(r)
1 − 2µ

(r)
2 σ2

11

4(1− ρ2)σ2
11σ

2
22

+
m02 + rm12

2

)T

and

A =


1

2(1− ρ2)σ2
11

+m03 + rm13 m04 + rm14

−ρ
(1− ρ2)σ11σ22

1

2(1− ρ2)σ2
22

+m05 + rm15


It is clear that in spite of the likelihood function having a closed form, the expression

for the normalizing constant and obtaining its’ derivatives is intractable. We present

the form of the score function and briefly discuss the Fisher information matrix in

the next section.
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4.2.1 Derivation of Score Function and Fisher Information Matrix

Our goal is to obtain the information matrix for the joint distribution given in

equation (4.6). Consider the conditionally specified joint distribution f(y | ∼θ) and y

now denote all the data and θ the parameters of both conditionals. Thus the s× 1

vector valued score function can be written as,

S(∼θ) =
∂log f(y | ∼θ)

∂∼θ

The expression for the joint distribution provided by equation (4.6) is in terms of

the natural parameters mij’s. We can do this by using the Theorem (4.1) stated

earlier which essentially based on the chain rule of differentiation. We follow the

notations of Theorem (4.1) and define the following 10× 1 parameter vectors:

∼θ = (θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10)
T = (m01,m02,m03,m04,m05,m10,m11,m10,m11,m12) and

∼
ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, ξ7, ξ8, ξ9, ξ10)

T = (µ
(0)
1 , µ

(0)
2 , µ

(1)
1 , µ

(1)
2 , σ11, σ22, ρ, α0, α1, α2)

(4.8)

The objective is to obtain S(∼θ) and S∗(
∼
ξ), the reparameterizations of the score

vectors which can be used to define the maximum likelihood equations. Further,

using the equations (3.9) - (3.14), each component of θ, namely one of the mij’s,

can be written in terms of the components of ξ. Then, we have in the notations of

Theorem (4.1),

θi = hi(
∼
ξ) i = 1, 2, ..., 10

and the 10× 10 matrix D of derivatives,

D =

((
∂hj(ξ)

∂ξi

))
i ̸= j = 1, 2, ..., 10
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Elements of D can be obtained by differentiating hj(ξ) with respect to ξi’s. Hence,

D is as follows.

D =



∂m01

∂µ
(0)
1

∂m01

∂µ
(0)
2

∂m01

∂µ
(1)
1

∂m01

∂µ
(1)
2

∂m01

∂σ11

∂m01

∂σ22

∂m01

∂ρ
0 −1 0

∂m02

∂µ
(0)
1

∂m02

∂µ
(0)
2

∂m02

∂µ
(1)
1

∂m02

∂µ
(1)
2

∂m02

∂σ11

∂m02

∂σ22

∂m02

∂ρ
0 0 −1

0 0 0 0 ∂m03

∂σ11
0 ∂m03

∂ρ
0 0 0

0 0 0 0 ∂m04

∂σ11

∂m04

∂σ22

∂m04

∂ρ
0 0 0

0 0 0 0 0 ∂m05

∂σ22

∂m05

∂ρ
0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1



.

Similarly, the score function S(θ) is,

S(θ)10×1 =

(
∂l

∂m01

∂l
∂m02

∂l
∂m03

∂l
∂m04

∂l
∂m05

∂l
∂m10

∂l
∂m11

∂l
∂m10

∂l
∂m11

∂l
∂m12

)T
.

Now S(ξ), the score function in terms of the parameter ξ can be obtained by using

equation (4.2). For example, the first component of S(ξ) is given as,

(S(ξ))1 =
∂l

∂m01

× ∂m01

∂µ
(0)
1

+
∂l

∂m02

× ∂m01

∂µ
(0)
2

+
∂l

∂m03

× ∂m01

∂µ
(1)
1

+
∂l

∂m04

× ∂m01

∂µ
(1)
2

+

∂l

∂m05

× ∂m01

∂σ11
+

∂l

∂m10

× ∂m01

∂σ22
+

∂l

∂m11

× ∂m01

∂ρ
− ri

∂l

∂m11

where,
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∂l
∂m10

=
∑n

i=1
∂m00
∂m10

+
∑n

i=1 ri,
∂l

∂m12
=
∑n

i=1
∂m00
∂m12

+
∑n

i=1 riy2i

∂l
∂m01

=
∑n

i=1
∂m00
∂m01

+
∑n

i=1 y1i,
∂l

∂m03
=
∑n

i=1
∂m00
∂m03

+
∑n

i=1 y
2
1i

∂l
∂m11

=
∑n

i=1
∂m00
∂m11

+
∑n

i=1 riy1i,
∂l

∂m04
=
∑n

i=1
∂m00
∂m04

+
∑n

i=1 y1iy2i

∂l
∂m02

=
∑n

i=1
∂m00
∂m02

+
∑n

i=1 y2i and
∂l

∂m05
=
∑n

i=1
∂m00
∂m05

+
∑n

i=1 y
2
2i

Similarly, the remaining components of the score function S(ξ) can be obtained as

follows:

(S(ξ))2 =
∂l

∂m01

× ∂m02

∂µ
(0)
1

+
∂l

∂m02

× ∂m02

∂µ
(0)
2

+
∂l

∂m03

× ∂m02

∂µ
(1)
1

+
∂l

∂m04

× ∂m02

∂µ
(1)
2

+

∂l

∂m05

× ∂m02

∂σ11
+

∂l

∂m10

× ∂m02

∂σ22
+

∂l

∂m11

× ∂m02

∂ρ
− ri

∂l

∂m12

(S(ξ))3 =
∂l

∂m05

× ∂m03

∂σ11
+

∂l

∂m11

× ∂m03

∂ρ

(S(ξ))4 =
∂l

∂m05

× ∂m04

∂σ11
+

∂l

∂m10

× ∂m04

∂σ22
+

∂l

∂m11

× ∂m04

∂ρ

(S(ξ))5 =
∂l

∂m10

× ∂m05

∂σ22
+

∂l

∂m11

× ∂m05

∂ρ

(S(ξ))6 =
∂l

∂m10

(S(ξ))7 =
∂l

∂m11

(S(ξ))8 =
∂l

∂m10

(S(ξ))9 =
∂l

∂m11

(S(ξ))10 =
∂l

∂m12

All the required partial derivatives are given in appendix (A.1). Therefore, the

Fisher information matrix (10× 10) based on original parameter space is:

I∗(ξ) = E[−S(ξ)S(ξ)T ](10×10)
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As noted before, because of the intractability of m00, finding analytical solutions

for estimates is difficult. However, finding numerical solutions for the log likelihood

equations in feasible.

4.3 Composite Likelihood Estimation

As mentioned in Section 4.1, we follow the Arnold and Strauss (1991a) and

replace the full likelihood by the product of conditional densities. This is motivated

by the fact that our full likelihood is constructed from the conditionals. Furthermore,

the conditionals (one is Bernoulli; the other bivariate Gaussian) are relatively easier

to handle.

Hence, by applying equation (4.3) to our problem we get the likelihood as,

L(Θ, y, r) =
n∏
i=1

f(
∼
yi | R = ri)f(ri | Y =

∼
yi)

where, Θ = (µ(r),Σ, α0, α1, α2) and ωk = 1. Arnold and Strauss (1991a) refers to the

above as the pseudolikelihood (PL) function and parameter estimates called as PL

estimators. Now, we can write CL(Θ, y, r) = PL(Θ, y, r). Note that, f(
∼
y | R = r)

is bivariate normal with mean µ(r) and variance covariance matrix Σ; and µ(r) can

be rewritten as µ(r) = µ(0)(1− r) + µ(1)r. Thus the likelihood can be written as,

LCL(Θ, y, r) =
n∏
i=1

1

2π|Σ|1/2

× exp

{
− 1

2
(
∼
yi − µ(1)ri − µ(0)(1− ri))

TΣ−1(
∼
yi − µ(1)ri − µ(0)(1− ri))

}

× π(
∼
yi)

ri(1− π(
∼
yi))

1−ri .
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Now, using the expression for π(y) and letting y∗ = (1, y1, y2)
T ,

LCL(Θ, y, r) =
n∏
i=1

1

2π|Σ|1/2

× exp

{
− 1

2
(
∼
yi − µ(1)ri − µ0(1− ri))

TΣ−1(
∼
yi − µ(1)ri − µ(0)(1− ri))

}

×
{

exp(∼α
Ty∗)

1 + exp(∼α
Ty∗)

}ri{
1

1 + exp(∼α
Ty∗)

}1−ri

,

which can be rewritten as,

LCL(Θ, y, r) =
n∏
i=1

1

2π|Σ|1/2

× exp

{
− 1

2
(
∼
yi − µ(1)ri − µ0(1− ri))

TΣ−1(
∼
yi − µ(1)ri − µ(0)(1− ri))

}

× {exp(∼αTy∗)}ri
1 + exp(∼α

Ty∗)
,

where, α = (α0, α1, α2)
T and

∼
y∗ = (1,

∼
yi)

T . Thus, the log likelihood function be-

comes,

ℓCL(Θ, y, r) = −nln(2π)− n

2
ln(|Σ|)

− 1

2

n∑
i=1

(
∼
yi − µ(1)ri − µ(0)(1− ri))

TΣ−1(
∼
yi − µ(1)ri − µ(0)(1− ri))

+
n∑
i=1

riα
Ty∗ −

n∑
i=1

ln(1 + exp(αTy∗)).

(4.9)

By solving the log likelihood equation one can find the numerical solutions for the

parameters without much hassle due to the fact that now we have a much simpler

likelihood function which does not involves a normalizing constant that is difficult

to evaluate.
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4.4 Godambe Information Matrix (GIM)

In this section we consider the theoretical properties of the composite like-

lihood function in defined using the conditionals specifically belongs to the expo-

nential family . The core of this section is the derivation of GIM for conditionals

belongs to exponential family of distributions.

4.4.1 Conditionally Exponential family (CEF)

We start by presenting our theorem followed by the complete proof. Note that,

we are following the notations of definition 2.2.2; exponential family of distributions

defined by Arnold and Strauss (1991a).

Theorem 4.2. Suppose f(Y,X; θ, τ) be the joint distribution consists with f1(x;
∼
θ(y))

and f2(y;
∼
τ(x)) as its conditional distributions belongs to l1-parameter and l2- pa-

rameter exponential family of distributions respectively and has the form,

f(x | Y = y) = f1(x;
∼
θ(y)) = r1(x)β1(

∼
θ(y))exp

{ l1∑
i=1

θi(y)q1i(x)

}

f(y | X = x) = f2(y;
∼
τ(x)) = r2(y)β2(

∼
τ(x))exp

{ l2∑
j=1

τj(x)q2j(y)

}
And the composite likelihood of the form,

LCL(
∼
γ;x, y) =

n∏
i=1

fx|Y=yi(xi, θ(y))fy|X=xi(yi, τ(x))

where,
∼
γ =

(
∼
θ(y),

∼
τ(x)

)
=

(
θ1(y), θ2(y), ..., θl1(y), τ1(x), τ2(x), ..., τl2(x)

)
1×(l1+l2)
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Further, H(·),J(·) are sensitivity matrix and variability matrix respectively;

G(.) Godambe information matrix. Then, G(γ) can be written as,

G(γ) =

 −E(Y,X)(VX/Y (γ)) ∼0

∼0 −E(Y,X)(VY/X(γ))


where,

VY |X(γ) =



∂2ℓy/x
∂2τ1

∂2ℓy/x
∂τ1∂τ2

...
∂2ℓy/x
∂τ1∂τl2

∂2ℓy/x
∂τ1∂τ2

... ...
∂2ℓy/x
∂τ2∂τl2

...
...

∂2ℓy/x
∂τ1∂τl2

∂2ℓy/x
∂τ2∂τl2

...
∂2ℓy/x
∂2τl2


l2×l2

and

VX|Y (γ) =



∂2ℓx/y
∂2θ1

∂2ℓx/y
∂θ1∂θ2

...
∂2ℓx/y
∂θ1∂θl1

∂2ℓx/y
∂θ1∂θ2

... ...
∂2ℓx/y
∂θ2∂θl1

...
...

∂2ℓx/y
∂θ1∂θl1

∂2ℓx/y
∂θ2∂θl1

...
∂2ℓx/y
∂2θl1


l1×l1

Also, H(γ) = J(γ); called as information unbiased. Note that, G(γ) = H(γ).

Proof. We will start by defining the composite likelihood. Suppose, k = n and

ωi = 1. Then the equation (4.7) becomes,

LCL(
∼
γ;x, y) =

n∏
i=1

Li(
∼
γ; y, x)

Where,
∼
γ =

(
∼
θ(y),

∼
τ(x)

)
=

(
θ1(y), θ2(y), ..., θl1(y), τ1(x), τ2(x), ..., τl2(x)

)
1×(l1+l2)

Let the product of the conditionals f1(x;
∼
θ(y)) and f2(y;

∼
τ(x)) as the composite
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likelihood. Thus, the above expression can be rewritten as,

LCL(
∼
γ;x, y) =

n∏
i=1

f1(xi, θ(y))f2(yi, τ(x))

=
n∏
i=1

fx|Y=yi(xi, θ(y))fy|X=xi(yi, τ(x))

Log composite likelihood is,

ℓ(
∼
γ;x, y) =

n∑
i=1

log[f1(xi, θ(y))] +
n∑
i=1

log[f2(yi, τ(x))].

Composite likelihood score function U(
∼
γ;x, y) can be derived as,

U(
∼
γ;x, y) = ∇γln(LCL(

∼
γ;x, y))

=
∂

∂
∼
γ
[ℓCL(

∼
γ;x, y))]

=
∂

∂
∼
γ

[
n∑
i=1

log[f1(xi, θ(y))] +
n∑
i=1

log[f2(yi, τ(x))]

]

=
∂

∂
∼
γ

[
ℓx|y + ℓy|x

]

= U(x | y;
∼
γ) + U(y | x;

∼
γ)

where, ℓx|y and ℓy|x are log likelihood functions of f(x|y) = f1(x, θ(y)) and f(y|x) =

f2(y, τ(x)) respectively. Further, U(x | y;
∼
γ) and U(y | x;

∼
γ) are score functions

of f(x|y) = f1(x, θ(y)) and f(y|x) = f2(y, τ(x)) respectively. We will start by

differentiating ℓx|y with respect to
∼
γ. Log likelihood function of f1(x; θ(y)) is,

ℓx|y = log(f(x|y)) =
n∑
k=1

log(r1(xk)) + nβ1(θ(y)) +
n∑
k=1

l1∑
i=1

θi(y)q1i(xk).

Since
∼
γ =

(
∼
θ(y),

∼
τ(x)

)
, We start by differentiating the above function with respect
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to
∼
θ(y),

∂ℓx|y
∂θ1

= n
∂β1(θ(y))

∂θ1
+

n∑
k=1

q11(xk)

∂ℓx|y
∂θ2

= n
∂β1(θ(y))

∂θ2
+

n∑
k=1

q12(xk)

∂ℓx|y
∂θ3

= n
∂β1(θ(y))

∂θ3
+

n∑
k=1

q13(xk)

...

∂ℓx|y
∂θl1

= n
∂β1(θ(y))

∂θl1
+

n∑
k=1

q1l1(xk)

General form of the differentiated expression can be written as,

∂ℓx|y
∂θl1

= n
∂β1(θ(y))

∂θl1
+

n∑
k=1

q1l1(xk), l1 = 1, 2, 3, ..., l1.

Differentiate with respect to
∼
τ(x) gives,

∂ℓx|y
∂τl2

. = 0 ; l2 = 1, 2, 3, ..., l2. This is due

to the fact that, ℓx|y contains θ parameters only. Therefore, the score function of

f(x | y) can be written as,

U(x | y;
∼
γ) =

(
∂ℓx|y
∂θ1

,
∂ℓx|y
∂θ2

, · · · ∂ℓx|y
∂θl1

,
∂ℓx|y
∂τ1

,
∂ℓx|y
∂τ2

, · · · ∂ℓx|y
∂τl2︸ ︷︷ ︸

0

)
. (4.10)

Similarly we differentiate f2(y; τ(x)) with respect to
∼
γ. Log likelihood function of

f2(y; τ(x)) is,

ℓy|x = log(f(y | x)) =
n∑
k=1

log(r2(yk)) + nβ2(τ(x)) +
n∑
k=1

l2∑
j=1

τj(x)q2j(yk).

Thus the general expression,

∂ly/x
∂τl2

= n
∂β2(τ(x))

∂τl2
+

n∑
k=1

q2p2(yk) ; l2 = 1, 2, 3, ..., l2
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Same as previous we have
∂ℓy|x
∂θl2

= 0 ; l2 = 1, 2, 3, ..., l2. The score function of

f(y | x) is,

U(y | x;
∼
γ) =

(
∂ℓy|x
∂θ1

,
∂ℓy|x
∂θ2

, · · · ∂ℓy|x
∂θl1

,︸ ︷︷ ︸
0

∂ℓy|x
∂τ1

,
∂ℓy|x
∂τ2

, · · · ∂ℓy|x
∂τl2

)
(4.11)

From equation (4.10) and (4.11) we can easily obtain the score function of composite

likelihood function given in equation (??). Now let us derive the sensitivity matrix

H(γ),

H(γ) = Eγ(−∇γU(
∼
γ;x, y))

= E(X,Y )

{−∂
∂γ

[ n∑
k=1

U(xk | yk) +
n∑
k=1

U(yk | xk)
]}

= E(X,Y )

{−∂
∂γ

n∑
k=1

U(xk | yk)
}
+ E(X,Y )

{−∂
∂γ

{ n∑
k=1

U(yk | xk)
}
.

Thus,

H(γ) = EX

{
E(X|Y )

[−∂
∂γ

n∑
k=1

U(xk | yk)
]}

+ EY

{
E(Y |X)

[−∂
∂γ

{ n∑
k=1

U(yk | xk)
]}

.

Further H(γ) can be written as,

H(γ) = EX

{
J(Y | X = xi)

}
+ EY

{
J(X | Y = yi)

}
(4.12)

where J is the variability matrix. Note that, J(γ) = V arγ

{
∇γU(γ;X, Y )

}
and this

can be rewritten as,

J(γ) = E(X,Y )[U(γ;X, Y )U(γ;X, Y )T ]−
{
E(X,Y )[U(γ;X, Y )]

}{
E(X,Y )[U(γ;X, Y )]

}T
(4.13)
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Let us first start by finding the expression for E(X,Y )[U(γ;X, Y )],

E(X,Y )[U(γ;X, Y )] = E(X,Y )

[ n∑
k=1

U(X | Y = yk) +
n∑
k=1

U(Y | X = xk)

]

= E(X,Y )

[ n∑
k=1

U(X | Y = yk)

]
+ E(X,Y )

[ n∑
k=1

U(Y | X = xk)

]

= EY

[
E(X|Y )

{ n∑
k=1

U(X | Y = yk)

}
︸ ︷︷ ︸

A

]
+ EX

[
E(Y |X)

{ n∑
k=1

U(Y | X = xk)

}
︸ ︷︷ ︸

B

]

The expectation of score function under its true likelihood is zero. Therefore, A and

B becomes zero. Thus,

E(X,Y )[U(γ;X, Y )] = EY (0) + EX(0)

= 0.

Then, from equation (4.13) J(γ) becomes,

J(γ) = E(X,Y )[U(γ;X, Y ).U(γ;X, Y )T ]

= E(X,Y )

{
[U(Y | X, γ) + U(X | Y, γ)].[U(Y | X, γ) + U(X | Y, γ)]T

}
= E(X,Y )

(
U(Y | X, γ).U(Y | X, γ)T

)
+ E(X,Y )

(
U(Y | X, γ).U(X | Y, γ)T

)
+

E(X,Y )

(
U(X | Y, γ).U(Y | X, γ)T

)
+ E(X,Y )

(
U(X | Y, γ).U(X | Y, γ)T

)

Note that, U(X | Y, γ) depends only on ∼θ and U(Y | X, γ) depends only on ∼τ .

According to equation (4.10) and (4.11), U(X | Y, γ) and U(Y | X, γ) will have

zeros in complementary positions. Hence, U(Y | X, γ).U(X | Y, γ)T = 0 and

U(X | Y, γ).U(Y | X, γ)T = 0

J(γ) = E(X,Y )

(
U(Y | X, γ).U(Y | X, γ)T

)
+ E(X,Y )

(
U(X | Y, γ).U(X | Y, γ)T

)
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= EX

(
EY |X

[
U(Y | X, γ).U(Y | X, γ)T

])
+ EY

(
EX|Y

[
U(X | Y, γ).U(X | Y, γ)T

])
(4.14)

Note that, equation (4.14) can be written as,

J(γ) =

∫
x∈R

JY |X=x(γ)fX(x)dx+

∫
y∈R

JX|Y=y(γ)fY (y)dy

and equation (4.12) can be express as,

H(γ) =

∫
x∈R

JY |X=x(γ)fX(x)dx+

∫
y∈R

JX|Y=y(γ)fY (y)dy

Thus, we can conclude that H(γ) = J(γ). This means that Sensitivity matrix is

equal to Variability matrix when the composite likelihood contains the product of

conditionals. We called this scenario as information unbiased. Moreover, according

to Varin et al. (2011), Godambe information matrix is

G(γ) = H(γ)J(γ)−1H(γ)

Since H(γ) = J(γ), the information matrix becomes G(γ) = H(γ). That is, Go-

dambe information matrix is equal to sensitivity matrix.

We will further simplifying the expression H(γ).

H(γ) = E(X,Y )

[−∂
∂γ

n∑
k=1

U(xk | yk)
]
+ E(X,Y )

[−∂
∂γ

{ n∑
k=1

U(yk | xk)
]

and

∂

∂γ

n∑
k=1

U(xk | yk) =

 VX|Y ∼0l2×l1

∼0l1×l2 ∼0l2×l2


(l1+l2)×(l1+l2)

and
∂

∂γ

n∑
k=1

U(yk | xk) =

 ∼0l1×l1 ∼0l2×l1

∼0l1×l2 VY |X


(l1+l2)×(l1+l2)
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where,

VY |X(γ) =



∂2ℓy/x
∂2τ1

∂2ℓy/x
∂τ1∂τ2

...
∂2ℓy/x
∂τ1∂τl2

∂2ℓy/x
∂τ1∂τ2

... ...
∂2ℓy/x
∂τ2∂τl2

...
...

∂2ℓy/x
∂τ1∂τl2

... ...
∂2ℓy/x
∂2τl2


l2×l2

and

VX|Y (γ) =



∂2ℓx/y
∂2θ1

... ...
∂2ℓx/y
∂θ1∂θl1

∂2ℓx/y
∂θ1∂θ2

... ...
∂2ℓx/y
∂θ2∂θl1

...
...

∂2ℓx/y
∂θ1∂θl1

∂2ℓx/y
∂θ2∂θl1

...
∂2ℓx/y
∂2θl1


l1×l1

Therefore one can write H(γ) as,

H(γ) =

 −E(Y,X)(VX|Y (γ)) ∼0

∼0 −E(Y,X)(VY |X(γ))

 (4.15)

Since G(γ) = H(γ), Godambe matrix can be written as,

G(γ) =

 −E(Y,X)(VX|Y (γ)) ∼0

∼0 −E(Y,X)(VY |X(γ))

 (4.16)

QED

4.4.2 Godambe Information matrix for Bivariate Normal and Bernoulli

Conditionals

Results of the previous section are derived for the general CEF case. Now they

are applied for the Bivariate normal Bernoulli case. We will start by deriving score

functions of f(y | R = r) ∼ N2(µ
(r),Σ) and f(r | Y = y) ∼ Ber(π(y)) separately.
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Let the full parameter space be,

θ1×10 =

(
µ
(0)
1 , µ

(0)
2 , µ

(1)
1 , µ

(1)
2 , σ1, σ2, ρ, α0, α1, α2

)
,

f(y|R = r) distribution is,

f(Y |R = r,∼θ) =
1

2πσ1σ2

√
1− ρ2

exp

{
− z

2(1− ρ2)

}

where,

z =
(y1 − [rµ

(1)
1 + (1− r)µ

(0)
1 ])2

σ2
1

− 2ρ(y1 − [rµ
(1)
1 + (1− r)µ

(0)
1 ])(y2 − [rµ

(1)
2 + (1− r)µ

(0)
2 ])

σ1σ2
+

(y2 − [rµ
(1)
2 + (1− r)µ

(0)
2 ])2

σ2
2

.

Log likelihood function of f(y/r) is

ln(f(∼θ; y, r)) = −n
2
ln(2π)− n

2
ln(σ1)−

n

2
ln(σ2)−

n

4
ln(1− ρ2)− 1

2(1− ρ2)

n∑
i=1

zi.

Derivatives of z with respect to full parameter space θ is given in the appendix

(A.2). Thus, we can take the derivatives of log(y|R = r) with respect to the full

parameter space θ using the chain rule:

∂ℓ

∂µ
(0)
1

=
−1

2(1− ρ2)
× ∂z

∂µ
(0)
1

∂ℓ

∂µ
(1)
1

=
−1

2(1− ρ2)
× ∂z

∂µ
(1)
1

∂ℓ

∂µ
(0)
2

=
−1

2(1− ρ2)
× ∂z

∂µ
(0)
2

∂ℓ

∂µ
(1)
2

=
−1

2(1− ρ2)
× ∂z

∂µ
(1)
2

∂ℓ

∂σ1
=

−1

σ1
− 1

2(1− ρ2)
× ∂z

∂σ1

∂ℓ

∂σ2
=

−1

σ2
− 1

2(1− ρ2)
× ∂z

∂σ2

∂ℓ

∂ρ
=

ρ

1− ρ2
− 1

2(1− ρ2)
× ∂z

∂ρ
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Score function U(Y |R = ri, θ) of f(Y |R = r) is:

U(Y |R = r, θ) =

(
∂ℓ

∂µ
(0)
1

,
∂ℓ

∂µ
(1)
1

,
∂ℓ

∂µ
(0)
2

,
∂ℓ

∂µ
(1)
2

,
∂ℓ

∂σ1
,
∂ℓ

∂σ2
,
∂ℓ

∂ρ
,
∂ℓ

∂α0

,
∂ℓ

∂α1

,
∂ℓ

∂α2

)T
=

(
∂ℓ

∂µ
(0)
1

,
∂ℓ

∂µ
(1)
1

,
∂ℓ

∂µ
(0)
2

,
∂ℓ

∂µ
(1)
2

,
∂ℓ

∂σ1
,
∂ℓ

∂σ2
,
∂ℓ

∂ρ
, 0, 0, 0

)T

Similarly for f(R|Y = y), The distribution is f(R|Y = y,∼θ) = π(y)r(1 − π(y))1−r

and π(y) can be written as,

π(y)= exp(α0+α1y1+α2y2)
1+exp(α0+α1y1+α2y2)

and 1−π(y)= 1
1+exp(α0+α1y1+α2y2)

.

Therefore f(r|Y = y) become

f(r|Y = y) =
exp[r(α0 + α1y1 + α2y2)]

1 + exp(α0 + α1y1 + α2y2)
.

Log likelihood function of f(r|Y = y),

log(f(r|Y = y,∼θ)) =
n∑
i=1

ri(α0+α1y1i+α2y2i)+
n∑
i=1

log[1+ exp(α0+α1y1i+α2y2i)].
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Derivatives are given by:

∂ℓ

∂α0

=
n∑
i=1

ri −
n∑
i=1

exp(α0 + α1y1i + α2y2i)

1 + exp(α0 + α1y1i + α2y2i)

=
n∑
i=1

ri −
n∑
i=1

1

1 + exp[−(α0 + α1y1i + α2y2i)]

∂ℓ

∂α1

=
n∑
i=1

riy1i −
n∑
i=1

y1i.exp(α0 + α1y1i + α2y2i)

1 + exp(α0 + α1y1i + α2y2i)

=
n∑
i=1

riy1i −
n∑
i=1

y1i
1 + exp[−(α0 + α1y1i + α2y2i)]

∂ℓ

∂α2

=
n∑
i=1

riy2i −
n∑
i=1

y2i.exp(α0 + α1y1i + α2y2i)

1 + exp(α0 + α1y1i + α2y2i)

=
n∑
i=1

riy1i −
n∑
i=1

y2i
1 + exp[−(α0 + α1y1i + α2y2i)]

Then, the score function of f(R|Y = y)

U(R|Y = y, θ) =

(
0, 0, 0, 0, 0, 0, 0,

∂ℓ

∂α0

,
∂ℓ

∂α1

,
∂ℓ

∂α2

)T
,

and the score function of f(y, r) is U(θ; y, r) = U(Y |R = r, θ) + U(R|Y = y, θ) is

given by

U(θ; y, r) =

(
∂ℓ

∂µ
(0)
1

,
∂ℓ

∂µ
(1)
1

,
∂ℓ

∂µ
(0)
2

,
∂ℓ

∂µ
(1)
2

,
∂ℓ

∂σ1
,
∂ℓ

∂σ2
,
∂ℓ

∂ρ
,
∂ℓ

∂α0

,
∂ℓ

∂α1

,
∂ℓ

∂α2

)T
.

Thus from equation (4.16), Godambe Information matrix G(θ) for Bivariate Normal

and Bernoulli conditional problem is,

G(θ) =

 E(Y,R)(VY |R(θ))(7×7) ∼0(7×3)

∼0(3×7) E(Y,R)(VR|Y (θ))(3×3)


10×10

, (4.17)
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where,

VY |R =



∂2ℓ

∂µ
(0)
1

2

∂2ℓ

∂µ
(0)
1 ∂µ

(1)
1

∂2ℓ

∂µ
(0)
1 ∂µ

(0)
2

∂2ℓ

∂µ
(0)
1 ∂µ

(1)
2

∂2ℓ

∂µ
(0)
1 ∂σ1

∂2ℓ

∂µ
(0)
1 ∂σ2

∂2ℓ

∂µ
(0)
1 ∂ρ

∂2ℓ

∂µ
(1)
1

2

∂2ℓ

∂µ
(0)
2

2

∂2ℓ

∂µ
(1)
2

2 ∼0

∼0
∂2ℓ
∂σ2

1

∂2ℓ
∂σ2

2

∂2ℓ
∂ρ2


and

VR|Y =


∂2ℓ
∂α2

0

∂2ℓ
∂α0∂α1

∂2ℓ
∂α0∂α2

∂2ℓ
∂α2

1
∼0

∼0
∂2ℓ
∂α2

2

 .

Note that, VR|Y and VY |R are triangular matrices. Thus, numerical computation of

GIM is relatively easier. Further, note that, we proved that GIM for exponential

family of distributions is equal to sensitivity matrix.

4.5 Comparison between ML and CL : Accuracy and Computational

Cost of Estimates

In this section, we provide three simulation studies. We start by comparing

computational cost of two estimation methods followed by accuracy of estimates in

terms of bias and standard error and efficiency comparison based on information

matrices.
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4.5.1 Simulation Study 1: π(y) with Linear Logistic Link

We carried out a simulation study for different sample sizes varying from 100

to 1000. Estimates of the model parameters were obtained using both MLE and

PLE methods. Data were generated using the Gibbs algorithms. 100 such data sets

were used for the study. Apart from the estimates, we also calculated the variance,

bias and time. The entire analysis was performed using the R 3.5.1 software. The R

package called Rsolnp, which performs constrained optimization, was used to obtain

estimates. Results are shown in Table 4.1 and Table 4.2.

Table 4.1: Wall times of simulation study with respect to sample size and method

used: TOL 10−3 and 100 data sets

Wall time (in hours)
Sample Size

(n) Maximum Likelihood Estimates Pseudolikelihood Estimates

100 0.24876 0.03046

200 0.48388 0.05411

500 1.01297 0.12695

1000 3.00707 1.63587

10000 27.62709 17.71052

In Table 4.1, the first column shows the wall times for different sample sizes n,

when the maximum likelihood method was used. The second set of columns of Table

4.1 presents the wall times for pseudolikelihood method. According to results, we

can see that pseudolikelihood method is superior to maximum likelihood method in
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terms of computation efficiency. For n=100, wall time of pseudolikelihood estima-

tion for 100 iterations is 0.0304 hours (1.83 mins) while the wall time of maximum

likelihood estimation for 100 iterations is 0.2488 hours (∼ 15 mins). It is apparent

that for small sample sizes such as n = 100, 200 there is no significant computa-

tional cost difference between the two methods. However, for a larger sample size,

the computational advantage of PLE surpasses that of MLE quickly. Further, we

note that even the PLE method shows large wall times when n increases. In that

case, parallelizing the code would be more effective. We are planning to explore this

in the future.

82



Table 4.2: Maximum likelihood estimates and pseudolikelihood estimates for differ-

ent sample sizes (n): TOL 10−3

Parameters True values
Maximum likelihood Pseudolikelihood

Estimate (sd) Bias Estimate(sd) Bias

n=100

σ2
0 1.2000 1.1986(0.0100) -0.0014 1.1836(0.0213) -0.0164

σ01 0.6481 0.6455(0.0100) -0.0026 0.6510(0.0135) 0.0029

σ2
1 1.4000 1.3981(0.0100) -0.0018 1.4273(0.0213) 0.0273

µ
(1)
1 2.0000 2.1828(0.0173) 0.1828 1.9879(0.0176) -0.0120

µ
(1)
2 3.0000 3.2157(0.0141) 0.2157 3.0179(0.0253) 0.0179

µ
(0)
1 0.0000 -0.0104(0.0223) -0.0104 0.0053(0.0182) 0.0053

µ
(0)
2 0.0000 -0.0213(0.0173) -0.0213 -0.0008(0.0218) -0.0008

α0 0.0010 0.0756(0.0012) 0.0746 -2.3291(0.2972) -2.3301

α1 0.0010 0.0009(0.0000)∗ -0.0001 0.5229(0.1117) 0.5219

α2 0.0010 0.0009(0.0000)∗ -0.0001 1.2877(0.1710) 1.2867

n=200

σ2
0 1.2000 1.1993(0.0001) -0.0007 1.2119(0.0085) 0.0119

σ01 0.6481 0.6458(0.0007) -0.0023 0.6498(0.0053) 0.0017

σ2
1 1.4000 1.3990(0.0017) -0.0009 1.4205(0.0073) 0.0205

µ
(1)
1 2.0000 2.1824(0.0001) 0.1824 1.9785(0.0076) -0.0215

µ
(1)
2 3.0000 3.2145(0.0001) 0.2145 2.9683(0.0115) -0.0317

µ
(0)
1 0.0000 -0.0124(0.0002) -0.0124 -0.0049(0.0073) -0.0049

µ
(0)
2 0.0000 -0.0219(0.0001) -0.0219 0.0013(0.0130) 0.0013

α0 0.0010 0.0736(0.0000)∗ 0.0726 -2.2607(0.1565) -2.2617
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α1 0.0010 0.0009(0.0000)∗ -0.0001 0.5220(0.0565) 0.5210

α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1872(0.0994) 1.1862

n=500

σ2
0 1.2000 1.1996(0.0000)∗ -0.0003 1.2116(0.0009) 0.0116

σ01 0.6481 0.6458(0.0008) -0.0023 0.6434(0.0014) -0.0046

σ2
1 1.4000 1.3995(0.0000)∗ -0.0005 1.4109(0.0010) 0.0109

µ
(1)
1 2.0000 2.1842(0.0078) 0.1842 1.9995(0.0036) -0.0005

µ
(1)
2 3.0000 3.2158(0.0080) 0.2158 3.0081(0.0056) 0.0081

µ
(0)
1 0.0000 -0.0107(0.0112) -0.0107 0.0035(0.0045) 0.0035

µ
(0)
2 0.0000 -0.0210(0.0069) -0.0210 0.0069(0.0047) 0.0069

α0 0.0010 0.0755(0.0037) 0.0745 -2.3054(0.0940) -2.3064

α1 0.0010 0.0009(0.0000)∗ -0.0001 0.4747(0.0171) 0.4737

α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1533(0.0153) 1.1523

n=1000

σ2
0 1.2000 1.1998(0.0000)∗ -0.0002 1.2039(0.0002) 0.0039

σ01 0.6481 0.6457(0.0009) -0.0024 0.6434(0.0009) -0.0046

σ2
1 1.4000 1.3997(0.0000)∗ -0.0003 1.4085(0.0003) 0.0085

µ
(1)
1 2.0000 2.1814(0.0088) 0.1814 1.9947(0.0019) -0.0053

µ
(1)
2 3.0000 3.2237(0.0107) 0.2237 2.9945(0.0032) -0.0055

µ
(0)
1 0.0000 -0.0250(0.0096) -0.0250 -0.0042(0.0021) -0.0042

µ
(0)
2 0.0000 -0.0241(0.0064) -0.0241 0.0009(0.0019) 0.0009

α0 0.0010 0.0702(0.0035) 0.0692 -2.3886(0.0976) -2.3896

α1 0.0010 0.0009(0.0000)∗ -0.0001 0.4790(0.0096) 0.4780

α2 0.0010 0.0009(0.0000)∗ -0.0001 1.1613(0.0094) 1.1603

∗ : very small non zero values
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In Table 4.2, we present the estimates, the bias and the variances for different sample

sizes. By looking at the bias values it is clear that the MLE method has less bias (and

nearly zero in some cases) than the PLE method. In both methods, the variances of the

estimates decrease as the sample size increases. The MLE of the α vector has less bias

compared to the PLE. However, there’s a noticeable departure from the true α values of

PL estimates compared to ML estimates. Overall, it is evident that the MLE outperforms

the PLE in terms of accuracy (less bias) and efficiency (lower variance). Therefore, we can

conclude that choosing PLE over MLE is a trade off between efficiency and computational

cost.

4.5.2 Simulation Study 2: π(y) with with Quadratic Terms

To further investigate the issue behind the significant departure of the alpha esti-

mates from the true parameter value we performed simulation studies using updated π(y)

with quadratic terms as given in equation 3.3.

π(y, α) =
exp(m10 +m11y1 +m12y2 +m13y

2
1 +m14y1y2 +m15y

2
2)

1 + exp(m10 +m11y1 +m12y2 +m13y21 +m14y1y2 +m15y22)
.

The simulation was carried out in a similar manner as before. Results were obtain for

sample sizes n = 100, 200, 500 and 1000. We obtained the estimates of original parameters

as well as the estimates of the elements of M matrix (m space).In Tables 4.4 and 4.6, we

present original parameter estimates of both ML and PL, Table 4.5 has ML estimates of

m parameter space and Table 4.7 presents the estimates of m parameter space from PL

method. Further, we present the Bias of the estimates and standard deviation (SD) of the

estimates.

In Tables 4.4 and 4.6, we present the parameter estimates, the bias and the variances
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Table 4.4: ML estimates of the original parameters

n=100

Parameter Estimate Bias SD

σ2
1 1.2000 1.2052 0.0052 0.067

ρ 0.6481 0.6561 0.0080 0.056

σ2
2 1.4000 1.4187 0.0187 0.146

µ
(1)
1 2.0000 1.9878 -0.0122 0.083

µ
(1)
2 3.0000 2.9854 -0.0146 0.125

µ
(0)
1 0.0000 0.0007 0.0007 0.064

µ
(0)
2 0.0000 -0.0016 -0.0016 0.057

α0 0.0010 -0.0829 -0.0839 0.655

α1 0.0010 0.0340 0.0330 0.415

α2 0.0010 0.0679 0.0669 0.532

α3 0.0010 -0.0083 -0.0093 0.174

α4 0.0010 0.0234 0.0224 0.226

α5 0.0010 0.0199 0.0189 0.314

n=200

Parameter Estimate Bias SD

σ2
1 1.2000 1.2149 0.0149 0.073

ρ 0.6481 0.6591 0.0110 0.062

σ2
2 1.4000 1.4070 0.0070 0.079

µ
(1)
1 2.0000 1.9935 -0.0065 0.051

µ
(1)
2 3.0000 2.9886 -0.0114 0.057

µ
(0)
1 0.0000 -0.0055 -0.0055 0.052

µ
(0)
2 0.0000 0.0015 0.0015 0.061

α0 0.0010 -0.0820 -0.0830 0.534

α1 0.0010 0.0327 0.0317 0.356

α2 0.0010 0.0642 0.0632 0.464

α3 0.0010 0.0040 0.0030 0.129

α4 0.0010 0.0221 0.0211 0.169

α5 0.0010 0.0119 0.0109 0.117

n=500

Parameter Estimate Bias SD

σ2
1 1.2000 1.2126 0.0126 0.062

ρ 0.6481 0.6560 0.0079 0.055

σ2
2 1.4000 1.4135 0.0135 0.077

µ
(1)
1 2.0000 1.9998 -0.0002 0.056

µ
(1)
2 3.0000 3.0083 0.0083 0.053

µ
(0)
1 0.0000 0.0006 0.0006 0.052

µ
(0)
2 0.0000 -0.0067 -0.0067 0.048

α0 0.0010 -0.0856 -0.0866 0.502

α1 0.0010 0.0328 0.0318 0.325

α2 0.0010 0.0648 0.0638 0.375

α3 0.0010 0.0191 0.0181 0.099

α4 0.0010 -0.0092 -0.0102 0.176

α5 0.0010 0.0185 0.0175 0.110

n=1000

Parameter Estimate Bias SD

σ2
1 1.2000 1.2034 0.0034 0.064

ρ 0.6481 0.6583 0.0103 0.053

σ2
2 1.4000 1.4133 0.0133 0.063

µ
(1)
1 2.0000 2.0000 -0.0000 0.050

µ
(1)
2 3.0000 3.0023 0.0023 0.055

µ
(0)
1 0.0000 -0.0071 -0.0071 0.047

µ
(0)
2 0.0000 0.0001 0.0001 0.055

α0 0.0010 -0.0809 -0.0819 0.455

α1 0.0010 0.0345 0.0335 0.357

α2 0.0010 0.0589 0.0579 0.380

α3 0.0010 0.0047 0.0037 0.098

α4 0.0010 0.0201 0.0191 0.181

α5 0.0010 0.0165 0.0155 0.125
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Table 4.5: ML estimates of the m parameters

n=100

Parameters Estimate Bias SD

m00 1.5569 4.7517 3.1948 2.4945

m01 0.0000 0.0030 0.0030 0.060

m02 0.0000 -0.0032 -0.0032 0.046

m03 -0.5556 -0.5573 -0.0018 0.031

m04 0.5143 0.5174 0.0031 0.050

m05 -0.4762 -0.4754 0.0007 0.036

m10 0.0010 -0.0829 -0.0839 0.655

m11 0.0010 0.0340 0.0330 0.415

m12 0.0010 0.0679 0.0669 0.532

m13 0.0010 -0.0083 -0.0093 0.174

m14 0.0010 0.0234 0.0224 0.226

m15 0.0010 0.0199 0.0189 0.314

n=200

Parameters Estimate Bias SD

m00 1.5569 6.7630 5.2061 4.6195

m01 0.0000 -0.0063 -0.0063 0.047

m02 0.0000 0.0040 0.0040 0.048

m03 -0.5556 -0.5542 0.0014 0.029

m04 0.5143 0.5186 0.0043 0.041

m05 -0.4762 -0.4783 -0.0021 0.025

m10 0.0010 -0.0820 -0.0830 0.534

m11 0.0010 0.0327 0.0317 0.356

m12 0.0010 0.0642 0.0632 0.464

m13 0.0010 0.0040 0.0030 0.129

m14 0.0010 0.0221 0.0211 0.169

m15 0.0010 0.0119 0.0109 0.117

n=500

Parameters Estimate Bias SD

m00 1.5569 1.5307 -0.0262 0.069

m01 0.0000 0.0039 0.0039 0.050

m02 0.0000 -0.0068 -0.0068 0.041

m03 -0.5556 -0.5526 0.0029 0.028

m04 0.5143 0.5128 -0.0015 0.040

m05 -0.4762 -0.4741 0.0021 0.023

m10 0.0010 -0.0856 -0.0866 0.502

m11 0.0010 0.0328 0.0318 0.325

m12 0.0010 0.0648 0.0638 0.375

m13 0.0010 0.0191 0.0181 0.099

m14 0.0010 -0.0092 -0.0102 0.176

m15 0.0010 0.0185 0.0175 0.110

n=1000

Parameters Estimate Bias SD

m00 1.5569 1.5173 -0.0396 0.073

m01 0.0000 -0.0079 -0.0079 0.045

m02 0.0000 0.0038 0.0038 0.045

m03 -0.5556 -0.5599 -0.0044 0.030

m04 0.5143 0.5215 0.0071 0.043

m05 -0.4762 -0.4763 -0.0002 0.022

m10 0.0010 -0.0809 -0.0819 0.455

m11 0.0010 0.0345 0.0335 0.357

m12 0.0010 0.0589 0.0579 0.380

m13 0.0010 0.0047 0.0037 0.098

m14 0.0010 0.0201 0.0191 0.181

m15 0.0010 0.0165 0.0155 0.125
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Table 4.6: PL estimates of the original parameters

n=100

Parameters Estimate Bias SD

σ2
0 1.2000 1.1615 -0.0385 0.0381

σ01 0.6481 0.6727 0.0246 0.0231

σ2
1 1.4000 1.4716 0.0716 0.0497

µ
(1)
1 2.0000 2.0458 0.0458 0.0151

µ
(1)
2 3.0000 3.0263 0.0263 0.0437

µ
(0)
1 0.0000 0.0096 0.0096 0.0343

µ
(0)
2 0.0000 0.0561 0.0561 0.0182

α0 0.0010 0.02132 0.0203 0.5742

α1 0.0010 0.6859 0.6849 1.5424

α2 0.0010 0.3051 0.3041 0.1467

α3 0.0010 0.0906 0.0896 0.9671

α4 0.0010 0.0018 0.0008 0.1787

α5 0.0010 0.0069 0.0059 0.1752

n=200

Parameters Estimate Bias SD

σ2
0 1.2000 1.2053 -0.0053 0.0359

σ01 0.6481 0.6835 -0.0354 0.0144

σ2
1 1.4000 1.4266 -0.0266 0.0272

µ
(1)
1 2.0000 1.9564 0.0436 0.0073

µ
(1)
2 3.0000 2.9752 0.0248 0.0192

µ
(0)
1 0.0000 0.0092 -0.0092 0.0237

µ
(0)
2 0.0000 0.0562 -0.0562 0.0331

α0 0.0010 0.0210 -0.0200 0.3773

α1 0.0010 0.6247 -0.6237 1.1606

α2 0.0010 1.8235 -1.8225 0.0027

α3 0.0010 0.0369 -0.0359 0.0835

α4 0.0010 0.0015 -0.0005 0.1759

α5 0.0010 0.0061 -0.0051 0.1416

n=500

Parameters Estimate Bias SD

σ2
0 1.2000 1.2021 -0.0021 0.0335

σ01 0.6481 0.6489 -0.0008 0.0172

σ2
1 1.4000 1.4032 -0.0032 0.0212

µ
(1)
1 2.0000 2.0027 -0.0027 0.0069

µ
(1)
2 3.0000 3.0009 -0.0009 0.0150

µ
(0)
1 0.0000 0.0379 -0.0379 0.0291

µ
(0)
2 0.0000 0.0002 -0.0002 0.0172

α0 0.0010 0.0255 -0.0245 0.4014

α1 0.0010 0.6550 -0.6540 1.3633

α2 0.0010 1.8449 1.8439 0.0669

α3 0.0010 -0.0745 0.0755 0.0669

α4 0.0010 0.0504 -0.0494 0.1713

α5 0.0010 0.0037 -0.0027 0.0874

n=1000

Parameters Estimate Bias SD

σ2
0 1.2000 1.2060 -0.0060 0.0150

σ01 0.6481 0.6478 0.0003 0.0063

σ2
1 1.4000 1.3985 0.0015 0.0008

µ
(1)
1 2.0000 1.9955 0.0045 0.0022

µ
(1)
2 3.0000 3.0110 -0.0110 0.0132

µ
(0)
1 0.0000 -0.0071 0.0071 0.0238

µ
(0)
2 0.0000 -0.0079 0.0079 0.0073

α0 0.0010 0.0158 -0.0148 0.4008

α1 0.0010 0.7029 -0.7019 0.1587

α2 0.0010 1.8700 -1.8690 0.0063

α3 0.0010 -0.0184 0.0194 0.0703

α4 0.0010 0.0071 -0.0061 0.1639

α5 0.0010 0.0064 -0.0054 0.0099
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Table 4.7: PL estimates of the m parameters

n=100

Parameters Estimate Bias SD

m00 1.5569 2.6732 1.1163 0.6959

m01 0.0000 0.0105 0.0105 0.054

m02 0.0000 -0.0047 -0.0047 0.048

m03 -0.5556 -0.5600 -0.0045 0.027

m04 0.5143 0.5141 -0.0003 0.046

m05 -0.4762 -0.4750 0.0012 0.022

m00 0.0010 0.02132 0.0203 0.574

m01 0.0010 0.6859 0.6849 0.1542

m02 0.0010 0.3051 0.3041 0.147

m03 0.0010 0.0906 0.0896 0.967

m04 0.0010 0.0018 0.0008 0.179

m05 0.0010 0.0069 0.0059 0.175

n=200

Parameters Estimate Bias SD

m00 1.5569 2.7615 1.2046 0.9926

m01 0.0000 -0.0111 -0.0111 0.054

m02 0.0000 0.0026 0.0026 0.049

m03 -0.5556 -0.5582 -0.0026 0.028

m04 0.5143 0.5166 0.0022 0.045

m05 -0.4762 -0.4797 -0.0035 0.024

m00 0.0010 0.0210 -0.0200 0.377

m01 0.0010 0.6247 -0.6237 0.1161

m02 0.0010 1.8235 -1.8225 0.003

m03 0.0010 0.0369 -0.0359 0.083

m04 0.0010 0.0015 -0.0005 0.176

m05 0.0010 0.0061 -0.0051 0.142

n=500

Parameters Estimate Bias SD

m00 1.5569 3.9067 2.3498 0.5068

m01 0.0000 0.0424 0.0424 0.050

m02 0.0000 -0.0196 -0.0196 0.061

m03 -0.5556 -0.5561 -0.0005 0.024

m04 0.5143 0.5144 0.0001 0.041

m05 -0.4762 -0.4770 -0.0008 0.025

m00 0.0010 0.0255 -0.0245 0.401

m01 0.0010 0.6550 -0.6540 0.136

m02 0.0010 1.8449 1.8439 0.067

m03 0.0010 -0.0745 0.0755 0.067

m04 0.0010 0.0504 -0.0494 0.171

m05 0.0010 0.0037 -0.0027 0.087

n=1000

Parameters Estimate Bias SD

m00 1.5569 1.5231 -0.0338 0.077

m01 0.0000 -0.0038 -0.0038 0.049

m02 0.0000 -0.0038 -0.0038 0.045

m03 -0.5556 -0.5537 0.0019 0.025

m04 0.5143 0.5131 -0.0013 0.039

m05 -0.4762 -0.4775 -0.0013 0.022

m00 0.0010 0.0158 -0.0148 0.401

m01 0.0010 0.7029 -0.7019 0.159

m02 0.0010 1.8700 -1.8690 0.006

m03 0.0010 -0.0184 0.0194 0.070

m04 0.0010 0.0071 -0.0061 0.164

m05 0.0010 0.0064 -0.0054 0.010
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for different sample sizes for ML and PL methods. Similarly as before by looking at the

bias values it is clear that the ML method has less bias than the PL method. In both

methods, the variances of the estimates decrease as the sample size increases.

According to Table 4.4 and 4.6, the ML method estimates the α vector accurately

compared to PL method. Further, in-terms of m parameter estimates, ML estimation is

still performing superior compared to PL. By looking at Table 4.6 it is evident that α vector

estimates coming from the PL method has significantly improved when we incorporate

the quadratic terms into the logistic link. Yet, in PL method, bias of α1 and α2 are still

significant. The same issue exist in PL estimates in m space also. The reason for this

issue may be related to uniqueness of the distribution which we will address in our future

work after further investigation.
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4.5.3 Efficiency Comparison

In order to compare the efficiencies of θ̂ML and θ̂CL we used the concept of joint

asymptotic relative efficiency (JARE), as defined in (4.1). We increased the sample size

from 100 to 1000 and observed the JARE between θ̂ML and θ̂CL. Results are given in

Table 4.8.

Table 4.8: Joint Asymptotic Relative Efficiency between θ̂ML and θ̂CL

Sample size (n) JARE

100 4.82× 10−10

200 1.06× 10−6

500 8.46× 10−4

1000 8.21× 10−3

According to Table 4.8, when sample size n increases JARE increases. That is, the

ratio between estimates coming from ML and estimates coming from CL is approaching

1 when sample size increases. By looking at the results we can state that in terms of

efficiency MLE is superior than CLE.
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Chapter 5: Bivariate Normal and Bernoulli Distribution Illustrative

Example

In this chapter, we will present an illustrative application. We consider stock price

data along with analyst recommendations; usually buy, sell or hold. Clearly, the recom-

mendations are discrete/categorical and stock price in a continuous response variable. This

provides an opportunity to illustrate the of use of discrete-continuous joint distribution

specified via the conditionals.

As background, it is sufficient to know that analysts recommendations are based on

the study of the behavior of the stock price, economic indicators, and any other relevant

information they can obtain. Then it makes sense to specify a model (such as logistic

regression) for the recommendation conditional on the past stock prices. On the other

hand, it is reasonable to assume that the price of a stock which is classified as a buy is

likely to behave different that its price defining the time it is listed as a sell. Hence, the

conditional distribution of the stock price given its recommendation states may also be

formulated. We shall then ask if the specifications are compatible and the joint distribution

can be estimated.
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5.1 Description of the Data Set

Daily closing prices and recommendations were collected for 100 stocks (the list of

100 stock can be found in Appendix) using the website www.Barchart.com. The data were

collected from July 2019 to August 2020; that is roughly 60 weeks of data. However, we

restricted ourselves to the period from July 2019 to February 2020 prior to the market

drop due to Covid-19. For the descriptive analysis in section 5.3, we used both the entire

data set and partial data set. Only the partial data set (data from July 2019 to February

2020) were used for the advance analysis. For each stock, we have closing price and

recommendation for each business day for 60 weeks in full data set (data from July 2019

to August 2020) and the partial data contains only 32 weeks worth of data.

5.2 Data Analysis

The data analysis included an exploratory graphical and descriptive analysis of

closing prices and recommendation for each stock. Time series plots, Surface plots and

contour plots were used to study the distribution of data.

The derived model assumes a bivariate normal conditional for the continuous part

(Y ) of data. Hence, we only considered the two closing prices from Monday and Friday of

each week and the recommendation from Monday of the following week to match the con-

ditionals of the joint model. That is, conditional distributions of closing prices of Monday

(Y0) and Friday (Y1) of each week given the end of the week recommendation (R), is as-

sumed to follow a bivariate normal distribution and the end of the week recommendation

given the closing prices of Monday and Friday is assumed to follow a standard logistic

regression model. By letting Y = (Y0, Y1)
T , the bivariate vector start and end of the week
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prices, and R denote the end of the week analyst recommendation where R = 0 is “sell”

and R = 1 is “Buy”; the specification of conditional distribution is

f(
∼
y | R = 0) = N2(∼

µ(0),Σ)

f(
∼
y | R = 1) = N2(∼

µ(1),Σ)

and f(R = r | y) = Ber[π(y, α)] where π(y, α) is set as in equation 3.1.

Price data for some of the stocks are not consistent with normality assumption. Data

for five representative stocks are shown in figure (5.1) and (5.2). Data are divided into

two graphs according to the value of R. Then, each graph corresponding to a conditional

distribution. We apply Box-Cox transformation to each stock price separately to improve

the normality fit. The pseudolikelihood and the maximum likelihood methods are used to

estimate the parameters for each stocks.

As shown in chapter 3, there exists a joint distribution consistent with the above

conditional specification. The corresponding likelihood function is given by equation (4.7)

L(f(y, r;∼θ̂)) =
n∏
i=1

exp(rm10 +Q(y, r))∑1
r=0 exp(rm10)

∫∞
y1=−∞

∫∞
y2=−∞ exp(Q(y, r))dy2dy1

In general, such joint likelihoods are not tractable. But in our case the normality constant

does yield an analytical expression given in equation (3.4). Then, the ML estimate can be

computed, but it is computationally demanding. In this example, we will also compute

the pseudolikelihood estimates for comparison purposes. MLE and PLE are given in Table

(5.1). Note that the ML and PL estimates of the conditional distribution of Y | R are

nearly identical. However, the two methods give very different results of the parameters

of R | Y in most cases.

Table (5.1) present summary statistics of closing prices of five representative stocks

namely Apple Inc. stock (AAPL), Biomerica Inc. (BMRA) stock, PepsiCo, Inc. (PEP)
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stock, Automatic Data Processing Inc. (ADP) stock and Mid-America Apartment Com-

munities (MAA) stock. Statistics are separated with respective to the recommendation

(R). According to the Table (5.1), we can see that Monday closing price and Friday clos-

ing price have strong correlations. Further, variance covariance matrix of closing prices

when R = 0 and R = 1 are similar. Thus, we can assume the compatibility requirement

is satisfied for these selected stocks.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: f(y, r = 0) surface plot for five stocks. (a) f(y, r = 0) of Apple Inc.

stock, (b) f(y, r = 1) of Apple Inc. stock, (c) f(y, r = 0) of Biomerica Inc. stock,

(d) f(y, r = 1) of Biomerica Inc. stock, (e) f(y, r = 0) of PepsiCo, Inc. stock, (f)

f(y, r = 1) of PepsiCo, Inc. stock.
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(a) (b)

(c) (d)

Figure 5.2: f(y, r = 1) surface plot for five stocks. (a) f(y, r = 0) of Automatic

Data Processing Inc. stock, (b) f(y, r = 1) of Automatic Data Processing Inc. stock,

(c) f(y, r = 0) of Mid-America Apartment Communities stock, (d) f(y, r = 1) of

Mid-America Apartment Communities stock.
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Table 5.1: Summary Statistics for Closing Prices

Summary Statistics AAPL ADP BMRA MAA PEP

(Closing Prices) MON FRI MON FRI MON FRI MON FRI MON FRI

R = 0

Minimum 193.34 201 158 159 2.87 2.7 121 119 124 129

Mean (x̄) 249.91 245.58 167.54 166.83 3.00 3.03 130.12 131.13 135.32 135.36

Median (Q2) 218.82 219.90 167.09 168.05 3.01 3.01 130.50 132.68 135.63 136.12

Standard Deviation (s) 44.72 45.60 5.37 5.74 0.09 0.18 5.71 5.58 3.75 3.73

ρ 0.99 0.74 0.52 0.93 0.86

Maximum 309.00 320.03 175.74 179.10 3.18 3.47 139.15 137.21 142.14 142.91

Q1 210.012 208.74 162.25 163.72 2.98 2.85 127.19 126.82 134.51 133.28

Q3 281.93 289.80 170.19 171.01 3.09 3.07 135.82 134.59 136.69 136.64

R = 1

Minimum 200 3.03 3.03 159 2.75 2.68 118 119 130 128

Mean (x̄) 251.46 249.12 168.78 167.11 3.02 3.06 131.96 129.38 137.17 136.01

Median (Q2) 251.20 244.78 169.56 167.14 3.00 3.07 132.35 130.55 137.37 136.53

Standard Deviation (s) 41.72 45.69 5.36 5.84 0.19 0.21 5.26 5.19 3.51 4.09

ρ 1 0.96 0.66 0.97 0.93

Maximum 316.96 318.73 179.36 181.25 3.41 3.46 142.34 145.51 145.66 146.99

Q1 226.29 229.31 162.48 163.99 2.92 2.89 125.40 128.82 133.74 133.94

Q3 264.85 269.47 169.07 171.01 3.20 3.17 133.30 136.96 137.10 139.11

In empirical plots based on smoothing the data in figures (5.1) and (5.2), we present

the joint distributions, (f(y; r = 0) and f(y; r = 1)) of five representative stocks. The

reader can refer to appendix to study the rest of 95 stocks. According to figures, it is clear

that most of the distributions are bimodal.
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5.3 Estimation using Weekly Data

As the first step, we follow the data structure given in (1.4) in example 2 in chapter

1. That is, for a certain week Monday price (yMP ) and Friday price (yFP ) assumed to

follow a bivariate normal distribution. Further, “Buy” or “Sell” recommendation (R)

follows a Bernoulli distribution with standard logistic link.

(yMP , yFP ) ∼ f(
∼
y | R = r) ∼ N2(∼

µ(r),Σ)

R ∼ fR|Y (r|Y = y) = π(y, α)r(1− π(y, α))1−r

where,

logit[π(y, α)] = log

(
π(y, α)

1− π(y, α)

)
= α0 + α1yMP + α2yFP

We estimate the parameters of each stock using Maximum likelihood estimation and

Pseudo likelihood estimation. We only present the results for five representative stocks in

Table (5.2). The reader can find the rest of the results are in the Appendix if interested.

In Table (5.2), µ(0) is the mean vector when stock is a “sell” and µ(1) is the mean vector

when stock is a “buy”. The mean vectors, variances, covariances and alpha coefficients

are presented in Table (5.2). Note that in Table (5.2) the means, variances and correla-

tion estimates obtained by the two methods are very close to each other. However, the

estimates of the parameters of the logistic regression model are not so close. The other

important point to note is that the α2 parameter seems to be significantly different from

zero. This implies that the product of the Monday and Friday prices is significant in the

logistic regression model. This pattern can be observed in the rest of the stocks too.
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Table 5.2: Weekly Analysis: Maximum likelihood and pseudolikelihood estimates

for AAPL, PEP, MAA, BMRA and ADP stock prices

Stock Method µ(0) µ(1) σ2
1 σ2

2 ρσ1σ2 α0 α1 α2

AAPL PLE (289.49,289.71) (278.25,283.62) 5276.43 5580.58 5387.98 0.53 56.08 64.83

MLE (288.98,290.12) (278.45,283.52) 5276.44 5580.60 5387.95 3.59 462.05 478.19

PEP PLE (134.70,133.64) (134.20,135.33) 39.96 39.52 33.89 0.10 -0.10 0.10

MLE (134.64,133.70) (133.71,134.96) 48.04 33.54 34.61 0.11 0.51 1.42

MAA PLE (125.91,123.95) (122.23,123.25) 146.07 150.43 132.57 0.09 -0.09 0.09

MLE (134.52,133.38) (131.22,124.20) 114.42 163.76 132.80 -6.89 -1012.75 -889.68

BMRA PLE (5.41,5.42) (4.15,4.13) 6.24 5.79 5.65 0.10 -0.10 0.1

MLE (5.41,5.42) (4.15,4.13) 6.24 5.79 5.65 0.10 -0.10 0.1

ADP PLE (157.29,156.11) (156.16,156.47) 227.52 236.93 214.55 0.10 -0.09 0.09

MLE (156.09,155.97) (155.22,156.02) 227.43 236.80 214.81 0.41 37.33 49.06

5.4 Parameter Estimation of Lag Distribution

We extended our analysis to the data structure with lag prices. To further explain

the data set, we take consider the Friday price (yFP ) before the weekend and Monday price

(yMP ) after the same weekend follows a bivariate normal distribution. Further, “Buy” or

“Sell” recommendation (R) on Monday after the weekend follows a Bernoulli distribution

with standard logistic link as before. We estimate the parameters using ML estimation

and PL estimation of the same five representative stocks as same in the previous analysis.

Results are given in Table (5.4).
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Table 5.3: Pseudolikelihood estimates for AAPL, PEP, MAA, BMRA and ADP

stock prices.

Stock µ(0) µ(1) Σ α0 α1 α2 α3 α4

AAPL (246.73,249.03,245.85,245.52) (244.02,248.02,228.94, 241.52)



1394.035 1470.437 1285.463 1355.924

1470.437 1569.651 1370.025 1441.065

1285.463 1370.025 1223.746 1269.654

1355.924 1441.065 1269.654 1344.374


1.18 285.88 294.14 259.56 280.98

ADP (167.87,167.81,177.03,175.42) (167.08,168.76,165.86,166.95)



28.66 28.48 18.96 22.75

28.48 34.74 22.99 24.96

18.96 22.99 23.24 18.92

22.75 24.96 18.92 25.05072


0.12 3.52 3.69 3.18 3.47

BMRA (3.03, 3.00, 3.03, 2.96) (3.06, 3.02,8.15,7.63)



0.03 0.02 0.01 0.03

0.02 0.04 0.01 0.02

0.01 0.01 0.03 0.02

0.03 0.02 0.02 0.04


0.10 -0.09 0.10 0.10 -0.09

MAA (131.13,130.12,140.07,139.75) (129.38 ,131.96,129.63,129.87)



42.46 40.53 2.06 0.48

40.53 44.93 12.69 12.22

2.06 12.69 581.01 603.20

0.48 12.22 603.20 632.00


0.10 -0.10 0.10 0.10 -0.10

PEP (135.36,135.32,128.97,130.85) (136.00 ,137.17,135.03,135.36)



17.23 16.78 13.06 16.09

16.78 20.70 13.19 14.99

13.06 13.19 14.63 13.83

16.09 14.99 13.83 16.93


0.10 -0.10 0.10 0.10 -0.10

5.5 Estimation of Biweekly Data

To further, investigate behaviour of the estimates and predictions we used consider

Monday price and Friday price of two weeks and the recommendation at the end of that

two weeks. That is we have Y = (Y1, Y2, Y3, Y4)
T where y1 = Monday price of week one,

y2 = Monday price of week one, y3 = Monday price of week two, and y4 = Monday

price of week two and recommendation r at the end of the second week. Thus, we have

f(y | R = r) ∼ N4(µ
(r),Σ) and f(r/Y = y) ∼ Ber(π(y), α); where logit[π(y)] = α0 +
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α1y1 + α2y2 + α3y3 + α4y4. Note that we are still considering the linear logistic link.

Deriving the joint distribution for the above two conditionals is quite cumbersome.

Therefore, we are not presenting the ML estimates for this particular case. However,

PL estimation is still possible since we use product of two conditionals as the likelihood

instead of the full likelihood. Table 5.4 presents the PL estimates.

Table 5.4: Pseudolikelihood estimates for AAPL, PEP, MAA, BMRA and ADP

stock prices.

Stock µ(0) µ(1) Σ α0 α1 α2 α3 α4

AAPL (244.71,249.64,251.11,256.48) (243.22,243.77,244.62,244.57)



1410.17 1472.81 1437.76 1436.04

1472.81 1557.10 1526.09 1528.32

1437.76 1526.09 1508.28 1508.88

1436.04 1528.32 1508.89 1528.35


0.10 -0.10 0.10 0.10 -0.10

ADP (166.98, 167.98, 167.77, 170.14) (168.10,168.74,167.38,165.51)



27.58 26.32 24.94 18.84

26.32 32.72 30.58 24.10

24.94 30.58 30.84 27.51

18.84 24.10 27.51 30.52


-65.64 -1.06 218.32 -526.55 306.80

BMRA (3.00,2.98,3.00,2.98) (3.04,3.12,3.12,3.12)



0.03 0.02 0.01 0.01

0.02 0.03 0.02 0.02

0.01 0.02 0.02 0.02

0.01 0.02 0.02 0.04


0.10 -0.10 0.10 0.10 -0.10

MAA (128.06,129.43,130.05,131.07) (131.24,132.15,132.13,131.07)



38.16 37.19 36.38 35.15

37.19 42.34 41.66 40.19

36.38 41.66 41.75 40.21

35.15 40.19 40.21 41.70


8.01 -0.03 -0.83 -0.13 0.93

PEP (133.84,134.70,135.50,136.75 ) (137.07,137.41,136.82,135.90)



18.79 18.16 16.48 18.14

18.16 20.33 17.49 18.48

16.48 17.49 15.97 17.62

18.14 18.48 17.62 22.80


112.84 -2.69 0.20 0.15 1.51
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5.6 Discussion

In this illustrative example, closing prices with recommendation for 100 stocks col-

lected from July 2019 to August 2020 which is roughly 60 weeks, were analyzed. The

main goal of the study is to compare the parameter estimates obtained from ML estima-

tion method and PL estimation method for each stock. Since the joint distribution we

derived in chapter 3 has bivariate normal distribution and the standard logistic regression

distribution as the two compatible conditionals; for each stock, we assumed the two closing

prices from Monday and Friday of each week given the recommendation from Monday of

the following week follows a bivariate normal distribution and the end of the week recom-

mendation given the closing prices of Monday and Friday is assumed to follow a standard

logistic regression model. Box-Cox transformation was applied to continuous data when

necessary to maintain the normality assumption. First the joint distributions of each stock

were observed. Further, estimated the parameters using ML and PL methods.

According to the results, for the five representative stocks, the means, variances

and correlation estimates obtained by ML method and PL method are very close to each

other. However, the estimates of the parameters of the logistic regression model are

not so close. The other important point to note is that the α2 parameter seems to be

significantly different from zero. This implies that the product of the Monday and Friday

prices is significant in the logistic regression model. This pattern can be observed in

the rest of the stocks we chosen also. This computational problem might be a negative

characteristic of the composite likelihood (or pseudo likelihood) method. This means

that using maximum likelihood estimation is more reliable method to analyze the data.

However, due to the complexity of the full model and restriction upon the conditionals it
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is not always convenient to analyze the data if the data does not have a specific structure.

Composite likelihood is a good choice since the data does not need a specific structure.
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Chapter 6: Conclusion

A joint model is often needed in many real-world applications. However, selecting

an appropriate model that explains the real-life data observed could be difficult. One can

choose a model from well-known parametric families of distributions which approximately

explain the observed data. Often the joint model which explains the real observed data

is either intractable or not in a closed-form solution. This will lead to many other issues

such as interpretation of the model, estimating parameters, inference, and data generation.

This is particularly the case where as the data consist of both continuous and discrete

parts. Further, even after choosing a model that explains data adequately, visualizing

the distribution is often difficult. Often in practice, conditionals are easier to model and

interpret while the joint distribution itself is either intractable or not available in closed

form. Especially, when the observed response consists of both continuous and discrete

components, specifying conditionals is more convenient. If one wants to derive the joint

model based on conditionals, one can use the concept called conditional specification. Such

models are referred to as conditionally specified models. These conditionally specified

models are intuitively appealing, and knowing the conditional distributions makes the

problem easier to understand and visualize. In this thesis, our main focus was to derive

a joint distribution to describe both the continuous response variables and the discrete

variables and to explore the theoretical aspects of conditionally specified models including

105



parameter estimation and data generation using the joint distributions.

We started the study by presenting several practical motivating examples such as

self-proxy data in gerontology studies, synthetic data, and stock market closing prices and

recommendations data where the data have a discrete component and a continuous com-

ponent and can be specified as conditionals. To analyze these data in a single framework

one can use the approach we are proposing. To derive the joint we used the stock market

closing price and the “Buy”/“Sell” recommendation example where the beginning of the

week and end of the week price data given the recommendation follows a bivariate nor-

mal distribution and the recommendation given the price data follows a logistic regression

model. The conditionally specified joint model was derived by Arnold et al. (2001). The

compatibility of the conditional distributions has been verified using standard theorems.

The conditionals resulting from this joint distribution are more general than those we

started with and hence the approach provides a general class of models for analyzing the

stock price and recommendation data. We were able to obtain all the elements of M

matrix in terms of true parameters of conditionals as well as a closed-form solution to the

normalizing constant. Further, although the proposed joint model has a closed-form ex-

pression, it is very complex and has a messy normalizing constant. Therefore, generating

data directly from the joint model is immensely difficult and may even not be feasible.

However, since the model is conditionally specified we were able to apply other numerical

algorithms such as Gibb’s Sampling.

Because of awkward normalizing constant differentiating the likelihood and deriving

the maximum likelihood equations became challenging. While in practice ML estimation

is the preferred estimation method for parametric models, in our case it comes with a

heavy computational burden. Therefore, it behooves us to explore other methods such as
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composite likelihood estimation. Due to the difficulty of obtaining closed-form expressions

for estimates, using our proposed density is not feasible and we use numerical methods to

obtain the estimates of parameters. We derived the score function of our proposed joint

distribution and investigate the Fisher information matrix. The score function obtained

using the joint model is complex as expected due to the complex normalizing constant.

Moreover, we presented a theorem for the CL method; the Godambe information matrix

for conditional specified models when the respective conditional distributions belong to

the exponential family of distribution followed by complete proof.

We carried out a simulation study for different sample sizes to investigate the prop-

erties of maximum likelihood estimates and composite likelihood. Estimates of the model

parameters were obtained using both MLE and CLE methods. Data were generated using

Gibb’s algorithms. Apart from the estimates, we calculated the variance, bias, and wall

time. Further, joint asymptotic relative efficiency (JARE) between MLE and CLE was

calculated for different sample sizes. According to the results, the ML method has less

bias (and nearly zero in some cases) than the PL method. In both methods, the variances

of the estimates decrease as the sample size increases. The MLE of the vector has less bias

compared to the CL method. In terms of wall time, for larger sample size, the computa-

tional advantage of the CL method surpasses that of the ML method quickly. Further, we

note that even the CL method shows large wall times when the sample size increases. In

that case, parallelizing the code would be more effective. For relative efficiency, the ML

method is better than the CL method. However, the efficiency of the CL method increases

with sample size and has the potential to surpass the ML method for much larger sample

sizes. Thus, we can conclude that choosing the CL method over the ML method is a

trade-off between efficiency and computational cost.
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Appendix A: Useful derivatives for score function and Information

matrix

A.1 Useful derivatives for score function: MLE
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A.2 Derivatives of z with respect to the full parameter space θ

∂z

∂µ
(0)
1

=

n∑
i=1

[−2(1− ri)

σ2
1

(y1i − [riµ
(1)
1 + (1− ri)µ

(0)
1 ]) +

2ρ(1− ri)

σ1σ2
(−[riµ

(1)
2 + (1− ri)µ

(0)
2 ])

]

∂z

∂µ
(1)
1

=

n∑
i=1

[−2ri
σ2
1

(y1i − [riµ
(1)
1 + (1− ri)µ

(0)
1 ]) +

2ρri
σ1σ2

(−[riµ
(1)
2 + (1− ri)µ

(0)
2 ])

]

∂z

∂µ
(0)
2

=
n∑

i=1

[−2(1− ri)

σ2
2

(−[riµ
(1)
2 + (1− ri)µ

(0)
2 ]) +

2ρ(1− ri)

σ1σ2
(y1i − [riµ

(1)
1 + (1− ri)µ

(0)
1 ])

]

∂z

∂µ
(1)
2

=

n∑
i=1

[−2r

σ2
2

(−[riµ
(1)
2 + (1− ri)µ

(0)
2 ]) +

2ρri
σ1σ2

(y1i − [riµ
(1)
1 + (1− ri)µ

(0)
1 ])

]

∂z

∂σ1
=

n∑
i=1

[−2

σ3
1

(y1i − [riµ
(1)
1 + (1− ri)µ

(0)
1 ])2 +

2ρ

σ2
1σ2

(y1i − [riµ
(1)
1 + (1− ri)µ

(0)
1 ])(−[riµ

(1)
2 + (1− ri)µ

(0)
2 ])

]

∂z

∂σ2
=

n∑
i=1

[−2

σ3
2

(−[riµ
(1)
2 + (1− ri)µ

(0)
2 ])2 +

2ρ

σ1σ2
2

(y1i − [riµ
(1)
1 + (1− ri)µ

(0)
1 ])(−[riµ

(1)
2 + (1− ri)µ

(0)
2 ])

]
∂z

∂ρ
=

n∑
i=1

[ −2

σ1σ2
(y1i − [riµ

(1)
1 + (1− ri)µ

(0)
1 ])(−[riµ

(1)
2 + (1− ri)µ

(0)
2 ])

]
∂z

∂α0
= 0

∂z

∂α1
= 0

∂z

∂α2
= 0

111



Appendix B: Data Analysis

B.1 Names of 100 stocks

Stock Number Stock Name of the Company

1 AAL American Airlines Group Inc

2 AAPL Apple Inc

3 ADP Automatic Data Processing, Inc

4 AEE Ameren Corp

5 AES AES Corp

6 BDN Brandywine Realty Trust

7 BF.B Brown–Forman

8 BMRA Biomerica

9 CBM Center Bancorp, Inc.

10 CLI Mack-Cali Realty Corporation

11 CMI Cummins

12 CMS CMS Energy

13 CORE Core-Mark

14 COUP Coupa Software
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15 CPB Campbell Soup Company

16 CRM Salesforce.com, Inc.

17 CSTM Constellium

18 CSX CSX Corporation

19 D Dominion Energy

20 DATA GlobalData Plc

21 DRE Duke Realty

22 DTE DTE Energy

23 ED Consolidated Edison

24 EFX Equifax Inc.

25 EQR Equity Residential

26 ES Eversource Energy

27 ETR Entergy Corporation

28 EVRG Evergy

29 EXC Exelon Corporation

30 EYEN Eyenovia

31 FE FirstEnergy Corp

32 FICO Fair, Isaac and Company

33 FIS FIS

34 G Genpact

35 GGAL Galicia Financial Group

36 GKOS Glaukos Corp

37 GLDD Great Lakes Dredge and Dock Company
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38 GLW Corning Incorporated

39 GNW Genworth Financial

40 GVP GSE Systems, Inc.

41 HOLX Hologic, Inc.

42 ICL ICL Group Ltd.

43 ILMN Illumina, Inc.

44 IP The International Paper Company

45 ISRG Intuitive Surgical, Inc.

46 KEN Kenon Holdings

47 KIM Kimco Realty Corporation

48 KN Knowles

49 KOF Coca Cola Femsa S.A.B. de C.V.

50 LANC Lancaster Colony Corporation

51 LMRK Landmark Infrastructure

52 LNT Alliant Energy

53 LNTH Lantheus Holdings

54 LPT Liberty Property Trust

55 LSI Life Storage, Inc.

56 LULU Lululemon Athletica

57 MAA Mid-America Apartment Communities

58 MAT Mattel, Inc.

59 MDB MongoDB Inc.

60 MESA Mesa Air Group
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61 MSCI MSCI Inc.

62 NEE NextEra Energy Inc

63 NEWT NEWTEK Business Services Corp

64 NI NiSource Inc.

65 NKE Nike Inc

66 NMR Nomura Holdings Inc

67 NSA National Storage Affiliates Trust

68 NSSC Napco Security Technologies Inc

69 NWE NorthWestern Corp

70 OFIX Orthofix Medical Inc

71 PEP PepsiCo, Inc.

72 PFGC Performance Food Group Co

73 PG Procter & Gamble Co

74 PLD Prologis Inc

75 PNTR Pantera Silver Corp

76 PNW Pinnacle West Capital Corporation

77 PRMW Primo Water Corp (MISSISSAUGA)

78 RDUS Radius Health Inc

79 REDU RISE Education Cayman Ltd

80 RWLK Rewalk Robotics Ltd

81 SHOP Shopify Inc

82 SNH Steinhoff International Holdings NV

83 SPOT Spotify Technology SA
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84 STAG Stag Industrial Inc

85 TFX Teleflex Incorporated

86 TGTX TG Therapeutics Inc common stock

87 TRI Thomson Reuters Corp

88 TSN Tyson Foods, Inc.

89 UDR UDR, Inc.

90 UIHC United Insurance Holdings Corp

91 UNIT Uniti Group Inc

92 VFC VF Corp

93 VLRS Controladora Vuela Co Avcn SA CV

94 VNET 21Vianet Group Inc - ADR

95 WEC WEC Energy Group Inc

96 WP WP Energy PCL

97 WRK Westrock Co

98 XEL Xcel Energy Inc

99 XRAY DENTSPLY SIRONA Inc

100 ZYXI Zynex Inc.
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B.1.1 Plots of Closing Prices Vs. Recommendation
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