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A pilot study to understand 
the relationship between cortical 
arousals and leg movements 
during sleep
Kanika Bansal1,2,7, Javier Garcia1,7, Cody Feltch3, Christopher Earley4, Ryan Robucci3,5, 
Nilanjan Banerjee3,5 & Justin Brooks3,5,6*

Leg movements during sleep occur in patients with sleep pathology and healthy individuals. Some 
(but not all) leg movements during sleep are related to cortical arousals which occur without conscious 
awareness but have a significant effect of sleep fragmentation. Detecting leg movements during sleep 
that are associated with cortical arousals can provide unique insight into the nature and quality of 
sleep. In this study, a novel leg movement monitor that uses a unique capacitive displacement sensor 
and 6-axis inertial measurement unit, is used in conjunction with polysomnography to understand 
the relationship between leg movement and electroencephalogram (EEG) defined cortical arousals. 
In an approach that we call neuro-extremity analysis, directed connectivity metrics are used to 
interrogate causal linkages between EEG and leg movements measured by the leg movement 
sensors. The capacitive displacement measures were more closely related to EEG-defined cortical 
arousals than inertial measurements. Second, the neuro-extremity analysis reveals a temporally 
evolving connectivity pattern that is consistent with a model of cortical arousals in which brainstem 
dysfunction leads to near-instantaneous leg movements and a delayed, filtered signal to the cortex 
leading to the cortical arousal during sleep.

Humans, unlike other animals, move almost exclusively upright on two legs that produce intricate patterns of leg 
movements from simple to complex, orchestrated mostly via the Central Nervous System (CNS). These processes 
are inhibited during restorative sleep, and dysfunction in this inhibitory neural circuitry, potentially caused by 
physiological irregularities, can manifest as specific leg movements while a person is asleep. For example, leg 
movements during sleep can reflect cortical and/or autonomic arousals, which represent significant changes in 
brain activity accompanied by, transitory increases in blood pressure and heart rate causing significant sleep 
disturbances1–4.

Cortical arousals are theorized to occur as complex phenomena within the central nervous system that 
involves the cortex, thalamus, brainstem, and spinal cord. These arousals are currently observed and characterized 
by electroencephalography (EEG) that occurs as part of overnight polysomnography (PSG) or home sleep test 
(HST) studies. The sleeper is generally unaware of these arousals; however, these arousals can have a significant, 
negative impact5–7.

Although the precise pathophysiology relating leg movements during sleep and cortical arousals remains 
unclear; since leg movements are associated with cortical arousals8–10, their measurement is a critical, yet under-
studied measure of sleep and potential sleep disturbances. Current methods for measuring leg movements during 
sleep include actigraphy (accelerometer-only based devices) and EMG used in PSG; however, these devices give a 
limited view of the complex and sometimes subtle movements of lower extremities. For example, since actigraphy 
uses accelerometers, the leg must move enough to create a detectable signal above noise-levels and thus may 
miss more subtle, yet critical movements11. Furthermore, leg movements that do not involve the location of the 
accelerometers would be completely undetected. Alternatively, EMG can detect subtle movement (through the 
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detection of voltage in muscle) but based on its location overlying the anterior tibialis muscle, can only identify 
leg movements associated with contraction of that muscle which controls dorsiflexion of the foot. Thus, any leg 
movements involving flexion at the knee or even some rotations of the foot would not be detected.

Given the hypothesized relationship between leg movements of sleep and brain activity, we developed a new 
analytic technique called neuro-extremity analysis that examines the effective connectivity between brain sensor 
(EEG) and leg movement sensors to better understand the temporal dependence of activity between the two. The 
goal of this approach was to better understand the mechanism behind leg movements associated with cortical 
arousals. Further, given the complexity of leg movements, we hypothesized that different types of leg sensors 
may show different strengths of leg movement/cortical connections.

In this pilot study, multiple devices were used to measure leg movements during sleep to evaluate their utility 
in detecting expert-labeled cortical arousal events and to evaluate their relationship with ongoing brain activity 
determined by EEG. The sensor data used in this study were the two current standards (EMG and accelerometry 
based), a textile capacitive based sensor and an inertial measurement unit (IMU) consisting of a 3-axis acceler-
ometer, 3-axis magnetometers, and 3-axis gyroscope.

Our results show that in our small sample size of heterogeneous patients, the capacitive sensor data was most 
useful in prediction of cortical arousals and showed stronger associations with EEG oscillations than either of 
the more conventionally used sensor modalities. The temporal pattern of coordinated EEG and leg movement 
sensor activity changes observed in our results are consistent with the model of brainstem dysfunction causing 
leg movements during sleep that are associated with cortical arousals.

Methods
Participants and data collection.  The experimental methods have been previously published12. All stud-
ies were approved by the accredited Institutional Review Board at Johns Hopkins University and all procedures 
followed the standards provided in the 1964 Declaration of Helsinki. All research was performed in accordance 
with all applicable guidelines and regulations including obtaining informed consent for all participants and/or 
their legal guardians.

Briefly, subjects were introduced to the experimental protocol which included simultaneous PSG and leg 
sensor recordings while they slept. For this pilot study, PSG data from 2 adults (one RLS patient off medications 
and another normal subject with no sleep complaint) and 4 children (3 children with ADHD not on medication 
and one child with no sleep complaints) was collected simultaneously with a variety of other sensors on the legs. 
The children ranged in age from 6 to 10 years old.

Materials.  Sensors included 6 channels of EEG (O1, O2, C3, C4, F3, F4), 2 channels of EOG, and 2 channels 
of EMG activity. The bi-lateral anterior tibialis EMG and the video recording of legs and feet provided ground 
truth of leg movements during sleep. During these studies, participants wore the RestEaze device on both ankles. 
The RestEaze product is designed to gather high resolution leg movement information and includes the acceler-
ometry, capacitance, gyroscopy, and magnetometer sensors. These recordings supported the algorithm develop-
ment and are presented here.

Cortical arousal markings.  All PSG sleep measures used in the following analyses were obtained by vis-
ual scoring of the sleep studies by trained technicians with a careful review and adjustment of the results as 
needed by a board-certified sleep professional who was also an expert in leg movement and arousal recordings 
and measurements. All scoring followed the rules established by the American Academy of Sleep Medicine 
(AASM). Review of the EEG was conducted off-line after the data collection was completed. On average 80 ± 25 
(mean ± SD) CAs were found for each participant. Importantly, these CAs were used in subsequent analyses and 
used as ground truth for CA.

Analysis.  EEG and leg sensor data were analyzed with two approaches to explore the relationship between 
leg movements and cortical arousals. The initial approach (Approach 1) was used to determine whether infor-
mation gathered from a variety of sensors on the leg can predict a future cortical event. We use a traditional 
linear regression analysis and use a metric of explained variance to estimate successful prediction. Our next 
approach (Approach 2) was more exploratory and used traditional EEG connectivity techniques to investigate 
the statistical dependencies between the EEG time series and the leg sensor time series.

Approach 1: linear regression.  In our first analysis, we tested if the sensor data can be used to predict the occur-
rence of a cortical arousal using linear regression. In separate regression models, we used the coefficient of 
variation (CoV, standard deviation divided by the mean) of the data coming from different sensors for a fixed 
temporal window (t). These data included 3 of each capacitance, gyroscopy, accelerometer, and magnetometer 
sensors, 2 EMG sensors (Fig. 1A), and an additional measure computed from capacitance sensors, which repre-
sented the sum of differential capacitance values across all three capacitance sensors (CDS). This quantity was 
included given the observed large fluctuation in the measured capacitance values.

Shown as Approach 1 in Fig. 1B, regression was done on a binary dependent variable (Y) which identified if 
the CoV was calculated for the data t seconds after a CA (Y = 1) or for a randomly selected window of the same 
length which did not follow the occurrence of a CA (null data, Y = 0). For every CA observed, a null window 
was identified to be included in the model. For the robustness of this analysis, we conducted 20 regression trials 
for every stream of the sensor data, and in each trial, required null data windows were selected randomly from 
the entire duration of the recording.
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Regression analysis was done separately for each individual and to compare different sensors as predictors, we 
used F-statistics, p-values, and R2. Using initial testing, we found a window (t) of 15–30 s to be optimum for the 
regression models. As a representative comparative metric, we used a standardized R2 (Fig. 1C) for each sensor 
and subject, which was calculated by subtracting the mean R2 values across all the sensors for a given subject.

Approach 2: neuro‑extremity analysis, Granger causal modelling.  Our neuro-extremity analysis method calcu-
lated time-varying asymmetries between fluctuations in oscillatory activity within the brain and the fluctuations 
in a variety of sensors placed on the lower extremity. We employed a Granger causal framework to investigate 
the predictive relationship between the brain activity in the temporal proximity of a clinically defined cortical 
arousal and sensors specially designed to capture leg movements from a variety of high-resolution sensors. Pre-
vious research established that theta (5–8 Hz) rhythms are uniquely tied to sleep and locomotion across species 
and are used in the scoring of cortical arousals according to v2.6 of the AASM scoring manual. Therefore, in our 
second approach we focused on theta rhythms.

Granger causal analyses have been used in EEG analyses for some time and have proven a fruitful endeavor 
to understand how coordinated neural activity may give rise to cognition13,14. We have recently expanded these 
analytical techniques not only to understand connectivity within the brain, but also to understand how fluctua-
tions in neural activity might explain other variables, like continuous motor behavior15. Largely following this 
framework, we have expanded these methods to understand: (1) which features of leg movements and cortical 

Figure 1.   Linear regression analysis framework. (A) Leg movement data during sleep was recorded 
from a variety of sensors including, accelerometer (Acc), gyroscope (Gyro), capacitance sensor (Cap), 
magnetometer (Mag), and from electromyography (EMG). In addition, brain activity was recorded using 
electroencephalography (EEG) from a couple of frontal (F), central (C), and occipital (O) regions. Arousals 
were marked manually during the processing of the data. For a part of the analysis, EEG data was filtered into 
different frequency bands. (B) In our first analysis approach, we used regression models to test and compare if/
how the data from different sensors can predict the occurrence of a cortical arousal. As a predictor, we used the 
coefficient of variation in the sensor data during a temporal window (t) following an arousal (response variable 
Y = 1, magenta) and no arousal (Y = 0, blue). (C) To compare across sensors, here we show the standardized R2 
for each sensor and subject, which was calculated by subtracting the mean R2 values across all the sensors for 
a given subject. Error bars represent the standard deviation across 20 regression trials where the equal number 
of no-arousal windows were randomly chosen (see “Methods” section). We observed that use of capacitance 
sensors was better than use of other sensors in differentiating arousal events from no arousal events.
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arousals, as measured by sensors placed on the leg and scalp, are closely intertwined, (2) the temporal limita-
tions and extent of this relationship, and (3) the extent to which these neuro-extremity relationships may be 
further explored.

This approach is mainly completed within a few steps that include: (1) preprocessing the EEG and leg sensor 
data, (2) determining the model parameters, (3) fitting the model, (4) estimating partial directed coherence, 
(5) statistical testing, and (6) evaluating asymmetry between the brain-predicting-leg and leg-predicting-brain 
estimations. These steps are detailed below and are roughly depicted in Fig. 2A–C,E.

(1)	 Because the methods require continuous time series and a generally large amount of time segments to build 
a predictive model of neuro-extremity connectivity, special care must be considered to discard any pertur-
bations in the signal that might be driven by nuisance factors (e.g., EEG artifact like jaw clenches, poor sen-
sor contact, etc.). Due to some body movement over the > 8 h recording and the limited dataset within this 
pilot study, we used an artifact subspace removal (ASR) on the electrodes, which decomposes the EEG into 
principal components in overlapping sliding windows to identify and reject high amplitude components. 
This method has previously shown to be highly successful in naturalistic EEG data collections16. After this 
continuous correction of the time series, EEG data were filtered with a low-order (3) butterworth zero-
phase filtering scheme. Leg sensor data was not filtered or processed so as to capture any and all possible 
features from the sensors that might be useful in prediction of (or predicted by) EEG activity surrounding 
a cortical arousal. Finally, the EEG data were epoched into a 7 s window surrounding the cortical arousal. 
The leg sensor data was epoched into 7 s windows through the duration of 6 min surrounding the cortical 
arousal to understand the temporal dynamics of the prediction. Separate autoregressive (AR) models were 
estimated for each of the leg sensor epochs.

(2)	 Next, the ARfit toolbox17 was used to implement a stepwise least squares estimation of multivariate auto-
regressive (AR) model at a variety of model orders (5–30), and the Schwarz Bayes information criterion 
(SBC) across the model orders was inspected to find the optimal model order (20) for these complex neuro-
extremity relationships. The relatively high model order was used to capture as many possible temporally 
dependencies as might be available in the time series.

(3)	 Finally, we calculated the partial directed coherence (PDC), a measure that describes the direction of infor-
mation flow based on a multivariate decomposition of the partial coherences within complex time varying 
signals18,19. This resulted in a 21 × 21 matrix for all pair-wise EEG and leg sensor directional relationships.

(4)	 The PDC estimates, on their own, imply the information flow between two time series derived from a metric 
that signifies how a time series may predict a future fluctuation in another time series, but they could also 
signify some inherent predictable feature in both signals. To determine the robustness of the PDC, a null 
distribution of PDC values was created by randomly rotating the time series of the EEG and leg data. PDC 
was estimated in the shuffled data, and then all estimates were aggregated. Only the PDC values above (or 
below) the 95% confidence interval of the null distribution mean were considered. Figure 2C steps through 
this process showing the mean PDC across all sensors (left panel), then a count of time points that are 
significantly above (or below) the 95% confidence interval of the null distribution (middle panel), and then 
finally, the mean PDC when only considering the significant edges (right panel).

(5)	 Lastly, when estimating the directed connectivity in this dataset, we studied the time course of PDC, 
specifically to understand the asymmetry in the prediction. We estimated the asymmetry index (AI) as 
the difference normalized by the sum of each pairwise sensor relationship. If the AI is < 0, then it suggests 
more that leg sensor measurements can be used to predict the EEG measurements than the EEG sensor 
measurements can be used to predict the leg sensor measurements. If the AI is > 0, then the opposite is true. 
After the AI was estimated across the time course, the time-evolving asymmetry matrix was subjected to the 
same statistical thresholding procedure in (4) and only those significant PDC values were used to estimate 
the average asymmetry 1 min before the CA and 1 min after the CA, now known as CApre and CApost.

Results
Linear regression suggests capacitance sensor can identify CAs.  We used linear regression mod-
els for each sensor to test if the coefficient of variation in the sensor time series can dissociate arousal events 
from non-arousal events (Fig. 1B, also see “Methods” section). We assessed model F-statistics, p-values, and 
the R2 values to test how each sensor performed. For each sensor stream the mean and standard deviation 
of the R2 across all channels was displacement capacitive: 0.2 ± 0.12; accelerometers: 0.06 ± 0.072; gyroscope 
0.0084 ± 0.008; magnetometers 0.065 ± 0.07; and EMG 0.005 ± 0.0026. In Fig. 1C, we show the standardized R2 
calculated for all the sensors across different subjects to summarize our findings. We calculated this quantity by 
subtracting the mean R2 value observed across all the sensors from the R2 value observed for the given sensor for 
each subject and regression trial. We found that the capacitance sensors performed the best and separated the 
arousals from non-arousal reasonably well.

Neuro‑extremity analysis reveals special role of capacitance in EEG signal prediction.  As a 
more exploratory approach, to support the analysis in Approach 1, we implemented a neuro-extremity analysis 
technique that employs an EEG connectivity approach, partial directed coherence (PDC) to inspect the direc-
tional information flow between all pairwise sensors. Figure 2 visually describes this analysis technique, which 
is largely derived from a previous neuro-behavioral analysis used to describe the relationships between the brain 
and continuous behavioral changes15. This resulted in a series of PDC matrices that represented how well one 
signal may be used to predict another, from 3 min before the cortical arousal to 3 min after the cortical arousal. 
To determine whether the value of each cell of the PDC matrix was significant, we estimated a null distribution 
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Figure 2.   Approach 2: neuro-extremity analysis, Granger causal approach: (A) visual depiction of the 
approach, where (after substantial preprocessing) causal models of 7 s of sensor data were built in several 
windows from 3 min before the CA to 3 min after. Importantly, only the leg sensor data was changed in these 
windows, the CA EEG data was never shifted in time. (B) For each time window, partial directed coherence 
(PDC) was estimated between each pairwise sensor and an asymmetrical matrix was produced that represented 
the directional relationships inferred via PDC. (C) Summary PDC matrices across all subjects. Mean PDC 
across all participants, without statistical thresholding (left panel), number of significant time points across 
all participants and time windows for each cell of the PDC matrix (middle panel), and the mean PDC across 
all participants when only considering the significant PDC cells (right panel). (D) Inflow and Outflow of the 
leg sensor types within the study, calculated by the sum of significant EEG PDC values. (E) Asymmetry Index 
(AI) was calculated to determine the bias in directionality in the PDC values within the 2 min surrounding the 
CAs. A sample time course of the AI is shown for the EEG-theta band. (F) While the CApre is dominated by 
the relationship of the capacitance sensors predicting the CA, the CApost interval is less uniform, with certain 
capacitance/EEG sensor pairings showing the opposite. These pairs are highlighted with red. (G) Visual display 
of the Cap-to-EEG relationship before the CA (CApre) and the relationship of the two notable exceptions that 
show higher PDC from the EEG sensors (C3,O2) to the Cap sensors (right panel) after the CA (CApost).
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and only considered values that were higher than the 95% confidence interval surrounding the mean of the null 
distribution, and then only considered these values in the overall mean (Fig. 2C, right panel). As is observed in 
Fig. 2C, a structured pattern emerges for each of the panels. First, the overall mean PDC values, without statisti-
cal thresholding (Fig. 2C, left panel), shows high mean PDC for connectivity between the EEG sensors. Capaci-
tance (Cap) and EMG sensors also show relatively high mean PDC with directional information flow from the 
leg sensors to the EEG sensors, without much spatial specificity. Next, the number of significant connections 
across all 5 subjects and time windows (Fig. 2C, middle panel: 6 total minutes, 241 windows), suggests many of 
the cells representing the information flow between the EEG sensors and leg sensors show many significant time 
windows in the cells of the time varying PDC matrix, as compared to the lack of significant pairs within the EEG 
sensors alone. Finally, when only considering the significant windows, the mean PDC from the Capacitance sen-
sors to the EEG sensors appears to be higher than the alternative direction, suggesting the temporal fluctuations 
in the leg sensors are more predictive of the EEG signal fluctuations than the alternative.

Finally, to confirm the specificity of the results shown in the mean PDC matrix (Fig. 2C, right), we next 
summed the significant PDC values over all 6 EEG sensors PDC and inspected the inflow and outflow of each 
type of leg sensor for each subject. In other words, we were interested in how well each leg sensor measurement 
was influenced or predicted using the EEG sensors (i.e., inflow) and vice versa (i.e., outflow). Supporting the 
findings in Fig. 2C, the Cap sensors display the highest overall inflow and outflow with a couple of exceptions in 
which a subset of the EMG sensors in 2 participants also displayed similarly high inflow and outflow. Interest-
ingly, 2 of the 3 pediatric patients did not have time windows that survived the null model comparison, as the 
variance in the statistical dependencies between all sensors in the null model was higher than that in the other 
subjects.

Asymmetry in neuro‑extremity analysis suggests a new pathway to investigate brain/body 
relationships.  While the previous summary of results referred to the specificity in EEG-leg sensor predic-
tion, our final step in the neuro-extremity analysis, directly compares the EEG-leg sensor PDC values across 
time. To perhaps shed light onto the observed relationships and taking advantage of the temporal information 
present in the time-evolving PDC matrices, we next derived an asymmetry index (AI), which directly estimates 
the directional bias in PDC values. For illustrative purposes, we only inspect the most robust Cap sensor and 
specifically ask whether there are pairwise relationships that may change their directional bias in windows before 
(CApre) and/or after (CApost) the CA. Figure 2F is a visualization of the average asymmetry (considering only 
significant time windows), of the individual EEG sensors to all of Cap sensors, including the differential sum of 
all 3 Cap sensors (Cds). We observe that overall, there is a substantial bias in the leg sensors predicting the tem-
poral dynamics of the EEG sensors, and this relationship is especially apparent in the 1 min before a CA (Fig. 2F, 
compare left and right panels); however, there are a couple of noticeable exceptions, in central and posterior 
electrodes (C3, O2) for a subset of the Cap sensors. Figure 2G pictorially represents these relationships, with red 
arrows representing the direction of prediction. These results add to the previous findings that showed perhaps 
special features in the dynamics of Cap sensors as they can predict CAs and provide a framework to further study 
brain-corporeal investigations.

Discussion
In this pilot study textile capacitive sensor measurements of the lower extremity were more valuable in dis-
criminating cortical arousals than other sensor modalities and further, these data were more closely related to 
EEG-theta oscillations near the cortical arousal events. Collectively, these results (1) provide preliminary sup-
port that complex leg movements during sleep are associated with cortical arousals and (2) provide preliminary 
evidence of causal connections (neuro-extremity analysis) between these leg movements and the brain during 
cortical arousals.

Leg movements during sleep can be significant biomarkers for cortical arousals that reflect significant frag-
mentation in homeostatic sleep mechanisms and are implicated in multiple sleep disorders20, attention deficit 
hyperactivity disorder21, neurodegenerative disease22, and cardiovascular disease23. Despite these significant 
relationships, it is still unknown whether this reflects (i) a process in which dysfunction in the brainstem leads to 
an immediate movement of the legs with delayed processing through the thalamus to cortex or (ii) somatosensory 
feedback of the leg movement to cortex, or perhaps a combination of the two mechanisms. Indeed, the emergence 
of a leg movement during sleep is a complex process involving numerous muscles of the lower extremity and 
several cortical and subcortical structures24. Because of this complexity, there is significant variability in the type 
and duration of leg movements during sleep. In this study, using capacitive sensors, we were able to capture and 
model this complexity in relationship to cortical arousals and EEG dynamics related to those arousals.

The first analysis revealed that the relative variability accounted for in detecting cortical arousals was high-
est with the capacitive sensors (Fig. 1C). Similarly, the neuro-extremity analysis that examines the connectivity 
between EEG-theta activity and leg movement sensor data, revealed stronger effective connectivity between the 
capacitive sensors and EEG-theta oscillations than other sensor modalities (Fig. 2C,D). Capacitive sensors can 
capture more diverse leg movements during sleep than the other sensors. By design, the capacitive sensors capture 
relative changes in the electromagnetic field that are generated through changes in lower extremity position. This 
enables the sensor to capture numerous types of leg movements including those that do not involve the anterior 
tibialis (muscle used during PSG/EMG studies) nor the physical movement of the ankle itself (e.g. dorsiflexion 
of the great toe) used by actigraphy (accelerometry based devices). Thus, the present results that show a stronger 
relationship between these data and EEG-theta activity may be able to capture a more general movement circuit 
between leg movements and the brain. The other leg sensors used in this study detect leg movements during 
sleep but are more specific to particular types of movements. For example, the EMG channels used here (and in 
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common practice for PSG) will only detect activation of the anterior tibialis muscle which controls dorsiflexion 
of the foot but may miss the other movements (e.g. flexion at the knee). Similarly, actigraphy requires that the 
sensors physically move sufficiently above baseline noise levels for leg movements to be detected. Thus, subtle 
movements measured by actigraphy may not show relationships to cortical arousals and neural activity that are 
detected by capacitive sensing.

The neuro-extremity axis analysis reveals an interesting pattern of effective connectivity. The temporal 
relationship between leg movements and EEG-theta changes shows significant effective connectivity from the 
leg movement to the cortex before the manually demarcated cortical arousal (Fig. 2F). This implies that leg 
movements precede detectable changes in EEG before the cortical arousal. After the arousal, there is, similarly, 
significant outflow from the leg-sensors to EEG, but several EEG-leg sensor pairs that also show the opposite 
directionality (effective connectivity from EEG to the leg movement time series) emerge during this time.

Collectively, we interpret these findings as representative of a theory suggesting that certain leg movements 
during sleep (those associated with cortical arousals), originate in the brainstem and signal in two pathways with 
two different delays25. One pathway, from the brainstem through the spine and to the muscles of the leg which 
is relatively quick to generate a leg movement. It originates in the brainstem and involves subcortical structures 
including central pattern generators (CPGs) that are otherwise inhibited during sleep26. The other pathway, 
from the brainstem through the thalamus and to the cortex is slower relative to the brainstem to leg movement 
pathway and results in a cortical arousal following a leg movement. The brainstem to cortex pathway is involved 
with sleep/wake balance and this is likely involved in the sleep fragmentation, cortical arousal associated with 
the particular leg movements studied in this manuscript27,28.

The current results are consistent with this model. From a temporal perspective, the inciting event is thought 
to originate in the brainstem in which CPGs create prototypical leg movements during sleep that begin very 
early in the process. Simultaneously, a delayed signal from the brainstem through the thalamus and to cortex is 
transmitted resulting in detectable changes in EEG. This signal is detected as an effective connection between 
the leg movement and EEG changes in Fig. 2F (left) which may be related to the cortical arousal event. As the 
legs continue to move, the associated cortical activity changes (as measured by EEG) resulting in effective con-
nectivity from EEG to leg movements as shown in Fig. 2F (right). This conceptual model is captured in Fig. 3.

Other studies have shown different temporal patterns of EEG and leg movement activity. Specifically, in 
periodic leg movement disorder a study demonstrated that delta rhythms precede PSG (EMG-derived) estimates 
of leg movements which the authors conclude as representative of a cortical origin of periodic leg movements 
during sleep in Periodic Leg Movement Disorder (PLMD) patients29. Another study has demonstrated similar 
findings to ours in Restless Leg Syndrome (RLS) patients where significant alpha and beta spectral power changes 
were observed after the initiation of leg movements with no change in delta range30. There are a few reasons 
for this discrepancy. First, these two studies used patients with different diagnoses (PLMD vs RLS) which may 
have different underlying pathophysiology and are associated with different sleep characteristics31. Second, our 
approach to the measurement of leg movement is unique. Instead of using EMG of the anterior tibialis we used 
a textile based capacitive sensor. This sensor will detect more leg movements than an EMG probe and thus is 
better suited to capture more complex leg movements that involve different muscles. Preliminary evidence col-
lected by our group suggests that leg movements begin earlier and last longer than those detected by EMG alone 
(Brooks et al., under review). Our future work will investigate relationships between additional EEG rhythms 
(e.g. alpha), leg movements, and additional sleep-related movement disorders.

Figure 3.   A conceptual model of LMS associated with arousals: to show the timing between CNS areas 
involved in the leg movements during sleep associated with cortical arousals. Tau1 represents the delay from the 
brainstem event to the beginning of the leg movement which is quick. Tau2 represents the delay between the 
brainstem event and its transmission to the cortex which is slow.
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Conclusions
Leg movements during sleep associated with cortical arousals are complex and poorly understood phenomena. 
Our preliminary research has provided some additional insight by demonstrating that (1) capacitive sensor 
data can provide an improved ability to detect cortical arousals based on leg movement data and (2) proposes 
a neuo-extremity analysis to estimate the temporal dynamics in the EEG-leg movement relationship. Initial 
implementation of this approach shows consistency with models of brainstem dysfunction as a potential source 
of leg movements during sleep associated with cortical arousals.

There are a few limitations to consider with this study. First, the sample size is quite small and heterogenous 
and additional data is needed to further clarify the physiology of leg movements during sleep. Second the sparse 
locations of the EEG sensors used in this study is poor, thus prohibiting clear interpretation of the functional 
areas of cortex involved. Finally, additional characterization is needed to understand the precise muscle activa-
tions (and subsequent movements) associated with the capacitive time series data. Future research is needed to 
clarify these points.

Data availability
The data underlying this article will be shared on reasonable request to the corresponding author.
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